Обозначение счетчика на схеме электрической принципиальной: Условное обозначение счетчика на однолинейных схемах – RozetkaOnline.COM
Условное обозначение счетчика на однолинейных схемах – RozetkaOnline.COM
Счетчик потребляемой электроэнергии – это основной элемент однолинейных схем учетно-распределительных электрических щитов квартиры или дома.
Его правильное обозначение формируется из графического изображения и буквенного кода – маркировки.
Условное графическое обозначение
Для электроизмерительных устройств разработан государственный стандарт – ГОСТ2.729-68 (ЧИТАТЬ PDF), согласно которому, электросчетчик на однолинейной схеме показывается так (см. изображение ниже):
Изображение состоит из двух основных элементов: схематического вида измерительного устройства интегрирующего типа, и вписанного в него общепринятого сокращения измеряемой величины – ватт-часов (Wh).
Видя это, любой специалист понимает, что это устройство измеряет и рассчитывает количество потребляемой энергии. Интегрирующий, значит позволяющий получить суммарное (интегральное) значение измеряемой величины за все время действия.
В современном ГОСТ Р МЭК 60617-DB-12M-2015 «Графические символы для схем (в формате базы данных)», в дополнение к стандартному, даётся и вид многотарифного электросчетчика, которые сейчас применяются гораздо чаще однотарифных:
В данном случае показан двухтарифных счетчик электрической энергии. Как вы, думаю, поняли, если используется многоставочные измерительные приборы с большим количеством тарифив, то на чертеже просто добавляются дополнительные блоки сверху, их число равно количеству тарифов.
Буквенный код
Согласно ГОСТ 2.710-81. “Обозначения буквенно-цифровые в электрических схемах” (ЧИТАТЬ PDF), буквенное обозначение счетчика на однолинейной схеме – PI
Данный код, складывается из двух знаков:
P – Прибор, измерительное оборудование (элемент однолинейной схемы)
I – Интегрирующий (код функционального назначения)
Маркировка устройтсвактивной энергии, может иметь нумерацию если их несколько – PI1, PI2 и т.д.
Условные обозначения в различных электрических схемах
Контроль силы тока в электроэнергетических системах выполняется с помощью трансформатора тока. Его первичная обмотка включается последовательно в цепь, а вторичная подсоединяется к измерителю. Такое подключение обеспечивает изолирование прибора учёта от высокого напряжения. Коммутирование счётчика при этом осуществляется через испытательную клеммную коробку (ИКК), обеспечивающую безопасное отключение приборов.
Блок: 1/5 | Кол-во символов: 415
Источник: https://rusenergetics.ru/praktika/podklyuchenie-klemmnoj-kolodki-ikk
Чтение чертежей
Принципиальная электрическая схема показывает все элементы, детали и сети, входящие в состав чертежа, электрические и механические связи. Раскрывает полную функциональность системы. Всем элементам любой электрической схемы соответствуют обозначения, позиционированные в ГОСТе.
К чертежу прилагается перечень документов, в котором прописываются все элементы, их параметры. Компоненты указываются в алфавитном порядке, с учетом цифровой сортировки. Перечень документов (спецификация) указывается на самом чертеже, либо выносится отдельными листами.
Блок: 2/11 | Кол-во символов: 563
Источник: https://ProFazu.ru/elektrooborudovanie/oboznacheniya/uslovnye-oboznacheniya-v-elektricheskih-shemah.html
Счетчики электрической энергии можно классифицировать по следующим принципам:
1. По принципу действия:
- индукционные
- электронные (статические)
2. По классу точности счетчики:
- рабочие
- образцовые
Класс точности счетчика – это его наибольшая допустимая относительная погрешность, выраженная в процентах.
В соответствии с ГОСТ Р 52320-2005, ГОСТ Р 52321-2005, ГОСТ Р 52322-2005, ГОСТ Р 52323-2005, счетчики активной энергии должны изготавливаются классов точности 0,2S; 0,2; 0,5S; 0,5; 1,0; 2,0 счетчики реактивной энергии — классов точности 0,5; 1,0; 2,0 (ГОСТ Р 5242520-05).
3. По подключению в электрические сети:
- однофазные (1ф 2Пр однофазный двухпроводный)
- трехфазные – трехпроводные (3ф 3Пр трехфазный трехпроводной)
- трехфазные – четырехпроводные (3ф 4Пр трехфазный четырехпроводной)
4. По количеству измерительных элементов:
- одноэлементные (для однофазных сетей (1ф 2Пр))
- двухэлементные (для 3-х фазных сетей с равномерной нагр (3ф 3Пр))
- трехэлементные (для трехфазных сетей (3ф 4Пр))
5. По принципу включения в электрические цепи:
- прямого включения счетчика
- трансформаторного включения счетчика:
- подключения счетчика к трехфазной 4-проводной сети с помощью трех трансформаторов напряжения и трех трансформаторов тока
- подключения счетчика к трехфазной 3-проводной сети с помощью трех трансформаторов напряжения и двух трансформаторов тока
- подключения счетчика к трехфазной 3-проводной сети с помощью двух трансформаторов напряжения и двух трансформаторов тока
Блок: 2/8 | Кол-во символов: 1467
Источник: https://energo-audit.com/klassifikaciya-schetchikov-elektroenergii
Электронные электросчетчики
Рис.4. Электронный электросчетчик
Эти приборы несколько дороже индукционных, но на сегодняшний день это наиболее выгодные и приоритетные в использовании счетчики. Они имеют более высокий класс точности и позволяют учитывать многотарифность.
Электронные электросчетчики работают за счет преобразования входного аналогового сигнала с датчика тока в цифровой код, равнозначный потребляемой мощности. Этот код отправляется расшифровываться на специальный микроконтроллер. После чего на дисплей (или цифровой барабан) выводится количество расходуемой электроэнергии.
Самая главная составляющая этих счетчиков — это микроконтроллер. Именно он производит анализ сигнала и рассчитывает количество расходуемой электроэнергии. А также передает информацию на выводящие, электромеханические устройства и дисплей.
Рис.5. Принцип работы электронного электросчетчика
Сам прибор состоит из корпуса, трансформатора тока, преобразователя сигнала и тарификационного модуля. Если же разбирать более подробно, в состав счетчика входят еще и:
- ЖК-дисплей (или цифровой барабан)
- источник вторичного питания (преобразует переменное напряжение)
- микроконтроллер (просчитывает входные импульсы, рассчитывает расходуемую электроэнергию, обменивается данными с другими узлами и схемами счетчика)
- преобразователь (преобразует аналоговый сигнал в цифровой с последующим преобразованием его в импульсный сигнал, равнозначный потребляемой энергии)
- супервизор (формирует сигнал сброса при перебоях с питанием, выводит аварийный сигнал при снижении входного напряжения)
- память (хранит данные об электроэнергии)
- телеметрический выход (принимает импульсный сигнал об энергопотреблении)
- часы реального времени (отсчитывают текущее время и дату)
- оптический порт (считывает показания счетчика, а также программирует его)
Достоинства и недостатки электронных электросчетчиков
Достоинства
- Класс тoчности — от 1,0 — высокий
- Многотарифность (от 2)
- Достаточно одного счетчика при учете нескольких типов электрической энергии
- Энергоучет ведется в 2 направлениях
- Ведут измерение качества и объема мощности
- Хранят данные учета электроэнергии
- Данные легко доступны
- В случае хищения электроэнергии осуществляется фиксация несанкционированного доступа
- Возмoжность дистанциoнно снимать пoказатели
- Возможно применение при автоматизированном техническом учёте и контроле учета электроэнергии (АСТУЭ и АСКУЭ)
- Длительный срок метрологического интервала (МПИ)
- Малые по размеру
Недостатки
- Очень чувствительны к перепадам напряжения
- Дороже индукционных
- Достаточно сложно отремонтировать
Блок: 3/4 | Кол-во символов: 2525
Источник: http://www.diy.ru/post/6730/
Энергетическое обследование • Программа энергосбережения • Консультация
6. По конструкции:
- простые
- многофункциональные
7. По количеству тарифов:
- однотарифные
- многотарифные
8. По видам измеряемой энергии и мощности:
- активной электроэнергии (мощности)
- реактивной электроэнергии (мощности)
- активно-реактивной электроэнергии (мощности)
Активная мощность для 1-фазного счетчика, Вт: PА1ф2 = UфICosφ
Активная мощность для 3-фазного двухэлементного счетчика, включенного в 3-х проводную сеть, Вт: PА3ф3Пр = UАВIАCosφ1(UАВIА )+ UСВIСCosφ2(UСВIС)
Активная мощность для 3-фазного трехэлементного счетчика, включенного в 4-х проводную сеть, Вт: P3ф4Пр = UАIАCosφ1(UАIА) + UвIвCosφ2(UвIв) + UсIсCosφ3(UсIс)
Блок: 3/8 | Кол-во символов: 705
Источник: https://energo-audit.com/klassifikaciya-schetchikov-elektroenergii
Индукционные (механические) электросчетчики
Рис.1. Индукционный однофазный электросчетчик
Счетчики с вращающимся диском знакомы практически каждому. Это те, за прозрачной панелью которых есть вращающееся колесико. Наверняка многие не раз наблюдали за скоростью его вращения — чем выше скорость, тем больше расход энергии. А показания счетчика обозначаются цифрами на специальных барабанах.
Принцип работы таких счетчиков заключается в следующем. В электрическом счетчике имеется 2 катушки (рис. 2 — 1 и 4 указатели) — катушка напряжения (служит ограничителем переменного тока, преградой для помех и пр., создает магнитный поток, соразмерный напряжению) и токовая катушка (создает переменный магнитный поток, соразмерный току).
Рис.2. Принцип работы индукционного электросчетчика
Магнитные потоки, создаваемые катушками, проникают сквозь алюминиевый диск (рис.2, указатель 5). При этом потоки, которые создает токовая катушка, пронизывают диск несколько раз за счет своей U-образной формы. Как следствие, появляются электромеханические силы, которые и вращают диск.
Далее ось диска взаимодействует со счетным механизмом в виде червячной (зубчато-винтовой) передачи (Рис. 3), которая передает необходимые сигналы и информацию на цифровые барабаны. Чем выше крутящий момент диска, тем выше мощность подаваемого сигнала (крутящий момент равнозначен мощности сети), а значит и расход электроэнергии больше.
Рис.3. Червячная передача
Когда мощность подаваемого электромагнитного сигнала снижается, в действие приходит постоянный магнит торможения (Рис.2, указатель 3). Он и выравнивает колебания частоты вращения диска за счет взаимодействия с вихревыми потоками. Магнит создает электромеханическую силу, обратную кручению диска. Это заставляет диск снизить скорость или вообще остановиться.
Эта группа счетчиков наиболее дешевая и простая. Широко использовались индукционные электросчетчики в советское время (и по нынешнее время у большинства в квартирах установлены именно такие приборы). Но постепенно на смену им приходят электронные счетчики за счет ряда недостатков индукционных приборов. Например, индукционный электросчетчик не может снять показания автоматически, а также в показаниях зачастую присутствует погрешность.
Достоинства и недостатки индукционных счетчиков
Достоинства
- Надежны в использовании
- Многoлетний срок эксплуатации счетчика
- Независимость от перепадов электрoэнергии
- Дешевле электронных
Недостатки
- Класс точнoсти достаточно низок — 2,0; 2,5
- Практически oтсутствует защищенность от хищения электрической энергии
- Высокое собственное потребление тока
- При малых нагрузках вырастает погрешность (чем меньше класс точности, тем больше погрешность)
- При учете нескольких типов электроэнергии (активной и реактивной) возникает необходимость использования нескольких приборов учета энергии
- Энергоучет ведется в одном направлении
- Крупные габариты приборов
Блок: 2/4 | Кол-во символов: 2852
Графические обозначения
Принципиальная схема имеет две разновидности — однолинейная и полная. На однолинейной чертят только силовой провод со всеми элементами, если основная сеть не отличается индивидуальными дополнениями от стандартно принятой. Нанесенные на линию провода две или три косые черты, обозначают однофазную или трехфазную сеть, соответственно. На полной чертят всю сеть и проставляют общепринятые условные обозначения в электрических схемах.
Однолинейная электрическая принципиальная схема, однофазная сеть
Блок: 4/11 | Кол-во символов: 522
Источник: https://ProFazu.ru/elektrooborudovanie/oboznacheniya/uslovnye-oboznacheniya-v-elektricheskih-shemah.html
Пример подключения
Расключение счётчика через испытательную коробку должно проходить строго по схеме. Рассмотреть лучше на реальном примере подключения индукционного счётчика ЦЭ6803 В 100/10 Т1. Согласно требованиям ПУЭ, трёхфазные приборы учёта тока цепи подключаются через токовые трансформаторы и переходную коробку.
В качестве трансформаторов тока можно использовать ТОП-0,66 с понижающим коэффициентом 200/5. Для рассматриваемого случая подойдёт коробка испытательная переходная кип Б3179, выпускаемая МЭТЗ «Мытищинский электротехнический завод». Её вес не превышает 0,4 кг, а габариты составляют: 68х220х33 мм. Последовательность расключения этого оборудования будет следующей:
- В щите устанавливается счётчик, испытательная коробка и трансформаторы тока.
- Трансформаторы соединяются по схеме звезда, а их общий вывод заземляется.
- От преобразователей тока до соединительной коробки прокладываются провода сечением не менее 1,5 мм².
- От измерителя энергии также проводятся три провода, но сечение в этом случае уже составляет 2,5 мм².
- Для удобства все провода маркируются, то есть обозначаются все три фазы и начала токовых обмоток и общий вывод.
Проводники от счётчика заводятся сверху ИКК и подключаются по очереди к контактной группе, имеющей более широкую площадь пластин, а от токовых трансформаторов снизу.
Подключение будет выглядеть следующим образом:
- 1 клемма счётчика — начало токовой обмотки первой фазы;
- 2 клемма — напряжение первой фазы;
- 4 клемма счётчика — токовая обмотка второй фазы;
- 5 клемма — разность потенциалов второй фазы;
- 7 клемма счётчика — приходящий провод токовой обмотки третьей фазы;
- 8 клемма — напряжение третьей фазы;
- 9 клемма счётчика — общий провод;
- 10 клемма — резерв.
Между клеммами 3,6 и 9 устанавливаются перемычки с помощью идущих в наборе пластинок. Выполняется это вкручиванием винта М4 через перемычку к подключённым пластинам, используя специально сделанные отверстия.
После этого ИКК закрывается крышкой и система готова к включению. Если же возникнет необходимость снять счётчик, то просто раскручиваются перемычки, тем самым разрывая цепь, идущую на прибор учёта.
Блок: 4/5 | Кол-во символов: 2111
Источник: https://rusenergetics.ru/praktika/podklyuchenie-klemmnoj-kolodki-ikk
Виды и значение линий
- Тонкая и толстая сплошные линии — на чертежах изображает линии электрической, групповой связи, линии на элементах УГО.
- Штриховая линия — указывает на экранирование провода или устройств; обозначает механическую связь (мотор — редуктор).
- Тонкая штрихпунктирная линия — предназначается для выделения групп из нескольких компонентов, составляющих частей устройства, либо систему управления.
- Штрихпунктирная с двумя точками — линия разъединительная. Показывает развертку важных элементов. Указывает на удаленный от устройства объект, связанный с системой механической или электрической связью.
Сетевые соединительные линии показывают полностью, но согласно стандартам, их допускается обрывать, если они являются помехой для нормального понимания схемы. Обрыв обозначают стрелками, рядом указывают основные параметры и характеристики электрических цепей.
Жирная точка на линиях указывает на соединение, спайку проводов.
Блок: 5/11 | Кол-во символов: 939
Источник: https://ProFazu.ru/elektrooborudovanie/oboznacheniya/uslovnye-oboznacheniya-v-elektricheskih-shemah.html
Основные понятия, термины и определения
Счетный механизм (отсчетное устройство): Часть счетчика, которая позволяет определить измеренное значение величины.
Отсчетное устройство может быть механическим, электромеханическим или электронным устройством, содержащим как запоминающее устройство, так и дисплей, которые хранят или отображают информацию.
Измерительный элемент – часть счетчика, создающая выходные сигналы, пропорциональные измеряемой энергии.
Цепь тока: Внутренние соединения счетчика и часть измерительного элемента, по которым протекает ток цепи, к которой подключен счетчик.
Блок: 5/8 | Кол-во символов: 597
Источник: https://energo-audit.com/klassifikaciya-schetchikov-elektroenergii
Электромеханические составляющие
Схематическое изображение электромеханических звеньев и контактов
А — УГО катушки электромеханического элемента (магнитный пускатель, реле)
В — тепловое реле
С — катушка прибора с механической блокировкой
D — контакты замыкающие (1), размыкающие (2), переключающие (3)
Е — кнопка
F — обозначение выключателя (рубильника)на электрической схеме УГО некоторых измерительных приборов. Полный список этих элементов приведен в ГОСТе 2.729 68 и 2.730 73.
Блок: 6/11 | Кол-во символов: 482
Источник: https://ProFazu.ru/elektrooborudovanie/oboznacheniya/uslovnye-oboznacheniya-v-elektricheskih-shemah.html
Энергоаудит • Энергетический паспорт • Программа энергосбережения
Цепь напряжения: Внутренние соединения счетчика, часть измерительного элемента и, в случае статических счетчиков, часть источника питания, питаемые напряжением цепи, к которой подключен счетчик.
Электросчетчик непосредственного включения (или прямого включения): Как правило 3-х фазный электросчетчик, включаемый в 4-х проводную сеть, напряжением 380/220В, без использования измерительных трансформаторов тока и напряжения.
Трансформаторный счетчик – счетчик, предназначенный для включения через измерительные трансформаторы напряжения (ТН) и тока (ТТ) с заранее заданными коэффициентами трансформации.
Показания счетчика должны соответствовать значению энергии, прошедшей через первичную цепь измерительных трансформаторов.
Блок: 6/8 | Кол-во символов: 801
Источник: https://energo-audit.com/klassifikaciya-schetchikov-elektroenergii
Элементы электрических цепей, приборы
Номер на рисунке | Описание | Номер на рисунке | Описание |
---|---|---|---|
1 | Счетчик учета электроэнергии | 8 | Электролитический конденсатор |
2 | Амперметр | 9 | Диод |
3 | Вольтметр | 10 | Светодиод |
4 | Датчик температуры | 11 | Диодная оптопара |
5 | Резистор | 12 | Изображение транзистора npn |
6 | Реостат (переменный резистор) | 13 | Плавкий предохранитель |
7 | Конденсатор |
УГО реле времени, кнопки, выключатели, концевые выключатели, часто используют при разработке схем электропривода.
Схематическое изображение плавкого предохранителя. При чтении электрической схемы следует внимательно учитывать все линии и параметры чертежа, чтобы не спутать назначение элемента. Например, предохранитель и резистор имеют незначительные отличия. На схемах силовая линия изображается проходящей через предохранитель, резистор чертится без внутренних элементов.
Изображение автоматического выключателя на полной схеме
Контактный коммутационный аппарат. Служит автоматической защитой электрической сети от аварий, короткого замыкания. Приводится в действие механическим, либо электрическим способом.
Автоматический выключатель на однолинейной схеме
Трансформатор представляет собой стальной сердечник с двумя обмотками. Бывает одно и трехфазный, повышающий и понижающий. Также подразделяется на сухой и масляный, в зависимости от способа охлаждения. Мощность варьируется от 0.1 МВА до 630 МВА (в России).
УГО трансформаторов
Обозначение трансформаторов тока на полной (а) и однолинейной (в) схеме
Графическое обозначение электрических машин (ЭМ)
Электрические моторы, зависит от вида, способны не только потреблять энергию. При разработке промышленных систем, используют моторы, которые при отсутствии нагрузки генерируют энергию в сеть, тем самым сокращая затраты.
А — Трехфазные электродвигатели:
1 — Асинхронный с короткозамкнутым ротором
2 — Асинхронный с короткозамкнутым ротором, двухскоростной
3 — Асинхронный с фазным ротором
4 — Синхронные электродвигатели; генераторы.
В — Коллекторные электродвигатели постоянного тока:
1 — с возбуждением обмотки от постоянного магнита
2 — Электрическая машина с катушкой возбуждения
В связке с электромоторами, на схемах показаны магнитные пускатели, устройства мягкого пуска, частотный преобразователь. Эти устройства служат для запуска электрических моторов, бесперебойной работы системы. Последние два элемента уберегают сеть от «просадки» напряжения в сети.
УГО магнитного пускателя на схеме
Переключатели выполняют функцию коммутационного оборудования. Отключают и включают в работу определенные участки сети, по мере необходимости.
Графические обозначения в электрических схемах механических переключателей
Условные графические обозначения розеток и выключателей в электрических схемах. Включают в разработанные чертежи электрификации домов, квартир, производств.
Звонок на электрической схеме по стандартам УГО с обозначенным размером
Блок: 7/11 | Кол-во символов: 2845
Источник: https://ProFazu.ru/elektrooborudovanie/oboznacheniya/uslovnye-oboznacheniya-v-elektricheskih-shemah.html
Основные понятия учета электроэнергии
Коммерческий учет электроэнергии – учет электроэнергии для денежного расчета за нее
Технический учет электроэнергии – учет для контроля расхода электроэнергии внутри электростанций, подстанций, предприятий, для расчета и анализа потерь электроэнергии в электрических сетях, а также для учета расхода электроэнергии на производственные нужды.
Счетчики, устанавливаемые для расчетного учета, называются расчетными счетчиками.
Счетчики, устанавливаемые для технического учета, называются счетчиками технического учета.
Счетчики, учитывающие активную электроэнергию, называются счетчиками активной энергии.
Счетчики, учитывающие реактивную электроэнергию за учетный период, называются счетчиками реактивной энергии.
Средство измерений – техническое устройство, предназначенное для измерений.
Измерительный комплекс средств учета электроэнергии – совокупность устройств одного присоединения, предназначенных для измерения и учета электроэнергии: трансформаторы тока, трансформаторы напряжения, счетчики электрической энергии, линии связи.
Стартовый ток (чувствительность) – наименьшее значение тока, при котором начинается непрерывная регистрация показаний
Базовый ток – значение тока, являющееся исходным для установления требований к счетчику с непосредственным включением
Номинальный ток – значение тока, являющееся исходным для установления требований к счетчику, работающему от трансформатора
Максимальный ток – наибольшее значение тока, при котором счетчик удовлетворяет требованиям точности, установленным в стандарте ГОСТ Р 52320-2005.
Номинальное напряжение – значение напряжения, являющееся исходным при установлении требований к счетчику.
Блок: 7/8 | Кол-во символов: 1686
Источник: https://energo-audit.com/klassifikaciya-schetchikov-elektroenergii
Размеры УГО в электрических схемах
На схемах наносят параметры элементов, включенных в чертеж. Прописывается полная информация об элементе, емкость, если это конденсатор, номинальное напряжение, сопротивление для резистора. Делается это для удобства, чтобы при монтаже не допустить ошибку, не тратить время на вычисление и подборку составляющих устройства.
Иногда номинальные данные не указывают, в этом случае параметры элемента не имеют значения, можно выбрать и установить звено с минимальным значением.
Принятые размеры УГО прописаны в ГОСТах стандарта ЕСКД.
Блок: 8/11 | Кол-во символов: 563
Источник: https://ProFazu.ru/elektrooborudovanie/oboznacheniya/uslovnye-oboznacheniya-v-elektricheskih-shemah.html
Технические требования к электросчетчикам
Общие требования:
- Класс точности не хуже 0,5S
- Соответствие требованиям ГОСТ Р (52320-2005, 52323-2005, 52425-2005)
- Наличие сертификата об утверждении типа
Функциональные требования:
- Измерение и учет активной и реактивной электроэнергии (непрерывный нарастающий итог), мощности в одном или двух направлениях (интервальные 30-и минутные приращения электроэнергии)
- Хранение результатов измерений (профили нагрузки – не менее 35 суток) и информации о состоянии средств измерений
- Наличие энергонезависимых часов, обеспечивающих ведение даты и времени (точность хода не хуже ±5,0 секунды в сутки с внешней синхронизацией, работающей в составе СОЕВ)
- Ведение автоматической коррекции времени
- Ведение автоматической самодиагностики с формированием обобщенного сигнала в «Журнале событий»
- Защиту от несанкционированного доступа к информации и программному обеспечению
- Предоставление доступа к измеренным значениям параметров и «Журналам событий» со стороны УСПД или ИВК ЦСОД
В «Журнале событий» должны фиксироваться время и дата наступления следующих событий:
- попытки несанкционированного доступа
- факты связи со счетчиком, приведших к каким-либо изменениям данных
- изменение текущих значений времени и даты при синхронизации времени
- отклонение тока и напряжения в измерительных цепях от заданных пределов
- отсутствие напряжения при наличии тока в измерительных цепях
- перерывы питания
– Счетчик должен обеспечивать работоспособность в диапазоне температур, определенными условиями эксплуатации. (-40.. +550С)
– Средняя наработка на отказ не менее 35000 часов
– Межповерочный интервал – не менее 8 лет
Вас может заинтересовать:
Блок: 8/8 | Кол-во символов: 1658
Источник: https://energo-audit.com/klassifikaciya-schetchikov-elektroenergii
Размеры в ЕСКД
Размеры графических и буквенных изображений на чертеже, толщина линий не должны отличаться, но допустимо их пропорционально изменять в чертеже. Если в условных обозначениях на различных электрических схемах ГОСТ, присутствуют элементы, не имеющие информации о размерах, то эти составляющие выполняют в размерах, соответствующих стандартному изображению УГО всей схемы.
УГО элементов, входящих в состав основного изделия (устройства) допускается чертить меньшим размером в сравнении с другими элементами.
Блок: 9/11 | Кол-во символов: 519
Источник: https://ProFazu.ru/elektrooborudovanie/oboznacheniya/uslovnye-oboznacheniya-v-elektricheskih-shemah.html
Буквенные обозначения
Наряду с УГО для более точного определения названия и назначения элементов, на схемы наносят буквенное обозначение. Это обозначение используют для ссылок в текстовых документах и для нанесения на объект. С помощью буквенного обозначения определяют название элемента, если этого не понятно из чертежа, технические параметры, количество.
Дополнительно с буквенным обозначением указывается одна или несколько цифр, обычно они поясняют параметры. Дополнительный буквенный код, указывающий номинал, модель, дополнительные данные прописывается в сопутствующих документах, либо выносится в таблицу на чертеже.
Чтобы научиться читать электрические схемы не обязательно знать наизусть все буквенные обозначения, графические изображения различных элементов, достаточно ориентироваться в соответствующих ГОСТах ЕСКД. Стандарт включает в себя 64 документа ГОСТ, которые раскрывают основные положения, правила, требования и обозначения.
Основные обозначения, применяемые на схемах согласно стандарту ЕСКД, приведены в Таблице 1 и 2.
Таблица 1
Первая буква кода (обязательная) | Группа видов элементов | Примеры видов элементов |
A | Устройства | Усилители, приборы телеуправления, лазеры, мазеры |
B | Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот аналоговые или многоразрядные преобразователи или датчики для указания или измерения | Громкоговорители, микрофоны, термоэлектрические чувствительные элементы, детекторы ионизирующих излучений, звукосниматели, сельсины |
C | Конденсаторы | |
D | Схемы интегральные, микросборки | Схемы интегральные аналоговые цифровые, логические элементы, устройства памяти, устройства задержки |
E | Элементы разные | Осветительные устройства, нагревательные приборы |
F | Разрядники, предохранители, устройства защитные | Дискретные элементы защиты потоку и напряжению, плавкие предохранители, разрядники |
G | Генераторы, источники питания, кварцевые осцилляторы | Батареи, аккумуляторы, электрохимические и электротермические источники |
H | Устройства индикационные и сигнальные | Приборы звуковой и световой сигнализации, индикаторы |
K | Реле, контакторы, пускатели | Реле токовые и напряжения, реле электротепловые, реле времени, контакторы, магнитные пускатели |
L | Катушки индуктивности, дроссели | Дроссели люминесцентного освещения |
M | Двигатели | Двигатели постоянного и переменного тока |
P | Приборы, измерительное оборудование | Показывающие, регистрирующие и измерительные приборы, счетчики, часы |
Q | Выключатели и разъединители в силовых цепях | Разъединители, короткозамыкатели, автоматические выключатели (силовые) |
R | Резисторы | Переменные резисторы, потенциометры, варисторы, терморезисторы |
S | Устройства коммутационные в цепях управления, сигнализации и измерительных | Выключатели, переключатели, выключатели, срабатывающие от различных воздействий |
T | Трансформаторы, автотрансформаторы | Трансформаторы тока и напряжения, стабилизаторы |
U | Преобразователи электрических величин в электрические, устройства связи | Модуляторы, демодуляторы, дискриминаторы, инверторы, преобразователи частоты, выпрямители |
V | Приборы электровакуумные, полупроводниковые | Электронные лампы, диоды, транзисторы, тиристоры, стабилитроны |
W | Линии и элементы сверхвысокой частоты, антенны | Волноводы, диполи, антенны |
X | Соединения контактные | Штыри, гнезда, разборные соединения, токосъемники |
Y | Устройства механические с электромагнитным приводом | Электромагнитные муфты, тормоза, патроны |
Z | Устройства оконечные, фильтры, ограничители | Линии моделирования, кварцевые фильтры |
Основные двухбуквенные обозначения приведены в Таблице 2
Первая буква кода (обязательная) | Группа видов элементов | Примеры видов элементов | Двухбуквенный код |
A | Устройство (общее обозначение) | ||
B | Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот аналоговые или многоразрядные преобразователи или датчики для указания или измерения | Громкоговоритель | BA |
Магнитострикционный элемент | BB | ||
Детектор ионизирующих элементов | BD | ||
Сельсин — приемник | BE | ||
Телефон (капсюль) | BF | ||
Сельсин — датчик | BC | ||
Тепловой датчик | BK | ||
Фотоэлемент | BL | ||
Микрофон | BM | ||
Датчик давления | BP | ||
Пьезоэлемент | BQ | ||
Датчик частоты вращения (тахогенератор) | BR | ||
Звукосниматель | BS | ||
Датчик скорости | BV | ||
C | Конденсаторы | ||
D | Схемы интегральные, микросборки | Схема интегральная аналоговая | DA |
Схема интегральная, цифровая, логический элемент | DD | ||
Устройство хранения информации | DS | ||
Устройство задержки | DT | ||
E | Элементы разные | Нагревательный элемент | EK |
Лампа осветительная | EL | ||
Пиропатрон | ET | ||
F | Разрядники, предохранители, устройства защитные | Дискретный элемент защиты по току мгновенного действия | FA |
Дискретный элемент защиты по току инерционного действия | FP | ||
Предохранитель плавкий | FU | ||
Дискретный элемент защиты по напряжению, разрядник | FV | ||
G | Генераторы, источники питания | Батарея | GB |
H | Элементы индикаторные и сигнальные | Прибор звуковой сигнализации | HA |
Индикатор символьный | HG | ||
Прибор световой сигнализации | HL | ||
K | Реле, контакторы, пускатели | Реле токовое | KA |
Реле указательное | KH | ||
Реле электротепловое | KK | ||
Контактор, магнитный пускатель | KM | ||
Реле времени | KT | ||
Реле напряжения | KV | ||
L | Катушки индуктивности, дроссели | Дроссель люминесцентного освещения | LL |
M | Двигатели | — | — |
P | Приборы, измерительное оборудование | Амперметр | PA |
Счётчик импульсов | PC | ||
Частотометр | PF | ||
Примечание. Сочетание PE применять не допускается | Счётчик активной энергии | PI | |
Счётчик реактивной энергии | PK | ||
Омметр | PR | ||
Регистрирующий прибор | PS | ||
Часы, измеритель времени действия | PT | ||
Вольтметр | PV | ||
Ваттметр | PW | ||
Q | Выключатели и разъединители в силовых цепях | Выключатель автоматический | QF |
Короткозамыкатель | QK | ||
Разъединитель | QS | ||
R | Резисторы | Терморезистор | RK |
Потенциометр | RP | ||
Шунт измерительный | RS | ||
Варистор | RU | ||
S | Устройства коммутационные в цепях управления, сигнализации и измерительных. Примечание. Обозначение SF применяют для аппаратов не имеющих контактов силовых цепей | Выключатель или переключатель | SA |
Выключатель кнопочный | SB | ||
Выключатель автоматический | SF | ||
Выключатели, срабатывающие от различных воздействий: — от уровня | SL | ||
— от давления | SP | ||
— от положения (путевой) | SQ | ||
— от частоты вращения | SR | ||
— от температуры | SK | ||
T | Трансформаторы, автотрансформаторы | Трансформатор тока | TA |
Электромагнитный стабилизатор | TS | ||
Трансформатор напряжения | TV | ||
U | Устройства связи. Преобразователи электрических величин в электрические | Модулятор | UB |
Демодулятор | UR | ||
Дискриминатор | UI | ||
Преобразователь частоты, инвертор, генератор частоты, выпрямитель | UZ | ||
V | Приборы электровакуумные, полупроводниковые | Диод, стабилитрон | VD |
Прибор электровакуумный | VL | ||
Транзистор | VT | ||
Тиристор | VS | ||
W | Линии и элементы СВЧ Антенны | Ответвитель | WE |
Короткозамыкатель | WK | ||
Вентиль | WS | ||
Трансформатор, неоднородность, фазовращатель | WT | ||
Аттенюатор | WU | ||
Антенна | WA | ||
X | Соединения контактные | Токосъёмник, контакт скользящий | XA |
Штырь | XP | ||
Гнездо | XS | ||
Соединение разборное | XT | ||
Соединитель высокочастотный | XW | ||
Y | Устройства механические с электромагнитным приводом | Электромагнит | YA |
Тормоз с электромагнитным приводом | YB | ||
Муфта с электромагнитным приводом | YC | ||
Электромагнитный патрон или плита | YH | ||
Z | Устройства оконечные Фильтры. Ограничители | Ограничитель | ZL |
Фильтр кварцевый | ZQ |
Блок: 10/11 | Кол-во символов: 7004
Источник: https://ProFazu.ru/elektrooborudovanie/oboznacheniya/uslovnye-oboznacheniya-v-elektricheskih-shemah.html
Видео по теме
Хорошая
Блок: 11/11 | Кол-во символов: 23
Источник: https://ProFazu.ru/elektrooborudovanie/oboznacheniya/uslovnye-oboznacheniya-v-elektricheskih-shemah.html
Количество использованных доноров: 4
Информация по каждому донору:
- http://www.diy.ru/post/6730/: использовано 2 блоков из 4, кол-во символов 5377 (14%)
- https://ProFazu.ru/elektrooborudovanie/oboznacheniya/uslovnye-oboznacheniya-v-elektricheskih-shemah.html: использовано 10 блоков из 11, кол-во символов 14966 (39%)
- https://rusenergetics.ru/praktika/podklyuchenie-klemmnoj-kolodki-ikk: использовано 5 блоков из 5, кол-во символов 11355 (29%)
- https://energo-audit.com/klassifikaciya-schetchikov-elektroenergii: использовано 6 блоков из 8, кол-во символов 6914 (18%)
Буквенное обозначение счетчика электроэнергии на схеме
Счетчик потребляемой электроэнергии – это основной элемент однолинейных схем учетно-распределительных электрических щитов квартиры или дома.
Его правильное обозначение формируется из графического изображения и буквенного кода – маркировки.
Условное графическое обозначение
Для электроизмерительных устройств разработан государственный стандарт – ГОСТ2.729-68 (ЧИТАТЬ PDF), согласно которому, электросчетчик на однолинейной схеме показывается так (см. изображение ниже):
Изображение состоит из двух основных элементов: схематического вида измерительного устройства интегрирующего типа, и вписанного в него общепринятого сокращения измеряемой величины – ватт-часов (Wh).
Видя это, любой специалист понимает, что это устройство измеряет и рассчитывает количество потребляемой энергии. Интегрирующий, значит позволяющий получить суммарное (интегральное) значение измеряемой величины за все время действия.
В современном ГОСТ Р МЭК 60617-DB-12M-2015 «Графические символы для схем (в формате базы данных)», в дополнение к стандартному, даётся и вид многотарифного электросчетчика, которые сейчас применяются гораздо чаще однотарифных:
В данном случае показан двухтарифных счетчик электрической энергии. Как вы, думаю, поняли, если используется многоставочные измерительные приборы с большим количеством тарифив, то на чертеже просто добавляются дополнительные блоки сверху, их число равно количеству тарифов.
Буквенный код
Данный код, складывается из двух знаков:
P – Прибор, измерительное оборудование (элемент однолинейной схемы)
I – Интегрирующий (код функционального назначения)
Маркировка устройтсвактивной энергии, может иметь нумерацию если их несколько – PI1, PI2 и т.д.
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
Номер ГОСТа | Краткое описание |
2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
2.747 68 | Требования к размерам отображения элементов в графическом виде. |
21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
2.756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
21.404 85 | Схематические обозначения для оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:
- Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
- Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Пример однолинейной схемы
- Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D – Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В – ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Пример изображения на монтажных схемах розеток скрытой установки
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Обозначение выключатели скрытой установки Обозначение розеток и выключателей
Буквенные обозначения
В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.
Буквенные обозначения основных элементов
К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.
Обозначения счётчиков на схемах
01 мар 2014 19:47
Re: Обозначения счётчиков на схемах
02 мар 2014 09:39
Вариант №3 правильный, прямоугольник – измерительный регистрирующий прибор.
Согласно действующему ГОСТ 2.710-81. «Обозначения буквенно-цифровые в электрических схемах»
Буквенное обозначение PI (счетчик активной энергии), может иметь нумерацию если в схеме их более 1-го (PI1, PI2), а надписи внутри значка могут быть:
Wh – счетчик ватт-часов
Ah – счетчик ампер-часов
varh – счетчик вольт-ампер-часов реактивный
Трансы правильно обозначены, подписи к ним тоже: TA1. TA3, может быть более 3-х (напр. если 2 счетчика), нумерация может иметь вид TA4. TA6.
Re: Обозначения счётчиков на схемах
02 мар 2014 22:23
Re: Обозначения счётчиков на схемах
03 мар 2014 11:15
Линии от счетчика не нужны, в однолинейке указывается только силовая часть подключение ТТ
По самой схеме:
viewtopic.php?f=44&t=1908&p=6988#p6988
Re: Обозначения счётчиков на схемах
03 мар 2014 11:42
Линии от счетчика не нужны, в однолинейке указывается только силовая часть подключение ТТ
По самой схеме:
Re: Обозначения счётчиков на схемах
20 дек 2014 18:57
Приветствую всех здесь! Прошу объяснить. Вот фрагмент однолинейки:
Вид элемента |
Код |
Генератор: |
G |
постоянного тока |
G |
переменного тока |
G |
Синхронный компенсатор |
GC |
Трансформатор |
Т |
Автотрансформатор |
Т |
Выключатель в силовых цепях: |
Q |
автоматический |
QF |
нагрузки |
QW |
обходной |
— |
секционный |
QB |
шиносоединительный |
QA |
Электродвигатель |
м |
Сборные шины |
— |
Отделитель |
QR |
Короткозамыкатель |
QN |
Разъединитель |
QS |
Рубильник |
QS |
Разъединитель заземляющий |
QSG |
Линия электропередачи |
W |
Разрядник |
F |
Плавкий предохранитель |
F |
Реакторы |
LR |
Аккумуляторная батарея |
G |
Вид элемента |
Код |
Конденсаторная силовая батарея |
СВ |
Зарядный конденсаторный блок |
CG |
Трансформатор напряжения |
TV |
Трансформатор тока |
ТА |
Электромагнитный стабилизатор |
TS |
Промежуточный трансформатор: |
TL |
насыщающийся трансформатор тока |
TLA |
насыщающийся трансформатор напряжения |
TLV |
Измерительный прибор: |
Р |
амперметр |
РА |
вольтметр |
PV |
ваттметр |
PW |
частотометр |
PF |
омметр |
PR |
варметр |
PVA |
часы, измеритель времени |
РТ |
счетчик импульсов |
PC |
счетчик активной энергии |
PI |
счетчик реактивной энергии |
РК |
регистрирующий прибор |
PS |
Резисторы |
R |
терморезистор |
RK |
потенциометр |
RP |
шунт измерительный |
RS |
варистор |
RU |
реостат |
RR |
Преобразователи неэлектрических величин в электрические: |
В |
громкоговоритель |
ВА |
датчик давления |
BP |
датчик скорости |
BR |
датчик температуры |
ВТ |
датчик уровня |
BL |
сельсин датчик |
ВС |
датчик частоты вращения (тахогенератор) |
BR |
пьезоэлемент |
BQ |
фотоприемник |
BL |
тепловой датчик |
BK |
детектор ионизирующих элементов |
BD |
микрофон |
BM |
звукосниматель |
BS |
Синхроноскоп |
PS |
Комплект защит |
AK |
Устройство блокировки |
AKB |
Устройство автоматического повторного включения |
AKC |
Устройство сигнализации однофазных замыканий на землю |
AK |
Реле: |
К |
Вид элемента |
Код |
блокировки |
КВ |
блокировки от многократных включений |
KBS |
блокировки от нарушения цепей напряжения |
KBV |
времени |
КТ |
газовое |
KSG |
давления |
KSP |
импульсной сигнализации |
KLH |
команды «включить» |
КСС |
команды «отключить» |
КСТ |
контроля |
KS |
сравнения фазы |
KS |
контроля сигнализации |
KSS |
контроля цепи напряжения |
KSV |
мощности |
KW |
тока |
КА |
напряжения |
KV |
указательное |
КН |
частоты |
KF |
электротепловое |
КК |
промежуточное |
KL |
напряжение прямого действия с выдержкой времени |
KVT |
фиксации положения выключателя |
KQ |
положение выключателя «включено» |
KQC |
положения выключателя «отключено» |
KQT |
положение разъединителя повторительное |
KQS |
фиксации команды включения |
KQQ |
расхода |
KSF |
скорости |
KSR |
сопротивления, дистанционная защита |
KZ |
струи, напора |
KSH |
тока с насыщающимся трансформатором |
КАТ |
тока с торможением, балансное |
KAW |
уровня |
KSL |
Контактор, магнитный пускатель |
КМ |
Устройства механические с электромагнитным приводом: |
Y |
электромагнит |
YA |
включения |
YAC |
отключения |
YAT |
тормоз с электромагнитным приводом |
YB |
муфта с электромагнитным приводом |
YC |
электромагнитный патрон или плита |
YH |
электромагнитный ключ блокировки |
YAB |
электромагнитный замок блокировки: |
|
разъединителя |
Y |
заземляющего ножа |
YG |
короткозамыкателя |
YN |
Вид элемента |
Код |
отделителя |
YR |
тележки выключателя КРУ |
YSQ |
Фильтр реле напряжения |
KVZ |
мощности |
KWZ |
тока |
KAZ |
Устройства коммутационные в цепях управления, сигнализации |
S |
и измерительных: |
|
рубильник в цепях управления |
S |
выключатель и переключатель (ключ цепей управления) |
SA |
ключ, переключатель режима |
SAC |
выключатель кнопочный |
SB |
переключатель блокировки |
SAB |
выключатель автоматический |
SF |
переключатель синхронизации |
SS |
выключатель, срабатывающий от различных воздействий: |
|
от уровня |
SL |
от давления |
SP |
от положения (путевой) |
SQ |
от частоты вращения |
SR |
от температуры |
SK |
переключатель измерений |
SN |
Вспомогательный контакт выключателя |
SQ |
Вспомогательный контакт разъединителя |
SQS |
Испытательный блок |
SG |
Устройства индикационные и сигнальные: |
H |
прибор звуковой сигнализации |
HA |
прибор световой сигнализации |
HL |
индикатор символьный |
HG |
табло сигнальное |
HLA |
Приборы электровакуумные и полупроводниковые: |
V |
диод |
VD |
стабилитрон |
VD |
выпрямительный мост |
VC |
тиристор |
VS |
транзистор |
VT |
прибор электровакуумный |
VL |
Лампа осветительная |
EL |
Лампа сигнальная: |
HL |
с белой линзой |
HLW |
с зеленой линзой |
HLG |
с красной линзой |
HLR |
Конденсатор |
С |
Индуктивность |
L |
Сопротивление (для эквивалентных схем) полное: |
Z |
активное |
R |
реактивное |
X |
Вид элемента |
Код |
емкостные |
ХС |
индуктивное |
XL |
Устройства разные |
А |
Устройство зарядные |
А |
связи |
AU |
Усилитель |
А |
Устройство комплектное (низковольтное)- |
А |
пуска осциллографа |
АК |
Преобразователи электрических величин в электричестве |
И |
модулятор |
ИВ |
демодулятор |
UR |
преобразователь частоты, выпрямитель |
UZ |
Схемы интегральные — микросборки: |
D |
схема интегральная аналоговая |
DA |
схема интегральная цифровая, логический элемент |
DD |
устройство хранения информации |
DS |
устройство задержка |
DT |
Соединения контактные: |
X |
токосъемник- контакт скользящий |
XA |
штырь |
XP |
гнездо |
XS |
соединение разборное |
XT |
соединитесь высокочастотный |
XW |
Элементы разные: |
Е |
нагревательный элемент |
ЕК |
пиропатрон |
ET |
Фильтр тока обратной последовательности |
ZA2 |
Фильтр напряжения обратной последовательности |
ZV2 |
Условные обозначения по электротехнике. Условные обозначения в электрических схемах гост
Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта условные обозначения в электрических схемах, как графические, так и буквенные.
Графические
Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.
В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:
Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:
Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:
В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:
Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:
Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:
А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:
Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:
В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:
Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):
Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.
Интересное видео
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
Номер ГОСТа | Краткое описание |
2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
2.747 68 | Требования к размерам отображения элементов в графическом виде. |
21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
2.756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
21.404 85 | Схематические обозначения для оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D — Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В — ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Умение читать электротехнические схемы, способность распознавать на чертеже дома обозначенные символами различные условные графические обозначения коммутационных аппаратов и элементов сети – позволит разобраться в обустройстве проводки самостоятельно.
Понятная пользователю схема даёт ему ответ на вопрос, какие провода подключить к тем, или иным клеммам электроприбора. Но для чтения чертежа недостаточно помнить символы разнообразных электротехнических устройств, нужно также понимать, что они делают, какие функции выполняют, чтобы улавливать взаимосвязь между ними, необходимой для того, чтобы понять работу всей системы целиком.
Изучению всей номенклатуры электротехнических аппаратов посвящается много времени в специальных учебных заведениях, и нет никакой возможности в одной статье вместить обозначение всех этих устройств, с детальным описанием их функциональных возможностей и характерных взаимосвязей с другими приборами.
Поэтому нужно начинать с изучения простых схем, включающих в себя небольшой набор элементов.
Проводники, линии, кабели
Самый распространённый компонент любой электросети – обозначение проводов. На схемах он обозначается линией. Но нужно помнить, что один отрезок на чертеже может означать:
- один провод, являющийся электрическим соединением между контактами;
- двухпроводную однофазную, или четырёх проводную трёхфазную линию групповой электрической связи;
- электрический кабель, включающий в себя целый набор силовых и сигнальных групп электрических связей.
Как видим, уже на стадии изучения, казалось бы, простейших проводов существуют сложные разнообразные обозначения их разновидностей и взаимодействий.
Изображение распредкоробок, щитков
На данном фрагменте из таблицы № 6 ГОСТ 2.721-74 показаны различные обозначения элементов, как простых одножильных соединений и их пересечений, так и жгутов проводников с ответвлениями.
Изображение проводов, ламп и вилки
Нет смысла начинать заучивать все эти значки. Они сами отложатся в сознании после изучения разнообразных чертежей, при котором время от времени придётся заглядывать в данную таблицу.
Компоненты сети
Набор элементов, состоящий из светильника, выключателя, розетки является достаточным для функционирования жилой комнаты, он обеспечивает освещение и питание электроприборов.
Выучив их обозначение, можно с лёгкостью понять обустройство проводки у себя в комнате, или даже спроектировать свой собственный план электропроводки, учитывающий насущные потребности.
Обозначение одноклавишного выключателя, двухклавишного и проходноого выключателяВзглянув на таблицу №1 ГОСТ 21.608-84, можно удивиться тому разнообразию имеющихся в обиходе электротехнических изделий. Находясь у себя дома и читая данную статью, стоит оглянуться и найти у себя в комнате компоненты электросети, соответствующие обозначенным в таблице. Например, розетка обозначается на схеме полукругом.
Существует много их разновидностей (только фаза и ноль, с дополнительным контактом заземления, двойные, блочные с выключателями, скрытые и т. д.), поэтому каждая имеет своё графическое обозначение, также как и множество типов выключателей.
Пример монтажной схемы небольшой квартиры
Немного практики для запоминания
Выделив найденные элементы, желательно попробовать их начертить, можно даже по правилам, указанным в таблице №2. Данное упражнение поможет запомнить выбранные компоненты.
Имея начертание графических символов, можно соединить их линиями, и получить схему проводки в комнате. Поскольку провода спрятаны в стенном покрытии, монтажный чертёж нарисовать не удастся, но электрическая схема будет верной.
Пример простой схемы
Косыми чёрточками обозначено количество проводников в линии. Стрелками указаны выходы на щиток с защитными автоматами и УЗО. Линия синего цвета означает подключение двухпроводным кабелем к коробке распределения, от которой выходят по три провода на выключатель и светильник.
Чёрным показана трёхпроводная проводка с защитным проводником РЕ. Данный рисунок приведён лишь для примера. Для проектирования сложных электрических систем нужно пройти целый курс высшего специализированного учебного заведения.
Но, выучив несколько часто встречающихся символов, можно нарисовать от руки проводку комнаты, гаража или целого дома, и работать по ней, воплощая её в реальности.
УЗО, автоматы, электрощит
Для полноты картины нужно ещё выяснить обозначение распределительных коробок, защитного автомата, УЗО, счётчика.
На изображении видно, что однополюсный автоматический выключатель отличается от двухполюсного наличием косых линий на обозначении проводов подключения.
Защитные системы
Для возможности понимания обустройства всей проводки загородного дома (не только электросети), нужно также изучить средства молниезащиты,ноля, фазы, значок датчика движения и других сигнальных средств ПОС (пожарно-охранной сигнализации).
схема молниезащиты загородного дома проволочным молниеотводом, устанавливаемым на крышеНа рисунке указана схема молниезащиты загородного дома проволочным молниеотводом, устанавливаемым на крыше:
- проволочный молниеприемник;
- ввод воздушной ВЛ и заземление крюков ВЛ на стене;
- токоотводящий провод;
- контур заземления.
Датчики сигнализации имеют свое специфическое обозначение, в паспортах некоторых производителей они могут отличаться. Наиболее типичными символами представлены средства ПОС, описанные ниже.
На данном рисунке показан план коттеджа с изображённой схемой подключения различных датчиков пожарно-охранной сигнализации.
Пример плана коттеджаВ этой статье показана та часть обозначений, которая касается обустройства дома или квартиры. Для более полного ознакомления с графическими символами электротехники и других отраслей, нужно изучать ГОСТ и различные справочники.
И ещё раз стоит напомнить, что мало выучить значки, нужно понимать принцип работы обозначаемых элементов в электрике.
Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.
На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.
Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:
Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.
Базовые изображения и функциональные признаки
Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.
Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.
Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.
Основные функции могут выполнять только неподвижные контакты.
Условные обозначения однолинейных схем
Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.
Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.
Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.
Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.
В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.
Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.
Изображение шин и проводов
В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).
Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.
На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.
Как изображают выключатели, переключатели, розетки
На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.
Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.
Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.
Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).
В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.
Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)
Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.
Светильники на схемах
В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.
В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.
Элементы принципиальных электрических схем
Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.
Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.
Буквенные условные обозначения в электрических схемах
Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.
В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.
Электрическая схема — это текст, описывающий определенными символами содержание и работу электротехнического устройства или комплекса устройств, что позволяет в краткой форме выразить этот текст.
Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Так, для чтения схем следует знать символы — условные обозначения и правила расшифровки их сочетаний.
Основу любой электрической схемы представляют условные графические обозначения различных элементов и устройств, а также связей между ними. Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет в схеме изображенных элемент. Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах.
Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. п.
Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.
Так, например, существует три типа контактов — замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта — замыкание и размыкание цепи. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта. Дополнительные знаки позволяют найти на схеме контакты , реле времени, путевых выключателей и т.д.
Отдельные элементы на электрических схемах имеют не одно, а несколько вариантов обозначения на схемах. Так, например, существует несколько равноценных вариантов обозначения переключающих контактов, а также несколько стандартных обозначений обмоток трансформатора. Каждое из обозначений можно применять в определенных случаях.
Если в стандарте нет нужного обозначения, то его составляют, исходя из принципа действия элемента, обозначений, принятых для аналогических типов аппаратов, приборов, машин с соблюдением принципов построения, обусловленных стандартом.
Стандарты. Условные графические обозначения на электрических схемах и схемах автоматизации:
ГОСТ 2.710-81 Обозначения буквенно-цифровые в электрических схемах:
Поделитесь статьей с друзьями:
Похожие статьи
Что такое счетчик импульсов? Схемы, устройство, принцип действия, работа
Что такое счетчик импульсов?
Счетчик импульсов — это последовательностное цифровое устройство, обеспечивающее хранение слова информации и выполнение над ним микрооперации счета, заключающейся в изменении значения числа в счетчике на 1. По существу счетчик представляет собой совокупность соединенных определенным образом триггеров. Основной параметр счетчика — модуль счета. Это максимальное число единичных сигналов, которое может быть сосчитано счетчиком. Счетчики обозначают через СТ (от англ. counter).
Классификация счетчиков импульсов
двоично-десятичные
двоичные
с произвольным постоянным модулем счета
с переменным модулем счета
по направлению счета
суммирующие
вычитающие
реверсивные
с последовательным переносом
с параллельным переносом
с комбинированным переносом
кольцевые
Суммирующий счетчик импульсов
Рассмотрим суммирующий счетчик (рис. 3.67, а). Такой счетчик построен на четырех JK-триггерах, которые при наличии на обоих входах логического сигнала «1» переключаются в моменты появления на входах синхронизации отрицательных перепадов напряжения.
Временные диаграммы, иллюстрирующие работу счетчика, приведены на рис. 3.67, б. Через Кси обозначен модуль счета (коэффициент счета импульсов). Состояние левого триггера соответствует младшему разряду двоичного числа, а правого — старшему разряду.
В исходном состоянии на всех триггерах установлены логические нули. Каждый триггер меняет свое состояние лишь в тот момент, когда на него действует отрицательный перепад напряжения.
Таким образом, данный счетчик реализует суммирование входных импульсов. Из временных диаграмм видно, что частота каждого последующего импульса в два раза меньше, чем предыдущая, т. е. каждый триггер делит частоту входного сигнала на два, что и используется в делителях частоты.
Трехразрядный вычитающий счетчик с последовательным переносом
Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
В счетчике используются три JK-триггера, каждый из которых работает в режиме Т-триггера (триггера со счетным входом).
На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние. Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7. После окончания первого импульса F первый триггер изменяет состояние: сигнал Q1 станет равным 0, a ¯Q1 − 1.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
Остальные триггеры при этом свое состояние не изменяют. После окончания второго импульса синхронизации первый триггер вновь изменяет свое состояние, переходя в состояние 1, (Qx = 0). Это обеспечивает изменение состояния второго триггера (второй триггер изменяет состояние с некоторой задержкой по отношению к окончанию второго импульса синхронизации, так как для его опрокидывания необходимо время, соответствующее времени срабатывания его самого и первого триггера).
После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.
Трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом
Рассмотрим трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом (рис. 3.69).
После перехода счетчика в состояние 000 на выходах всех триггеров возникает сигнал логического 0, который подается через логический элемент ИЛИ на входы J и К первого триггера, после чего этот триггер выходит из режима Т-триггера и перестает реагировать на импульсы F.
Трехразрядный реверсивный счетчик с последовательным переносом
Рассмотрим трехразрядный реверсивный счетчик с последовательным переносом (рис. 3.70).
В режиме вычитания входные сигналы должны подаваться на вход Тв. На вход Тс при этом подается сигнал логического 0. Пусть все триггеры находятся в состоянии 111. Когда первый сигнал поступает на вход Тв, на входе Т первого триггера появляется логическая 1, и он изменяет свое состояние. После этого на его инверсном входе возникает сигнал логической 1.
При поступлении второго импульса на вход Тв на входе второго триггера появится логическая 1, поэтому второй триггер изменит свое состояние (первый триггер также изменит свое состояние по приходу второго импульса). Дальнейшее изменение состояния происходит аналогично. В режиме сложения счетчик работает аналогично 4-разрядному суммирующему счетчику. При этом сигнал подается на вход Тс. На вход Тв подается логический 0.
В качестве примера рассмотрим микросхемы реверсивных счетчиков (рис: 3.71) с параллельным переносом серии 155 (ТТЛ):
- ИЕ6 — двоично-десятичный реверсивный счетчик;
- ИЕ7 — двоичный реверсивный счетчик.
Направление счета определяется тем, на какой вывод (5 или 4) подаются импульсы. Входы 1, 9, 10, 15 — информационные, а вход 11 используется для предварительной записи. Эти 5 входов позволяют осуществить предварительную запись в счетчик (предустановку). Для этого нужно подать соответствующие данные на информационные входы, а затем подать импульс записи низкого уровня на вход 11, и счетчик запомнит число.
Вход 14 — вход установки О при подаче высокого уровня напряжения. Для построения счетчиков большей разрядности используются выходы прямого и обратного переноса (выводы 12 и 13 соответственно). С вывода 12 сигнал должен подаваться на вход прямого счета следующего каскада, а с 13 — на вход обратного счета.
ГОСТ 2.781-96 ЕСКД. Обозначения условные графические. Аппараты гидравлические и пневматические, устройства управления и приборы контрольно-измерительные
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ.
АППАРАТЫ ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ,
УСТРОЙСТВА УПРАВЛЕНИЯ
И ПРИБОРЫ КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ
ГОСТ 2.781-96
МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минск
Предисловие
1 РАЗРАБОТАН научно-исследовательским и проектно-конструкторским институтом промышленных гидроприводов и гидроавтоматики (НИИГидропривод), Всероссийским научно-исследовательским институтом стандартизации и сертификации в машиностроении (ВНИИНМАШ)
ВНЕСЕН Госстандартом России
2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 10 от 4 октября 1996 г.)
За принятие проголосовали:
Наименование государства |
Наименование национального органа по стандартизации |
Азербайджанская Республика |
Азгосстандарт |
Республика Армения |
Армгосстандарт |
Республика Белоруссия |
Белстандарт |
Республика Казахстан |
Госстандарт Республики Казахстан |
Киргизская Республика |
Киргизстандарт |
Республика Молдова |
Молдовастандарт |
Российская Федерация |
Госстандарт России |
Республика Таджикистан |
Таджикский государственный центр по стандартизации, метрологии и сертификации |
Туркменистан |
Туркменглавгосинспекция |
Украина |
Госстандарт Украины |
3 Настоящий стандарт соответствует ИСО 1219-91 «Гидропривод, пневмопривод и устройства. Условные графические обозначения и схемы. Часть 1. Условные графические обозначения» в части направляющих и регулирующих аппаратов, устройств управления и контрольно-измерительных приборов
4 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 7 апреля 1997 г. № 122 межгосударственный стандарт ГОСТ 2.781-96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.
5 ВЗАМЕН ГОСТ 2.781-68
6 ПЕРЕИЗДАНИЕ. Октябрь 1997 г.
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
Единая система конструкторской документации ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ. АППАРАТЫ ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ, УСТРОЙСТВА УПРАВЛЕНИЯ И ПРИБОРЫ КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ Unified system for design documentation. |
Дата введения 1998-01-01
Настоящий стандарт устанавливает условные графические обозначения направляющих и регулирующих аппаратов, устройств управления и контрольно-измерительных приборов в схемах и чертежах всех отраслей промышленности.
Условные графические обозначения аппаратов, не указанных в настоящем стандарте, строят в соответствии с правилами построения и приведенными примерами.
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 2.721-74 ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения
ГОСТ 17752-81 Гидропривод объемный и пневмопривод. Термины и определения
ГОСТ 20765-87 Системы смазочные. Термины и определения
В настоящем стандарте применяют термины по ГОСТ 17752 и ГОСТ 20765.
4.1 Обозначения отражают назначение (действие), способ работы устройств и наружные соединения.
4.2 Обозначения не показывают фактическую конструкцию устройства.
4.3 Если обозначение не является частью схемы, то оно должно изображать изделие в нормальном или нейтральном положении (в положении «на складе»).
4.4 Обозначения показывают наличие отверстий в устройстве, но не отражают действительное месторасположение этих отверстий.
4.5 Применяемые в обозначениях буквы представляют собой только буквенные обозначения и не дают представления о параметрах или значениях параметров.
4.6 Размеры условных обозначений стандарт не устанавливает.
4.7 Общие принципы построения условных графических обозначений гидро- и пневмоаппаратов приведены в таблице 1.
Таблица 1
Наименование |
Обозначение |
1 Базовое обозначение: квадрат (предпочтительно) и прямоугольник |
|
2 Обозначения гидро- и пневмоаппаратов составляют из одного или двух и более квадратов (прямоугольников), примыкающих друг к другу, один квадрат (прямоугольник) соответствует одной дискретной позиции |
|
3 Линии потока, места соединений, стопоры, седельные затворы и сопротивления изображают соответствующими обозначениями в пределах базового обозначения: |
|
- линии потока изображают линиями со стрелками, показывающими направления потоков рабочей среды в каждой позиции |
|
- места соединений выделяют точками |
|
- закрытый ход в позиции распределителя |
|
- линии потока с дросселированием |
|
4 Рабочую позицию можно наглядно представить, перемещая квадрат (прямоугольник) таким образом, чтобы внешние линии совпали с линиями потока в этих квадратах (прямоугольниках) |
|
5 Внешние линии обычно изображают через равные интервалы, как показано. Если имеет место только одна внешняя линия с каждой стороны, то она должна примыкать к середине квадрата (прямоугольника) |
|
6 Переходные позиции могут быть обозначены, если это необходимо, как показано, прерывистыми линиями между смежными рабочими позициями, изображенными сплошными линиями |
|
7 Аппараты с двумя или более характерными рабочими позициями и с бесчисленным множеством промежуточных позиций с изменяемой степенью дросселирования изображают двумя параллельными линиями вдоль длины обозначения, как показано. Для облегчения вычерчивания эти аппараты можно изображать только упрощенными обозначениями, приведенными ниже. Для составления полного обозначения должны быть добавлены линии потоков: |
Две крайние позиции С центральной (нейтральной) позицией |
- двухлинейный, нормально закрытый, с изменяющимся проходным сечением |
|
- двухлинейный, нормально открытый, с изменяющимся проходным сечением |
|
- трехлинейный, нормально открытый, с изменяющимся проходным сечением |
4.8 Общие правила построения условных графических обозначений устройств управления приведены в таблице 2.
Таблица 2
Наименование |
Обозначение |
1 Обозначения управления аппаратом могут быть вычерчены в любой удобной позиции с соответствующей стороны базового обозначения аппарата |
|
2 Обозначение элементов мускульного и механического управления по ГОСТ 2.721 |
|
3 Линейное электрическое устройство Например, электромагнит (изображение электрических линий необязательно): |
|
- с одной обмоткой, одностороннего действия |
|
- с двумя противодействующими обмотками в одном узле, двухстороннего действия |
|
- с двумя противодействующими обмотками в одном узле, каждая из которых способна работать попеременно в рабочем режиме, двухстороннего действия |
|
4 Управление подводом или сбросом давления |
|
4.1 Прямое управление: |
|
- воздействие на торцовую поверхность (может быть осуществлено подводом или сбросом давления) |
|
- воздействие на торцовые поверхности разной площади (если необходимо, соотношение площадей может быть указано в соответствующих прямоугольниках) |
|
- внутренняя линия управления (канал управления находится внутри аппарата) |
|
- наружная линия управления (канал управления находится снаружи аппарата) |
|
4.2 Пилотное управление (непрямое управление): |
|
- с применением давления газа в одноступенчатом пилоте (с внутренним подводом потока, без указания первичного управления) |
|
- со сбросом давления |
|
- с применением давления жидкости в двухступенчатом пилоте последовательного действия (с внутренним подводом потока управления и дренажом, без указания первичного управления) - двухступенчатое управление, например, электромагнит и одноступенчатый, пневматический пилот (наружный подвод потока управления) |
|
- двухступенчатое управление, например, пневмогидравлический пилот и последующий гидравлический пилот (внутренний подвод потока управления, наружный дренаж из гидропилота без указания первичного управления) |
|
- двухступенчатое управление, например, электромагнит и гидравлический пилот (центрирование главного золотника пружиной; наружные подвод потока управления и дренаж) |
|
4.3 Наружная обратная связь (соотношение заданного и измеренного значений контролируемого параметра регулируется вне аппарата) |
|
4.4 Внутренняя обратная связь (механическое соединение между перемещающейся частью управляемого преобразователя энергии и перемещающейся частью управляющего элемента изображено с использованием линии механической связи; соотношение заданного и измеренного значений контролируемого параметра регулируется внутри аппарата) |
|
4.5 Применение обозначений механизмов управления в полных обозначениях аппаратов: |
|
- обозначения механизмов управления одностороннего действия изображают рядом с обозначением устройства, которым они управляют, таким образом, чтобы сила воздействия механизма мысленно перемещала обозначение устройства в другую позицию |
|
- для аппаратов с тремя или более позициями управление внутренними позициями может быть пояснено расширением внутренних границ вверх или вниз и прибавлением к ним соответствующих обозначений механизмов управления |
|
- обозначения механизмов управления для средней позиции трехпозиционных аппаратов могут быть изображены с внешней стороны крайних квадратов (прямоугольников), если это не нарушит понимания обозначения |
|
- если механизм управления является центрирующим с помощью давления в нейтральной позиции, то изображают два отдельных треугольника по обеим внешним сторонам |
|
- внутренний пилот и дренажные линии аппаратов с непрямым управлением обычно не включают в упрощенные обозначения |
|
- если имеется один наружный пилот и/или одна дренажная линия в гидроаппаратах с непрямым управлением, то их показывают только с одного конца упрощенного обозначения. Дополнительный пилот и/или дренаж должны быть изображены на другом конце. На обозначениях, нанесенных на устройство, должны быть указаны все внешние связи |
|
- при параллельном управлении (ИЛИ) обозначения механизмов управления показывают рядом друг с другом: например, электромагнит или нажимная кнопка независимо воздействуют на аппарат |
|
- при последовательном управлении (И) обозначения ступени последовательного управления показывают в линию, например, электромагнит приводит в действие пилот, который приводит в действие основной аппарат |
|
- фиксатор изображают количеством позиций и в порядке, соответствующем позициям управляемого элемента; выемки показаны только в тех позициях, в которых происходит фиксация. Черточку, показывающую фиксатор, изображают в соответствии с начерченной позицией аппарата |
4.9 Примеры построения условных графических обозначений аппаратов приведены в таблице 3.
Таблица 3
Наименование |
Обозначение |
1 Распределитель 2/2 (в сокращенных записях распределители обозначают дробью, в числителе которой цифра показывает число основных линий, т.е. исключая линии управления и дренажа, в знаменателе — число позиций |
|
- запорный двухлинейный, двухпозиционный с мускульным управлением |
|
- с одноступенчатым пилотным управлением. Пилотная ступень. Четырехлинейный, двухпозиционный распределитель, управляемый электромагнитом и возвратной пружиной, давление управления — со стороны торцевой кольцевой поверхности основного распределителя, наружный слив |
|
- Основная ступень. Двухлинейный, двухпозиционный распределитель, одна линия управления совмещена с камерой кольцевой поверхности, другая линия управления сообщена с камерой дифференциальной поверхности, пружинный возврат, срабатывающий от сброса давления управления |
|
2 Распределитель 3/2 Трехлинейный, двухпозиционный, переход через промежуточную позицию, управление электромагнитом и возвратной пружиной |
|
3 Распределитель 5/2 Пятилинейный, двухпозиционный, управление давлением в двух направлениях |
|
4 Распределитель 4/3 - с одноступенчатым пилотным управлением. Пилотная ступень. Четырехлинейный, трехпозиционный распределитель, пружинное центрирование, управление двумя противоположными электромагнитами, с мускульным дублированием, наружным сливом |
|
Основная ступень Четырехлинейный, трехпозиционный распределитель, пружинное центрирование, внутренний подвод давления управления в двух направлениях; линии управления в нейтральной позиции без давления |
|
На упрощенном обозначении пружины центрирования пилота не показаны |
|
- с одноступенчатым пилотным управлением. Пилотная ступень. Четырехлинейный, трехпозиционный распределитель, пружинное центрирование, управление одним электромагнитом с двумя противоположными обмотками, с мускульным дублированием, наружным подводом потока управления |
|
Основная ступень Четырехлинейный, трехпозиционный распределитель, центрирование давлением и пружинное, срабатывает от сброса давления управления; линии управления в нейтральной позиции под давлением |
|
На упрощенном обозначении отдельные треугольники показывают центрирующее давление |
|
5 Дросселирующий распределитель |
|
- четырехлинейный, две характерные позиции, одна нейтральная позиция, пружинное центрирование, бесконечный ряд промежуточных позиций |
|
- с открытым центром все линии в нейтральной позиции сообщены |
|
- с закрытым центром все линии в нейтральной позиции закрыты |
|
- с серворегулированием, с закрытым центром, пружинным центрированием, электромагнитным управлением |
|
6 Клапан обратный: |
|
- без пружины; открыт, если давление на входе выше давления на выходе |
|
- с пружиной; открыт, если давление на входе выше давления на выходе плюс давление пружины |
|
7 Клапан обратный с поджимом рабочей средой, управление рабочей средой позволяет закрывать клапан без возвратной пружины |
|
8 Гидрозамок односторонний |
|
9 Гидрозамок двухсторонний |
|
10 Клапан «ИЛИ» Входная линия, соединенная с более высоким давлением, автоматически соединяется с выходом в то время как другая входная линия закрыта |
|
11 Клапан «И» Выходная линия находится под давлением только тогда, когда обе входные линии под давлением |
|
12 Клапан быстрого выхлопа Когда входная линия разгружена, выходная свободна для выхлопа |
|
13 Пресс-масленка |
|
14 Клапан напорный (предохранительный или переливной) |
|
- прямого действия |
|
- прямого действия — с дистанционным управлением гидравлический |
|
- прямого действия — с дистанционным управлением пневматический |
|
- непрямого действия — с обеспечением дистанционного управления |
|
- прямого действия с электромагнитным управлением |
|
- непрямого действия с пропорциональным электромагнитным управлением |
|
15 Клапан редукционный: одноступенчатый, нагруженный пружиной |
|
- с дистанционным управлением |
|
- двухступенчатый, гидравлический, с наружным регулированием возврата |
|
- со сбросом давления гидравлический |
|
- со сбросом давления пневматический |
|
- со сбросом давления, с дистанционным управлением, гидравлический |
|
- со сбросом давления, с дистанционным управлением, пневматический |
|
16 Клапан разности давлений |
|
17 Клапан соотношения давлений |
|
18 Клапан последовательности, одноступенчатый, нагруженный пружиной, на выходе может поддерживаться давление, с наружным дренажом |
|
19 Клапан разгрузки смазочной системы |
|
20 Дроссель регулируемый Без указания метода регулирования или положения запорно-регулирующего элемента, обычно без полностью закрытой позиции |
|
21 Дроссель регулируемый Механическое управление роликом, нагружение пружиной |
|
22 Вентиль Без указания метода регулирования или положения запорно-регулирующего элемента, но обычно с одной, полностью закрытой позицией |
|
23 Дроссель с обратным клапаном С переменным дросселированием, со свободным проходом потока в одном направлении, но дросселированием потока в другом направлении |
|
24 Регуляторы расхода |
|
Значение расхода на выходе стабилизируется вне зависимости от изменения температуры и/или давления на входе (стрелка на линии потока в упрощенном обозначении обозначает стабилизацию расхода по давлению): |
|
- регулятор расхода двухлинейный с изменяемым расходом на выходе |
|
- регулятор расхода двухлинейный, с изменяемым расходом на выходе и со стабилизацией по температуре |
|
- регулятор расхода трехлинейный с изменяемым расходом на выходе, со сливом избыточного расхода в бак |
|
- регулятор расхода трехлинейный с предохранительным клапаном |
|
25 Синхронизаторы расходов: |
|
- делитель потока. Поток делится на два потока, расходы которых находятся в установленном соотношении, стрелки обозначают стабилизацию расходов по давлению |
|
- сумматор потока. Поток объединяется из двух потоков, расходы которых находятся в установленном соотношении |
|
26 Дроссельный смазочный дозатор (например регулируемый) |
Примечание - Предпочтительно использовать упрощенное обозначение
4.10 Примеры построения условных графических обозначений смазочных питателей приведены в таблице 4.
Таблица 4
Наименование |
Обозначение |
1 Импульсный питатель |
|
2 Последовательный питатель |
|
3 Двухмагистральный питатель |
|
4 Маслянопленочный питатель |
|
5 Питатель с индикатором срабатывания |
4.11 Примеры построения условных графических обозначений контрольно-измерительных приборов приведены в таблице 5.
Таблица 5
Наименование |
Обозначение |
1 Указатель давления |
|
2 Манометр |
|
3 Манометр, дающий электросигнал (электроконтактный) |
|
4 Манометр дифференциальный |
|
5 Переключатель манометра |
|
6 Реле давления |
|
7 Выключатель конечный |
|
8 Аналоговый преобразователь |
|
9 Термометр |
|
10 Термометр электроконтактный |
|
11 Прибор, управляющий работой смазочной системы: |
|
- по времени |
|
- по тактам работы смазываемого объекта |
|
12 Смазочный делитель частоты (например делитель, у которого смазочный материал появляется на выходе после трех импульсов на входе) |
|
13 Счетчик импульсов с ручной установкой на нуль, с электрическим выходным сигналом |
|
14 Счетчик импульсов с ручной установкой на нуль, с пневматическим выходным сигналом |
|
15 Указатель уровня жидкости (изображается только вертикально) |
|
16 Указатель расхода |
|
17 Расходомер |
|
18 Расходомер интегрирующий |
|
19 Тахометр |
|
20 Моментомер (измеритель крутящего момента) |
|
21 Гигрометр |
Ключевые слова: обозначения условные графические, аппараты гидравлические и пневматические, устройства управления, приборы контрольно-измерительные
СОДЕРЖАНИЕ
1 область применения . 2 2 нормативные ссылки . 2 3 определения . 2 4 основные положения . 2 |
Электрические символы для принципиальных схем
Эта статья поможет вам узнать об электрических символах.
Часть 1: Что такое электрические символы
Электрические символы — это стандартный метод представления электрической цепи. Это упрощает работу с графическим представлением и его реализацию. Электрические символы представляют различные компоненты, устройства и функции, присутствующие в цепи.Это помогает показать детали электрической схемы, чтобы инженер мог должным образом спланировать схему, прежде чем приступить к работе над ней.
EdrawMax
Программное обеспечение для создания диаграмм All-in-One
Создавайте более 280 типов диаграмм без особых усилий
Легко приступайте к построению диаграмм с помощью различных шаблонов и символов
- Превосходная совместимость файлов: Импорт и экспорт чертежей в файлы различных форматов, например Visio
- Поддерживается кроссплатформенность (Windows, Mac, Linux, Интернет)
Часть 2: Типы электрических символов
Существует множество электрических символов, включая общие электронные символы, исторические электронные символы.Пользователи также могут следовать различным стандартам, включая стандарт IEEE, IEC (Международная электротехническая комиссия), Std., ANSI, JIC, австралийский стандарт и другие.
Основные электрические символы
Заземляющий или заземляющий электродСимвол заземления или клемма заземления работают как защита от поражения электрическим током. Это контрольная точка с нулевым потенциалом, откуда электрик измеряет ток.
АнтеннаАнтенна — это в основном устройство или стержни, которые могут улавливать различные волны и сигналы, включая электромагнитные волны, электрические сигналы и многое другое.
Батарея: одноэлементнаяСимвол батареи состоит из двух непропорциональных параллельных линий. Линии обозначают ряды ячеек в батарее.
Источник: постоянное напряжениеИсточник — это источник питания для электронного устройства, когда есть знаки плюс и минус, которые указывают на постоянный ток, когда у него есть волна, которая означает переменный ток.
ПредохранительПредохранитель защищает цепь от возгорания, отключая ее, когда ток, протекающий через цепь, превышает установленный предел.У предохранителя есть провод, который плавится при отключении соединения.
ИндукторИндуктор или реактор подобны катушке, находящейся в магнитном поле или потоке для сохранения энергии.
МоторДвигатель — это электронное устройство, которое преобразует электрическую энергию в механическую.
Лампа
Лампочка как электрический символ выглядит как круг с крестом посередине, и она дает световой сигнал, загораясь, когда через нее проходит ток.
ТрансформаторТрансформаторы присутствуют в цепи переменного тока после того, как они связаны магнитным потоком. Они уменьшают напряжение в цепи, поддерживая частоту.
Коаксиальный штекерКоаксиальный штекер в электрической цепи работает как линия передачи. Он передает радиочастотные сигналы и сигналы кабельного телевидения. Коаксиальные вилки на схеме электрических символов выглядят как кружок над стрелкой и другая стрелка, проходящая через нее.
ПереключательПереключатели бывают самых разнообразных, например, однополюсные, одноходовые, кнопочные, двухпозиционные, релейные и т. Д. Переключатель подключает цепь, когда она замкнута, и отключает цепь, когда она разомкнута.
РезисторРезисторы на электрической схеме выглядят как волнистые линии с заостренными концами. Резисторы контролируют ток в цепи, разделяя напряжение, завершая линии передачи и т. Д.
Конденсатор
Обозначение конденсатора имеет две клеммы с двумя пластинами. Изогнутая поверхность с более низким напряжением определяет конденсатор как поляризованный.
Диод
Диод — это устройство, которое позволяет току течь в одном направлении после поляризации анодом и катодом.
Диод LED
Светодиод Diode похож на обычный символ диода с маленькими стрелками, указывающими на излучение света.
Провода
Электрический проводПрямая линия представляет собой электрический провод или линию питания на электрической схеме, и она работает как проводник электрического тока на принципиальной схеме.
Не подключен провод
Неподключенный провод показывает, когда в цепи есть два неподключенных провода. Дизайнер может нарисовать две параллельные линии с полукругом на одной линии в средних частях, где он делит третью линию пополам, чтобы обозначить несоединенные провода.
Подключенный провод
Подключенный провод в цепи позволяет току перемещаться из одной точки в другую. Обозначение подключенного провода выглядит как две параллельные линии, выходящие из двух точек, в то время как одна расширяется. Подключенный провод представляет собой соединение между двумя проводниками.
Переключатели
Тумблер SPSTОднополюсный однопозиционный переключатель — это переключатель ВКЛ / ВЫКЛ, полюса которого соответствуют количеству подключаемых полюсов.
Тумблер SPDT
Однополюсный двухпозиционный переключатель позволяет току в цепи регулировать свое положение в двух направлениях.
Кнопочный переключатель (Н.О.)Кнопочный переключатель, который обычно разомкнут, требует включения переключателя. Пользователь должен нажать кнопку, чтобы включить его. В противном случае он открыт.
Кнопочный переключатель (N.С.)
Кнопочный переключатель обычно замкнут, что означает, что они обычно находятся в состоянии ВКЛ, и пользователю нужно отпустить его, чтобы выключить.
DIP-переключатель
DIP-переключатель позволяет пользователю выбрать значение от 0 до 5 вольт. Они не заземлены и поэтому требуют внешних источников.
Реле SPST
Реле SPST имеет четыре клеммы, две клеммы для подключения или отключения, а две другие — для двух катушек.
Джемпер
Перемычка, небольшой металлический разъем, работает как переключатель ВКЛ / ВЫКЛ, и они широко используются вместе для настройки аппаратных устройств.
Паяльный мост
Паяные перемычки служат постоянными переключателями. Когда пользователь соединяет две части моста, он замыкается при его отключении.Им нужно демонтировать это.
SPDT реле
SPDT Relay — это способ переключения между двумя цепями и имеет катушку, общую клемму, закрытую клемму и нормально разомкнутую клемму, если катушка остается закрытой, общий контакт и нормально закрытый контакт работают.
Источники / символы источника питания
Электропитание переменного токаСимвол представляет источник переменного или переменного тока в цепи.Текущий поток постоянно меняет направление.
Источник питания постоянного токаИсточник постоянного тока является поставщиком электроэнергии в цепи, а постоянный ток имеет ток в одном направлении.
КонстантаПостоянный источник — это независимый источник тока, который отвечает за постоянный ток.
КонтролируемыйУправляемый источник тока работает в зависимости от текущего входа.Он присутствует в электрической цепи для передачи или поглощения тока. У символа есть круг и стрелка, показывающая текущий поток.
Управление источником напряженияУправляемый источник напряжения в цепи выглядит как ромбовидный четырехугольник с положительным и отрицательным знаком. Напряжение в цепи контролирует контролируемые источники напряжения.
Одноэлементный аккумуляторОдноэлементный аккумулятор в цепи выглядит как две непревзойденные параллельные линии, одна большая и одна маленькая, представляющие одну ячейку.
Многоклеточная батареяМногоячеечная батарея имеет несколько маленьких и больших линий, которые представляют несколько ячеек, идентифицируемых как катод и анод.
ГенераторГенератор в цепи действует либо как источник напряжения, либо как источник тока. Более того, на этом основании в схему может вписаться и генератор.
Земля
Земля ЗемляЗаземление — это земля с нулевым потенциалом, которая может проводить к земле.
Шасси наземноеЗаземление корпуса защищает пользователя от поражения электрическим током, создавая барьер между пользователем и цепью.
Общие положенияЭто произвольная точка отсчета относительно потенциала земли.
Резистор и переменный резистор
Резистор (IEEE)Это символ фиксированного резистора, он выглядит как волны с заостренными головками и подключается к двум точкам на конце.
Резистор (IEC)Резистор представляет собой устройство с двумя выводами, а символ стандартного резистора МЭК выглядит как полоса, соединенная с двумя точками.
Потенциометр (IEEE)Это трехконтактный резистор, который создает регулируемое напряжение в электрической цепи.
Потенциометр (IEC)Это трехконтактный резистор, который создает регулируемое напряжение в электрической цепи.
Резистор с ответвлениямиРезистор с ответвлениями использует один или несколько выводов в устройствах, которые являются делителями напряжения.
АттенюаторАттенюатор — это схема, рассеивающая ток для понижения напряжения.
МемристорМемристор — это полупроводник, который работает как точка соединения конденсаторов, катушек индуктивности и резисторов.
Переменный резистор (IEEE)Устройство помогает создавать переменный ток, создавая переменное сопротивление.
ПредустановкаПредварительная установка — это компонент, который обеспечивает переменное сопротивление электрической цепи.
МагниторезисторМагниторезистор показывает изменение сопротивления при воздействии на него внешнего магнитного поля.
Переменный резистор (IEC)На символе переменного сопротивления согласно IEC есть полоса, похожая на символ резистора. Однако для отображения переменного тока есть стрелка.
Подстроечный резисторПодстроечный резистор или подстроечный резистор регулируют цепь и помогают откалибровать новое устройство.
ТермисторЭто термометр сопротивления, зависящий от температуры.
Фоторезистор / светозависимый резистор (LDR)Это устройство, которое помогает создавать сопротивление путем преобразования энергии света или яркости.
Конденсатор
КонденсаторКонденсатор — это электрическая цепь, которая выглядит как прямая и полукруглая линия, расположенные рядом.
КонденсаторЧтобы обозначить неполяризованный конденсатор в цепи, пользователь может использовать параллельные метки с линиями, идущими по сторонам.
Поляризованный конденсаторПоляризованный конденсатор представляет собой прямую пластину и изогнутую. Прямая пластина обозначает анод, а изогнутая пластина — катод.
Поляризованный конденсаторДве отдельные прямые линии представляют собой поляризованный конденсатор, одна из которых является катодом, а другая пластина или линия означает анод.
Конденсатор переменной емкостиЭто конденсатор, емкость которого можно изменять механически или электронным способом.
Подача через конденсаторПроходной конденсатор имеет диэлектрический слой и помогает передавать сигналы по замкнутому пути.
Индукторы
ИндукторИндуктор — это электронное устройство, которое хранит электронную энергию в виде магнитной энергии.
Индуктор с железным сердечникомИндукторы с железным сердечником имеют высокую индуктивность, и это представляют собой катушка и стержень.
Катушки индуктивности Ферритовый сердечникДве пунктирные линии с катушкой представляют катушку индуктивности с ферритовым сердечником, и это информация, которую необходимо знать.
Центр индуктивности с отводомИндуктор с центральным отводом — это элемент в цепи, который помогает соединять сигналы.
Переменный индукторПеременные катушки индуктивности с переменной индуктивностью выглядят как катушки индуктивности со стрелкой, обозначающей ее переменную природу.
Диод
ДиодЭто устройство направляет ток в одном направлении.
СтабилитронСтабилитрон — одно из устройств, помогающих поддерживать фиксированное напряжение
Диод ШотткиЭто полупроводник с меньшим падением прямого напряжения.
Варикап диодДиоды варикапа показывают широкий диапазон емкости, и он зависит от напряжения.
Туннельный диодЭто полупроводник, который создает отрицательное сопротивление в процессе туннелирования.
Светоизлучающий диодЭто полупроводник, который загорается при прохождении через него тока.
ФотодиодФотодиод — это светочувствительный диод.
Диод ШоклиЭтот четырехслойный полупроводник имеет структуру PNPN.
ТиристорЭто твердотельный полупроводник, который работает как бистабильный переключатель.
Диод постоянного токаДиод постоянного тока по своей природе является ограничивающим или регулирующим ток.
Лазерный диодЛазерный диод — это полупроводник, преобразующий электрическую энергию в свет.
Транзистор
Биполярный транзистор NPNБиполярный транзистор NPN передает электронику от точки эмиттера к точке коллектора.
Биполярный транзистор PNPЭто транзистор, который контролирует поток электронов от эмиттера к коллектору.
Транзистор ДарлингтонаЭто устройство, имеющее составную структуру с двумя биполярными транзисторами.
JFET-N ТранзисторТранзисторы JEFT-N используют электроны в качестве носителя заряда в цепи.
JFET-P ТранзисторПервичная его формация — это P-тип с двумя небольшими частями n-типа.
NMOS-транзисторТранзисторы NMOS работают, создавая инверсионный слой n-типа в корпусе p-типа транзистора.
PMOS транзисторТранзисторы PMOS работают, создавая инверсионный слой p-типа в корпусе транзистора n-типа.
Логические ворота
Не выходNot Gate может использовать только один вход и выход, противоположный пользовательскому вводу.
и воротаЛогический элемент AND может работать с двумя или более входами, и выходы могут быть точными, если входы действительны.
Nand GateОн может использовать два или более входа, обеспечивая точные выходные данные, если только все входы не являются действительными.
или ворота«OR Gate» также имеет два или более входов. Чтобы получить фактический выход в OR Gate, по крайней мере, один из входов должен быть истинным.
Nor GATEЭто логический вентиль с двумя или более входами, и ни один из входов не должен подтверждаться для получения точного выхода.
Xor ВОРОТАОн использует два или более входа, и когда они разные, они могут генерировать допустимый результат.
D ТриггерЛогический вентиль D-триггера имеет два входа и два выхода. Два входа — это входы часов и вход данных.
МультиплексорЭто логический вентиль, который направляет несколько входов в стандартный одиночный выход.
Демультиплексор (от 1 до 4)Для создания нескольких цифровых выходов требуется один вход.
Буфер с тремя состояниямиЭто логический инвертор, который позволяет ему выдавать либо фактический, либо инвертированный выходной сигнал.
Усилитель звука
Базовый усилительСимвол первичного усилителя представляет собой треугольник с одним входом и одним выходом.
Операционный усилительОперационный усилитель усиливает слабые электрические сигналы, которые имеют два входных контакта для получения одного выходного контакта.
Антенна
АнтеннаЭто общий символ воздушной антенны, в которой используются три открытых конца наверху.
Дипольная антеннаВ нем используются два проводника одинаковой длины, поэтому он выглядит как две параллельные линии.
Рамочная антеннаОн имеет цикл и работает с обычным источником.
Трансформеры
ТрансформаторыДля увеличения или уменьшения переменного напряжения электрики используют трансформаторы. К двум катушкам подключен провод.
Железный сердечникЭто трансформатор с одним железным сердечником и двумя намотанными на него катушками.
С резьбой по центруОни используются в индукторах для связи сигналов.
Разное
МоторЭто устройство, преобразующее электрическую энергию в кинетическую.
ТрансформаторыТрансформаторы выглядят как катушки, в которых используется материал сердечника.
Электрический звонокЭто также устройство для преобразования электрической энергии в звук.
ЗуммерЭто устройство для преобразования электрической энергии в звуковую.
ПредохранительЭто предохранительное устройство, которое тает при чрезмерном токе.
ПредохранительПредохранитель в цепи предотвращает короткое замыкание, нарушая ток.
АВТОБУСШина в цепи обозначает поток мощности.
АВТОБУСШина в цепи работает для данных или сигналов.
АВТОБУССимвол автобуса может выглядеть как двусторонняя линия с пустым пространством внутри.
ОктопараЭто устройство использовало свет для передачи сигналов между двумя отдельными цепями.
ГромкоговорительГромкоговоритель — это устройство, преобразующее электрическую энергию в звук.
МикрофонЭто устройство, преобразующее звуковую энергию в электрическую.
Операционный усилительУсиливает слабые сигналы.
Триггер ШмиттаОн присутствует в схеме для преобразования аналогового входа в цифровой выход.
Аналого-цифровойОн меняет аналоговый вход на цифровой.
Цифро-аналоговыйОн работает для преобразования цифрового сигнала в аналоговый.
Кристаллический осцилляторОн использует механический резонанс для создания электрического сигнала.
Кристаллический осцилляторОн использует частоту для формирования колебаний.
Постоянный токЭто символ, обозначающий односторонний ток.
ЛампочкаЛампочки светятся, когда через них проходит ток.
ТермопараЭто датчик для определения изменения температуры.
Часть 3: Как использовать электрические символы
Вам легко создать электрическую схему, если вы знаете, где найти тысячи электрических символов.Вы можете посмотреть видео ниже и узнать, как построить электрическую схему. Как вариант, вы можете шаг за шагом следовать инструкциям со словами и картинками.
Шаг 1 : Запустите EdrawMax на вашем компьютере. Обширную коллекцию шаблонов электрических схем можно найти в категории Электротехника . Щелкните значок Basic Electrical , чтобы открыть библиотеку, содержащую все символы для создания электрических схем.
Шаг 2.1 : Когда вы находитесь в рабочем пространстве EdrawMax, перетащите нужный символ прямо на холст. Вы можете изменить размер выбранного символа, перетащив маркеры выбора. Двусторонняя стрелка показывает направление, в котором вы можете переместить мышь, и вы можете перемещать символ только тогда, когда появляется четырехсторонняя стрелка.
Шаг 2.2 : Вы также можете изменить форму символа с помощью плавающего меню / кнопки действия.Он показывает, когда символ выбран или когда указатель находится над символом. Например, резистор может иметь 12 разновидностей.
Шаг 3 : Когда ваша электрическая схема будет завершена, вы можете экспортировать ее в JPG, PNG, SVG, PDF, Microsoft Word, Excel, PowerPoint, Visio, HTML одним щелчком мыши. Таким образом, вы можете поделиться своими рисунками с людьми, которые не используют EdrawMax, без необходимости искать способы преобразования форматов файлов.
Пример подключения и принципиальной схемы
Вот пример принципиальной схемы 100-ваттного усилителя мощности.Есть сигнал, который проходит через несколько конденсаторов и усилителей, и когда сигнал проходит через них, он усиливается. Выходным устройством в схеме является громкоговоритель.
Часть 4: Производитель электрических схем и схем — EdrawMax
Электрические символы облегчают инженерам создание электрической схемы для их работы. Хотя несколько устройств делают это не очень простым, пользователь может работать с онлайн-инструментом EdrawMax , который может предложить пользователю удобный интерфейс.Инструмент имеет библиотеку с широким набором электрических символов, которые они могут использовать. Существуют готовые шаблоны для неопытных пользователей, которые упрощают их работу. Когда работа будет завершена, можно легко экспортировать файл в различные форматы и легко поделиться им с другими.
Часть 5: Дополнительные электрические символы
Условные обозначения принципиальной схемы
Символы логических вентилей
Символы переключателей
Символы полупроводников
Символы пути передачи
Соответствующие символы
Обозначения компонентов интегральной схемы
Обозначения клемм и разъемов
Стандартные символы JIC для электрических лестничных диаграмм
Эти графические символы чаще всего используются на лестничных диаграммах для электрических цепей управления гидравлической мощностью.Это стандартные символы JIC (Объединенного промышленного совета), утвержденные и принятые NMTBA (Национальная ассоциация производителей станков). Они взяты из Приложения к спецификации NMTBA EGPl-1967. Помните, что стандарты JIC носят рекомендательный характер. Их использование в промышленности или торговле полностью добровольно.
ОБОЗНАЧЕНИЯ УСТРОЙСТВА
Эти сокращения предназначены для использования на схемах вместе с соответствующим символом из приведенных выше таблиц, чтобы расширить информацию о функциях устройства.Подходящие номера префиксов (1, 2, 3, 4 и т. Д.) Могут быть добавлены, чтобы различать несколько похожих устройств. Можно добавить буквы суффикса (A, B, C, D и т. Д.), Чтобы различать несколько наборов контактов на одном устройстве.
Примеры: 1-CR-A, 1-CR-B, 3-CR-A и т. Д.
AM — Амперметр | GRD — Земля | RH — Реостат | ||
CAP — Конденсатор | HTR — Нагревательный элемент | RSS — поворотный переключатель | ||
CB — Автоматический выключатель | LS — Концевой выключатель | S — переключатель | ||
CI — прерыватель цепи | LT — Контрольная лампа | SOC — розетка | ||
CON — Подрядчик | M — Стартер двигателя | SOL — Соленоид | ||
CR — Реле управления | MTR — Двигатель | SS — Селекторный переключатель | ||
CS — Кулачковый переключатель | PB — Кнопка | T — Трансформатор | ||
CTR — Счетчик | POT — Потенциометр | TAS — Темп.Переключатель срабатывания | ||
F — Вперед | PRS — Бесконтактный переключатель | TB — клеммная колодка | ||
FB — Блок предохранителей | PS — Реле давления | T / C — Термопара | ||
FLS — Реле потока | R — Реверс | TGS — Тумблер | ||
FS — Поплавковый выключатель | REC — Выпрямитель | TR — Реле задержки времени | ||
FTS — ножной переключатель | RECEP — Розетка | VM — Вольтметр | ||
FU — Предохранитель | RES — Резистор | VS — Вакуумный выключатель |
© 1990, компания Womack Machine Supply Co. Эта компания не несет ответственности за ошибки в данных, а также за безопасную и / или удовлетворительную работу оборудования, разработанного на основе этой информации.
Как читать схему
Добавлено в избранное Любимый 102Обзор
Схемы— это наша карта для проектирования, создания и устранения неисправностей схем. Понимание того, как читать схемы и следовать им, — важный навык для любого инженера-электронщика.
Это руководство должно превратить вас в полностью грамотного читателя схем! Мы рассмотрим все основные символы схемы:
Затем мы поговорим о том, как эти символы связаны на схемах, чтобы создать модель цепи. Мы также рассмотрим несколько советов и рекомендаций, на которые следует обратить внимание.
Рекомендуемая литература
Понимание схем — довольно базовый навык работы с электроникой, но есть несколько вещей, которые вы должны знать, прежде чем читать это руководство.Посмотрите эти уроки, если они звучат как пробелы в вашем растущем мозгу:
Условные обозначения (часть 1)
Готовы ли вы к шквалу компонентов схемы? Вот некоторые из стандартизованных основных схематических символов для различных компонентов.
Резисторы
Самые основные компоненты схем и символы! Резисторы на схеме обычно представлены несколькими зигзагообразными линиями с двумя выводами , выходящими наружу.В схемах, использующих международные символы, вместо волнистых линий может использоваться безликий прямоугольник.
Потенциометры и переменные резисторы
Переменные резисторы и потенциометры дополняют обозначение стандартного резистора стрелкой. Переменный резистор остается устройством с двумя выводами, поэтому стрелка просто расположена по диагонали посередине. Потенциометр — это трехконтактное устройство, поэтому стрелка становится третьей клеммой (дворником).
Конденсаторы
Обычно используются два символа конденсатора.Один символ представляет поляризованный (обычно электролитический или танталовый) конденсатор, а другой — неполяризованные колпачки. В каждом случае есть две клеммы, перпендикулярно входящие в пластины.
Символ с одной изогнутой пластиной указывает на то, что конденсатор поляризован. Изогнутая пластина обычно представляет собой катод конденсатора, который должен иметь более низкое напряжение, чем положительный анодный вывод. Знак плюс также должен быть добавлен к положительному выводу символа поляризованного конденсатора.
Катушки индуктивности
Катушки индуктивности обычно представлены сериями изогнутых выступов или петлевых катушек. Международные символы могут просто обозначать катушку индуктивности как закрашенный прямоугольник.
Переключатели
Коммутаторы существуют во многих различных формах. Самый простой переключатель, однополюсный / однопозиционный (SPST), представляет собой две клеммы с полусоединенной линией, представляющей исполнительный механизм (часть, которая соединяет клеммы вместе).
Переключатели с более чем одним ходом, такие как SPDT и SP3T ниже, добавляют больше посадочных мест для привода.
Многополюсные переключатели обычно имеют несколько одинаковых переключателей с пунктирной линией, пересекающей средний привод.
Источники энергии
Так же, как существует множество вариантов питания вашего проекта, существует множество символов схем источника питания, помогающих указать источник питания.
Источники постоянного или переменного напряжения
В большинстве случаев при работе с электроникой вы будете использовать источники постоянного напряжения. Мы можем использовать любой из этих двух символов, чтобы определить, подает ли источник постоянный ток (DC) или переменный ток (AC):
Батареи
Батарейки, будь то цилиндрические, щелочные AA или литий-полимерные аккумуляторные батареи, обычно выглядят как пара непропорциональных параллельных линий:
Чем больше пар линий, тем больше ячеек в батарее.Кроме того, более длинная линия обычно используется для обозначения положительной клеммы, а более короткая линия соединяется с отрицательной клеммой.
Узлы напряжения
Иногда — особенно на очень загруженных схемах — вы можете назначить специальные символы для узловых напряжений. Вы можете подключать устройства к этим символам с одним контактом , и они будут напрямую связаны с 5 В, 3,3 В, VCC или GND (землей). Узлы положительного напряжения обычно обозначаются стрелкой, направленной вверх, в то время как узлы заземления обычно включают от одной до трех плоских линий (или иногда стрелку или треугольник, направленную вниз).
Условные обозначения на схеме (часть 2)
Диоды
Базовые диоды обычно представляют собой треугольник, прижатый к линии. Диоды также поляризованы, поэтому для каждого из двух выводов требуются отличительные идентификаторы. Положительный анод — это вывод, входящий в плоский край треугольника. Отрицательный катод выходит за линию символа (воспринимайте его как знак -).
Существует множество различных типов диодов, каждый из которых имеет специальный рифф на стандартном символе диода. Светодиоды (LED) дополняют символ диода парой линий, направленных в сторону. Фотодиоды , которые генерируют энергию из света (в основном, крошечные солнечные элементы), переворачивают стрелки и направляют их в сторону диода.
Другие специальные типы диодов, такие как диоды Шоттки или стабилитроны, имеют свои собственные символы с небольшими вариациями на штриховой части символа.
Транзисторы
Транзисторы, будь то биполярные транзисторы или полевые МОП-транзисторы, могут существовать в двух конфигурациях: положительно легированные или отрицательно легированные.Итак, для каждого из этих типов транзисторов есть как минимум два способа его нарисовать.
Биполярные переходные транзисторы (БЮТ)
БЮТ — трехполюсные устройства; у них есть коллектор (C), эмиттер (E) и база (B). Существует два типа BJT — NPN и PNP, и каждый имеет свой уникальный символ.
Контакты коллектора (C) и эмиттера (E) расположены на одной линии друг с другом, но на эмиттере всегда должна быть стрелка. Если стрелка указывает внутрь, это PNP, а если стрелка указывает наружу, это NPN.Мнемоника для запоминания: «NPN: n или p ointing i n ».
Металлооксидные полевые транзисторы (МОП-транзисторы)
Как и BJT, полевые МОП-транзисторы имеют три терминала, но на этот раз они названы исток (S), сток (D) и затвор (G). И снова, есть две разные версии символа, в зависимости от того, какой у вас полевой МОП-транзистор с каналом n или p. Для каждого типа полевого МОП-транзистора существует ряд часто используемых символов:
Стрелка в середине символа (называемая основной частью) определяет, является ли полевой МОП-транзистор n-канальным или p-канальным.Если стрелка указывает внутрь, это означает, что это n-канальный MOSFET, а если он указывает, это p-канал. Помните: «n is in» (своего рода противоположность мнемонике NPN).
Цифровые логические ворота
Наши стандартные логические функции — И, ИЛИ, НЕ и ИСКЛЮЧАЮЩЕЕ ИЛИ — имеют уникальные условные обозначения:
Добавление пузыря к выходу отменяет функцию, создавая NAND, NOR и XNOR:
У них может быть более двух входов, но формы должны оставаться такими же (ну, может быть, немного больше), и все равно должен быть только один выход.
Интегральные схемы
Интегральные схемырешают такие уникальные задачи, и их так много, что они действительно не получают уникального обозначения схемы. Обычно интегральная схема представляет собой прямоугольник с выступающими по бокам выводами. Каждый вывод должен иметь номер и функцию.
Схематические символы для микроконтроллера ATmega328 (обычно присутствующего на Arduinos), микросхемы шифрования ATSHA204 и микроконтроллера ATtiny45. Как видите, эти компоненты сильно различаются по размеру и количеству выводов.Поскольку микросхемы имеют такой общий символ схемы, имена, значения и метки становятся очень важными. Каждая микросхема должна иметь значение, точно идентифицирующее имя микросхемы.
Уникальные ИС: операционные усилители, регуляторы напряжения
Некоторые из наиболее распространенных интегральных схем получают уникальный символ схемы. Обычно вы увидите операционные усилители, расположенные, как показано ниже, с 5 выводами: неинвертирующий вход (+), инвертирующий вход (-), выход и два входа питания.
Часто в один корпус интегральной схемы встроено два операционных усилителя, для которых требуется только один вывод для питания и один для заземления, поэтому тот, что справа, имеет только три контакта.
Простые регуляторы напряжения обычно представляют собой трехконтактные компоненты с входными, выходными и заземляющими (или регулирующими) контактами. Обычно они имеют форму прямоугольника с выводами слева (вход), справа (выход) и внизу (заземление / регулировка).
Разное
Кристаллы и резонаторы
Кристаллы или резонаторы обычно являются важной частью схем микроконтроллера. Они помогают обеспечить тактовый сигнал. Кристаллические символы обычно имеют два вывода, в то время как резонаторы, которые добавляют два конденсатора к кристаллу, обычно имеют три вывода.
Заголовки и разъемы
Будь то обеспечение питания или отправка информации, разъемы необходимы для большинства цепей. Эти символы различаются в зависимости от того, как выглядит разъем, вот образец:
Двигатели, трансформаторы, динамики и реле
Мы объединим их вместе, так как они (в основном) все так или иначе используют катушки. Трансформаторы (не самые очевидные) обычно состоят из двух катушек, прижатых друг к другу, с парой линий, разделяющих их:
Реле обычно соединяют катушку с переключателем:
Динамики и зуммеры обычно имеют форму, аналогичную их реальным аналогам:
Двигателии обычно имеют обведенную буквой «М», иногда с немного большим количеством украшений вокруг клемм:
Предохранители и PTC
Предохранители и PTC — устройства, которые обычно используются для ограничения больших скачков тока — каждое имеет свой уникальный символ:
Символ PTC на самом деле является общим обозначением термистора , резистора, зависящего от температуры (обратите внимание на международный символ резистора там?).
Несомненно, многие символы схем не включены в этот список, но те, что указаны выше, должны дать вам 90% грамотности в чтении схем. В общем, символы должны иметь довольно много общего с реальными компонентами, которые они моделируют. Помимо символа, каждый компонент на схеме должен иметь уникальное имя и значение, которое в дальнейшем помогает его идентифицировать.
Обозначения имен и значения
Один из важнейших ключей к схематической грамотности — это способность распознавать, какие компоненты какие.Компонентные символы рассказывают половину истории, но для завершения каждый символ должен сочетаться с именем и значением.
Имена и значения
Значения помогают точно определить, что такое компонент. Для схемных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, значение говорит нам, сколько у них Ом, фарад или генри. Для других компонентов, таких как интегральные схемы, значением может быть просто название микросхемы. Кристаллы могут указывать свою частоту колебаний как свою ценность.По сути, значение компонента схемы вызывает его наиболее важную характеристику .
Имена компонентов обычно представляют собой комбинацию одной или двух букв и числа. Буквенная часть имени определяет тип компонента — R для резисторов, C для конденсаторов, U для интегральных схем и т. Д. Каждое имя компонента на схеме должно быть уникальным; если в цепи несколько резисторов, например, они должны называться R 1 , R 2 , R 3 и т. д.Имена компонентов помогают нам ссылаться на определенные точки на схемах.
Префиксы имен довольно хорошо стандартизированы. Для некоторых компонентов, таких как резисторы, префикс — это просто первая буква компонента. Другие префиксы имен не столь буквальны; индукторы, например, L (потому что ток уже взял I [но он начинается с C … электроника — глупое место]). Вот краткая таблица общих компонентов и их префиксов:
Имя Идентификатор | Компонент |
---|---|
R | Резисторы |
C | Конденсаторы |
L | Дроссели | D671 |
Q | Транзисторы |
U | Интегральные схемы |
Y | Кристаллы и генераторы |
Хотя тезисы являются «стандартизированными» названиями символов компонентов, они не всегда соблюдаются.Вы можете увидеть интегральные схемы с префиксом IC вместо U , например, или кристаллы с маркировкой XTAL вместо Y . Используйте свой здравый смысл при диагностике, какая часть есть какая. Символ обычно должен передавать достаточно информации.
Схема чтения
Понимание того, какие компоненты есть на схеме, — это более чем полдела на пути к ее пониманию. Теперь все, что осталось, — это определить, как все символы связаны друг с другом.
Сети, узлы и метки
Схематические цепи показывают, как компоненты соединяются в цепи. Цепи представлены в виде линий между клеммами компонентов. Иногда (но не всегда) они имеют уникальный цвет, например, зеленые линии на этой схеме:
Соединения и узлы
Провода могут соединять две клеммы вместе, или их можно соединять десятки. Когда провод разделяется на два направления, образуется соединение . На схемах изображаем стыки с узлами , маленькими точками на пересечении проводов.
Узлыдают нам возможность сказать, что «провода, пересекающие этот переход , соединены ». Отсутствие узла на стыке означает, что два отдельных провода просто проходят мимо, не образуя никакого соединения. (При разработке схем обычно рекомендуется по возможности избегать этих несвязанных перекрытий, но иногда это неизбежно).
Сетевые имена
Иногда, чтобы схема была более разборчивой, мы даем цепи имя и маркируем ее, а не прокладываем провод по всей схеме.Предполагается, что цепи с таким же именем подключены, даже если между ними нет видимого провода. Имена могут быть написаны прямо поверх сети, или они могут быть «тегами», свисающими с провода.
Подключается каждая цепь с таким же именем, как на этой схеме для коммутационной платы FT231X. Имена и метки помогают сохранить схемы от слишком хаотичного (представьте, если бы все эти цепи были действительно соединены проводами). Цепямобычно дается имя, в котором конкретно указывается назначение сигналов на этом проводе.Например, цепи питания могут быть обозначены «VCC» или «5V», а цепи последовательной связи — «RX» или «TX».
Советы по чтению схем
Определить блоки
Действительно обширные схемы следует разбивать на функциональные блоки. Это может быть раздел для ввода мощности и регулирования напряжения, или раздел микроконтроллера, или раздел, посвященный разъемам. Попытайтесь распознать, какие секции какие, и проследить за цепочкой от входа к выходу. По-настоящему хорошие разработчики схем могут даже выложить схему в виде книги: входы слева, выходы — справа.
Если ящик схемы действительно хорош (например, инженер, который разработал эту схему для RedBoard), они могут разделить части схемы на логические помеченные блоки.Распознать узлы напряжения
Узлы напряжения — это одноконтактные компоненты схемы, к которым мы можем подключать клеммы компонентов, чтобы назначить им определенный уровень напряжения. Это специальное приложение имен цепей, означающее, что все клеммы, подключенные к узлу напряжения с одинаковым именем, соединены вместе.
Узлы напряжения с одинаковыми названиями — например, GND, 5 В и 3,3 В — все подключены к своим аналогам, даже если между ними нет проводов.
Узел заземления особенно полезен, потому что очень многие компоненты нуждаются в заземлении.
Таблицы технических данных эталонных компонентов
Если на схеме есть что-то, что не имеет смысла, попробуйте найти таблицу для наиболее важного компонента. Обычно компонент, выполняющий большую часть работы со схемой, — это интегральная схема, такая как микроконтроллер или датчик.Обычно это самый крупный компонент, часто расположенный в центре схемы.
Ресурсы и дальнейшее развитие
Вот и все, что нужно для чтения схем! Знание символов компонентов, отслеживание цепей и определение общих меток. Понимание того, как работает схема, открывает вам целый мир электроники! Ознакомьтесь с некоторыми из этих руководств, чтобы попрактиковаться в новых знаниях схемотехники:
- Делители напряжения — это одна из самых основных принципиальных схем.Узнайте, как с помощью всего двух резисторов превратить большое напряжение в меньшее!
- Как использовать макетную плату — Теперь, когда вы знаете, как читать схемы, почему бы не сделать ее! Макетные платы — отличный способ создавать временные функциональные прототипы схем.
- Работа с проводом — Или пропустите макет и сразу начните с проводки. Умение разрезать, зачищать и подключать провода — важный навык электроники. Последовательные и параллельные схемы
- — Построение последовательных или параллельных схем требует хорошего понимания схем.
- Шитье с токопроводящей нитью — Если вы не хотите работать с проволокой, как насчет создания схемы электронного текстиля с токопроводящей нитью? В этом прелесть схематических схем, одна и та же схематическая схема может быть построена множеством различных способов с использованием различных носителей.
Сравнение схем NEMA и IEC
% PDF-1.4 % 334 0 объект >>> эндобдж 378 0 объект > поток Неверно11.08.582018-03-15T10: 24: 52.679-04: 00 Библиотека Adobe PDF 9.90ba5e43b8edc5b20848e4340f353ce3c0c82d0531242285 Автоматический выключатель, вакуумный выключатель, выключатель среднего напряжения Библиотека Adobe PDF 9.9falseAdobe InDesign CS5 (7.0.3) 2018-03-15T10: 24: 13.000-04: 002018-03-15.000-04: 0013-12-04: 0013-12-04: 0013-12-04: 0013-12-04: 0013-12-04. 02T16: 44: 29.000-05: 00
32068118A6DA464611A612F
32068118A6DA464611A612F
32068118A6DA464611A612F
22068118C14F5D8726FA8A6
Схемы электрических соединений
Результаты обученияЭлектрооборудование Электромонтаж Схемы � Опишите различные компоненты электрической схемы. (например, маркировка проводов, размер проводов, символы компонентов, заземление, взаимосвязь между компонентами и цепями, распределение питания) � Определите различные электрические символы. (SAE, DIN, Valley Forge) � Опишите, как читать электрические схемы.� Опишите различные варианты использования электрических схем. � Опишите различия между различными типами электрических схем. (Графические, изометрические, блочные, принципиальные и электрические схемы, распределение питания и заземления) � Обозначьте электрические цепи на схеме. � Рекомендовать диагностические стратегии с использованием электрических схем и испытательного оборудования. Электропроводка Схемы В 1950 году в грузовике было около 200 электрических цепей. Сегодня в коммерческих автомобилях HD используется более 3000 схем.В 1950 году основной интерес вызвали цепи запуска, зажигания и освещения. Теперь электронное управление, применяемое к каждой системе транспортного средства, и объединенные в сеть электрические системы значительно усложнили современные транспортные средства. К традиционным системам транспортных средств добавляются удобные устройства, такие как навигационные и мультимедийные устройства, системы безопасности транспортных средств, специальные схемы кузовостроения и т. Д. Правильное понимание и интерпретация электрической схемы важны для техника, чтобы сократить время диагностики электрических проблем и устранить догадки.Схема подключения обычно позволяет технику отслеживать цепи от источников питания через переключатели, компоненты, устройство защиты цепи, жгуты, соединительные блоки, соединители и заземления. Диаграммы Электромонтаж составляются производителями в различных стилях, чтобы с высокой степенью ясности отображать отдельные компоненты схемы и их расположение. Типы электрических схем включают в себя: � Карта � Графическая � Схема � DIN (Норма Немецкого института) � Карта Valley Forge Схемы На схемах показана вся электрическая схема транспортного средства.Символы для компонентов обычно графические, что означает, что символ выглядит как компонент, который он представляет. Отдельные компоненты и их пространственное отношение друг к другу не обязательно передаются так четко, как логическое и разборчивое представление работы схемы. Вариантом схемы карты является линейная диаграмма. Эти
Обозначения электронных схем — Компоненты и символы принципиальных схем
В электронных схемах есть много электронных символов, которые используются для обозначения или идентификации основного электронного или электрического устройства.Они в основном используются для построения принципиальных схем и стандартизированы на международном уровне стандартом IEEE (IEEE Std 315) и британским стандартом (BS 3939). Пользователь не может вносить изменения в любой электронный символ, но пользователь может вносить любые изменения в архитектурные чертежи, такие как источник питания и освещение.
Электронные символы
Символы для различных электронных устройств показаны ниже. Щелкните каждую ссылку, приведенную ниже, чтобы просмотреть символы.Помимо обозначений схем, каждому устройству также присвоено короткое имя. Хотя эти имена не утверждены в качестве стандартных обозначений, они обычно используются большинством людей. Эти обозначения также приведены в списке.
Провода | Источники питания | Резистор | Конденсатор | Диод | Транзистор | Логические ворота | Метры | Датчики | Переключатели | Аудио и радиоустройства | Устройства вывода
Электронный компонент | Обозначение цепи | Описание |
Провод | Обозначение цепи провода | Используется для подключения одного компонента к другому. |
Провода соединены | Обозначение соединенной цепи проводов | Одно устройство может быть подключено к другому с помощью проводов. Это представлено в виде «пятен» в местах, где они закорочены. |
Несоединенные провода | Обозначение провода, не входящего в цепь, | Когда цепи нарисованы, одни провода могут не касаться других. Это можно показать, только соединив их или нарисовав без пятен. Но наложение мостов обычно практикуется, так как здесь не возникает путаницы. |
Электронный компонент | Обозначение цепи | Описание |
Ячейка | Обозначение сотовой цепи | Используется для питания цепи. |
Аккумулятор | Обозначение цепи аккумулятора | Батарея состоит из нескольких элементов и используется с той же целью.Меньшая клемма — отрицательная, а большая — положительная. Сокращенно «B». |
Источник постоянного тока | Обозначение цепи питания постоянного тока | Используется как источник постоянного тока, то есть ток всегда течет в одном направлении. |
Электропитание переменного тока | Обозначение цепи питания переменного тока | Используется как источник питания переменного тока, то есть ток будет иметь переменное направление. |
Предохранитель | Обозначение цепи предохранителя | Используется в цепях, где существует вероятность чрезмерного протекания тока.Предохранитель разорвет цепь, если будет протекать чрезмерный ток, и убережет другие устройства от повреждений. |
Трансформатор | Обозначение цепи трансформатора | Используется как источник питания переменного тока. Состоит из двух катушек, первичной и вторичной, соединенных между собой железным сердечником. Между двумя катушками нет физического соединения. Для получения мощности используется принцип взаимной индуктивности. Сокращенно «Т». |
Земля / Земля | Обозначение цепи заземления | Используется в электронных схемах для обозначения 0 вольт источника питания.Его также можно определить как настоящую землю, когда он применяется в радиосхемах и силовых цепях. |
Электронный компонент | Обозначение цепи | Описание |
Резистор | Обозначение цепи резистора | Резистор используется для ограничения силы тока, протекающего через устройство.Сокращенно «R». |
Реостат | Обозначение цепи реостата | Реостат используется для управления током с помощью двух контактов. Применимо для управления яркостью лампы, скоростью заряда конденсатора и т. Д. |
Потенциометр | Обозначение цепи потенциометра | Потенциометр используется для управления потоком напряжения и имеет три контакта. Имеют приложения для изменения механического угла изменения электрического параметра.Сокращенно «POT». |
Предустановка | Обозначение предустановленной цепи | Presets — это недорогие переменные резисторы, которые используются для управления потоком заряда с помощью отвертки. Приложения, в которых сопротивление определяется только в конце схемы. |
Электронный компонент | Обозначение цепи | Описание |
Конденсатор | Обозначение цепи конденсатора | Конденсатор — это устройство, которое используется для хранения электрической энергии.Он состоит из двух металлических пластин, разделенных диэлектриком. Он применим в качестве фильтра, то есть для блокировки сигналов постоянного тока и разрешения сигналов переменного тока. Обозначается буквой «C». |
Конденсатор — поляризованный | Обозначение цепи поляризованного конденсатора | Конденсатор можно использовать в схеме таймера путем добавления резистора. |
Конденсатор переменной емкости | Обозначение цепи переменного конденсатора | Используется для изменения емкости поворотом ручки.Тип переменного конденсатора — это небольшой по размеру подстроечный конденсатор. Обозначения все те же. |
Электронный компонент | Обозначение цепи | Описание |
Диод | Обозначение диодной цепи | Диод используется для пропускания электрического тока только в одном направлении. Сокращенно «D». |
Светоизлучающий диод (LED) | Светодиодный индикатор цепи | Светодиод используется для излучения света, когда через устройство проходит ток. Сокращенно он обозначается как LED. |
Стабилитрон | Обозначение цепи стабилитрона | После пробоя напряжения устройство позволяет току течь и в обратном направлении. Он обозначается аббревиатурой «Z». |
Фотодиод | Обозначение схемы фотодиода | Фотодиод работает как фотодетектор и преобразует свет в соответствующее ему напряжение или ток. |
Туннельный диод | Обозначение цепи туннельного диода | Туннельный диод известен своей высокоскоростной работой из-за его применения в квантово-механических эффектах. |
Диод Шоттки | Обозначение цепи диода Шоттки | Диод Шоттки известен своим большим прямым падением напряжения и, следовательно, имеет большое применение в схемах переключения. |
Электронный компонент | Обозначение цепи | Описание |
NPN транзистор | Обозначение цепи транзистора NPN | Это транзистор со слоем полупроводника, легированного P, закрепленным между двумя слоями полупроводников, легированных азотом, которые действуют как эмиттер и коллектор.Сокращенно «Q». |
PNP транзистор | Обозначение цепи транзистора PNP | Это транзистор со слоем полупроводника с примесью азота, закрепленным между двумя слоями полупроводников с примесью фосфора, которые действуют как эмиттер и коллектор. Сокращенно «Q». |
Фототранзистор | Обозначение схемы фототранзистора | Фототранзистор работает аналогично биполярному транзистору с той разницей, что он преобразует свет в соответствующий ему ток.Фототранзистор также может действовать как фотодиод, если эмиттер не подключен. |
Полевой транзистор | Обозначение цепи полевого транзистора | Подобно транзистору, FET имеет три вывода: затвор, исток и сток. Устройство имеет электрическое поле, которое контролирует проводимость канала носителей заряда одного типа в полупроводниковом веществе. |
Полевой транзистор с N-каналом | Обозначение схемы полевого транзистора с n-канальным переходом (JFET) | Полевой транзистор Junction Field Effect Transistor (JFET) — это простейший тип полевого транзистора, применяемый в коммутации и в резисторах с переменным напряжением.В N-канальном JFET кремниевый стержень N-типа имеет два меньших куска кремниевого материала P-типа, рассеянных с каждой стороны его средней части, образуя P-N-переходы. |
Полевой транзистор с P-каналом | Обозначение схемы полевого транзистора (FET) с p-канальным переходом | P-канальный JFET аналогичен по конструкции N-канальному JFET, за исключением того, что полупроводниковая основа P-типа зажата между двумя переходами N-типа. В этом случае основными носителями являются дыры. |
Металлооксидный полупроводниковый полевой транзистор | Данные ниже | Сокращенно MOSFET. MOSFET — трехполюсное устройство, управляемое смещением затвора. Он известен своей низкой емкостью и низким входным сопротивлением. |
МОП-транзистор расширения | Обозначение цепи электронного МОП-транзистора | Усовершенствованная структура полевого МОП-транзистора не имеет канала, сформированного при ее создании. Напряжение прикладывается к затвору, чтобы создать канал носителей заряда, чтобы ток возникал при приложении напряжения к клеммам сток-исток.Сокращенно e-MOSFET. |
Истощающий МОП-транзистор | Обозначение цепи d-MOSFET | В режиме истощения канал создается физически, и ток между стоком и истоком возникает из-за напряжения, приложенного к выводам сток-исток. Сокращенно d-MOSFET. |
Ворота | Стандартный символ | Символ IEC | Описание |
И Ворота | Символ И ВОРОТА | И ворота IEC Symbol | Если на всех входах логического элемента И ВЫСОКИЙ, то на выходе также будет ВЫСОКИЙ.Если какой-либо из них НИЗКИЙ, выход также будет НИЗКИМ. |
NAND Gate | Символ ворот NAND | Ворота NAND, IEC, символ | Краткая форма НЕ И Ворота. Из всех входов ВЫСОКИЙ, выход будет НИЗКИЙ. Если какой-либо из входов НИЗКИЙ, выход будет ВЫСОКИЙ. |
OR Выход | ИЛИ символ ворот | ИЛИ Ворота IEC Symbol | Если любой из входов ВЫСОКИЙ, выход также будет ВЫСОКИЙ.Если оба входа LOW, выход также будет LOW. |
NOR Gate | Символ ворот NOR | NOR Gate, символ IEC | Краткая форма НЕ ИЛИ. Если оба входа LOW, выход также будет LOW. В других случаях выход будет ВЫСОКИЙ. |
EX-OR Ворота | Символ ворот EX-OR | Ворота EX-OR, символ IEC | Краткая форма эксклюзивного НОР. Если оба входа находятся в состоянии НИЗКИЙ или ВЫСОКИЙ, на выходе будет НИЗКИЙ.Если оба входа разные, выход будет ВЫСОКИЙ. |
EX-NOR Gate | Символ ворот EX-NOR | Ворота EX-NOR, символ IEC | Краткая форма исключающего НЕ ИЛИ. Если оба входа одинаковы, выход будет ВЫСОКИЙ. Если оба они разные, результат также будет другим. |
НЕ Ворота | НЕ символ ворот | НЕ символ ворот | Также известен как инверторный затвор.У этих ворот только один вход. Если вход ВЫСОКИЙ, выход будет НИЗКИЙ. Если вход LOW, выход будет HIGH. |
Электронный компонент | Обозначение цепи | Описание |
Вольтметр | Обозначение цепи вольтметра | Вольтметр служит для измерения напряжения в определенной точке цепи. |
Амперметр | Обозначение цепи амперметра | Амперметр используется для измерения тока, который проходит через цепь в определенной точке. |
Гальванометр | Обозначение цепи гальванометра | Гальванометр используется для измерения очень малых токов порядка 1 миллиампер или меньше. |
Омметр | Обозначение цепи омметра | Сопротивление цепи измеряется омметром. |
Осциллограф | Обозначение цепи осциллографа | Осциллограф используется для измерения напряжения и периода времени сигналов, а также их формы. |
Электронный компонент | Обозначение цепи | Описание |
Светозависимый резистор (LDR) | Обозначение цепи LDR | Сокращенно LDR. Светозависимый резистор используется для преобразования света в соответствующее ему сопротивление. Вместо того, чтобы напрямую измерять свет, он определяет содержание тепла и преобразует его в сопротивление. |
Термистор | Обозначение цепи термистора | Вместо прямого измерения света термистор определяет содержание тепла и преобразует его в сопротивление. Сокращенно «TH». |
Электронный компонент | Обозначение цепи | Описание |
Нажимной переключатель | Обозначение цепи нажимного переключателя | Это обычный переключатель, пропускающий ток только при нажатии. |
Нажимной выключатель | Обозначение цепи переключателя Push to Break | Переключатель включения обычно удерживается во включенном состоянии (замкнутом). Он переходит в состояние ВЫКЛ. (Разомкнут) только при нажатии переключателя. |
Однополюсный однопозиционный переключатель | Обозначение цепи выключателя (SPST) | Также известен как переключатель ВКЛ / ВЫКЛ. Этот переключатель позволяет протекать току только тогда, когда он находится во включенном состоянии. Сокращенно SPST. |
Однополюсный двухпозиционный переключатель | Обозначение цепи двухпозиционного переключателя (SPDT) | Также известен как двухпозиционный переключатель. Его также можно назвать переключателем ВКЛ / ВЫКЛ / ВКЛ, поскольку он имеет положение ВЫКЛ в центре. Переключатель вызывает прохождение тока в двух направлениях, в зависимости от его положения. Сокращенно его можно обозначить как SPDT. |
Двухполюсный однопозиционный переключатель | Обозначение цепи двойного двухпозиционного переключателя (DPST) | Сокращенно DPST.Может также называться двойным переключателем ВКЛ-ВЫКЛ. Он используется для изоляции соединения под напряжением и нейтрали в главной электрической линии. |
Двухполюсный двухпозиционный переключатель | Обозначение цепи DPDT | Сокращенно DPDT. Переключатель использует центральное положение ВЫКЛ. И используется как реверсивный переключатель для двигателей. |
Реле | Обозначение цепи реле | Реле сокращенно «RY».Это устройство может легко переключать сеть переменного тока 230 Вольт. Он имеет три ступени переключения, которые называются нормально разомкнутыми (NO). Нормально замкнутый (NC) и общий (COM). |
Электронный компонент | Обозначение цепи | Описание |
Микрофон | Обозначение цепи микрофона | Это устройство используется для преобразования звука в соответствующую ему электрическую энергию.Сокращенно «MIC». |
Наушники | Обозначение цепи наушников | Выполняет обратный процесс микрофона и преобразует электрическую энергию в звук. |
Громкоговоритель | Обозначение цепи громкоговорителя | Выполняет те же операции, что и наушники, но преобразует усиленную версию электрической энергии в соответствующий звук. |
Пьезоэлектрический преобразователь | Обозначение цепи пьезопреобразователя | Это преобразователь, преобразующий электрическую энергию в звук. |
Усилитель | Обозначение цепи усилителя | Используется для усиления сигнала. В основном он используется для представления всей схемы, а не только одного компонента. |
Антенна | Обозначение воздушной цепи | Это устройство используется для передачи / приема сигналов. Сокращенно «АЕ». |
Электронный компонент | Обозначение цепи | Описание |
Осветительная лампа | Обозначение цепи лампы | Используется для освещения выхода. |
Контрольная лампа | Обозначение цепи индикатора лампы | Используется для преобразования электрической энергии в свет. Лучшим примером является сигнальная лампа на приборной панели автомобиля. |
Нагреватель | Обозначение цепи нагревателя | Этот преобразователь используется для преобразования электрической энергии в тепло. |
Индуктор | Обозначение цепи индуктивности | Индуктор используется для создания магнитного поля, когда определенный ток проходит через катушку с проволокой.Проволока намотана на сердечник из мягкого железа. Имеют применение в двигателях и цепях резервуаров. Сокращенно «L». |
Двигатель | Обозначение цепи двигателя | Это устройство используется для преобразования электрической энергии в механическую. Также может использоваться как генератор. Сокращенно «М». |
Белл | Обозначение контура звонка | Используется для создания звука на выходе в соответствии с производимой на входе электрической энергией. |
Зуммер | Обозначение цепи зуммера | Он используется для создания выходного звука, соответствующего входящей электрической энергии. |
Обозначение | Название компонента | Значение |
---|---|---|
Обозначения проводов | ||
Электрический провод | Проводник электрического тока | |
Подключенные провода | Подъездной переход | |
Не подключенные провода | Провода не подключены | |
Обозначения переключателей и реле | ||
Тумблер SPST | Отключает ток при открытии | |
Тумблер SPDT | Выбирает одно из двух подключений | |
Кнопочный переключатель (N.O) | Выключатель мгновенного действия — нормально открытый | |
Кнопочный переключатель (Н.З.) | Переключатель мгновенного действия — нормально замкнутый | |
DIP-переключатель | DIP-переключатель используется для конфигурации на плате | |
Реле SPST | Реле размыкания / замыкания с помощью электромагнита | |
Реле SPDT | ||
Джемпер | Закройте соединение, вставив перемычку на контакты. | |
Паяльный мостик | Припой для закрытия соединения | |
Знаки заземления | ||
Земля Земля | Используется для опорного нулевого потенциала и защиты от поражения электрическим током. | |
Шасси Земля | Подключен к шасси по схеме | |
Цифровой / Общий | ||
Обозначения резисторов | ||
Резистор (IEEE) | Резистор снижает ток. | |
Резистор (IEC) | ||
Потенциометр (IEEE) | Регулируемый резистор — имеет 3 вывода. | |
Потенциометр (IEC) | ||
Переменный резистор / реостат (IEEE) | Регулируемый резистор — имеет 2 вывода. | |
Переменный резистор / реостат (IEC) | ||
Подстроечный резистор | Предустановленный резистор | |
Термистор | Терморезистор — изменение сопротивления при изменении температуры | |
Фоторезистор / Светозависимый резистор (LDR) | Фоторезистор — изменение сопротивления при изменении силы света | |
Обозначения конденсаторов | ||
Конденсатор | Конденсатор используется для хранения электрического заряда.Он действует как короткое замыкание с переменным током и разомкнутая цепь с постоянным током. | |
Конденсатор | ||
Поляризованный конденсатор | Конденсатор электролитический | |
Поляризованный конденсатор | Конденсатор электролитический | |
Конденсатор переменной емкости | Регулируемая емкость | |
Обозначения индуктора / катушки | ||
Катушка индуктивности | Катушка / соленоид, создающий магнитное поле | |
Индуктор с железным сердечником | Включает утюг | |
Переменный индуктор | ||
Обозначения источников питания | ||
Источник напряжения | Генерирует постоянное напряжение | |
Источник тока | Генерирует постоянный ток. | |
Источник напряжения переменного тока | Источник переменного напряжения | |
Генератор | Электрическое напряжение создается за счет механического вращения генератора | |
Батарейный элемент | Генерирует постоянное напряжение | |
Аккумулятор | Генерирует постоянное напряжение | |
Источник управляемого напряжения | Генерирует напряжение как функцию напряжения или тока другого элемента схемы. | |
Управляемый источник тока | Генерирует ток как функцию напряжения или тока другого элемента схемы. | |
Обозначения счетчиков | ||
Вольтметр | Измеряет напряжение. Обладает очень высокой стойкостью. Подключил параллельно. | |
Амперметр | Измеряет электрический ток. Имеет почти нулевое сопротивление. Подключил поочередно. | |
Омметр | Измеряет сопротивление | |
Ваттметр | Измерители электроэнергии | |
Символы ламп / лампочек | ||
Лампа / лампочка | Генерирует свет при протекании тока через | |
Лампа / лампочка | ||
Лампа / лампочка | ||
Символы диодов / светодиодов | ||
Диод | Диод позволяет току течь только в одном направлении — слева (анод) направо (катод). | |
Стабилитрон | Позволяет току течь в одном направлении, но также может течь в обратном направлении, когда напряжение пробоя выше | |
Диод Шоттки | Диод Шоттки — диод с низким падением напряжения | |
Варактор / варикап диод | Диод переменной емкости | |
Туннельный диод | ||
Светоизлучающий диод (LED) | Светодиодизлучает свет при протекании тока через | |
Фотодиод | Фотодиод пропускает ток при воздействии света | |
Обозначения транзисторов | ||
Биполярный транзистор NPN | Обеспечивает прохождение тока при высоком потенциале в основании (в центре) | |
Транзистор биполярный PNP | Обеспечивает прохождение тока при низком потенциале у основания (в центре) | |
Транзистор Дарлингтона | Изготовлен из 2-х биполярных транзисторов.Имеет общий прирост продукта каждого прироста. | |
JFET-N Транзистор | Транзистор полевой N-канальный | |
JFET-P Транзистор | Транзистор полевой P-канальный | |
NMOS-транзистор | N-канальный MOSFET транзистор | |
PMOS транзистор | P-канальный МОП-транзистор | |
Разное. Символы | ||
Двигатель | Электродвигатель | |
Трансформатор | Измените напряжение переменного тока с высокого на низкий или с низкого на высокое. | |
Электрический звонок | Звонит при активации | |
Зуммер | Воспроизводить жужжащий звук | |
Предохранитель | Предохранитель отключается, когда ток превышает пороговое значение. Используется для защиты схемы от высоких токов. | |
Предохранитель | ||
Автобус | Содержит несколько проводов. Обычно для данных / адреса. | |
Автобус | ||
Автобус | ||
Оптопара / оптоизолятор | Оптопара изолирует соединение с другой платой | |
Громкоговоритель | Преобразует электрический сигнал в звуковые волны | |
Микрофон | Преобразует звуковые волны в электрический сигнал | |
Операционный усилитель | Усилить входной сигнал | |
Триггер Шмитта | Работает с гистерезисом для снижения шума. | |
Аналого-цифровой преобразователь (АЦП) | Преобразует аналоговый сигнал в цифровые числа | |
Цифро-аналоговый преобразователь (ЦАП) | Преобразует цифровые числа в аналоговый сигнал | |
Кристаллический осциллятор | Используется для генерации точного частотного тактового сигнала | |
⎓ | Постоянный ток | Постоянный ток генерируется от постоянного уровня напряжения |
Символы антенны | ||
Антенна / антенна | Передает и принимает радиоволны | |
Антенна / антенна | ||
Дипольная антенна | Двухпроводная простая антенна | |
Символы логических вентилей | ||
НЕ затвор (инвертор) | Выходы 1, когда вход 0 | |
И Ворота | Выходы 1, когда оба входа равны 1. |