Калькулятор расчета теплопроводности стены: SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.
Расчет теплопроводности стены — правила
Расчет теплопроводности стеныКаждый, кто строит дом или же собирается проводить ремонт, задается вопросом: какой толщины делать стены, какую теплоизоляцию и какой утеплитель лучше всего использовать.
Именно ответы на эти вопросы позволят сделать любой дом или квартиру уютными, комфортными и удобными для проживания.
Опять же, использование некачественных материалов и в недостаточных количествах, игнорирование утепления, как такового, могут привести к весьма печальным последствиям.
В таком доме просто будет сложно жить как в жару, так и в морозы. Температура в комнатах будет мало отличаться от температуры на улице.
Поэтому следует выяснить, какой же толщины должна быть теплоизоляция конкретно для вашего случая.
Как лучше поступить
На сегодняшний день это можно сделать самостоятельно: произвести необходимые расчеты, выяснить оптимальные материалы для работы и самостоятельно их установить.
Можно предпочесть работу заказу крупной фирме, которая сможет за отдельную плату совершить точный расчет, подобрать материалы и приступить к их монтажу.
Конечно, в случае, если вы все сделаете сами, претензии выдвигать будет некому.
В случае с фирмой, вы сможете пожаловаться на некачественную, недобросовестную работу или же когда требуемый эффект от произведенных работ не был достигнут.
Для расчет теплопроводности стены можно воспользоваться специальными программами, специализированными онлайн-калькуляторами, которые помогут вам получить нужные цифры.
Или же вы сможете это сделать самостоятельно. Многие заблуждаются, думая, что сами не в состоянии произвести расчеты, подсчитать, сколько теплоизоляции для работы будет необходимо на комнату, квартиру или же дом. Это сделать необычайно просто, ведь рассчитать толщину необходимой теплоизоляции можно довольно просто: на всех материалах производители указывают коэффициент теплопроводности.
Этикетка с коэффициентомВ чем необходимость расчета теплопроводности и монтажа теплоизоляции
Как уже говорилось, на это есть ряд причин:
- отсутствие или недостаточность теплоизоляции приведет к промерзанию стен;
- есть вероятность переноса так называемой точки росы, что, в свою очередь, вызовет появление конденсата на стенах, добавит излишнюю влажность в помещениях;
- в жаркое время в помещениях будет хуже, чем под ярким солнцем на улице; в таких домах будет жарко, душно и неуютно.
Опять же, приведенные выше причины принесут вам и новые проблемы: та же влажность будет способствовать порче как используемых внутри помещения строительных материалов, так и мебели, техники. Это, в свою очередь, заставит вас тратить деньги на ремонт, обновление, приобретение новых вещей. Пример подобного можно с легкостью увидеть ниже.
Влага и роса в квартиреТак что теплоизоляция – это залог сохранности ваших денег в дальнейшем.
Как рассчитывать толщину теплоизоляции
Чтобы просчитать необходимую толщину, следует знать величину теплосопротивления, которая является постоянной, значение имеет разное, в зависимости от географического положения, то есть разное для каждого отдельно взятого района. За основу возьмем следующие показатели: теплосопротивление стен – 3.5м2*К/Вт, а потолка – 6м2*К/Вт. Первое значение назовем R1, а второе, соответственно, R2.
При расчетах стен или же потолка, или же пола, состоящих из более чем одного слоя, следует просчитать теплосопротивление каждого из них, а затем суммировать.
R= R+R1+R2 и т.д.
Соответственно, необходимая толщина теплоизоляции, ее слоя, будет получена путем следующих манипуляций и при помощи формул:
R=p/k, где pявляется толщиной слоя, а k – коэффициентом теплопроводности материала, который можно узнать у производителя.
Опять же, не забывайте, если есть несколько слоев, то по данной формуле следует просчитать каждый, и затем полученные результаты суммировать.
Пример таковых расчетов
Ничего сложного в этом процессе нет, можно с легкостью провести расчет для любого материала. В качестве примера мы можем взять расчет для дома из кирпича.
Скажем, толщина измеряемых стенок будет составлять 1.5 длины кирпича, а в качестве теплоизоляции решим использовать минвату.
Кирпич и минватаИтак, нам требуется теплосопротивление стены не меньше 3.5. Для начала просчета нам потребуется узнать текущее тепловое сопротивление данной стены из кирпича.
Толщина составляет около 38 сантиметров, коэффициент теплопроводности составляет 0,56.
Соответственно, 0,38/0,56 = 0,68. Чтобы достигнуть показателя в 3.5, мы отнимем от него полученный результат (нам нужно 2,85 метр квадратный * К/Вт).
Теперь мы сделаем расчет толщины теплоизоляции, как уже говорилось выше, минеральной ваты: 2,85*0,045=0,128
Позволим себе немного округлить результат и получим следующее: при необходимости утеплить кирпичную стену, толщиной в полтора кирпича, нам потребуется толщина теплоизоляционного материала 130мм, при условии, что мы будем использовать минеральную вату. Если учитывать предстоящие внутренние и внешние работы, как отделочные, так и декоративные, можно позволить себе слой минваты в 100мм. Как видите, ничего сложного.
Что еще даст такой расчет
Используя такой расчет, вы сможете сравнивать различные типы утепления и теплоизоляции, сможете выбрать наиболее эффективный при наименьшем слое.
Если у вас проблема в пространстве, если же вы хотите сэкономить, то подобная работа позволит вам путем нехитрых манипуляций быстро выяснить, какой материал будет вам обходиться дешевле.
Если вы еще на этапе планировки дома, то сможете выяснить, что обойдется вам дешевле и менее трудоемко. Это может быть увеличение толщины кирпичной кладки, использование других типов теплоизоляционных материалов или же использование других строительных материалов для возведения стены, скажем, вместо кирпича использовать блоки и т.д.
Стена из блоковМногие ленятся делать расчеты самостоятельно, в этом случае можно легко позволить себе воспользоваться калькуляторами, которые предлагаются в сети на многих страницах.
Здесь вы найдете массу шаблонов и заготовок, практически вся информация собрана в справочниках, вам нужно будет подставлять только тип строительных материалов, регион проживания и показатель толщины. В этом случае все вычисления будут происходить очень быстро и легко.
Онлайн калькуляторНо в данном случае высока вероятность того, что на том или ином сайте жульничают: пытаются выставить материал, которым торгуют, в лучшем свете. В таком случае вероятна ошибка в расчетах, которая может дорого вам обойтись.
Не стоит бояться самостоятельных расчетов, для этого вам понадобятся только ручка, бумага и калькулятор.
Вы легко сможете в любой момент перепроверить свои расчеты или же показать их специалисту. Консультация со знакомым строителем выйдет гораздо дешевле, чем найм профессиональной компании.
Снова-таки, выбирая материалы, просчитывая необходимую толщину и цену на них, учитывайте и другие полезные свойства, которые вам могут быть интересны.
Например, пожаробезопасность, звукоизоляцию, водо- или влагонепроницаемость. Например, звукоизоляцией и теплоизоляцией обладает стекловата.
СтекловатаДа, к сожалению, такие материалы будут выходить несколько дороже, но все же, разница по цене в 10-20% с учетом того, что вы получите, скажем, не только теплоизоляцию, но еще и звукоизоляцию, стоит назвать хорошей покупкой и удачным решением.
Видео – расчет теплопроводности стены
На данном видео можно воочию увидеть, как производится расчет теплопроводности стены с помощью специализированной программы.
Расчет утеплителя калькулятор. Калькуляторы теплоизоляции
7 сентября, 2016Специализация: мастер по внутренней и наружной отделке (штукатурка, шпаклёвка, плитка, гипсокартон, вагонка, ламинат и так далее). Кроме того, сантехника, отопление, электрика, обычная облицовка и расширение балконов. То есть, ремонт в квартире или доме делался «под ключ» со всеми необходимыми видами работ.
Например, каким должен быть утеплитель, какой из них лучше и какая нужна толщина материала? Давайте попробуем разобраться в этих вопросах, а ещё посмотрим видео в этой статье, наглядно демонстрирующее тему.
Утепление стен
Внутри или снаружи
Если вы решили использовать калькулятор расчета толщины утеплителя для стен, то точных данных вы не получите. Вручную можно получить более точную и достоверную информацию. Помимо этого имеет значение расположение изоляции, которую можно укладывать, как внутри, так и снаружи здания, что при расчетах нужно учитывать обязательно!
Особенности внутреннего и наружного утепления:
- представьте себе, что вы используете калькулятор расчета утеплителя для стен, но при этом изоляцию укладываете внутри помещения, будут ли результаты расчётов верными? Обратите внимание на схему вверху;
- какой бы толщины ни была изоляция в комнате, стена всё равно останется холодной и это приведёт к определённым последствиям;
- то есть, это означает, что точка росы или зона, где тёплый воздух при встрече с холодным превращается в конденсат, переносится ближе к помещению. И чем мощнее внутреннее утепление, тем ближе будет эта точка;
- в некоторых случаях эта зона доходит до поверхности стены, где влага способствует развитию грибковой плесени. Но если даже она остаётся внутри стены, то эксплуатационный ресурс от этого никак не увеличивается;
- следовательно, инструкция и здравый смысл указывают на то, что внутреннее утепление следует монтировать только в крайнем случае или же тогда, когда нужна звукоизоляция
- при наружном утеплении точка росы будет приходиться на зону изоляции, а это означает, что вы сможете повысить срок годности вашей стены и избежать возникновения сырости.
Расчет – дело серьезное!
№п/п | Стеновой материал | Коэффициент теплопроводности | Необходимая толщина (мм) |
1 | Пенополистироп ПСБ-С-25 | 0,042 | 124 |
2 | Минеральная вата | 0,046 | 124 |
3 | Клееный деревянный брус или цельный массив ели и сосны поперёк волокон | 0,18 | 530 |
4 | Кладка керамоблоков на теплоизоляционный клей | 0,17 | 575* |
5 | Кладка газо- и пеноблоков 400кг/м3 | 0,18 | 610* |
6 | Кладка полистирольных блоков на клей 500кг/м3 | 0,18 | 643* |
7 | Кладка газо- и пеноблоков 600кг/м3 | 0,29 | 981* |
8 | Кладка на клей керамзитобетона 800кг/м3 | 0,31 | 1049* |
9 | Кладка из керамического пустотелого кирпича на ЦПР 1000кг/м3 | 0,52 | 1530 |
10 | Кладка из рядового кирпича на ЦПР | 0,76 | 2243 |
11 | Кладка из силикатного кирпича на ЦПР | 0,87 | 2560 |
12 | ЖБИ 2500кг/м3 | 2,04 | 6002 |
Теплотехнический расчет различных материалов
Примечание к таблице. Наличие знака * указывает на необходимость добавления коэффициента 1,15, если в здании сделаны перемычки и монолитные пояса из тяжёлых бетонов. Вверху для наглядности составлена диаграмма — цифры совпадают с таблицей.
Итак, расчет толщины утеплителя, это определение его теплового сопротивления, которое мы обозначим буквой R — постоянная величина, которая рассчитывается отдельно для каждого региона.
Давайте возьмём для наглядности среднюю цифру R=2,8 (м2*K/Вт). Согласно Государственным Строительным Нормам такая величина является минимально допустимой для жилых и общественных зданий .
В тех случаях, когда тепловая изоляция состоит из нескольких слоёв, например, кладка, пенопласт и евровагонка, то сумма всех показателей складывается воедино — R=R1+R2+R3 . А общую или отдельную толщину теплоизоляционного слоя рассчитывают по формуле R=p/k .
Здесь p будет означать толщину слоя в метрах, а буква k , это коэффициент теплопроводности данного материала (Вт/м*к), значение которого вы можете взять из таблицы теплотехнических расчётов, которая приведена выше.
По сути, используя эти же формулы, вы можете произвести расчет энергоэффективности от утепления подоконников или узнать толщину изоляции для пола. Величину R используйте в соответствии со своим регионом.
Чтобы не быть голословным, приведу пример, возьмём кирпичную кладку в два кирпича (обычная стена), а в качестве изоляции будем использовать пенополистирольные плиты ПСБ-25 (двадцать пятый пенопласт), цена которых достаточно приемлема даже для бюджетного строительства.
Итак, тепловое сопротивление, которого нам нужно достичь, должно составлять 2,8 (м2*Л/Вт). Вначале узнаём теплосопротивление данной кирпичной кладки. От тычка до тычка кирпич имеет 250 мм и между ними раствор толщиной 10 мм.
Следовательно, p=0,25*2+0,01=0,51м . Коэффициент у силиката составляет 0,7 (Вт/м*к), тогда Rкирпича=p/k=0,51/0,7=0,73 (м2*K/Вт) — это мы получили теплопроводность кирпичной стены, рассчитав её своими руками.
Идём далее, теперь нам нужно достичь общего показателя для слоёной стены 2,8 (м2*K/Вт), то есть R=2,8 (м2*K/Вт и для этого нам нужно узнать необходимую толщину пенопласта. Значит, Rпенопласта=Rобщая-Rкирпича=2,8-0,73=2,07 (м2*K/Вт).
На фото — локальная защита пенопластом
Теперь для расчёта толщины пенополистирола берём за основу общую формулу и здесь Pпенопласта=Rпенопласта*kпенопласта= 2?07*0?035=0?072м . Конечно, 2 см мы никак не найдём у ПСБ-25, но если учесть внутреннюю отделку и воздушную прослойку между кирпичами, то нам будет достаточно 70 см, а это два слоя
Теплотехнический калькулятор точки росы онлайн
С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.
Калькулятор расчета толщины утеплителя стены
С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.
Калькулятор KNAUF расчета толщины утеплителя
Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.
Калькулятор Rockwool для расчета теплоизоляции
Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.
Калькулятор теплопроводности для расчета толщины стен
Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.
Даже популярные ныне коттеджи из бревна или профилированного бруса необходимо утеплять дополнительно или возводить их из практически несуществующего на рынке деревянного массива толщиной в 35-40 см. Что уж говорить о каменных строениях (блочных, кирпичных, монолитных).
Что значит «утеплиться правильно»
Итак, без теплоизоляционных слоёв обойтись нельзя, с этим согласится подавляющее большинства домовладельцев. Некоторым из них приходится изучать вопрос во время строительства собственного гнёздышка, другие озадачиваются утеплением, чтобы фасадными работами улучшить уже эксплуатируемый коттедж. В любом случае подходить к вопросу необходимо очень скрупулёзно.
Одно дело соблюдение технологии утепления, но ведь часто застройщики допускают ошибки на стадии закупки материала, в частности неправильно выбирают толщину утепляющего слоя. Если жилище окажется слишком холодным, то находиться в нём будет, мягко говоря, некомфортно. При благоприятном стечении обстоятельств (наличие запаса производительности теплогенератора) проблему получится решить увеличением мощности отопительной системы, что, однозначно, влечёт за собой существенный рост расходов на покупку энергоносителей.
Но обычно всё заканчивается куда печальнее: при малой толщине утепляющего слоя ограждающие конструкции промерзают. А это становится причиной перемещения точки росы вовнутрь помещений, из-за чего на внутренних поверхностях стен и перекрытий выпадает конденсат. Потом появляется плесень, разрушаются строительные конструкции и отделочные материалы… Что самое неприятное, так это тот факт, что невозможно устранить неприятности малой кровью. Например, на фасаде придётся демонтировать (или «похоронить») финишный слой, затем создать ещё один барьер из утеплителя, а потом снова отделать стены. Очень недёшево выходит, лучше сразу всё сделать как положено.
Важно! Технологичные современные утеплители мало стоить не будут, причём с увеличением толщины пропорционально будет расти и цена. Поэтому создавать слишком большой запас по теплоизоляции обычно смысла нет, это — пустая трата средств, особенно если случайному сверхутеплению подвергается только часть конструкций дома.
Принципы расчёта утепляющего слоя
Теплопроводность и термическое сопротивление
Прежде всего, нужно определиться с главной причиной охлаждения здания. Зимой у нас работает система отопления, которая греет воздух, но сгенерированное тепло проходит через ограждающие конструкции и рассеивается в атмосфере. То есть происходят теплопотери — «теплопередача». Она есть всегда, вопрос лишь в том, получается ли их восполнить посредством отопления, чтобы в доме оставалась стабильная положительная температура, желательно на уровне + 20-22 градусов.
Важно! Заметим, что очень немаловажную роль в динамике теплового баланса (в общих теплопотерях) играют различные неплотности в элементах здания — инфильтрация. Поэтому на герметичность и сквозняки тоже следует обращать внимание.
Кирпич, сталь, бетон, стекло, деревянный брус… — каждый материал, применяемый при строительстве зданий, в той или иной мере обладает способностью передавать тепловую энергию. И каждый из них обладает обратной способностью — сопротивляться теплопередаче. Теплопроводность является величиной неизменной, поэтому в системе СИ существует показатель «коэффициент теплопроводности» для каждого материала. Данные эти важны не только для понимания физических свойств конструкций, но и для последующих расчётов.
Приведём данные для некоторых основных материалов в виде таблицы.
Теперь о сопротивлении теплопередаче. Значение сопротивления теплопередаче обратно пропорционально теплопроводности. Этот показатель относится и к ограждающим конструкциям, и к материалам как таковым. Он используется для того, чтобы охарактеризовать теплоизоляционные характеристики стен, перекрытий, окон, дверей, кровли…
Для расчёта термического сопротивления используют следующую общедоступную формулу:
Показатель «d» здесь означает толщину слоя, а показатель «k» — теплопроводность материала. Получается, что сопротивление теплопередаче напрямую зависит от массивности материалов и ограждающих конструкций, что при использовании нескольких таблиц поможет нам рассчитать фактическое теплосопротивление существующей стены или правильный утеплитель по толщине.
Для примера: стена в половину кирпича (полнотелого) имеет толщину 120 мм, то есть показатель R получится 0,17 м²·K/Вт (толщина 0,12 метра, разделённая на 0,7 Вт/(м*К)). Аналогичная кладка в кирпич (250 мм) покажет 0,36 м²·K/Вт, а в два кирпича (510 мм) — 0,72 м²·K/Вт.
Допустим, по минеральной вате толщиной 50; 100; 150 мм показатели термического сопротивления будут следующие: 1,11; 2,22; 3,33 м²·K/Вт.
Важно! Большинство ограждающих конструкций в современных зданиях являются многослойными. Поэтому, чтобы рассчитать, например, термическое сопротивление такой стены, нужно отдельно рассматривать все её прослойки, а затем полученные показатели суммировать.
Существуют ли требования к тепловому сопротивлению
Возникает вопрос: а каким, собственно, должен быть показатель сопротивления теплопередачи для ограждающих конструкций в доме, чтобы в помещениях было тепло, и в отопительный период расходовалось минимум энергоносителей? К счастью для домовладельцев, не обязательно снова использовать сложные формулы. Вся необходимая информация есть в СНиП 23-02-2003 «Тепловая защита зданий». В данном нормативном документе рассматриваются строения различного назначения, эксплуатируемые в различных климатических зонах. Это вполне объяснимо, так как температура для жилых помещений и производственных помещений не нужна одинаковая. Кроме того, отдельные регионы характеризуются своими предельными минусовыми температурами и длительность отопительного периода, поэтому выделяют такую усреднённую характеристику, как градусо-сутки отопительного сезона.
Важно! Ещё один интересный момент заключается в том, что основная интересующая нас таблица содержит нормируемые показатели для различных ограждающих конструкций. Это в общем-то не удивительно, ведь тепло покидает дом неравномерно.
Попробуем немного упростить таблицу по необходимому тепловому сопротивлению, вот что получится для жилых зданий (м²·K/Вт):
Согласно данной таблице, становится понятно, что если в Москве (5800 градусо-суток при средней температуре в помещениях порядка 24 градусов) строить дом только из полнотелого кирпича, то стену придётся делать по толщине более 2,4 метра (3,5 Х 0,7). Реально ли это технически и по деньгам? Конечно — абсурд. Вот почему нужно применить утепляющий материал.
Очевидно, что для коттеджа в Москве, Краснодаре и Хабаровске будут предъявляться разные требования. Всё, что нам нужно, так это определить градусо-суточные показатели для нашего населённого пункта и выбрать подходящее число из таблицы. Потом применяя формулу сопротивления теплопередаче, работаем с уравнением и получаем оптимальную толщину утеплителя, который необходимо применить.
Город | Градусо-сутки Dd отопительного периода при температуре, + С | |||||
24 | 22 | 20 | 18 | 16 | 14 | |
Абакан | 7300 | 6800 | 6400 | 5900 | 5500 | 5000 |
Анадырь | 10700 | 10100 | 9500 | 8900 | 8200 | 7600 |
Арзанас | 6200 | 5800 | 5300 | 4900 | 4500 | 4000 |
Архангельск | 7200 | 6700 | 6200 | 5700 | 5200 | 4700 |
Астрахань | 4200 | 3900 | 3500 | 3200 | 2900 | 2500 |
Ачинск | 7500 | 7000 | 6500 | 6100 | 5600 | 5100 |
Белгород | 4900 | 4600 | 4200 | 3800 | 3400 | 3000 |
Березово (ХМАО) | 9000 | 8500 | 7900 | 7400 | 6900 | 6300 |
Бийск | 7100 | 6600 | 6200 | 5700 | 5300 | 4800 |
Биробиджан | 7500 | 7100 | 6700 | 6200 | 5800 | 5300 |
Благовещенск | 7500 | 7100 | 6700 | 6200 | 5800 | 5400 |
Братск | 8100 | 7600 | 7100 | 6600 | 6100 | 5600 |
Брянск | 5400 | 5000 | 4600 | 4200 | 3800 | 3300 |
Верхоянск | 13400 | 12900 | 12300 | 11700 | 11200 | 10600 |
Владивосток | 5500 | 5100 | 4700 | 4300 | 3900 | 3500 |
Владикавказ | 4100 | 3800 | 3400 | 3100 | 2700 | 2400 |
Владимир | 5900 | 5400 | 5000 | 4600 | 4200 | 3700 |
Комсомольск-на-Амуре | 7800 | 7300 | 6900 | 6400 | 6000 | 5500 |
Кострома | 6200 | 5800 | 5300 | 4900 | 4400 | 4000 |
Котлас | 6900 | 6500 | 6000 | 5500 | 5000 | 4600 |
Краснодар | 3300 | 3000 | 2700 | 2400 | 2100 | 1800 |
Красноярск | 7300 | 6800 | 6300 | 5900 | 5400 | 4900 |
Курган | 6800 | 6400 | 6000 | 5600 | 5100 | 4700 |
Курск | 5200 | 4800 | 4400 | 4000 | 3600 | 3200 |
Кызыл | 8800 | 8300 | 7900 | 7400 | 7000 | 6500 |
Липецк | 5500 | 5100 | 4700 | 4300 | 3900 | 3500 |
Санкт Петербург | 5700 | 5200 | 4800 | 4400 | 3900 | 3500 |
Смоленск | 5700 | 5200 | 4800 | 4400 | 4000 | 3500 |
Магадан | 9000 | 8400 | 7800 | 7200 | 6700 | 6100 |
Махачкала | 3200 | 2900 | 2600 | 2300 | 2000 | 1700 |
Минусинск | 4700 | 6900 | 6500 | 6000 | 5600 | 5100 |
Москва | 5800 | 5400 | 4900 | 4500 | 4100 | 3700 |
Мурманск | 7500 | 6900 | 6400 | 5800 | 5300 | 4700 |
Муром | 6000 | 5600 | 5100 | 4700 | 4300 | 3900 |
Нальчик | 3900 | 3600 | 3300 | 2900 | 2600 | 2300 |
Нижний Новгород | 6000 | 5300 | 5200 | 4800 | 4300 | 3900 |
Нарьян-Мар | 9000 | 8500 | 7900 | 7300 | 6700 | 6100 |
Великий Новгород | 5800 | 5400 | 4900 | 4500 | 4000 | 3600 |
Олонец | 6300 | 5900 | 5400 | 4900 | 4500 | 4000 |
Омск | 7200 | 6700 | 6300 | 5800 | 5400 | 5000 |
Орел | 5500 | 5100 | 4700 | 4200 | 3800 | 3400 |
Оренбург | 6100 | 5700 | 5300 | 4900 | 4500 | 4100 |
Новосибирск | 7500 | 7100 | 6600 | 6100 | 5700 | 5200 |
Партизанск | 5600 | 5200 | 4900 | 4500 | 4100 | 3700 |
Пенза | 5900 | 5500 | 5100 | 4700 | 4200 | 3800 |
Пермь | 6800 | 6400 | 5900 | 5500 | 5000 | 4600 |
Петрозаводск | 6500 | 6000 | 5500 | 5100 | 4600 | 4100 |
Петропавловск-Камчатский | 6600 | 6100 | 5600 | 5100 | 4600 | 4000 |
Псков | 5400 | 5000 | 4600 | 4200 | 3700 | 3300 |
Рязань | 5700 | 5300 | 4900 | 4500 | 4100 | 3600 |
Самара | 5900 | 5500 | 5100 | 4700 | 4300 | 3900 |
Саранск | 6000 | 5500 | 5100 | 5700 | 4300 | 3900 |
Саратов | 5600 | 5200 | 4800 | 4400 | 4000 | 3600 |
Сортавала | 6300 | 5800 | 5400 | 4900 | 4400 | 3900 |
Сочи | 1600 | 1400 | 1250 | 1100 | 900 | 700 |
Сургут | 8700 | 8200 | 7700 | 7200 | 6700 | 6100 |
Ставрополь | 3900 | 3500 | 3200 | 2900 | 2500 | 2200 |
Сыктывкар | 7300 | 6800 | 6300 | 5800 | 5300 | 4900 |
Тайшет | 7800 | 7300 | 6800 | 6300 | 5800 | 5400 |
Тамбов | 5600 | 5200 | 4800 | 4400 | 4000 | 3600 |
Тверь | 5900 | 5400 | 5000 | 4600 | 4100 | 3700 |
Тихвин | 6100 | 5600 | 2500 | 4700 | 4300 | 3800 |
Тобольск | 7500 | 7000 | 6500 | 6100 | 5600 | 5100 |
Томск | 7600 | 7200 | 6700 | 6200 | 5800 | 5300 |
Тотьна | 6700 | 6200 | 5800 | 5300 | 4800 | 4300 |
Тула | 5600 | 5200 | 4800 | 4400 | 3900 | 3500 |
Тюмень | 7000 | 6600 | 6100 | 5700 | 5200 | 4800 |
Улан-Удэ | 8200 | 7700 | 7200 | 6700 | 6300 | 5800 |
Ульяновск | 6200 | 5800 | 5400 | 5000 | 4500 | 4100 |
Уренгой | 10600 | 10000 | 9500 | 8900 | 8300 | 7800 |
Уфа | 6400 | 5900 | 5500 | 5100 | 4700 | 4200 |
Ухта | 7900 | 7400 | 6900 | 6400 | 5800 | 5300 |
Хабаровск | 7000 | 6600 | 6200 | 5800 | 5300 | 4900 |
Ханты-Мансийск | 8200 | 7700 | 7200 | 6700 | 6200 | 5700 |
Чебоксары | 6300 | 5800 | 5400 | 5000 | 4500 | 4100 |
Челябинск | 6600 | 6200 | 5800 | 5300 | 4900 | 4500 |
Черкесск | 4000 | 3600 | 3300 | 2900 | 2600 | 2300 |
Чита | 8600 | 8100 | 7600 | 7100 | 6600 | 6100 |
Элиста | 4400 | 4000 | 3700 | 3300 | 3000 | 2600 |
Южно-Курильск | 5400 | 5000 | 4500 | 4100 | 3600 | 3200 |
Южно-Сахалинск | 6500 | 600 | 5600 | 5100 | 4700 | 4200 |
Якутск | 11400 | 10900 | 10400 | 9900 | 9400 | 8900 |
Ярославль | 6200 | 5700 | 5300 | 4900 | 4400 | 4000 |
Примеры расчёта толщины утеплителя
Предлагаем на практике рассмотреть процесс расчётов утепляющего слоя стены и потолка жилой мансарды. Для примера возьмём дом в Вологде, построенный из блоков (пенобетон) толщиной 200 мм.
Итак, если температура в 22 градуса для обитателей будет нормальной, то актуальный в данном случае показатель градусо-суток равняется 6000. Находим в таблице нормативов по термическому сопротивлению соответствующий показатель, он составляет 3,5 м²·K/Вт — к нему будем стремиться.
Стена получится многослойная, поэтому сначала определим, сколько термического сопротивления даст голый пеноблок. Если средняя теплопроводность пенобетона составляет порядка 0,4 Вт/(м*К), то при 20-миллиметровой толщине эта наружная стена даст сопротивление теплопередаче на уровне 0,5 м²·K/Вт (0,2 метра делим на коэффициент теплопроводности 0,4).
То есть для качественного утепления нам не хватает порядка 3 м²·K/Вт. Их можно получить минеральной ватой или пенопластом, который будут установлены со стороны фасада в вентилируемой навесной конструкции или мокрым способом скреплённой теплоизоляции. Чуть трансформируем формулу термического сопротивления и получаем необходимую толщину — то есть умножаем необходимое (недостающее) сопротивление теплопередачи на теплопроводность (берём из таблицы).
В цифрах это будет выглядеть так: d толщина базальтовой минваты = 3 Х 0,035 = 0,105 метра. Получается, что мы может использовать материал в матах или рулонах толщиной 10 сантиметров. Заметим, что при использовании пенопласта плотностью 25 кг/м3 и выше — необходимая толщина получится аналогичной.
Кстати, можно рассмотреть другой пример. Допустим, хотим из полнотелого силикатного кирпича в этом же доме сделать ограждение тёплого остеклённого балкона, тогда недостающего термического сопротивления будет порядка 3,35 м²·K/Вт (0,12Х0,82). Если планируется применять для утепления пенопласт ПСБ-С-15, то его толщина должна быть 0,144 мм — то есть 15 см.
Для мансарды, крыши и перекрытий техника расчётов будет примерно такая же, только отсюда исключается теплопроводность и сопротивление теплопередачи несущих конструкций. А также несколько увеличиваются требования по сопротивлению — потребуется уже не 3,5 м²·K/Вт, а 4,6. В итоге, вата подойдёт толщиной до 20 см = 4,6 Х 0,04 (теплоизолятор для кровли).
Применение калькуляторов
Производители изоляционных материалов решили упростить задачу рядовым застройщикам. Для этого они разработали простые и понятные программки для расчёта толщины утеплителя.
Рассмотрим некоторые варианты:
В каждом из них в несколько шагов нужно заполнить поля, после чего, нажав на кнопку, можно мгновенно получить результат.
Вот некоторые особенности использования программ:
1. Везде предлагается из выпадающего списка выбрать город/район/регион строительства.
2. Все, кроме Технониколь, просят определить тип объекта: жилое/производственное, либо, как на сайте Пеноплекс — городская квартира/лоджия/малоэтажный дом/хозпостройка.
3. Потом указываем, какие конструкции нас интересуют: стены, полы, перекрытие чердака, крыша. Программа Пеноплекс рассчитывает также утепление фундамента, инженерных коммуникаций, уличных дорожек и площадок.
4. Некоторые калькуляторы имеют поле для указания желаемой температуры внутри помещения, на сайте Rockwool интересуются также габаритами здания и типом применяемого для отопления топлива, количеством проживающих людей. Кнауф ещё учитывает относительную влажность воздуха в помещениях.
5. На penoplex.ru нужно указать тип и толщину стен, а также материал, из которого они изготовлены.
6. В большинстве калькуляторов есть возможность задать характеристики отдельных или дополнительных слоёв конструкций, например, особенности несущих стен без теплоизоляции, тип облицовки…
7. Калькулятор пеноплекс для некоторых конструкций (допустим для утепления кровли методом «между стропил») может считать не только экструдированный пенополистирол, на котором фирма специализируется, но также минеральную вату.
Как вы понимаете, в том, чтобы рассчитать оптимальную толщину теплоизоляции — ничего сложного нет, следует только со всей тщательностью подойти к данному вопросу. Главное, чётко определиться с недостающим сопротивлением теплопередаче, а потом уже выбирать утеплитель, который будет лучше всего подходить для конкретных элементов здания и применяемых строительных технологий. Также не стоит забывать, что к теплоизоляцией частного дома необходимо заниматься комплексно, в должной степени должны быть утеплены все ограждающие конструкции.
Правильный расчет теплоизоляции повысит комфортность дома и уменьшит затраты на обогрев. При строительстве не обойтись без утеплителя, толщина которого определяется климатическими условиями региона и применяемыми материалами. Для утепления используют пенопласт, пеноплекс, минеральную вату или эковату, а также штукатурку и другие отделочные материалы.
Чтобы рассчитать, какая должна быть у утеплителя толщина, необходимо знать величину минимального термосопротивления . Она зависит от особенностей климата. При ее расчете учитывается продолжительность отопительного периода и разность внутренней и наружной (средней за это же время) температур . Так, для Москвы сопротивление передаче тепла для наружных стен жилого здания должно быть не меньше 3,28, в Сочи достаточно 1,79, а в Якутске требуется 5,28.
Термосопротивление стены определяется как сумма сопротивления всех слоев конструкции, несущих и утепляющих. Поэтому толщина теплоизоляции зависит от материала, из которого выполнена стена . Для кирпичных и бетонных стен требуется больше утеплителя, для деревянных и пеноблочных меньше. Обратите внимание, какой толщины бывает выбранный для несущих конструкций материал, и какая у него теплопроводность. Чем тоньше несущие конструкции, тем больше должна быть толщина утеплителя.
Если требуется утеплитель большой толщины, лучше утеплять дом снаружи. Это обеспечит экономию внутреннего пространства. Кроме того, наружное утепление позволяет избежать накопления влаги внутри помещения.
Теплопроводность
Способность материала пропускать тепло определяется его теплопроводностью. Дерево, кирпич, бетон, пеноблоки по-разному проводят тепло. Повышенная влажность воздуха увеличивает теплопроводность. Обратная к теплопроводности величина называется термосопротивлением. Для его расчета используется величина теплопроводности в сухом состоянии, которая указывается в паспорте используемого материала. Можно также найти ее в таблицах.
Приходится, однако, учитывать, что в углах, местах соединения несущих конструкций и других особенных элементах строения теплопроводность выше, чем на ровной поверхности стен. Могут возникнуть «мостики холода», через которые из дома будет уходить тепло. Стены в этих местах будут потеть. Для предотвращения этого величину термосопротивления в таких местах увеличивают примерно на четверть по сравнению с минимально допустимой.
Пример расчет
Нетрудно произвести с помощью простейшего калькулятора расчет толщины термоизоляции. Для этого вначале рассчитывают сопротивление передаче тепла для несущей конструкции. Толщина конструкции делится на теплопроводность используемого материала. Например, у пенобетона плотностью 300 коэффициент теплопроводности 0,29. При толщине блоков 0,3 метра величина термосопротивления:
Рассчитанное значение вычитается из минимально допустимого. Для условий Москвы утепляющие слои должны иметь сопротивление не меньше чем:
Затем, умножая коэффициент теплопроводности утеплителя на требуемое термосопротивление, получаем необходимую толщину слоя. Например, у минеральной ваты с коэффициентом теплопроводности 0,045 толщина должна быть не меньше чем:
0,045*2,25=0,1 м
Кроме термосопротивления учитывают расположение точки росы. Точкой росы называется место в стене, в котором температура может понизиться настолько, что выпадет конденсат — роса. Если это место оказывается на внутренней поверхности стены, она запотевает и может начаться гнилостный процесс. Чем холоднее на улице, тем ближе к помещению смещается точка росы. Чем теплее и влажнее помещение, тем выше температура в точке росы.
Толщина утеплителя в каркасном доме
В качестве утеплителя для каркасного дома чаще всего выбирают минеральную вату или эковату.
Необходимая толщина определяется по тем же формулам, что и при традиционном строительстве. Дополнительные слои многослойной стены дают примерно 10% от его величины. Толщина стены каркасного дома меньше, чем при традиционной технологии, и точка росы может оказаться ближе к внутренней поверхности. Поэтому излишне экономить на толщине утеплителя не стоит.
Как рассчитать толщину утепления крыши и чердака
Формулы расчета сопротивления для крыш используют те же, но минимальное термосопротивление в этом случае немного выше. Неотапливаемые чердаки укрывают насыпным утеплителем. Ограничений по толщине здесь нет, поэтому рекомендуется увеличивать ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления крыши используют материалы с низкой теплопроводностью.
Как рассчитать толщину утепления пола
Хотя наибольшие потери тепла происходят через стены и крышу, не менее важно правильно рассчитать утепление пола. Если цоколь и фундамент не утеплены, считается, что температура в подполе равна наружной, и толщина утеплителя рассчитывается также, как для наружных стен. Если же некоторое утепление цоколя сделано, его сопротивление вычитают из величины минимально необходимого термосопротивления для региона строительства.
Расчет толщины пенопласта
Популярность пенопласта определяется дешевизной, низкой теплопроводностью, малым весом и влагостойкостью. Пенопласт почти не пропускает пара, поэтому его нельзя использовать для внутреннего утепления . Он располагается снаружи или в середине стены.
Теплопроводность пенопласта, как и других материалов, зависит от плотности . Например, при плотности 20 кг/м3 коэффициент теплопроводности около 0,035. Поэтому толщина пенопласта 0,05 м обеспечит термосопротивление на уровне 1,5.
Калькулятор позволяет определить вид теплоизоляционных материалов для фундамента, посчитать объем необходимых материалов и получить итоговую стоимость, в том числе и крепежа для плит.
Калькулятор расчета и выбора изоляции под сайдинг.
С помощью данного сервиса, Вы сможете определить виды теплоизоляции и гидроизоляции которые подойдут для изоляции стен под сайдинг. Более того калькулятор позволит определить стоимость и рассчитать объем необходимых материалов.
Калькулятор расчета теплоизоляции под вентилируемый фасад
Для того что бы правильно подобрать материалы для утепления вентилируемого фасада, подобрать гидроизоляцию и крепеж, воспользуйтесь этим сервисом. Введя площадь стен, и толщину плит, Вы рассчитаете необходимый объем материалов и узнаете их стоимость.
Онлайн калькулятор расчета стоимости штукатурного фасада.
Сервис позволяет определить виды материалов, стоимость и объем. Исходя из площади фасада и толщины утеплителя, можно рассчитать примерную стоимость штукатурного фасада.
Расчет материалов для изоляции каркасных стен
Если перед Вами стоит задача, изоляции каркасных стен, то этот калькулятор для Вас. Зная площадь стен и толщину утеплителя, вы без труда рассчитаете необходимые материалы.
Онлайн расчет изоляции для пола под стяжку
Для пола, который планируется сделать с использованием цементной, либо любой другой, требуется особые, прочные изоляционные материалы.
Онлайн расчет изоляции для пола по лагам
Что бы правильно подобрать изоляционные материалы для пола, который уложен по деревянным лагам, воспользуйтесь данным калькулятором. Он определит необходимую плотность материалов, их количество и примерную стоимость.
Расчет теплоизоляции для межкомнатных перегородок
Подберите изоляцию для межкомнатных перегородок. Вы сможете расчитать количество и вид изоляции, ее стоимость, а так же, сразу сделать заявку.
Калькулятор для расчета изоляции потолка
Просто введите площадь потолка и толщину теплоизоляции, получите количество материалов и их стоимость.
Определить стоимость материалов для изоляции межэтажных перекрытий
Для решения таких задач, воспользуйтесь онлайн-расчетом цен и количества необходимых материалов.
Онлайн-расчет изоляции чердака
Для утепления чердака, следует подобрать материалы используя данный сервис.
Расчет изоляции для скатной кровли (мансарды)
Изоляция скатной кровли, требует помимо утеплителя, еще пароизоляционную и ветровлагозащитную мембрану, воспользовавшись этим онлайн-калькулятром, вы без труда определити нужные Вам материалы и их ориентировочную стоимость.
Расчет изоляции для плоской кровли
Для расчета материалов для плоской кровли, мы предлагаем воспользоваться этим калькулятром. В расчет включена так же гидроизоляционная мембрана и телескопический крепеж.
Калькулятор расчета водостоков
Калькулятор позволит сделать предварительный расчет необходимых материалов для монтажа водосточной системы. Определить предварительно стоимость/
Расчёт толщины утеплителя — ремонт в доме
Правила и примеры расчета толщины утеплителя
Теплый дом — мечта каждого владельца, для достижения этой цели строятся толстые стены, проводится отопление, устраивается качественная теплоизоляция. Чтобы утепление было рациональным необходимо правильно подобрать материал и грамотно рассчитать его толщину.
Какие данные нужны для расчета толщины утеплителя?
Размер слоя изоляции зависит от теплового сопротивления материала. Этот показатель является величиной, обратной теплопроводности. Каждый материал — дерево, металл, кирпич, пенопласт или минвата обладают определенной способностью передавать тепловую энергию. Коэффициент теплопроводности высчитывается в ходе лабораторных испытаний, а для потребителей указывается на упаковке.
Если материал приобретается без маркировки, можно найти сводную таблицу показателей в интернете.
Название материала | Теплопроводность, Вт/м*К |
Бетон | 1,51 |
Кирпич силикатный | 0,7 |
Пенобетон | 0,29 |
Дерево | 0,18 |
ДСП | 0,15 |
Минеральная вата | 0,07-0,048 |
Экструдированный пенополистирол | 0,036 |
Пенополиуретан | 0,041-0,02 |
Пенополистирол | 0,05-0,038 |
Пеностекло | 0,11 |
Теплосопротивление материала ® является постоянной величиной, его определяют как отношение разности температур на краях утеплителя к силе проходящего через материал теплового протока. Формула расчета коэффициента: R=d/k, где d — толщина материала, k — теплопроводность. Чем выше полученное значение, тем эффективней теплоизоляция.
Почему важно правильно рассчитать показатели утепления?
Теплоизоляция устанавливается для сокращения потерь энергии через стены, пол и крышу дома. Недостаточная толщина утеплителя приведет к перемещению точки росы внутрь здания. Это означает появление конденсата, сырости и грибка на стенах дома.
Избыточный слой теплоизоляции не дает существенного изменения температурных показателей, но требует значительных финансовых затрат, поэтому является нерациональным. При этом нарушается циркуляция воздуха и естественная вентиляция между комнатами дома и атмосферой.
Для экономии средств с одновременным обеспечением оптимальных условий проживания требуется точный расчет толщины утеплителя.
Расчет теплоизоляционного слоя: формулы и примеры
Чтобы иметь возможность точно рассчитать величину утепления, необходимо найти коэффициент сопротивления теплопередачи всех материалов стены или другого участка дома. Он зависит от климатических показателей местности, поэтому вычисляется индивидуально по формуле:
ГСОП=(tв-tот)xzот
tв — показатель температуры внутри помещения, обычно составляет 18-22ºC;
tот — значение средней температуры;
zот — длительность отопительного сезона, сутки.
Значения для подсчета можно найти в СНиП 23-01-99.
При вычислении теплового сопротивления конструкции, необходимо сложить показатели каждого слоя: R=R1+R2+R3 и т. д. Исходя из средних показателей для частных и многоэтажных домов определены примерные значения коэффициентов:
- стены — не менее 3,5;
- потолок — от 6.
Толщина утеплителя зависит от материала постройки и его величины, чем меньше теплосопротивление стены или кровли, тем больше должен быть слой изоляции.
Пример: стена из силикатного кирпича толщиной в 0,5 м, которая утепляется пенопластом.
Rст.=0,5/0,7=0,71 — тепловое сопротивление стены
R- Rст.=3,5-0,71=2,79 — величина для пенопласта
Имея все данные, можно рассчитать необходимый слой утеплителя по формуле: d=Rxk
Для пенопласта теплопроводность k=0,038
d=2,79×0,038=0,10 м — потребуются плиты пенопласта толщиной в 10 см
По такому алгоритму легко подсчитать оптимальную величину теплоизоляции для всех участков дома, кроме пола. При вычислениях, касающихся утеплителя основания, необходимо обратиться к таблице температуры грунта в регионе проживания. Именно из нее берутся данные для вычисления ГСОП, а далее ведется подсчет сопротивления каждого слоя и искомая величина утеплителя.
Популярные способы утепления дома
Выполнить теплоизоляцию здания можно на этапе возведения или после его окончания. Среди популярных методов:
- Монолитная стена существенной толщины (не менее 40 см) из керамического кирпича или дерева.
- Возведение ограждающих конструкций путем колодезной кладки — создание полости для утеплителя между двумя частями стены.
- Монтаж наружной теплоизоляции в виде многослойной конструкции из утеплителя, обрешетки, влагозащитной пленки и декоративной отделки.
По готовым формулам произвести расчет оптимальной толщины утеплителя можно без помощи специалиста. При вычислении следует округлять число в большую сторону, небольшой запас величины слоя теплоизолятора будет полезен при временных падениях температуры ниже среднего показателя.
Источник: http://remontami.ru/kak-rasschitat-tolshhinu-uteplitelya/
Теплоизоляция для стен: расчет оптимальной толщины теплоизоляции и особенности утеплителей
Главная » Отопление и утепление »
Правильная теплоизоляция для стен квартиры или дома заключается не только в выборе определенного типа теплоизоляционного материала, но и в расчете его толщины.
Недостаточное утепление отразится не только на температуре в помещении, но и вызовет перенос точки росы на внутреннюю поверхность стены. Появившийся конденсат повлечет за собой повышение влажности, плесень и гниль на стенах.
С другой стороны, избыточная теплоизоляция, хоть и избавляет от этих проблем, но экономически не выгодна. Даже существенное превышение толщины слоя утепления над расчетным, принесет лишь незначительное увеличение показателя теплозащиты всего строения.
Расчет толщины теплоизоляции
В строительстве существует такое понятие как теплосопротивление – это показатель определяющий способность материала или конструкции сопротивляться переносу тепла из помещения во внешнюю среду.
Коэффициент тепдлосопротивления это постоянная величина, выведенная эмпирическим способом исходя из климатических особенностей региона. Для каждого региона России она индивидуальна. Данные регламентируются СНИП 23-01-99 «Строительная климатология». В таблице приведены некоторые показатели по регионам:
Теплосопротивление стены состоит из сопротивления передаче тепла всех слоев однородных материалов, сюда входят и несущие конструкции и утеплитель.
Толщина утеплителя будет рассчитываться по формуле:
- Rreg=δ/k, где
- Rreg – теплосопротивление в среднем по региону;
- δ – толщина слоя утеплителя;
- k – коэффициент теплопроводности термоизоляции Вт/м2׺С.
Расчет теплоизоляции стены должен принимать во внимание толщину и материал несущих внешних стен, к которым он будет крепиться.
Данные по коэффициенту теплопроводности некоторых строительных материалов и наиболее распространенных типов современных утеплителей приведены в таблице.
Рассчитаем минимально необходимую толщину наиболее популярного утеплителя пенополистирола для Якутска – Rreg=4,9м2׺С/Вт. Если дом построен из силикатного кирпича в два ряда.
Определяем реальное теплосопротивление стены при толщине в два кирпича δкирпича=0,51 м, k=0,81 Вт/м2׺С, подставляем в формулу.
Rкирпича = δ/k = 0,51/0,81 = 0,62 м2׺С/Вт
Рассчитанное значение отнимаем от константы по региону Якутск. Будет получена величина, которую должен перекрыть пенополистирол.
R = Rreg — Rкирпича = 4.9 – 0.62 = 4.34 м2׺С/Вт Это искомый показатель который нуждается в перекрытии.
δ = Rпенопласт × k = 4,34×0,035 = 0,1519 (м),
Из расчетов ясно, что для дома, построенного в Якутии, из двойного силикатного кирпича необходим слой пенополистироловой теплоизоляции толщиной в 152 мм. Учитывая толщину воздушных прослоек внутри стены (между простенками), принимаем рабочую толщину пенополистирола 150 мм.
Утеплители для стен применяемые внутри помещения
Основные требования, кроме низкой теплопроводности, которые предъявляют к термоизоляционным материалам, используемым внутри помещения:
- небольшая толщина изоляционной конструкции, для экономии полезной площади;
- экологическая чистота – материал не должен выделять никаких вредных веществ.
Таким параметрам отвечает несколько типов утеплителей, каждый из которых имеет свои особенности технологии монтажа.
Фольгированные утеплители
Из всей номенклатуры фольгированных материалов, для утепления стен изнутри больше всего подходит термоизоляция на основании вспененного полиэтилена.
Производители выпускают множество марок: Фольгоизол , Алюфом, Экофол, Армафлекс, Джермафлекс, Пенофол, Изолон, Изофлекс. Термоизоляция помещения происходит по двойному принципу. Инфракрасное излучение отражается алюминиевым слоем обратно в помещение, а вспененный полиэтилен толщиной от 2 до 10 мм не дает проникнуть холоду.
Монтаж производится отражающей стороной внутрь помещения. Стыки полотнищ проклеиваются алюминиевым скотчем. Главная особенность устройства такой изоляции – это наличие зазора в 10-20 мм между фольгой и внутренней стороной отделочных декоративных материалов.
Через некоторое время после монтажа тонкого фольгированного вспененного полиэтилена на стену он может провиснуть и потерять часть эффективности.
Для того чтобы это предотвратить производится монтаж на клей по все площади поверхности (на бетонные или кирпичные основы), более частое крепление теплоизоляции к деревянной стене скобами из строительного степлера или использование армированного материала.
Эковата
Одним из современных материалов, которые можно использовать для утепления стен еще на стадии строительства является эковата. Это экологически чистый материал, который на 80% состоит из волокон целлюлозы с активными добавками:
- Буры – предотвращающей горение;
- Борной кислоты – обеспечивающей защиту от грибков, гнили, грызунов и насекомых.
Монтаж эковаты производится с помощью специальных аппаратов напылителей в межстенное пространство. Более подробно процесс напыления можно увидеть здесь:
Теплоизоляция, применяемая с внешней стороны стены
Материалам данного типа предъявляют дополнительные требования, связанные с устойчивостью к негативным влиянием внешней среды:
- Низкое влагопоглощение;
- Морозостойкость – способность выдержать многократные циклы замораживания оттаивания без разрушения;
- Устойчивость к ультрафиолетовому излучению;
- Прочность.
Пенополистирол
Является наиболее распространенным материалом для утепления фасадов. Однако его монтаж довольно трудоемкое занятие. Кроме того при расчете утепления пенополистиролом необходимо добавить стоимость дополнительных материалов и выполнение работ по промежуточной укрепляющей и финишной декоративной отделке фасада.
- Кирпичная стена;
- Специальный монтажный клей для утеплителя;
- Пенополистирол;
- Специальные пластиковые дюбели «зонтик»;
- Монтажная сетка из стекловолокна;
- Клей ля сетки;
- Грунтовка, повышающая адгезию штукатурки;
- Декоративная штукатурка.
Термокраска
Жидкая термоизоляция для стен – новый и прогрессивный теплоизоляционный материал, пока еще не слишком распространенный, но стремительно набирающий популярность.
Она состоит из керамических и силиконовых пористых микросфер на основе полимерного акрилового клеящего состава. Основным преимуществом этого материала является универсальность его применения, он может наноситься на любую стену: бетон кирпич, дерево.
Нанесение легко производится своими руками, кисточкой или при помощи обычного распылителя.
Источник: http://stroitel5.ru/teploizolyaciya-dlya-sten-raschet-optimalnojj-tolshhiny-teploizolyacii-i-osobennosti-uteplitelejj.html
Как рассчитать толщину утеплителя для стен
Строительство любого здания не может обойтись без очень важного этапа — утепления пола, его потолка и стен. Особо ответственным он является для жилых зданий.
И главную роль здесь играет не оптимальный выбор теплоизоляционного материала, а именно корректный расчет необходимой его толщины.
От правильности определения этого показателя будет зависеть и долговечность строения, и его эксплуатационные характеристики. Как рассчитать толщину утеплителя для стен? В этом нам и предстоит разобраться.
Разбираемся в величинахАбсолютно все материалы имеют такие показатели, как теплопроводность и теплосопротивление. Если первая величина говорит о способности их проводить тепло, то вторая, наоборот, является оборотной стороной «медали».
Тот стройматериал, что замечательно проводит тепло, имеет низкое значение теплосопротивления. Эти показатели определяются в лабораторных условиях, и эти же величины любой производитель указывает на упаковке своего товара.
Без качественно выполненных теплоизоляционных работ обойтись невозможно, ведь если в ваши расчеты вкрадется ошибка, то в вашем доме появятся мостики холода — слабые места, через которые тепло начнет быстро покидать жилище. Помимо утечки драгоценного нагретого воздуха такие мостки приведут к другим бедам — к образованию конденсата, а затем и к появлению плесени. Теперь понятно, что утепление дома — операция, которая жизненно необходима.
Как рассчитывается необходимая толщина?Сначала нужно определиться с материалами, которые вы выбрали для отделочных работ. Здесь важна и схема отделки — как экстерьера, так и интерьера. От нее зависит окончательная толщина стен строения.
Расчет теплосопротивления (Rпр.) проводится по формуле, которая потребует от вас знания материала стены и его толщины:
Rпр. = (1/α (в))+R1+R2+R3+(1/α (н))
Тут R1, R2, R3 означают тепловое сопротивление слоя, а α(в) и α(н) являются коэффициентами теплоотдачи поверхностей стен (внутренней — в, наружной — н).
Затем необходимо заняться расчетом минимального значения теплосопротивления (Rмин.) для той климатической зоны, в которой располагается дом:
R = δ/λ
Δ — толщина слоя материала (измеряется в метрах), а λ — его теплопроводность (Вт/м*К). Последнее значение должно быть проставлено на упаковке, также его можно найти в таблице коэффициентов теплопроводности материалов.
Чем выше значение, тем холоднее материал. Самый высокий коэффициент у мрамора и металла, самый низкий у воздуха, поэтому пористые материалы являются отличными теплоизоляторами: пенопласт толщиной в 40 мм имеет такую же теплопроводность, как метровая кирпичная кладка.
Теперь необходимо сравнить Rмин. с Rпр. и найти разность — ΔR. Когда первое значение равняется второму, или же меньше его, то в утеплении стен необходимости нет. В случае если Rмин. больше, то нужно снова найти разность: ΔR = Rмин.- Rпр.
Подбирается толщина теплоизоляционного материала, исходя из величины ΔR. Необходимо учесть и остальные его характеристики: класс горючести и плотность, коэффициенты водопоглощения и теплопроводности.
Расчет утепления для стен из кирпичаЕсли стены дом построены из пенобетона, плотность которого составляет 0,3 м, а коэффициент теплопроводности равняется 0,29, то разделив первое число на второе, мы получим искомое значение — 1,03.
Для того, чтобы корректно рассчитать нужную толщину утеплителя для стен, нужно узнать минимально возможное значение теплосопротивления в той местности, где расположено ваше жилище. В результате вычитания из него нашего числа (1,03) получится коэффициент теплосопротивления, необходимый искомому материалу — теплоизолятору.
В том случае, когда при возведении стен использовалось много материалов, придется сложить все их показатели теплосопротивления. Для расчета утеплителя надо учитывать сопротивление теплопередаче материала (R). Для этого придется вычислить величину ГОСП (градусосутки периода отопления):
ГСОП = (tВ-tОТ) х zОТ
tB — температура в помещении (нормой считается +20-22°С). tот — средняя температура воздуха, zот — количество дней отопительного периода в году. Все эти показатели можно отыскать в «Строительной климатологии» СНиП 23-01-99.
После определения теплосопротивления всех материалов необходимо найти толщину утеплителя для кровельного материала, потолка, пола и стен. Рассчитывается значение по формуле:
RТР = R1 + R2 + R3 … Rn, где n обозначает число слоев, а R — теплосопротивление материалов — рассчитывается по формуле:
R = δs/λS, где первое значение толщина, второе — теплопроводность.
Расчет утепления для стен из пеноблоковНапример, в роли материала для стен выступают:
- пенобетонный блок D600, толщина которого составляет 30 см;
- теплоизолятор — базальтовая вата, имеющая плотность 80-125 кг/м3;
- отделка из пустотелого кирпича (1000 кг/м3) толщиной 12 см.
Коэффициент теплопроводности данных материалов:
- бетон — 0,26 Вт/м*0С;
- утеплитель — 0,045 Вт/м*0С;
- кирпич — 0,52 Вт/м*0С.
Затем определяем теплосопротивление:
Газобетон — RГ = δSГ/λSГ = 0,3/0,26 = 1,15 м2*0С/Вт. Кирпич — RК = δSК/λSК = 0,12/0,52 = 0,23 м2*0С/В. Так как стена имеет три слоя, ищем искомое: RТР = RГ + RУ + RК, после чего вычисляем теплосопротивление нашего утеплителя — RУ = RТР— RГ — RК.
Вообразим, что наш дом находится в местности, где RТР (22°С) — 3,45 м2*0С/Вт. Рассчитываем: RУ = 3,45 — 1,15 – 0,23 = 2,07 м2*0С/Вт. Нужное сопротивление утеплителя найдено, теперь надо узнать его толщину: δS = RУ х λSУ = 2,07 х 0,045 = 0,09 м или 9 см.
Расчет утепления для мансардыТеплоизоляционный слой материала для мансарды рассчитывается так же, как и для стен. Лучше, если теплопроводность его будет 0,04 Вт/м*0С. Наиболее популярными являются плиты, маты или рулонная теплоизоляция. Расчет делается по алгоритму, приведенному выше.
От его грамотности зависит микроклимат всех помещений в зимний период. Люди сведущие утверждают, что толщина теплоизолятора должна быть вдвое больше, чем та, что представлена в проекте. Если выбор пал на засыпные материалы, то они потребуют периодического разрыхления.
Расчет утепления для стен каркасного строенияВ этом случае теплоизолятором может служить эковата или сыпучие материалы. Здесь расчеты элементарны, так как в конструкции утеплитель наличествует. Если взять в качестве примера столицу нашей родины, то теплосопротивление стен (R) здания должно быть равным 3,20 м2*0С/Вт. Вата имеет λут = 0,045 Вт/м*0С. Здесь используется формула δут = R х λут = 3,20 х 0,045 = 0,14 м.
Расчет утепления для полаДля правильного расчета необходимо обладать некоторыми знаниями, к которым относятся:
- расположение пола по отношению к уровню земли;
- температура грунта на глубине.
В этом поможет следующая таблица.
Расчет происходит по следующему сценарию:
- определяется ГОСП;
- вычисляется теплосопротивление;
- определяется толщина всех слоев и сопротивление каждого из них;
- данные суммируются.
Для нахождения толщины утеплителя нужно из нормативного сопротивления вычесть суммарное значение слоев, исключение — изоляционный. Для нахождения нужного значения теплосопротивление утеплителя умножают на коэффициент теплопроводности.
Если процесс «Как рассчитать толщину утеплителя для стен» не слишком понятен, то лучше пойти другим путем: в сети можно найти множество калькуляторов, которые способны значительно облегчить ваши труды.
О том, как надо это делать, смотрите здесь:
Источник: https://dom-i-remont.info/posts/stroitelstvo-sten/kak-rasschitat-tolshhinu-uteplitelya-dlya-sten/
Расчет толщины утеплителя: формулы и примеры расчета
Утепление стен, пола и потолка здания является неотъемлемой частью строительства, особенно если речь идет о жилом доме.
Но не столько важно подобрать качественный теплоизоляционный материал, сколько рассчитать оптимальную его толщину.
От того, насколько правильно будет определена толщина утеплителя в каждом конкретном случае, будут зависеть эксплуатационные характеристики и долговечность постройки.
Зачем нужна теплоизоляция
Чтобы понимать степень важности расчета толщины утеплителя, необходимо разбираться в принципе работы и предназначении теплоизоляции.
С каждым годом человечество расходует все больше энергетических ресурсов, и цены на них повышаются.
Следовательно, люди начинают задумываться о способах экономии электроэнергии, чтобы сэкономить на отоплении дома зимой и охлаждении – летом. И вот тут в игру вступает теплоизоляция.
Слой утеплителя, прикрепленный к стене, полу или потолку, позволяет сократить расходы на энергопотребление в несколько раз.
Теплоизоляция не дает теплу быстро покидать помещение зимой, и не пропускает жаркие потоки воздуха внутрь в летнее время. Но чтобы организовать подобные условия, следует рассчитать толщину утеплителя вплоть до сантиметров.
Ошибитесь на 2-3 см, и очень скоро возникнет масса проблем, начиная от потери энергии, заканчивая разрушением стены.
Большинство людей сегодня живет в многоэтажных домах из бетона и порой платят бешеные деньги за коммунальные услуги.
Но сетуя на повышение тарифов, мало кто задумывается, что можно раз и навсегда решить проблему лишних затрат, просто утеплив стены своей квартиры.
Конечно, речь идет о наружных стенах, не смежных с другими комнатами или квартирами. Порой, утеплив лишь одну стены, выходящую на улицу, можно сократить теплопотери на 30-40%.
Второстепенным назначением теплоизоляционной прослойки является дополнительная звукоизоляция. Если речь идет о многоэтажном доме в спальном районе города, то утеплитель защитит вас от шума с улицы, звука сигнализации посреди ночи и т.д.
Если речь идет о частном строительстве, например, коттеджа или дачного дома, то некоторые теплоизоляционные материалы позволяют сокращать расходы на строительство, заменяя собой материалы для возведения стен.
Так, используя толстые полистирольные или минераловатные плиты около 10 см толщиной, можно заменять ими стены из кирпича.
Нагрузка на такие стены должна быть минимальной, поэтому данный способ подойдет для одноэтажного строительства, возведения веранд или домиков для гостей.
Требования к теплоизоляционным материалам
Существует множество требований к теплоизоляционным материалам, которые отличаются в зависимости от эксплуатационной нагрузки будущего здания, климатических условий, финансовых возможностей и т.д.
Основной качественной характеристикой утеплителя является способность проводить теплоту. Это, в свою очередь, зависит от структуры материала, его плотности, пористости, уровня влажности и многих других факторов.
Различают несколько классов материалов по теплопроводности:
- Низкий – обозначается буквой А на упаковке утеплителя (0,06 Вт/кв. м).
- Средний – обозначается буквой Б (от 0,06 до 0,115 Вт/кв. м).
- Высокий – буква В (от 0,115 до 0,175 Вт/кв. м).
Чтобы обеспечить качественную теплоизоляцию фасада, будь то многоэтажный дом или частный коттедж, утеплитель должен быть достаточно прочным, чтобы суметь выдержать вес финишной отделки.
Поэтому надо выбирать материал, учитывая то, чем вы будете покрывать стену.
Плитка, например, весит довольно много и требует прочного основания, а вот обои или пробковое покрытие будут хорошо держаться почти во всех случаях.
Кроме того, утеплитель должен быть максимально паропроницаемым, но по возможности не впитывать влагу. Материал не должен гореть или поддерживать горение, выделять вредные и токсические вещества, не деформироваться при перепаде температуры.
Способы утепления
Сокращение теплопотерь зависит не только от правильно выбранного материала, но и от того, где он располагается. Так, различают несколько способов утепления стен, каждый из которых имеет свои достоинства и недостатки.
Способы утепления стен:
- Монолитная стена – специальная кирпичная или деревянная перегородка толщиной от 40 см и больше.
- Многослойный пирог – теплоизоляционный слой расположен внутри стены между наружными и внутренними панелями. Организовать такую теплоизоляцию можно только на этапе возведения стен, иначе придется ломать, а затем восстанавливать внутреннюю панель.
- Наружное утепление – слой утеплителя прикрепляется к наружным стенам и скрывается финишной отделкой (фасадной штукатуркой, плиткой, сайдингом и т.д.). Данный способ утепления требует дополнительной пароизоляции и гидроизоляции, но является наиболее эффективным среди всех остальных.
Почему же настолько важно выбрать правильную толщину теплоизоляционного слоя? Неужели так страшно переборщить, ведь по идее, чем толще утеплитель, тем лучше? На самом деле ситуация обстоит следующим образом – если утеплитель слишком тонкий, через стену проникает холод и сырость, если слишком толстый – деньги «улетают на ветер».
Если слой теплоизоляционного материала меньше положенного хотя бы на пару сантиметров, стены непременно будут промерзать и отсыревать.
Так называемая точка росы, которая обычно находится снаружи, сместится внутрь стены, потому что утеплитель не сможет ее удержать.
В результате на поверхности стены будет появляться конденсат, она будет медленно отсыревать, разрушаться, появится плесень и грибок.
Слишком толстый утеплитель приведет к неоправданным затратам. Каждый добросовестный хозяин хочет не только построить надежный дом, но и сэкономить по максимуму, а толстые утеплители стоят немалых денег… Вот почему важно уметь рассчитывать его толщину.
Также слишком большая толщина теплоизоляции нарушает естественную вентиляцию внутри стен, в результате чего внутри помещения становится слишком душно и дискомфортно.
Плюс ко всему, если утепление производится на внутренней части стены, толстый материал заберет много свободного пространства, уменьшив квадратуру комнаты.
Еще один важный момент, прежде чем приступить к расчетам – определение толщины утеплителя напрямую зависит от материала, из которого сделана стена. Исходя из этих данных, можно судить о теплопроводности и теплотехнических свойствах поверхности. Эти данные позволяют определить теплопотери на каждом квадратном метре площади. Полный список характеристик материалов указан в СНиП №2-3-79.
Плотность утеплителя может быть совершенно разной, но зачастую используют материалы плотностью от 0,6 до 1000 кг/кубометр.
Большинство современных многоэтажных и частных домов построены из пенобетонных блоков. Для этого материала определены следующие требования к теплоизоляции:
- ГСОП (показывает в градусах-сутках в период отопления) – 6 000.
- Сопротивление теплопередаче для стен – больше 3,5 С/кв.м/Вт.
- Сопротивление теплопередаче для потолка – больше 6 С/кв. м/Вт.
Если вы планируете положить несколько слоев утеплителя, показатели сопротивления теплопередачи рассчитываются в виде суммы каждого из слоев. При этом необходимо учитывать теплопроводность и характеристики материала, из которого изготовлены стены.
Как рассчитать
Чтобы выполнить теплотехнический расчет утеплителя, следует учитывать одновременно большое количество факторов, что довольно сложно сделать неопытному строителю. Самым важным показателем является характеристика стены и климатические условия местности, где идет строительство.
Когда вы определились с технологией выполнения работ и выбрали подходящий материал, можно приступать к расчетам.
Полезный совет: для утепления одного дома или этажа рекомендуется выбирать одинаковый материал от одного производителя и желательно из одной партии.
В обязательном порядке также следует утеплить трубопроводы со стороны улицы, которые ведут внутрь дома. Это одни из самых потенциально опасных мест возникновения «мостиков холода», через которые уходит до 30% тепла.
Чтобы довести значения сопротивляемости теплопроводности стен и полотка до нужных показателей (3,5 и 6 соответственно), необходимо воспользоваться следующими формулами:
- для стен: R=3,5-R стены;
- для потолка: R=6-R потолка.
Когда вы нашли разницу, можно выяснить, какой толщины должен быть утеплитель по формуле: p = R*k, где р является искомой толщиной утеплителя, k – теплопроводностью используемого теплоизоляционного материала.
Если вы используете пенопласт или минеральную вату, профессионалы рекомендуют делать оптимальную толщину в 10 см.
Калькуляторы
Если вы не хотите заучивать формулы и самостоятельно производить вычисления, расчет толщины утеплителя для стен помогут сделать он-лайн калькуляторы. Это специально созданные программы, которые учитывают все факторы и характеристики материалов, позволяя точно узнать, сколько теплоизоляции надо покупать.
Одной из самых популярных программ является калькулятор ROCKWOOL, разработанный опытными специалистами для расчета толщины и энергоэффективности утеплителя. Интуитивно понятный интерфейс не вызовет вопросов даже у неопытных пользователей. Зайдите на сайт калькулятора, нажмите кнопку «Начать расчет» и следуйте подробным пошаговым подсказкам.
Расчет утеплителя стен и потолка может выполнить даже новичок при наличии необходимых показателей материалов. Пренебрежение необходимостью вычисления точной толщины слоя теплоизоляции влечет за собой массу неприятностей, некоторые из которых можно быстро исправить, а с другими придется жить до следующего капитального ремонта.
Источник: http://dachnaya-zhizn.ru/raschet-tolshhiny-uteplitelya-formuly-i-primery-rascheta
Расчет толщины утеплителя при утеплении фасада панельного дома
Ни для кого не секрет, что жители панельных домов намного чаще прибегают к утеплению фасада, чем жильцы кирпичных домов. А все из-за того, что бетон намного хуже сохраняет тепло, чем кирпич, да и толщина стен в панельных домах существенно меньше.
Утепление фасадов
Стоит или не стоит утеплять квартиру – этот вопрос даже не возникает в нынешнее время. Особенно с учетом нынешних цен на энергоносители и, соответственно, размером счетов за отопление. Вопрос только в том, как сделать утепление фасадов максимально эффективным при минимуме затрат.
Очень важным моментом в утеплении дома является подбор материала для утеплителя и расчет его толщины. Отделка фасадов пенопластом – самый оптимальный, а потому и самый популярный вариант для панельного дома.
Как проводить подбор утеплителя для мокрого фасада
Итак, выбор метода утепления сделан – мокрый фасад, в котором используется пенопласт. Далее нужно рассчитать плотность и толщину утеплителя из выбранного материала.
При самостоятельном выборе плотности стоит округлять значение до ближайшего большего. В этом случае вы точно будете защищены от холода в квартире, ведь производитель тоже может сэкономить на плотности фасадных панелей и отступить от нормы. Поэтому стоит выбирать материал того производителя, с которым вы уже знакомы или который имеет хорошие отзывы и рекомендации.
Можно воспользоваться уже существующими решениями. Минуя расчеты, для панельного дома со стандартной толщиной стен в 35см подойдут плиты толщиной 10 см и плотностью 20 кг/м3. В ряду стандартных характеристик выпускаемых плит такого значения плотности нет, есть 15 и 25. С учетом описанного выше, стоит отдать предпочтение плитам плотностью в 25 кг/м3.
Более плотный материал и толстый стоит дороже. Однако при недостаточной плотности плиты будут лопаться при монтаже, они хрупкие и хуже сохраняют тепло. Недостаточная плотность и толщина утеплителя для мокрого фасада существенно уменьшат эффективность данного мероприятия, а то и вовсе сведут её на нет.
Можно доверить расчет толщины утеплителя компании, у которой вы собираетесь заказывать выполнение работ. Однако в этом случае есть риск того, что подрядчик будет настаивать на меньшей толщине утеплителя, так как более тонкие плиты легче монтировать, или использует материал того производителя, с которым у него есть договоренность.
Вместе с утеплением фасада также проводится и ремонт швов в панельных домах. Швы и стыки – самое слабое место в стенах, а потому их обработка должна быть особо тщательной.
Процедура проведения утепления методом мокрого фасада следующая:
* очистка фасада от старого покрытия, удаление грязи, старой отделки и заполнителя в швах;
* грунтовка поверхностей;
* заделка швов;
* монтаж плит пенопласта;
* отделка финишной штукатуркой;
* гидроизоляция (покраска).
Итак, материал подобран. Теперь нужно определиться с исполнителем. Если вы живете на первом этаже, то можно рискнуть и провести монтаж плит своими силами. На высоте второго этажа это уже будет труднее, так как понадобятся лестницы или козлы.
Строительные леса могут подойти максимум до высоты третьего этажа, выше их просто нецелесообразно возводить.
Остается обратиться к специалистам по промышленному альпинизму, которые выполняют строительные и ремонтные работы, а также монтаж на высоте.
Компания «Альпстрой-Плюс» обладает богатым опытом выполнения высотных работ по утеплению стен, как в частных домах, так и в кирпичных или панельных высотках. Мы предоставляем услуги по подбору материала, расчету его толщины и плотности, а также монтажу с ремонтом и наружной отделкой фасадов.
В своей работе мы используем надежное снаряжение и качественные материалы, а наши специалисты имеют отличные навыки промышленного альпинизма в сочетании с мастерством ремонтников. Стоимость материала уже включена в стоимость работ. Работа с материалом заказчика обсуждается отдельно. Выбирая нас, вы получаете отличное качество по доступной цене!
Источник: https://alpstroi.com.ua/raschet-tolshhinyi-uteplitelya-pri-uteplenii-fasada-panelnogo-doma/
Толщина утеплителя в таблице. Правила расчета
Правильный расчет теплоизоляции повысит комфортность дома и уменьшит затраты на обогрев. При строительстве не обойтись без утеплителя, толщина которого определяется климатическими условиями региона и применяемыми материалами. Для утепления используют пенопласт, пеноплекс, минеральную вату или эковату, а также штукатурку и другие отделочные материалы.
Как рассчитать утепление самостоятельно
Чтобы рассчитать, какая должна быть у утеплителя толщина, необходимо знать величину минимального термосопротивления. Она зависит от особенностей климата.
При ее расчете учитывается продолжительность отопительного периода и разность внутренней и наружной (средней за это же время) температур.
Так, для Москвы сопротивление передаче тепла для наружных стен жилого здания должно быть не меньше 3,28, в Сочи достаточно 1,79, а в Якутске требуется 5,28.
Термосопротивление стены определяется как сумма сопротивления всех слоев конструкции, несущих и утепляющих. Поэтому толщина теплоизоляции зависит от материала, из которого выполнена стена.
Для кирпичных и бетонных стен требуется больше утеплителя, для деревянных и пеноблочных меньше. Обратите внимание, какой толщины бывает выбранный для несущих конструкций материал, и какая у него теплопроводность.
Чем тоньше несущие конструкции, тем больше должна быть толщина утеплителя.
Если требуется утеплитель большой толщины, лучше утеплять дом снаружи. Это обеспечит экономию внутреннего пространства. Кроме того, наружное утепление позволяет избежать накопления влаги внутри помещения.
Теплопроводность
Способность материала пропускать тепло определяется его теплопроводностью. Дерево, кирпич, бетон, пеноблоки по-разному проводят тепло. Повышенная влажность воздуха увеличивает теплопроводность.
Обратная к теплопроводности величина называется термосопротивлением. Для его расчета используется величина теплопроводности в сухом состоянии, которая указывается в паспорте используемого материала.
Можно также найти ее в таблицах.
Приходится, однако, учитывать, что в углах, местах соединения несущих конструкций и других особенных элементах строения теплопроводность выше, чем на ровной поверхности стен.
Могут возникнуть «мостики холода», через которые из дома будет уходить тепло. Стены в этих местах будут потеть.
Для предотвращения этого величину термосопротивления в таких местах увеличивают примерно на четверть по сравнению с минимально допустимой.
Пример расчет
Нетрудно произвести с помощью простейшего калькулятора расчет толщины термоизоляции. Для этого вначале рассчитывают сопротивление передаче тепла для несущей конструкции. Толщина конструкции делится на теплопроводность используемого материала. Например, у пенобетона плотностью 300 коэффициент теплопроводности 0,29. При толщине блоков 0,3 метра величина термосопротивления:
0,3/0,29=1,03.
Рассчитанное значение вычитается из минимально допустимого. Для условий Москвы утепляющие слои должны иметь сопротивление не меньше чем:
3,28-1,03=2,25
Затем, умножая коэффициент теплопроводности утеплителя на требуемое термосопротивление, получаем необходимую толщину слоя. Например, у минеральной ваты с коэффициентом теплопроводности 0,045 толщина должна быть не меньше чем:
0,045*2,25=0,1 м
Кроме термосопротивления учитывают расположение точки росы. Точкой росы называется место в стене, в котором температура может понизиться настолько, что выпадет конденсат — роса.
Если это место оказывается на внутренней поверхности стены, она запотевает и может начаться гнилостный процесс. Чем холоднее на улице, тем ближе к помещению смещается точка росы.
Чем теплее и влажнее помещение, тем выше температура в точке росы.
Толщина утеплителя в каркасном доме
В качестве утеплителя для каркасного дома чаще всего выбирают минеральную вату или эковату.
Необходимая толщина определяется по тем же формулам, что и при традиционном строительстве.
Дополнительные слои многослойной стены дают примерно 10% от его величины. Толщина стены каркасного дома меньше, чем при традиционной технологии, и точка росы может оказаться ближе к внутренней поверхности.
Поэтому излишне экономить на толщине утеплителя не стоит.
Как рассчитать толщину утепления крыши и чердака
Формулы расчета сопротивления для крыш используют те же, но минимальное термосопротивление в этом случае немного выше. Неотапливаемые чердаки укрывают насыпным утеплителем. Ограничений по толщине здесь нет, поэтому рекомендуется увеличивать ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления крыши используют материалы с низкой теплопроводностью.
Как рассчитать толщину утепления пола
Хотя наибольшие потери тепла происходят через стены и крышу, не менее важно правильно рассчитать утепление пола.
Если цоколь и фундамент не утеплены, считается, что температура в подполе равна наружной, и толщина утеплителя рассчитывается также, как для наружных стен.
Если же некоторое утепление цоколя сделано, его сопротивление вычитают из величины минимально необходимого термосопротивления для региона строительства.
Расчет толщины пенопласта
Популярность пенопласта определяется дешевизной, низкой теплопроводностью, малым весом и влагостойкостью. Пенопласт почти не пропускает пара, поэтому его нельзя использовать для внутреннего утепления. Он располагается снаружи или в середине стены.
Теплопроводность пенопласта, как и других материалов, зависит от плотности. Например, при плотности 20 кг/м3 коэффициент теплопроводности около 0,035. Поэтому толщина пенопласта 0,05 м обеспечит термосопротивление на уровне 1,5.
Источник: https://uteplix.com/materialy/tolschina-uteplitelya.html
Расчет теплопроводности стены
Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.
Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.
Чтобы этого избежать, нужно высчитать коэффициент сопротивления теплопередачи материала для постройки стен и утеплителя.
Для чего нужен расчет
Толщина стен в южных и северных широтах должна отличаться
Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.
Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:
- зимой стены будут промерзать;
- на обогрев помещения будут затрачиваться значительные средства;
- сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
- летом в доме будет так же жарко, как и под палящим солнцем.
От чего зависит теплопроводность
Проводимость тепла во многом зависит от материала стен
Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.
Проводимость тепловой энергии зависит от:
- физических свойств и состава вещества;
- химического состава;
- условий эксплуатации.
Выполняем расчеты
Сопротивление передаче тепла должно быть больше минимума, указанного в нормативах
Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.
Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».
Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.
Формула расчета:
R=δ/ λ (м2·°С/Вт), где:
δ это толщина материала, используемого для строительства стены;
λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).
Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.
Допустимые значения в зависимости от региона
Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:
1 | 2 м2•°С/Вт | Крым |
2 | 2,1 м2•°С/Вт | Сочи |
3 | 2,75 м2•°С/Вт | Ростов—на—Дону |
4 | 3,14 м2•°С/Вт | Москва |
5 | 3,18 м2•°С/Вт | Санкт—Петербург |
У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.
Показатели теплопередачи для различных материалов
Величины проводимости тепла материалами и их плотность указаны в таблице:
Бетонные | 1,28—1,51 | 2300—2400 |
Древесина дуба | 0,23—0,1 | 700 |
Хвойная древесина | 0,10—0,18 | 500 |
Железобетонные плиты | 1,69 | 2500 |
Кирпич с пустотами керамический | 0,41—0,35 | 1200—1600 |
Расчет многослойной конструкции
При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов
Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.
В этом случае стоит работать по формуле:
Rобщ= R1+ R2+…+ Rn+ Ra, где:
R1-Rn- термическое сопротивление слоев разных материалов;
Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:
Последовательность действий
Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.
Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.
Как выполнить подсчеты на онлайн калькуляторе
Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.
В сервис занесены сведения по каждой отдельной климатической зоне:
- t воздуха;
- средняя температура в отопительный сезон;
- длительность отопительного сезона;
- влажность воздуха.
Температура и влажность внутри помещения — одинаковы для каждого региона
Сведения, одинаковые для всех регионов:
- температура и влажность воздуха внутри помещения;
- коэффициенты теплоотдачи внутренних, наружных поверхностей;
- перепад температур.
Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:
Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.
Источник: http://MoyaStena.ru/raznoe/raschet-tolshchiny-steny-po-teploprovodnosti
Калькулятор онлайн утепления стен. Расчет материалов для утепления и отделки фасада дома планкеном
Калькулятор расчета утепления стен деревянного дома и пояснения
Дома из древесины всегда будут пользоваться популярностью. Дерево является экологически чистым, красивым и приятным материалом, который по многим параметрам превосходит камень или кирпич. Но часто термоизоляционных качеств древесины не хватает, чтобы обеспечить в доме комфортную для проживания атмосферу и благоприятные температурные условия. В этом случае понадобится дополнительное утепление стен. Используемые материалы должны отвечать условиям пожарной безопасности, а также требованиям механической прочности и экологической чистоте.
Даже для красивого деревянного дома требуется качественное утепление
При утеплении стен из древесины нужно использовать оптимальный слой термоизоляции, чтобы он не был сильно тонким или объемным. Характеристики для утепления здания во многом зависят от внутренней и внешней отделки. Важно провести специальные вычисления, которые помогут определить теплотехнические параметры. В таком вопросе большую помощь окажет калькулятор для вычисления утепления для стен деревянной постройки.
Калькулятор для определения толщины утепления стен для деревянного дома
Нюансы при расчетах показателей утепления
При проведении необходимых расчетов учитываются такие особенности:
- расположение слоя термоизоляции. Чаще всего термоизоляция выполняется с внешней стороны, так как внутреннее утепление в домах из древесины не лучшее решение;
- определяется тип утеплителя. Особенно часто используется минеральная вата, которая размещается в каркасные элементы обрешетки. Этот материал обеспечивает хорошую звукоизоляцию и термоизоляцию. В программе предлагаются такие материалы, как пенополистирол. Но для конструкций из древесины его лучше не применять. Также в калькуляторе представлены напыляемые материалы для утепления. Например, эковата или пеноизол. Также эковата может использоваться в сухом виде. В этом случае материал тщательно разминается и утрамбовывается в стены. При использовании стекловаты нужно следить, чтобы материал укрывался специальными защитными пленками;
- общая сумма термического сопротивления всех прослоек стены не должна быть ниже, чем нормированный показатель по СНиП. Такой параметр можно найти на карте – схеме. При этом берется значение для стен, которое вносится в поле программы;
Карта-схема для определения нормированного значения сопротивления теплопередаче
- важно также внести толщину главной стены. При этом толщина стены из бруса может значительно превышать стену в бревенчатом срубе;
- если утеплитель размещается снаружи, то его прикрывают специальной отделкой. В этом случае используются конструкции вентилируемых фасадов, в которых есть специальный зазор для вентиляции утеплителя, который прикрыт паропроницаемой диффузной мембраной. Все что располагается за зазором, не используется в расчете. Такие материала внешней отделки как вагонка, блок-хаус или доска учитываются, если материалы плотно прилегают к стене;
- стены из древесины не отделываются, чтобы не портить натуральный вид древесины. Если же такая отделка используется, то ее обязательно учитывают при вычислениях. В программе также предлагается такой выбор.
Утепление наружных стен
Итоговое значение отображается в миллиметрах. Его следует соотнести со стандартными толщинами материалов для утепления.
Существует разные варианты утепления деревянной постройки. Со всеми технологическими подходами стоит ознакомиться, прежде чем приступать к работам по утеплению стен.
Понравилась статья?Сохраните, чтобы не потерять!
Загрузка…homemyhome.ru
Расчет материалов для утепления и отделки фасада дома планкеном
Зачем и как надо утеплять дом?
Наружные стены, окна, покрытие, т.е. ограждающие конструкции здания, защищают внутренние помещения от холода, ветра, дождя, снега. Специалисты называют их ограждающими конструкциями.
Благодаря способности ограждений препятствовать прохождению через них тепла в доме в холодное время года сохраняются условия теплового комфорта. Способность ограждений оказывать сопротивление потоку тепла, проходящему из помещения наружу, характеризуется сопротивлением теплопередачи R0:
R0=1/αB+R+1/αH,
где
αB — коэффициент теплоотдачи у внутренней поверхности ограждения, равный 8,7 Вт/м2°С;
αH,— коэффициент теплоотдачи у наружной поверхности ограждения, равный 23 Вт/м2°С;
R — термическое сопротивление конструкции, м2°С/Вт.
Чем выше сопротивление теплопередаче R0 конструкции, тем лучшими теплозащитными свойствами она обладает и тем меньше тепла через нее теряется.
Термическое сопротивление R конструкции зависит от толщины материала d и его коэффициента теплопроводности l.
Если конструкция выполнена из одного материала, т.е. является однослойной, то ее термическое сопротивление вычисляется по формуле:
R = d/l
Если конструкция многослойная, то ее термическое сопротивление будет складываться из термических сопротивлений отдельных слоев Ri:
R= ∑R = R1 + R2 + … + Rn
Коэффициент теплопроводности материала характеризует его теплозащитные свойства и показывает, какое количество тепла проходит через 1м2 материала толщиной 1м при разности температур на его поверхностях в 1°С.
Конструкции из материалов с низким значением коэффициента теплопроводности l обладают высоким сопротивлением теплопередаче R0, а значит, и высокими теплозащитными качествами.
Существуют нормы по теплопередаче ограждающих конструкций. Значения требуемого сопротивления стеновых конструкций для различных регионов России сведены представлены в таблице 1. Для примера желтым цветом выделен Северо-западный регион (Санкт-Петербург).
Таблица 1. Нормируемое сопротивление теплопередаче наружных стен из условия энергосбережения для регионов РоссииАрхангельск | 3,56 | 3,05 | 2,23 |
Астрахань | 2,64 | 2,26 | 1,71 |
Барнаул | 3,54 | 3,04 | 2,22 |
Владивосток | 3,04 | 2,61 | 1,94 |
Волгоград | 2,78 | 2,39 | 1,79 |
Воронеж | 2,98 | 2,56 | 1,91 |
Екатеринбург | 3,49 | 2,99 | 2,22 |
Ижевск | 3,39 | 2,9 | 2,14 |
Иркутск | 3,79 | 3,25 | 2,37 |
Казань | 3,3 | 2,83 | 2,08 |
Калининград | 2,68 | 2,29 | 1,73 |
Краснодар | 2,34 | 2 | 1,54 |
Красноярск | 3,62 | 3,1 | 2,27 |
Магадан | 4,13 | 3,54 | 2,56 |
Москва | 3,13 | 2,68 | 1,99 |
Мурманск | 3,63 | 3,11 | 2,28 |
Нижний Новгород | 3,21 | 2,75 | 2,04 |
Новосибирск | 3,71 | 3,18 | 2,32 |
Оренбург | 3,26 | 2,79 | 2,06 |
Омск | 3,6 | 3,08 | 2,26 |
Пенза | 3,18 | 2,72 | 2,01 |
Пермь | 3,48 | 2,98 | 2,19 |
Петрозаводск | 3,34 | 2,86 | 2,11 |
Петропавловск-Камчатский | 3,07 | 2,63 | 1,95 |
Ростов-на-Дону | 2,63 | 2,26 | 1,7 |
Самара | 3,19 | 2,73 | 2,02 |
Санкт-Петербург | 3,08 | 2,64 | 1,96 |
Саратов | 3,07 | 2,63 | 1,95 |
Сургут | 4,09 | 3,51 | 2,54 |
Тверь | 3,15 | 2,7 | 2 |
Томск | 3,75 | 3,21 | 2,34 |
Тула | 3,07 | 2,63 | 1,95 |
Тюмень | 3,54 | 3,04 | 2,22 |
Уфа | 3,33 | 2,86 | 2,1 |
Хабаровск | 3,56 | 3,05 | 2,24 |
Ханты-Мансийск | 3,92 | 3,36 | 2,44 |
Чебоксары | 3,29 | 2,82 | 2,08 |
Челябинск | 3,42 | 2,93 | 2,16 |
Чита | 4,06 | 3,48 | 2,52 |
Южно-Сахалинск | 3,36 | 2,88 | 2,12 |
Якутск | 5,04 | 4,32 | 3,08 |
Ярославль | 3,26 | 2,79 | 2,06 |
Варианты исполнения несущих стен представлены в таблице 2. Желтым цветом обозначены варианты, удовлетворяющие требованиям по теплопередаче стеновых конструкций для Северо-Западного региона.
Таблица 2. Варианты исполнения несущих конструкций здания и их утепления для реализации требований по энергосбережениюжелезобетон | ||||||
2500 | 200 | 0,10 | 1,45 | 2,64 | 3,83 | 5,02 |
0,09 | 1,37 | 2,48 | 3,59 | 4,7 | ||
250 | 0,13 | 1,48 | 2,67 | 3,86 | 5,05 | |
0,12 | 1,39 | 2,5 | 3,61 | 4,72 | ||
300 | 0,16 | 1,58 | 2,7 | 3,89 | 5,08 | |
0,15 | 1,42 | 2,53 | 3,64 | 4,75 | ||
кирпич обыкновенный | ||||||
1800 | 250 | 0,36 | 1,71 | 2,9 | 4,09 | 5,28 |
0,31 | 1,58 | 2,69 | 3,8 | 4,91 | ||
380 | 0,54 | 1,89 | 3,08 | 4,27 | 5,46 | |
0,47 | 1,74 | 2,85 | 3,96 | 5,07 | ||
510 | 0,73 | 2,08 | 3,27 | 4,46 | 5,65 | |
0,63 | 1,9 | 3,01 | 4,12 | 5,23 | ||
кирпич силикатный | ||||||
1800 | 250 | 0,33 | 1,68 | 2,87 | 4,06 | 5,25 |
0,29 | 1,56 | 2,67 | 3,78 | 4,89 | ||
380 | 0,50 | 1,85 | 3,04 | 4,23 | 5,42 | |
0,44 | 1,71 | 2,82 | 3,93 | 5,04 | ||
510 | 0,67 | 2,02 | 3,21 | 4,4 | 5,59 | |
0,59 | 1,86 | 2,97 | 4,08 | 5,19 | ||
кирпич керамический пустотелый | ||||||
1400 | 250 | 0,48 | 1,83 | 3,02 | 4,21 | 5,4 |
0,43 | 1,7 | 2,81 | 3,92 | 5,03 | ||
380 | 0,73 | 2,08 | 3,27 | 4,46 | 5,65 | |
0,66 | 1,92 | 3,04 | 4,15 | 5,25 | ||
510 | 0,98 | 2,33 | 3,52 | 4,71 | 5,9 | |
0,88 | 2,15 | 3,26 | 4,37 | 5,48 | ||
газобетон и пенобетон | ||||||
600 | 200 | 0,91 | 2,26 | 3,45 | 4,64 | 5,83 |
0,77 | 2,04 | 3,15 | 4,26 | 5,37 | ||
300 | 1,36 | 2,71 | 3,9 | 5,09 | 6,28 | |
1,15 | 2,42 | 3,53 | 4,65 | 5,76 | ||
600 | 2,73 | 4,08 | 5,27 | 6,46 | 7,65 | |
2,31 | 3,58 | 4,69 | 5,8 | 6,91 | ||
каркасный дом | ||||||
0 | 1,5 | 2,69 | 3,88 | 5,07 | ||
0 | 1,42 | 2,53 | 3,64 | 4,75 |
Анализ таблицы 2 показывает, что:
- Для обеспечения комфортного сосуществования дом необходимо строить с учетом современных требований по теплофизике.
- Толщина утеплителя является наиболее важным фактором в обеспечении требований к теплофизике стен.
- Наиболее качественным решением строительства энергоэффективного дома является каркасный дом.
www.gwozdeck.ru
Расчет утеплителя | Рассчитай
Зачем нужен детальный расчет утеплителя для стен?
Важность правильного и точного расчета сложно переоценить. Если утепляемая стена имеет небольшие размеры, четко обозначенное количество утеплителя, необходимого для ее утепления, поможет рационально использовать материалы, не затрачивая при этом лишних средств. В случае, если площадь стены довольно велика, то при закупке утеплителя можно сэкономить значительную сумму, если покупать теплоизолятор в большом количестве.
Разновидности утеплителя
Перед тем, как производить закупку, стоит определиться с выбором утеплителя. На сегодняшний день существует большой ассортимент различных видов и типов материала для утепления. Они различаются по:
- толщине;
- плотности;
- структуре;
- способу нанесения;
- агрегатному состоянию.
Поэтому, чтобы выбранный утеплитель был эффективен, стоит произвести расчет толщины утеплителя для стен. Это объясняется тем, что можно смонтировать как один слой утеплителя, так и несколько. Подсчеты позволят получить большее представление о плане работы, а также о конечной толщине всей стены. Расчет толщины утеплителя важен также и для чертежей и проектов, на основании которых и будут вестись работы. Кроме того, оптимально подобранная толщина утеплителя создаст больше комфорта ─ как в летнее время, так и в зимнее.
Как пользоваться калькулятором для расчета утеплителя?
Калькулятор расчета утеплителя работает просто и точно. На этом сайте представлен наиболее эффективный калькулятор, с помощью которого потенциальный покупатель сможет подсчитать нужное ему количество утеплителя. Для начала необходимо внести данные по площади стены, которую нужно утеплять. Дальнейшие характеристики касаются непосредственно утеплителя ─ ширина, длина, толщина, метраж в одной упаковке, а также ее стоимость. Некоторую информацию, касающеюся утеплителя можно найти на официальных сайтах изготовителей, либо у поставщиков. Все это облегчит и ускорит процесс вычисления нужного количества утеплителя для стен.
rasschitai.ru
Расчет теплоизоляции стен из пенобетона и варианты их строительства. Что такое цемент? (первая статья о теории цементов)
Теплоизоляция (сопротивление теплопередаче) стен из пенобетона и варианты их строительства.
Гражданское и промышленное строительство из пенобетона стало востребовано в России после вступления в силу СНИП II 3 79. В нем были определены новые нормы по теплоизоляции стен, по которым, например, минимальная толщина кирпичной стены должна быть около 2 метров. Естественно, что строить дома с такими стенами экономически невыгодно и строители стали искать материал на замену кирпичу. Этот материал должен был обеспечивать хорошую теплоизоляцию, быть экологически чистым и долговечным. Всем этим требованиям отвечает пенобетон, и по этой причине спрос на этот материал в настоящее время непрерывно растет.
Итак, в данной статье мы рассчитаем необходимую толщину наружной стены, при её строительстве одним из 2-х наиболее популярных вариантов: кирпич-пенобетон или оштукатуренный пенобетон. Пенобетон в стене может быть различной плотности, мы рассчитаем варианты стены для плотностей 600, 800 и 1000кг\куб.м. Также, на основе примера расчета необходимой толщины стены в данной статье, Вы сможете, в будущем, рассчитывать толщину любой стены, из любых, материалов самостоятельно.
Что нужно знать для расчета:
1. Теплотехнические характеристики всех материалов, из которых будет состоять стена
У каждого строительного материала есть теплотехнические характеристики. Это теплопроводность или сопротивление теплопередаче (величина обратная теплопроводности). Эти коэффициенты, необходимые для расчета теплопотерь, показывают какая мощность теряется каждым квадратным метром наружной поверхности конструкции при ее толщине в 1м и разницей температур между наружной и внутренней поверхностью в 1 градус (kt=ватт/(m*t)). Данные для многих материалов приведены в СНИП 2-3-79.
2. ГСОП (Градусо-сутки отопительного периода, град.С в сут.)
Данный показатель можно рассчитать по формуле из СНИП 2-3-79, а можно просто взять из справочника. Например, для Москвы и Санкт-Петербурга он менее 6000.
3. Сопротивление стены теплопередаче
Оно зависит от ГСОП и берется из СНИП. В нашем случае, при ГСОП 6000, сопротивление теплопередаче у стены должно быть не менее 3,5 (град.С*кв.м./Вт).
Итак, наша стена должна иметь суммарное сопротивление теплопередаче не менее 3,5 (град.С*кв.м./Вт), т.к. каждый слой имеет свое сопротивление теплопередаче, то сопротивление всей стены, согласно СНИП 2-3-79, измеряется как сумма сопротивлений слоев.
Также нам понадобится коэффициент теплопроводности Вт/(м*град.С) всех материалов используемых для стены:
- кирпич лицевой М-150 – 0,56
- пенобетон плотность 600 – 0,14
- пенобетон плотность 800 – 0,21
- пенобетон плотность 1000 – 0,29
- штукатурка – 0,58
Ниже следует расчет пенобетонного слоя для 2-х вариантов стен:
1-й вариант стены: облицовочный кирпич (250х120х65) + пенобетон (х мм)+ штукатурка (20мм)
Рассчитаем какая толщина пенобетона нужна.
Толщина кирпича в стене, при обычной укладке, 120мм. Разделим толщину в метрах на теплопроводность 012/0,56 и получим сопротивление теплопередаче кирпичного слоя 0,21. Толщина штукатурки 20мм, следовательно её сопротивление теплопередаче равно 0,02/0,58=0,03.
Рассчитаем толщину пенобетонного слоя:
Плотность пенобетона |
Формула |
Результат — требуемая толщина слоя |
600 |
х=(3,5-0,21-0,03)*0,14 |
450мм |
800 |
х=(3,5-0,21-0,03)*0,21 |
680мм |
1000 |
х=(3,5-0,21-0,03)*0,29 |
940мм |
2-й вариант стены: штукатурка (20мм)+ пенобетон (х мм)+ штукатурка(20мм)
Толщина штукатурки (суммарная) 40мм, следовательно её сопротивление теплопередаче 0,06.
Соответственно толщина пенобетонного слоя должна быть:
Плотность пенобетона |
Формула |
Результат — требуемая толщина слоя |
600 |
х=(3,5-0,06)*0,14 |
480мм |
800 |
х=(3,5-0,06)*0,21 |
720мм |
1000 |
х=(3,5-0,06)*0,29 |
1000мм |
Мы рассчитали необходимую толщину стены для соответствия теплопроводности по СНИП 2-3-79, учитывая различные варианты укладки стен. Если вам что-то непонятно или у вас возникли вопросы — пишите на форум.
Примечание:
В статье коэффициент для плотности 600 — 0.14, это коэффициент в сухом состоянии.
Коэффициент расчетный для плотности 600 — 0.22, для плотности 800 — 0.33 Тогда толщина стены равна:
плотность 600 (3.5-0.21-0.03)х0.22= 0.717 м
плотность 800 (3.5-0.21-0.03)х0.33= 1.076 м
Дополнительная информация:
1. Описание технологии производства пенобетона
2. Описание установки пенобетона Фомм-Проф
3. Статья Обзор и сравнение материалов для межкомнатных перегородок
4. База данных производители пенобетона в России и СНГ
5. Статья Строительство дома из пенобетона (репортаж о строительстве дома с фотографиями).
выбор материала, порядок расчетов для различных поверхностей
Комфортное проживание в доме предусматривает создание условий для поддержания оптимальной температуры воздуха особенно зимой. В строительстве дома очень важно грамотно подобрать утеплитель и рассчитать его толщину. Любой строительный материал будь то кирпич, бетон или пеноблок имеет свою теплопроводность и теплосопротивление. Под теплопроводностью понимают способность стройматериала проводить тепло. Определяется данная величина в лабораторных условиях, а полученные данные приводятся производителем на упаковке либо в специальных таблицах. Теплосопротивление – величина обратная теплопроводности. Тот материал, который отлично проводит тепло, соответственно, имеет низкое сопротивление теплу.
Для строительства и утепления дома выбирают материал, имеющий низкую теплопроводность и высокое сопротивление. Чтобы определить теплосопротивление стройматериала, достаточно знать его толщину и коэффициент теплопроводности.
Расчет толщины утеплителя стен
Представим, что дом имеет стены, выполненные из пенобетона плотностью 300 (0,3 м), коэффициент теплопроводности материала составляет 0,29. Делим 0,3 на 0,29 и получает 1,03.
Как рассчитать толщину утеплителя для стен, позволяющую обеспечить комфортное проживание в доме? Для этого необходимо знать минимальное значение теплосопротивления в городе или области, где расположено утепляемое строение. Далее от этого значения нужно отнять полученное 1,03, в результате станет известно сопротивление теплу, которым должен обладать утеплитель.
Если стены состоят из нескольких материалов, следует просуммировать их показатели теплосопротивления.
Толщина утеплителя стен рассчитывается с учетом сопротивления теплопередаче используемого материала (R). Для нахождения этого параметра следует применить нормы «Тепловой защиты зданий» СП50.13330.2012. Величина ГОСП (градусосутки отопительного периода) вычисляется по формуле:
При этом t B отражает температуру внутри помещения. Согласно установленным нормам она должна варьировать в пределах +20-22°С. Средняя температура воздуха – t от, число суток отопительного периода в календарном году – z от. Эти значения приведены в «Строительной климатологии» СНиП 23-01-99. Особое внимание следует уделить продолжительности и температуре воздуха в том периоде, когда среднесуточная t≤ 8 0 С.
После того как теплосопротивление будет определено следует узнать какой должна быть толщина утеплителя потолка, стен, пола, кровли дома.
Каждый материал «многослойного пирога» конструкции имеет свое тепловое сопротивление R и рассчитывается по формуле:
R ТР = R 1 + R 2 + R 3 … R n ,
Где под n понимают число слоев, при этом тепловое сопротивление определенного материала равняется отношению его толщины (δ s) к теплопроводности (λ S).
R = δ S /λ S
Толщина утеплителя стен из газобетона и кирпича
К примеру, в возведении конструкции используется газобетон D600 толщиной 30 см, в роли теплоизоляции выступает базальтовая вата плотностью 80-125 кг/м 3 , в качестве отделочного слоя – кирпич пустотелый плотностью 1000 кг/м 3, толщиной 12 см. Коэффициенты теплопроводности приведенных выше материалов указываются в сертификатах, также их можно увидеть в СП50.13330.2012 в приложении С. Итак теплопроводность бетона составила 0,26 Вт/м* 0 С, утеплителя — 0,045 Вт/м* 0 С, кирпича — 0,52 Вт/м* 0 С. Определяем R для каждого из используемых материалов.
Зная толщину газобетона находим его теплосопротивление R Г = δ SГ /λ SГ = 0,3/0,26 = 1,15 м 2 * 0 С/Вт, теплосопротивление кирпича — R К = δ SК /λ SК = 0,12/0,52 = 0,23 м 2 * 0 С/В. Зная, что стена состоит из 3-х слоев
R ТР = R Г + R У + R К,
находим теплосопротивление утеплителя
R У = R ТР — R Г — R К.
Представим, что строительство происходит в регионе, где R ТР (22 0 С) — 3,45 м 2 * 0 С/Вт. Вычисляем R У = 3,45 — 1,15 – 0,23 = 2,07 м 2 * 0 С/Вт.
Теперь мы знаем, каким сопротивлением должна обладать базальтовая вата. Толщина утеплителя для стен будет определяться по формуле:
δ S = R У х λ SУ = 2,07 х 0,045 = 0,09 м или 9 см.
Если представить, что R ТР (18 0 С) = 3,15 м 2 * 0 С/Вт, то R У = 1,77 м 2 * 0 С/Вт, а δ S = 0,08 м или 8 см.
Толщина утеплителя для кровли
Расчет данного параметра производится по аналогии с определением толщины утеплителя стен дома. Для термоизоляции мансардных помещений лучше использовать материал теплопроводностью 0,04 Вт/м°С. Для чердаков толщина торфоизолирующего слоя не имеет большого значения.
Чаще всего для утепления скатов крыш используют высокоэффективные рулонные, матные или плитные теплоизоляции, для чердачных крыш – засыпные материалы.
Толщина утеплителя для потолка рассчитывается по приведенному выше алгоритму. От того насколько грамотно будет определены параметры изоляционного материала зависит температура в доме в зимнее время. Опытные строители советуют увеличивать толщину утеплителя кровли до 50% относительно проектной. Если используются засыпные или сминаемые материалы, время от времени их необходимо разрыхлять.
Толщина утеплителя в каркасном доме
В роли теплоизоляции может выступать стекловата, каменная вата, эковата, сыпучие материалы. Расчет толщины утеплителя в каркасном доме более простой, потому как его конструкция предусматривает наличие самого утеплителя и наружной и внешней оббивки, как правило, выполненных из фанеры и практически не влияющих на степень термозащиты.
Например, внутренняя часть стены — фанера толщиной 6 мм, наружная – плита OSB толщиной 9 мм, в роли утеплителя выступает каменная вата. Строительство дома происходит в Москве.
Теплосопротивление стен дома в Москве и области в среднем должно составлять R=3,20 м 2 * 0 C/Вт. Теплопроводность утеплителя представлена в специальных таблицах либо в сертификате на товар. Для каменной ваты оно составляет λ ут = 0,045 Вт/м* 0 С.
Толщина утеплителя для каркасного дома определяется по формуле:
δ ут = R х λ ут = 3,20 х 0,045 = 0,14 м.
Плиты каменной ваты выпускаются толщиной 10 см и 5 см. В данном случае потребуется укладка минеральной ваты в два слоя.
Толщина утеплителя для пола по грунту
Прежде чем приступить к расчетам следует знать, на какой глубине располагается пол помещения относительно уровня земли. Также следует иметь представление о средней температуре грунта зимой на этой глубине. Данные можно взять из таблицы.
Сначала необходимо определить ГСОП, затем вычислить сопротивление теплопередаче, определить толщину слоев пола (к примеру, армированный бетон, цементная стяжка по утеплителю, напольное покрытие). Далее определяем сопротивление каждого из слоев, поделив толщину на коэффициент теплопроводности и суммировать полученные значения. Таким образом, мы узнаем теплосопротивление всех слоев пола, кроме утеплителя. Чтобы найти этот показатель, из нормативного теплосопротивления отнимем общее термическое сопротивление слоев пола за исключением коэффициента теплопроводности изоляционного материала. Толщина утеплителя для пола вычисляется путем умножения минимального теплосопротивления утеплителя на коэффициент теплопроводности выбранного изоляционного материала.
При выборе материала для теплоизоляции возникает резонный вопрос: «Как рассчитать толщину утеплителя для стен?», тем более что в продаже имеются всевозможные размеры листов, матов и рулонов. Ответ зависит от множества факторов.
От чего зависит толщина
Материал
Расчет толщины утеплителя для стен невозможен без учета многих сопутствующих факторов и условий. Говорить о параметрах какого-то сферического утеплителя в вакууме — некорректно. Существует множество различных материалов, каждый из которых имеет свои характеристики.
Вот список коэффициентов теплопроводности различных теплоизоляционных материалов:
- Стекловата URSA — 0.044 Вт/м×К;
- Каменная (базальтовая) вата Rockwool — 0.039 Вт/м×К;
- (пенопласт) — 0.037 Вт/м×К;
- Эковата — 0.036 Вт/м×К;
- Пенополиуретан () — 0.03 Вт/м×К;
- Керамзит — 0.17 Вт/м×К;
- Кирпичная кладка — 0.520 Вт/м×К.
- Стекловата URSA — 189 мм;
- Каменная (базальтовая) вата Rockwool — 167 мм;
- Пенополистирол (пенопласт) — 159 мм;
- Эковата — 150 мм;
- Пеноплиуретан — 120 мм;
- Керамзит — 869 мм;
- Кирпичная кладка — 1460 мм.
- Эксплуатационную плотность;
- Нагрузку на конструкцию стен;
- Экологическую безопасность и состав;
- Биологическую стойкость;
- Химические свойства и взаимодействия;
- Стойкость к коррозии;
- Пожарную безопасность;
- Проницаемость для воздуха и пара;
- Образование конденсата;
- Наличие «мостиков холода» и теплопотери, связанные с ними;
- Гигроскопичность;
- Влагостойкость.
На фото минеральная вата, она имеет стандартную минимальную толщину, которая удовлетворяет требованиям климата средней полосы
Далее на основе этих данных следует определить еще одну важную величину — сопротивление передаче тепла или просто теплосопротивление. Эта величина равна отношению разности температур по краям материала к величине теплового потока, проходящего через его толщу.
Для расчета сопротивления (R) принята формула:
R = толщина стены/коэффициент теплопроводности стены.
Становится очевидным, что толщина утеплителя зависит не только от свойств материала теплоизолятора, но и от свойств материала, из которого изготовлена стена, ее толщины и отделки.
Уже на этом этапе понятно, что расчет можно вести только для конкретного утеплителя, причем с учетом целой кучи сопутствующих условий и факторов. Например, толщина пенопласта для утепления стен может сильно зависеть от типа монтажа и марки материала, производителя, качества сырья и многих других параметров.
Совет! Когда речь идет об индивидуальном строительстве, не стоит вдаваться в дебри материаловедения и теплотехники. Достаточно рассмотреть допустимые нормы для вашего региона с запасом, максимальный перерасход будет несущественным, вы ведь не город застраиваете.
Толщина утеплителя для наружных стен должна быть не меньше определенного значения, вычислять ее точно нет смысла по многим причинам:
- Во-первых, вы все равно будете вынуждены делать некоторые предположения, допущения и усреднения, ведь предсказать погоду и точно обозначить движение нагретых масс воздуха вы все равно не в силах;
- Во-вторых, даже получив значение толщины с точностью до микрон, вы все равно не сможете найти в продаже подходящий размер, так как они стандартны и достаточно грубо дискретны, с шагом в несколько десятков миллиметров;
- В-третьих, как говорится, жар костей не ломит, слишком тепло — это не проблема, достаточно открыть форточку, а вот когда холодно приходится тратиться на отопление или терпеть дискомфорт;
- В-четвертых, небольшой запас толщины увеличит общий объем материала не настолько значительно, чтобы об этом серьезно переживать.
Совет! Толщина утеплителя для наружных стен должна быть больше некого минимально допустимого значения. При этом вы можете перестраховаться и сделать больший запас, можете сэкономить и установить максимально приближенную к допустимому минимуму толщину, решать вам.
Климатические условия
Следующее важное условие, которое следует принимать во внимание, производя расчет толщины пенопласта для утепления стен, это климатические условия местности, где предполагается его эксплуатация. Это очевидный факт, но о нем все-таки стоит сказать отдельно.
После того, как вы определились с материалом, вам следует выяснить, в каком климатическом поясе он будет использоваться. Производители, как правило, предоставляют информацию о рекомендованных параметрах утеплителя для разных температурных режимов и зон.
Конструкция стены
Чтобы понять, насколько бессмысленна универсальная инструкция по расчету толщины того или иного материала, следует напомнить еще об одной важной детали: конструкции стены. Здесь играет роль количество слоев, их состав, очередность, толщины. Как видите, вариантов может быть масса.
Также важно, где расположен теплоизолятор — снаружи, со стороны помещения или внутри конструкции. Не менее важна гидроизоляция, пароизоляция, наличие сквозняков и движения нагретых масс воздуха, конвекции, излучения в инфракрасном диапазоне и интенсивности ветра в регионе.
Не забываем об отделке, толщине штукатурки, фасадном покрытии и наличии дополнительных изоляторов. Часто используют комбинации теплоизоляционных материалов, такие как пенопласт-пенофол, минеральная вата-пенофол, пенопласт-керамзит, пенобетон-пенопласт и другие. Это все также следует учитывать.
Другие факторы
При расчете параметров утеплителя учитывают также такие факторы, как назначение и функции утепления.
Например, одно дело, когда вы строите каркасное здание, где пенопласт будет основным барьером для тепла. Здесь следует перестраховаться и подобрать максимальную толщину утепления, ведь от нее будет зависеть сама возможность проживания в доме.
Совсем другое дело, когда вас не устраивает степень комфорта в доме из кирпича или вы хотите сократить расходы на отопление. В этом случае вам целесообразно будет подобрать минимально оправданную толщину материала, ведь цена такого ремонта тоже важна, раз речь об экономии.
Также важную роль играет способ строительства: если вы работаете своими руками, вам важно все контролировать и просчитывать. Если вы нанимаете профессионального исполнителя, ваша задача — грамотно подобрать компанию, ведь ее специалисты в любом случае будут заниматься расчетом всех параметров.
Опять-таки, совсем другие требования предъявляет утепление лоджии или балкона. Эти объекты имеют тонкие стены, с трех сторон обдуваются холодным воздухом, не имеют батарей отопления. Как видите, дьявол кроется в деталях, универсальные правила, чаще всего, не более чем миф.
Чтобы произвести расчет толщины утеплителя в доме, вам придётся учитывать много параметров, и большинство из них никак не будут относиться к самому материалу. Сюда включаются и стены дома и температура окружающей среды и влажность воздуха в вашем регионе или местности.
А в качестве дополнительной информации вы сможете посмотреть видео в этой статье.
Характеристики строительных материалов и коэффициент теплопроводности
Многие строительные фирмы предлагают услуги по расчёту термоизоляции, но у этого есть своя цена, которую вам придётся дополнительно покрывать, кроме работы и материала. Чтобы разобраться, как рассчитать толщину утеплителя, вам вовсе не обязательно получать специальное образование, для этого просто можно воспользоваться готовыми формулами, подставив в них необходимые значения.
К тому же, любой производитель утеплителя указывает в документах коэффициент теплопроводности материала.
Расчёт толщины теплоизоляции
Строительный материал | Коэффициент теплопроводности (Вт/м*k) |
Минеральная вата | 0,045 – 0,07 |
Стекловата | 0,033 – 0,05 |
Эковата (целлюлоза) | 0,038 – 0,045 |
Пенопласт | 0,031 – 0,041 |
Экструзионный пенополистирол | 0,031 – 0,032 |
Опилки (стружки) | 0,07 – 0,093 |
ДСП, ОСП (OSB) | 0,15 |
Дуб | 0,20 |
Сосна | 0,16 |
Пустотелый кирпич | 0,35 – 0,41 |
Обычный кирпич | 0,56 |
0,16 | |
Железобетонная плита | 2,0 |
- Чтобы рассчитать, какой толщиной должен быть утеплитель, нам нужно определить число R, которое означает необходимое теплосопротивление для каждого отдельно взятого региона или местности. Также мы обозначим толщину слоя буквой p (в метрах), а буквой k мы обозначим коэффициент теплопроводности. Значит, тепловое сопротивление или толщину слоя (пол, стена, потолок) мы будем рассчитывать по формуле R=p/k.
Примеры термоизоляционных расчетов
- Итак, как мы уже говорили, определение толщины утеплителя будет зависеть от климатических условий вашего региона или даже небольшой местности . Допустим, для южных регионов России мы возьмём необходимый коэффициент теплового сопротивления для потолка – 6 (м 2 *k/Вт), для пола – 4,6 (м 2 *k/Вт) и для стен – 3,5 (м 2 *k/Вт). Теперь, имея на руках региональные показатели, нам необходимо привести в соответствие с ними и толщину термоизоляции.
- На рисунке вверху вы видите стену в полтора кирпича, толщина которой имеет 0,38м, также нам известен коэффициент теплопроводности этого материала – 0,56. Значит R кирпичной стены =p/k=0,38/0,56=0,68. Но нам необходимо в общем достичь цифры 3,5 (м 2 *k/Вт), тогда R минеральной ваты =R общее -К кирпичной стены =3,5-0,68=2,85 (м 2 *k/Вт). А вот сейчас, зная основную формулу, определяем, какая нам нужна толщина утеплителя урса (минеральной ваты).
- Сейчас мы можем использовать калькулятор толщины утеплителя (очень много в интернете), но можем это сделать своими руками – так будет точнее: p минеральной ваты =R*k=2,85*0,07=0,1995. Значит, необходимая толщина такого термоизолятора будет составлять 199,5 мм, то есть – 200 мм. Но, опять же, вам нужно обращать внимание на коэффициент теплопроводности покупаемого материала.
- Точно таким же способом определяется и толщина пенопласта для утепления дома, так давайте попробуем рассчитать этот материал для потолка. Допустим, у нас перекрытие будет из железобетонной плиты, толщиной 200 мм, тогда R жби =p/k=0,2/2=0,1 (м 2 *k/Вт). Теперь p пенопласта =R потолка -R жби =6-0,1=5,9. Как видите, бетон практически не греет и потолок вам придётся утеплять шестью слоями 100 мм-ого пенопласта, что, в принципе, неприемлемо, но это расчёт в чистом виде, а ведь там, помимо ЖБИ ещё будет штукатурка, доски и тому подобное.
- По этим же формулам рассчитывается и толщина утеплителя для пола, хотя, в общем, утеплитель толщиной 30 мм в таких случаях оказывается достаточным (с учётом того, что пол деревянный). Эти же параметры действенны для лоджий и балконов, если вы хотите получить там микроклимат, сходный с комнатной температурой.
Совет. Рассчитывая толщину утеплителя, вам следует обратить внимание и на другие его свойства, такие как устойчивость к влаге или к активной химической среде.
Дело в том, что вам, возможно, придётся использовать паропроницаемые плёнки, ветробарьеры и/или гидроизоляцию, а эти материалы тоже способствуют утеплению зданий.
О популярных термоизоляторах
- производится в рулонах или в матах (см. фото вверху), при этом ширина рулонов может составлять либо 600, либо 1200 мм, а маты имеют обычно 1000X600 мм. Толщина такого термоизолятора может от 20 до 200 мм, к тому же одну сторону материала иногда покрывают алюминиевой фольгой, что резко снижает теплопроводность.
- К тому же, минеральная вата подразделяется на каменную вату, шлаковату и стекловату, а каждая из разновидностей имеет свой коэффициент теплопроводности, указанный производителем на маркировке. Такую изоляцию используют наиболее часто при строительстве зданий, но она боится влаги (вымываются связующие элементы).
Совет. При использовании минеральной ваты для изоляции зданий следите за тем, чтобы она не сминалась, потому что при этом будут утеряны полезные свойства.
Для монтажа материала пользуйтесь защитными средствами (перчатки, очки, респиратор).
- Не менее популярным материалом можно назвать , который более удобен в монтаже, так как имеет твёрдую структуру. Толщина материала бывает от 20 до 100омм, а по периметру панель имеет 1000×1000 мм. Из-за разной плотности и толщины такой утеплитель имеет разный коэффициент, но это указывается в маркировке заводом-изготовителем.
- Пенопласт горит, а при температуре от 75⁰c-80⁰C начинается деструкция и он выделяет фенолы, что опасно для здоровья. Чаще всего его используют в комплекте с негорючей облицовкой. Так же, панели плотностью 25 кг/см 2 можно шпаклевать и штукатурить. Ещё используют очень похожий, но имеющий большую плотность, пеноплекс (экструдированный пенополистирол), который не горит, но тлеет и выделяет токсины.
7 сентября, 2016
Специализация: мастер по внутренней и наружной отделке (штукатурка, шпаклёвка, плитка, гипсокартон, вагонка, ламинат и так далее). Кроме того, сантехника, отопление, электрика, обычная облицовка и расширение балконов. То есть, ремонт в квартире или доме делался «под ключ» со всеми необходимыми видами работ.
Безусловно, расчет утеплителя для стен в собственном доме, это очень серьёзная работа, особенно, если это не было сделано изначально и в доме холодно. И вот здесь вам придётся столкнуться с рядом вопросов.
Например, каким должен быть утеплитель, какой из них лучше и какая нужна толщина материала? Давайте попробуем разобраться в этих вопросах, а ещё посмотрим видео в этой статье, наглядно демонстрирующее тему.
Утепление стен
Внутри или снаружи
Если вы решили использовать калькулятор расчета толщины утеплителя для стен, то точных данных вы не получите. Вручную можно получить более точную и достоверную информацию. Помимо этого имеет значение расположение изоляции, которую можно укладывать, как внутри, так и снаружи здания, что при расчетах нужно учитывать обязательно!
Особенности внутреннего и наружного утепления:
- представьте себе, что вы используете калькулятор расчета утеплителя для стен, но при этом изоляцию укладываете внутри помещения, будут ли результаты расчётов верными? Обратите внимание на схему вверху;
- какой бы толщины ни была изоляция в комнате, стена всё равно останется холодной и это приведёт к определённым последствиям;
- то есть, это означает, что точка росы или зона, где тёплый воздух при встрече с холодным превращается в конденсат, переносится ближе к помещению. И чем мощнее внутреннее утепление, тем ближе будет эта точка;
- в некоторых случаях эта зона доходит до поверхности стены, где влага способствует развитию грибковой плесени. Но если даже она остаётся внутри стены, то эксплуатационный ресурс от этого никак не увеличивается;
- следовательно, инструкция и здравый смысл указывают на то, что внутреннее утепление следует монтировать только в крайнем случае или же тогда, когда нужна звукоизоляция;
- при наружном утеплении точка росы будет приходиться на зону изоляции, а это означает, что вы сможете повысить срок годности вашей стены и избежать возникновения сырости.
Расчет – дело серьезное!
№п/п | Стеновой материал | Коэффициент теплопроводности | Необходимая толщина (мм) |
1 | Пенополистироп ПСБ-С-25 | 0,042 | 124 |
2 | Минеральная вата | 0,046 | 124 |
3 | Клееный деревянный брус или цельный массив ели и сосны поперёк волокон | 0,18 | 530 |
4 | Кладка керамоблоков на теплоизоляционный клей | 0,17 | 575* |
5 | Кладка газо- и пеноблоков 400кг/м3 | 0,18 | 610* |
6 | Кладка полистирольных блоков на клей 500кг/м3 | 0,18 | 643* |
7 | Кладка газо- и пеноблоков 600кг/м3 | 0,29 | 981* |
8 | Кладка на клей керамзитобетона 800кг/м3 | 0,31 | 1049* |
9 | Кладка из керамического пустотелого кирпича на ЦПР 1000кг/м3 | 0,52 | 1530 |
10 | Кладка из рядового кирпича на ЦПР | 0,76 | 2243 |
11 | Кладка из силикатного кирпича на ЦПР | 0,87 | 2560 |
12 | ЖБИ 2500кг/м3 | 2,04 | 6002 |
Теплотехнический расчет различных материалов
Примечание к таблице. Наличие знака * указывает на необходимость добавления коэффициента 1,15, если в здании сделаны перемычки и монолитные пояса из тяжёлых бетонов. Вверху для наглядности составлена диаграмма — цифры совпадают с таблицей.
Итак, расчет толщины утеплителя, это определение его теплового сопротивления, которое мы обозначим буквой R — постоянная величина, которая рассчитывается отдельно для каждого региона.
Давайте возьмём для наглядности среднюю цифру R=2,8 (м2*K/Вт). Согласно Государственным Строительным Нормам такая величина является минимально допустимой для жилых и общественных зданий .
В тех случаях, когда тепловая изоляция состоит из нескольких слоёв, например, кладка, пенопласт и евровагонка, то сумма всех показателей складывается воедино — R=R1+R2+R3 . А общую или отдельную толщину теплоизоляционного слоя рассчитывают по формуле R=p/k .
Здесь p будет означать толщину слоя в метрах, а буква k , это коэффициент теплопроводности данного материала (Вт/м*к), значение которого вы можете взять из таблицы теплотехнических расчётов, которая приведена выше.
По сути, используя эти же формулы, вы можете произвести расчет энергоэффективности от утепления подоконников или узнать толщину изоляции для пола. Величину R используйте в соответствии со своим регионом.
Чтобы не быть голословным, приведу пример, возьмём кирпичную кладку в два кирпича (обычная стена), а в качестве изоляции будем использовать пенополистирольные плиты ПСБ-25 (двадцать пятый пенопласт), цена которых достаточно приемлема даже для бюджетного строительства.
Итак, тепловое сопротивление, которого нам нужно достичь, должно составлять 2,8 (м2*Л/Вт). Вначале узнаём теплосопротивление данной кирпичной кладки. От тычка до тычка кирпич имеет 250 мм и между ними раствор толщиной 10 мм.
Следовательно, p=0,25*2+0,01=0,51м . Коэффициент у силиката составляет 0,7 (Вт/м*к), тогда Rкирпича=p/k=0,51/0,7=0,73 (м2*K/Вт) — это мы получили теплопроводность кирпичной стены, рассчитав её своими руками.
Идём далее, теперь нам нужно достичь общего показателя для слоёной стены 2,8 (м2*K/Вт), то есть R=2,8 (м2*K/Вт и для этого нам нужно узнать необходимую толщину пенопласта. Значит, Rпенопласта=Rобщая-Rкирпича=2,8-0,73=2,07 (м2*K/Вт).
На фото — локальная защита пенопластом
Теперь для расчёта толщины пенополистирола берём за основу общую формулу и здесь Pпенопласта=Rпенопласта*kпенопласта= 2?07*0?035=0?072м . Конечно, 2 см мы никак не найдём у ПСБ-25, но если учесть внутреннюю отделку и воздушную прослойку между кирпичами, то нам будет достаточно 70 см, а это два слоя по 50 мм и 20 мм.
Заключение
Не забывайте о том, что при расчёте необходимой толщины теплоизоляционного материала вам нужно использовать значение теплового сопротивления (R), которое установлено именно для вашего региона. Если у вас возникли сложности или остались вопросы по расчётам — напишите об этом в комментариях, с радостью помогу вам решить затруднения!
7 сентября 2016г.Если вы хотите выразить благодарность, добавить уточнение или возражение, что-то спросить у автора — добавьте комментарий или скажите спасибо!
До второй половины XX века проблемы экологии мало кого интересовали, только разразившийся в 70 годах на Западе энергетический кризис остро поставил вопрос: как сберечь тепло в доме, не отапливая улицу и не переплачивая за энергоносители.
Выход есть: утепление стен, но как определить какая должна быть толщина утеплителя для стен, чтобы конструкция соответствовала современным требованиям по сопротивлению теплопередаче?
Эффективность утепления зависит от характеристик утеплителя и способа утепления. Существует несколько различных способов, имеющих свои достоинства:
- Монолитная конструкция, может быть выполнена из древесины или газобетона.
- Многослойная конструкция, в которой утеплитель занимает промежуточное положение между наружной и внутренней частью стены, в этом случае на этапе строительства выполняется кольцевая кладка с одновременным утеплением.
- Наружное утепление мокрым (штукатурная система) или сухим (вентилируемый фасад) способом.
- Внутреннее утепление, которое выполняют, когда снаружи по каким-либо причинам утеплить стену невозможно.
Для утепления уже построенных и эксплуатируемых зданий применяют наружное утепление, как наиболее эффективный способ снижения потерь тепла.
Рассчитываем толщину утеплителя
Теплоизоляция наружной стены дает снижение потерь тепла в два и более раз. Для страны, большая часть территории которой относится к континентальному и резко континентальному климату с продолжительным периодом низких отрицательных температур, как Россия, теплоизоляция ограждающих конструкций дает огромный экономический эффект.
Оттого, правильно ли рассчитана толщина теплоизолятора для наружных стен, зависит долговечность конструкции и микроклимат в помещении: при недостаточной толщине теплоизолятора точка росы находится внутри материала стены или на его внутренней поверхности, что вызывает образование конденсата, повышенной влажности, а, затем, образованию плесени и поражению грибком.
Методика расчета толщины утеплителя прописана в Своде Правил «СП 50. 13330. 2012 СНиП 23–02–2003. Тепловая защита зданий».
Факторы, влияющие на расчет:
- Характеристики материала стены – толщина, конструкция, теплопроводность, плотность.
- Климатические характеристики зоны строения – температура воздуха самой холодной пятидневки.
- Характеристики материалов дополнительных слоев (облицовка или штукатурка внутренней поверхности стены).
Слой утеплителя, отвечающая нормативным требованиям, высчитывается по формуле:
В системе утепления «вентилируемый фасад» термическое сопротивление материала навесного фасада и вентилируемого зазора при расчете не учитывают.
Характеристики различных материалов
Таблица 1
Значение нормируемого сопротивления теплопередаче наружной стены зависит от региона РФ, в котором расположена постройка.
Таблица 2
Необходимый слой теплоизоляционного материала, определена исходя из следующих условий:
- наружная ограждающая конструкция здания – полнотелый керамический кирпич пластического прессования толщиной 380 мм;
- внутренняя отделка – штукатурка цементно-известковым составом толщиной 20 мм;
- наружная отделка – слой полимерцементной штукатурки, толщина слоя 0,8 см;
- коэффициент теплотехнической однородности конструкции равен 0,9;
- коэффициент теплопроводности утеплителя — λА=0,040; λБ=0,042.
Калькуляторы расчета толщины утеплителя
Для расчета потребуются данные:
- размер стены;
- материал стены;
- коэффициент теплопроводности выбранного утеплителя;
- отделочные слои;
- город, в котором находится утепляемое здание.
Расчет будет выполнен в считаные секунды.
Поскольку у нас нет своего калькулятора, мы хотим порекомендовать, на наше мнение, очень даже неплохой онлайн калькулятор , на котором вы сможете выполнить расчет толщины теплоизолятора.
Итоги
Предусматривать снижение затрат на отопление дома желательно на стадии проектирования: заложив в проекте стены, не требующие утепления в дальнейшем, можно сэкономить значительные средства на эксплуатационных расходах.
В случае, если требуется утеплить уже готовый дом, рассчитать требуемую толщину утеплителя несложно. Единственный минус такого утепления – его долговечность меньше, чем срок службы несущей стены.
Калькулятор расчета утепления стен деревянного дома. Как произвести расчет утеплителя для тёплых и для холодных регионов Расчет утепление стен снаружи калькулятор
Главная→Томаты→Калькулятор расчета утепления стен деревянного дома. Как произвести расчет утеплителя для тёплых и для холодных регионов Расчет утепление стен снаружи калькуляторС помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен дома и других ограждений в соответствии с регионом вашего проживания, материала и толщины стен, используемой пароизоляции, материала для подшивки и других важных параметров при утеплении. Подбирая разные материалы, можно выбрать вариант для себя максимально теплый и дешевый.
Теплотехнический калькулятор для расчета точки росы
С помощью данного калькулятора вы сможете рассчитать оптимальную толщину утеплителя для дома и жилых помещений в соответствии с регионом проживания, материала и толщины стен. Вы сможете рассчитать толщину различных утеплительных материалов. И увидеть наглядно на графике место выпадения конденсата в стене. Удобный калькулятор теплопроводности стены онлайн для расчета толщины утепления.
Калькулятор KNAUF Расчет необходимой толщины теплоизоляции
Рассчитайте необходимую толщину теплоизоляционного материала в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий», для всех типов зданий. Бесплатный онлайн сервис расчета теплоизоляции KNAUF, удобный и понятный интерфейс.
Калькулятор Rockwool расчёта толщины теплоизоляции стен
Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек очень просто.
В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» – теплые стены обойдутся дороже застройщику.
Приведем пример. По расчетам выходит, что 50 мм пенопласта уменьшит теплопотери 50 см пенобетона лишь на 20%. Т.е. 80% тепла в доме будет сберегать пенобетон и лишь 20% пенопласт. Здесь действительно стоит подумать, а стоит ли утплять дом? Стоит ли овчинка выделки. С другой стороны, при утеплении 50 см кирпичной стены пенопласт уменьшит теплопотери в 1,5 раза. Кирпич будет беречь 40%, а пенопласт – 60% тепла. Разобраться с этим вопросом вам поможет расчет толщины утеплителя для стен онлайн.
Из этого делаем вывод, что в каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы.
7 сентября, 2016Специализация: мастер по внутренней и наружной отделке (штукатурка, шпаклёвка, плитка, гипсокартон, вагонка, ламинат и так далее). Кроме того, сантехника, отопление, электрика, обычная облицовка и расширение балконов. То есть, ремонт в квартире или доме делался «под ключ» со всеми необходимыми видами работ.
Безусловно, расчет утеплителя для стен в собственном доме, это очень серьёзная работа, особенно, если это не было сделано изначально и в доме холодно. И вот здесь вам придётся столкнуться с рядом вопросов.
Например, каким должен быть утеплитель, какой из них лучше и какая нужна толщина материала? Давайте попробуем разобраться в этих вопросах, а ещё посмотрим видео в этой статье, наглядно демонстрирующее тему.
Утепление стен
Внутри или снаружи
Если вы решили использовать калькулятор расчета толщины утеплителя для стен, то точных данных вы не получите. Вручную можно получить более точную и достоверную информацию. Помимо этого имеет значение расположение изоляции, которую можно укладывать, как внутри, так и снаружи здания, что при расчетах нужно учитывать обязательно!
Особенности внутреннего и наружного утепления:
- представьте себе, что вы используете калькулятор расчета утеплителя для стен, но при этом изоляцию укладываете внутри помещения, будут ли результаты расчётов верными? Обратите внимание на схему вверху;
- какой бы толщины ни была изоляция в комнате, стена всё равно останется холодной и это приведёт к определённым последствиям;
- то есть, это означает, что точка росы или зона, где тёплый воздух при встрече с холодным превращается в конденсат, переносится ближе к помещению. И чем мощнее внутреннее утепление, тем ближе будет эта точка;
- в некоторых случаях эта зона доходит до поверхности стены, где влага способствует развитию грибковой плесени. Но если даже она остаётся внутри стены, то эксплуатационный ресурс от этого никак не увеличивается;
- следовательно, инструкция и здравый смысл указывают на то, что внутреннее утепление следует монтировать только в крайнем случае или же тогда, когда нужна звукоизоляция;
- при наружном утеплении точка росы будет приходиться на зону изоляции, а это означает, что вы сможете повысить срок годности вашей стены и избежать возникновения сырости.
Расчет – дело серьезное!
№п/п | Стеновой материал | Коэффициент теплопроводности | Необходимая толщина (мм) |
1 | Пенополистироп ПСБ-С-25 | 0,042 | 124 |
2 | Минеральная вата | 0,046 | 124 |
3 | Клееный деревянный брус или цельный массив ели и сосны поперёк волокон | 0,18 | 530 |
4 | Кладка керамоблоков на теплоизоляционный клей | 0,17 | 575* |
5 | Кладка газо- и пеноблоков 400кг/м3 | 0,18 | 610* |
6 | Кладка полистирольных блоков на клей 500кг/м3 | 0,18 | 643* |
7 | Кладка газо- и пеноблоков 600кг/м3 | 0,29 | 981* |
8 | Кладка на клей керамзитобетона 800кг/м3 | 0,31 | 1049* |
9 | Кладка из керамического пустотелого кирпича на ЦПР 1000кг/м3 | 0,52 | 1530 |
10 | Кладка из рядового кирпича на ЦПР | 0,76 | 2243 |
11 | Кладка из силикатного кирпича на ЦПР | 0,87 | 2560 |
12 | ЖБИ 2500кг/м3 | 2,04 | 6002 |
Теплотехнический расчет различных материалов
Примечание к таблице. Наличие знака * указывает на необходимость добавления коэффициента 1,15, если в здании сделаны перемычки и монолитные пояса из тяжёлых бетонов. Вверху для наглядности составлена диаграмма — цифры совпадают с таблицей.
Итак, расчет толщины утеплителя, это определение его теплового сопротивления, которое мы обозначим буквой R — постоянная величина, которая рассчитывается отдельно для каждого региона.
Давайте возьмём для наглядности среднюю цифру R=2,8 (м2*K/Вт). Согласно Государственным Строительным Нормам такая величина является минимально допустимой для жилых и общественных зданий .
В тех случаях, когда тепловая изоляция состоит из нескольких слоёв, например, кладка, пенопласт и евровагонка, то сумма всех показателей складывается воедино — R=R1+R2+R3 . А общую или отдельную толщину теплоизоляционного слоя рассчитывают по формуле R=p/k .
Здесь p будет означать толщину слоя в метрах, а буква k , это коэффициент теплопроводности данного материала (Вт/м*к), значение которого вы можете взять из таблицы теплотехнических расчётов, которая приведена выше.
По сути, используя эти же формулы, вы можете произвести расчет энергоэффективности от утепления подоконников или узнать толщину изоляции для пола. Величину R используйте в соответствии со своим регионом.
Чтобы не быть голословным, приведу пример, возьмём кирпичную кладку в два кирпича (обычная стена), а в качестве изоляции будем использовать пенополистирольные плиты ПСБ-25 (двадцать пятый пенопласт), цена которых достаточно приемлема даже для бюджетного строительства.
Итак, тепловое сопротивление, которого нам нужно достичь, должно составлять 2,8 (м2*Л/Вт). Вначале узнаём теплосопротивление данной кирпичной кладки. От тычка до тычка кирпич имеет 250 мм и между ними раствор толщиной 10 мм.
Следовательно, p=0,25*2+0,01=0,51м . Коэффициент у силиката составляет 0,7 (Вт/м*к), тогда Rкирпича=p/k=0,51/0,7=0,73 (м2*K/Вт) — это мы получили теплопроводность кирпичной стены, рассчитав её своими руками.
Идём далее, теперь нам нужно достичь общего показателя для слоёной стены 2,8 (м2*K/Вт), то есть R=2,8 (м2*K/Вт и для этого нам нужно узнать необходимую толщину пенопласта. Значит, Rпенопласта=Rобщая-Rкирпича=2,8-0,73=2,07 (м2*K/Вт).
На фото — локальная защита пенопластом
Теперь для расчёта толщины пенополистирола берём за основу общую формулу и здесь Pпенопласта=Rпенопласта*kпенопласта= 2?07*0?035=0?072м . Конечно, 2 см мы никак не найдём у ПСБ-25, но если учесть внутреннюю отделку и воздушную прослойку между кирпичами, то нам будет достаточно 70 см, а это два слоя
В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» — теплые стены обойдутся дороже застройщику.
Для чего нужен калькулятор теплопроводности стен
В каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы. Мы подобрали наиболее удобные и понятные сервисы для расчета необходимой толщины теплоизоляционного материала.
Теплотехнический калькулятор. Расчет точки росы в стене
Калькулятор онлайн от smartcalc.ru позволит рассчитать оптимальную толщину утеплителя для стен дома и жилых помещений. Вы сможете рассчитать толщину теплоизоляции и рассчитать точку росы при утеплении дома различными материалами. Калькулятор smartcalc.ru позволяет наглядно увидеть место выпадения конденсата в стене. Это самый удобный теплотехнический калькулятор расчет утепления и точки росы.
Калькулятор толщины утеплителя для стен, потолка, пола
С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен, кровли, потолка дома и других строительных конструкций в соответствии с регионом вашего проживания, материала и толщины стен, а также других важных параметров при теплоизоляции. Подбирая разные теплоизоляционные материалы на калькуляторе, вы сможете найти оптимальную толщину утеплителя для стен своего дома.
Калькулятор KNAUF. Расчет толщины теплоизоляции
Данный калькулятор позволяет произвести расчет толщины теплоизоляции стен в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий». Бесплатный онлайн калькулятор расчета теплоизоляции KNAUF, сервис имеет удобный и понятный интерфейс.
Калькулятор Rockwool расчёта толщины теплоизоляции стен
Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек минваты очень просто.
Как убрать точку росы из стены при утеплении
Калькулятор позволяет определить вид теплоизоляционных материалов для фундамента, посчитать объем необходимых материалов и получить итоговую стоимость, в том числе и крепежа для плит.
Калькулятор расчета и выбора изоляции под сайдинг.
С помощью данного сервиса, Вы сможете определить виды теплоизоляции и гидроизоляции которые подойдут для изоляции стен под сайдинг. Более того калькулятор позволит определить стоимость и рассчитать объем необходимых материалов.
Калькулятор расчета теплоизоляции под вентилируемый фасад
Для того что бы правильно подобрать материалы для утепления вентилируемого фасада, подобрать гидроизоляцию и крепеж, воспользуйтесь этим сервисом. Введя площадь стен, и толщину плит, Вы рассчитаете необходимый объем материалов и узнаете их стоимость.
Онлайн калькулятор расчета стоимости штукатурного фасада.
Сервис позволяет определить виды материалов, стоимость и объем. Исходя из площади фасада и толщины утеплителя, можно рассчитать примерную стоимость штукатурного фасада.
Расчет материалов для изоляции каркасных стен
Если перед Вами стоит задача, изоляции каркасных стен, то этот калькулятор для Вас. Зная площадь стен и толщину утеплителя, вы без труда рассчитаете необходимые материалы.
Онлайн расчет изоляции для пола под стяжку
Для пола, который планируется сделать с использованием цементной, либо любой другой, требуется особые, прочные изоляционные материалы.
Онлайн расчет изоляции для пола по лагам
Что бы правильно подобрать изоляционные материалы для пола, который уложен по деревянным лагам, воспользуйтесь данным калькулятором. Он определит необходимую плотность материалов, их количество и примерную стоимость.
Расчет теплоизоляции для межкомнатных перегородок
Подберите изоляцию для межкомнатных перегородок. Вы сможете расчитать количество и вид изоляции, ее стоимость, а так же, сразу сделать заявку.
Калькулятор для расчета изоляции потолка
Просто введите площадь потолка и толщину теплоизоляции, получите количество материалов и их стоимость.
Определить стоимость материалов для изоляции межэтажных перекрытий
Для решения таких задач, воспользуйтесь онлайн-расчетом цен и количества необходимых материалов.
Онлайн-расчет изоляции чердака
Для утепления чердака, следует подобрать материалы используя данный сервис.
Расчет изоляции для скатной кровли (мансарды)
Изоляция скатной кровли, требует помимо утеплителя, еще пароизоляционную и ветровлагозащитную мембрану, воспользовавшись этим онлайн-калькулятром, вы без труда определити нужные Вам материалы и их ориентировочную стоимость.
Расчет изоляции для плоской кровли
Для расчета материалов для плоской кровли, мы предлагаем воспользоваться этим калькулятром. В расчет включена так же гидроизоляционная мембрана и телескопический крепеж.
Калькулятор расчета водостоков
Калькулятор позволит сделать предварительный расчет необходимых материалов для монтажа водосточной системы. Определить предварительно стоимость/
Теплотехнический калькулятор точки росы онлайн
С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.
Калькулятор расчета толщины утеплителя стены
С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.
Калькулятор KNAUF расчета толщины утеплителя
Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.
Калькулятор Rockwool для расчета теплоизоляции
Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.
Калькулятор теплопроводности для расчета толщины стен
Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.
HTflux — Программное обеспечение для моделирования
В следующем тексте я постараюсь предоставить наиболее важную информацию о расчете тепловой массы для строительных приложений. Вторая часть — это краткое руководство по пониманию и использованию моего бесплатного Excel-калькулятора (ссылка внизу этой страницы).
Резюме для пользователей, не желающих читать весь текст…
Короче говоря, наиболее важным применением инструмента будет оптимизация (= максимизация) тепловой массы на внутренних поверхностях зданий.Это поможет снизить суточные перепады температуры внутри здания. Увеличивая внутреннюю массу, ваша стена, пол или потолок должны поглощать большую часть солнечного излучения в течение дня и выделять накопленное тепло через естественную вентиляцию в течение ночи.
Для этого вам нужно будет максимизировать результирующую цифру « внутренняя поверхностная теплоемкость » в инструменте. Как вы увидите, это свойство зависит в основном от внутреннего поверхностного слоя — до нескольких сантиметров или даже миллиметров ниже поверхности.Поэтому для достижения высокой теплоемкости вам необходимо выбрать материал, обладающий высокой теплопроводностью и плотностью этого самого верхнего внутреннего слоя.
Я считаю другие результаты расчетов (временные сдвиги, периодическое пропускание …) второстепенными. Однако для полного понимания темы или для специальных приложений я все же рекомендую прочитать весь текст ниже…
Введение
Следующие расчеты основаны на методах расчета, описанных в стандарте ISO 13786.Без явного упоминания этого в стандарте используются хорошо известные методы расчета, которые используются в электротехнике для описания поведения компонентов в цепях переменного тока. Расчеты производятся с использованием матриц комплексных чисел.
Для аналитического решения этих уравнений предполагается, что граничные условия (температуры или тепловые потоки), а также результирующие переменные (температуры и тепловые потоки) имеют синусоидальную форму с периодом 24 часа.Даже если это звучит как серьезное ограничение, на самом деле это подходящее и полезное предположение. Синусоидальная форма является подходящей, поскольку фактические среднесуточные колебания температуры в значительной степени соответствуют синусоидальным волнам или имеют, по крайней мере, доминирующую синусоидальную составляющую (см. Теорему Фурье). Ограничение периодической продолжительностью 24 часа также является разумным, поскольку только в течение этих 24 часов можно действительно ожидать циклического изменения температуры.
Внутренняя теплопроводность
Результат расчета тепловой проводимости описывает способность поверхности поглощать и отдавать тепло (энергию) при периодическом синусоидальном колебании температуры с периодом 24 часа.Значение описывает амплитуду теплового потока (= максимальное значение), вызванное колебанием температуры 1 K (° C). Предполагается, что температура на противоположной стороне стены поддерживается постоянной. Из-за линейности основных уравнений вы можете просто умножить значение на любые другие амплитуды температуры, чтобы получить соответствующие тепловые потоки, например если вы хотите оценить максимальный тепловой поток в / из вашей стены, вызванный внутренним перепадом температуры на 6 ° C, а внутренняя теплопроводность вашей стены составляет 5 Вт / (м²K), то максимальный тепловой поток будет составлять 6 K * 5 Вт / (м²K) = 30 Вт / м².Следовательно, «ответ» этой стены на синусоидальное периодическое колебание температуры 6 ° C будет синусоидальным тепловым потоком, поглощающим максимум 30 Вт на квадратный метр в течение дня и высвобождающим те же 30 Вт / м² ночью.
Способность стены поглощать энергию в течение дня имеет решающее значение для предотвращения перегрева в летнее время или для снижения затрат на охлаждение. Внутреннюю тепловую проводимость можно использовать для оценки этой способности, однако внутренняя поверхностная теплоемкость , которая почти пропорциональна этому значению, на самом деле больше подходит для этой работы (см. Ниже).
Time-shift — внутренняя теплопроводность
Тепловой поток, вызванный колебаниями температуры, сдвинут во времени, что означает, что он не имеет своих максимумов и минимумов одновременно. Тепловой поток обычно приводит к колебаниям температуры окружающей среды (тогда как фактическая температура поверхности стены будет отставать). Таким образом, если ваше выходное значение для временного сдвига составляет «2:00» (как в приведенном выше примере), максимальный тепловой поток в / из стены произойдет на 2 часа раньше, чем максимум / минимум температуры.
Этот временной сдвиг — всего лишь «побочный эффект» тепловой буферизации, и на него невозможно повлиять / спроектировать без изменения теплоемкости стены. Фактически это является следствием отстающей / отстающей температуры поверхности стены, поскольку разница между температурой поверхности и температурой окружающей среды имеет значение для результирующего теплового потока.
Внешняя теплопроводность
В соответствии с внутренней теплопроводностью (см. Выше), тогда внешняя теплопроводность описывает способность аккумулировать тепло при внешних колебаниях температуры.Опять же, предполагается, что температура на противоположной стороне поддерживается постоянной.
Что касается значения этого значения, обратитесь к внешней тепловой мощности ниже.
Time-shift — внешнее тепловое сопротивление
Опять же, соответствующее внутреннему сдвигу во времени, это результирующее значение скажет вам, сколько времени максимумы / минимумы теплового потока будут опережать максимумы / минимумы температуры.
Периодический коэффициент теплопередачи
Выходное значение периодического коэффициента теплопередачи описывает тепловой поток, вызванный колебаниями температуры на противоположной стороне компонента, при условии, что температура окружающей среды на той же стороне стены поддерживается постоянной.Хотя кажется, что периодический коэффициент теплопередачи вместе с его фазовым сдвигом является любимой темой некоторых ученых-строителей и специалистов по маркетингу изоляционных материалов, эффектом периодической теплопередачи можно пренебречь для большинства стандартных строительных приложений. В соответствии с современными стандартами изоляции (низкие значения коэффициента теплопередачи), изменения теплового потока, которые фактически будут вызваны колебаниями температуры на противоположной стороне строительного элемента, будут незначительными. Чтобы проиллюстрировать это, мы можем использовать инструмент для расчета влияния на периодический коэффициент теплопередачи легкой изоляции по сравнению стяжеловесный утеплитель. Мы можем показать это на примере простой стены (или крыши), состоящей исключительно из 20 см железобетона и 15 см внешней изоляции. Предполагается сильное изменение внешней температуры на +/- 15 ° C (= диапазон 30 ° C). Исходя из этих предположений, получаем следующие результаты:
Легкая изоляция (25 кг / м³): перепады температуры внутренней поверхности: +/- 0,10 ° C, тепловой поток: +/- 0,77 Вт / м², фазовый сдвиг: 7,6 часа
Тяжелая изоляция (250 кг / м³): перепады температуры внутренней поверхности: +/- 0.04 ° C, тепловой поток: +/- 0,34 Вт / м², фазовый сдвиг: 14,6 часа
Это означает, что эффект очень хорошо виден с относительной точки зрения. Однако с абсолютной точки зрения разница вряд ли значима, поскольку результирующие общие тепловые потоки незначительны по сравнению с другими источниками тепла (например, незатененными или открытыми окнами).
Временной сдвиг периодического коэффициента теплопередачи
Значение описывает задержку, которую будет иметь тепловая волна, вызванная колебаниями температуры противоположной стороны стены.Чтобы соответствовать другим значениям временного сдвига, отрицательный знак означает, что тепловой поток отстает от колебаний температуры на другой стороне стены. Часто указывается, что необходимо нацелить временной сдвиг на 12 часов, поскольку это означает, что максимум тепловых волн будет приходить на другую сторону стены, когда температуры самые низкие (или наоборот). В отношении компонентов здания, соответствующих современным строительным стандартам, это правило можно считать устаревшим, поскольку фактические колебания температуры поверхности, вызванные колебаниями температуры на противоположной стороне компонента здания, обычно находятся в диапазоне десятых или даже нескольких сотых градусов по Цельсию.Поэтому соответствующие тепловые потоки обычно незначительны.
Внутренняя площадь теплоемкости
Значение внутренней теплоемкости описывает способность строительного элемента аккумулировать тепло в течение суточного цикла. Значение указывает количество тепла, которое может быть сохранено на одном квадратном метре в течение одного дня при колебании температуры в 1 градус, поэтому его единица измерения — кДж / м²K. Поскольку лежащие в основе уравнения линейны, можно умножить это значение на любую другую амплитуду температуры, чтобы вычислить соответствующее количество тепла, которое может быть сохранено.
Площадь теплоемкости рассчитывается путем интегрирования тепловых потоков, описываемых теплопроводностью за целый день. В отличие от способа определения единичной теплопроводности, внутренняя поверхностная теплоемкость учитывает колебания температуры с обеих сторон компонента здания. Следовательно, используя комплексные числа, его можно вычислить на основе внутренней проводимости и периодического пропускания. В зависимости от фактического временного фазового сдвига периодического коэффициента пропускания он может либо увеличивать, либо уменьшать пропускную способность по сравнению с ситуацией с постоянными внешними температурами.Однако, как упоминалось выше, для высоких стандартов изоляции влияние периодического пропускания будет незначительным. По этой причине внутренняя поверхностная теплоемкость обычно в значительной степени пропорциональна внутренней теплопроводности.
Очень важно иметь достаточно большую внутреннюю теплоемкость, чтобы избежать риска перегрева летом и / или снизить связанные с этим затраты на охлаждение. Общая теплоемкость внутренних помещений здания должна быть способна поглощать тепло в дневное время летнего дня, которое затем может отводиться в ночное время с помощью естественной вентиляции при более низких температурах наружного воздуха.Чем больше внутренняя теплоемкость, тем меньше будут колебания внутренней температуры. Очевидно, что, во-первых, дневные потоки тепла в здание следует ограничивать за счет оптимального затенения и удерживания окон и дверей закрытыми.
Чтобы определить полную теплоемкость помещения, вам просто нужно сложить удельную теплоемкость всех конструкций, умноженную на их фактические поверхности (потолок, пол, стена-1, стена-2,…). Используя инструмент, вы обнаружите, что поверхностная теплоемкость в основном зависит от материала самого внутреннего слоя.Этот материал должен быть достаточно теплопроводным и обладать высокой теплоемкостью (в основном определяемой его объемной плотностью и проводимостью).
Это значит: бетонный потолок будет значительно лучше подвесного потолка, каменный пол будет лучше, чем паркет (или даже ковролин), толстая гипсоволокнистая плита будет лучше тонкой гипсокартонной плиты и т. Д.
Теплоемкость внешняя
Соответствуя внутренней поверхностной теплоемкости, он описывает способность строительного компонента аккумулировать тепло в суточном температурном цикле на внешней поверхности.Опять же, тепловой поток, возникающий из-за колебаний температуры на противоположной (внутренней) стороне здания, также учитывается (но обычно имеет второстепенное значение).
С практической точки зрения, внешняя поверхностная теплоемкость может быть интересна, если вы заинтересованы в уменьшении колебаний температуры вашего фасада. Это может быть вопросом комфорта, но есть и еще один важный аспект: очень маленькая внешняя теплоемкость современных фасадов из полистирола является большим недостатком.Это результат сочетания легких изоляционных материалов с очень тонким слоем штукатурки. Недостаток теплоемкости приводит к высоким температурам поверхности в дневное время и — что, возможно, даже более проблематично — к низким температурам поверхности в ночное время. Вследствие чрезвычайно низкой теплоемкости сравнительно низкий эффект радиационного охлаждения, связанный с ясным ночным небом, может снизить температуру фасада даже ниже температуры окружающего воздуха. Следовательно, уровни относительной влажности на поверхностях повышаются и довольно часто достигается точка росы.Таким образом, температура фасада немного ниже температуры окружающей среды может способствовать или значительно стимулировать рост водорослей или грибков на фасаде. В настоящее время эта проблема решается путем добавления проблемных химических ингибиторов роста к рендерам или цветам, которые представляют угрозу для окружающей среды.
Общий
Инструмент Excel разделен на четыре листа с различными функциями:
- Инструмент расчета
Это основной лист, на котором выполняется расчет.Введите здесь слои материала и значения поверхностного сопротивления, чтобы получить результаты (также на этом листе). - Интерактивная диаграмма
На этой странице интерактивная диаграмма показывает изменения температуры и теплового потока во времени. Вы можете установить колебания температуры окружающей среды для одной или обеих сторон компонента здания и просмотреть результирующие тепловые потоки и температуры на обеих поверхностях компонента. - Материалы
На этом листе я представил типичные данные для 200 широко используемых материалов.Вы можете копировать и вставлять значения в таблицу расчета. - Пример проверки
На последнем листе вычисляется пример проверки, предусмотренный стандартом ISO 13786, чтобы подтвердить достоверность алгоритма.
Поверхностное сопротивление R
si и R seПомимо слоев материала, вам нужно будет ввести правильные значения поверхностного сопротивления для ваших расчетов. Они описывают теплопередачу от окружающей среды к поверхностям строительного компонента или от них.Они представляют собой упрощенную модель, поскольку реальный теплообмен происходит за счет комбинации трех различных физических процессов (излучения, конвекции, теплопроводности). Более подробную информацию о теории и рекомендуемых значениях можно найти на специальной странице.
Обратите внимание, что для этих расчетов мощности рекомендуется использовать значение 0,13 м²K / Вт для всех случаев, когда тепловые потоки в основном вызваны колебаниями внутренней температуры и нетто-среднее значение отсутствует или имеет лишь незначительное значение. тепловой поток в течение суток.Это означает, что, когда вы обычно используете 0,10 или 0,17 м²K / Вт для восходящего или нисходящего теплового потока при расчетах коэффициента теплопроводности для потолков или полов, может быть более подходящим использовать 0,13 м²K / Вт для любого случая для расчета тепла. -мощности. Когда основной тепловой поток, вызванный 24-часовыми колебаниями температуры, больше, чем средний чистый отток или приток, и, следовательно, общий тепловой поток меняет свое направление (знак) два раза в день, будет более подходящим использовать это значение.
Внутренние стены, потолки, полы
Конечно, вы также можете использовать этот инструмент для расчета теплоемкости внутренних компонентов здания.В этом случае просто используйте одно и то же значение поверхностного сопротивления (обычно 0,13 м²K / Вт) для каждой стороны компонента. Метки «внутренняя» и «внешняя» будут тогда служить только для обозначения конкретной стороны стены.
Этажей с заземлением
Вы также можете использовать инструмент для расчета внутренней поверхностной теплоемкости полов (или стен) с контактом с землей. Для этой цели я рекомендую добавить слой почвы толщиной 2 м (например, использовать глину / ил из списка материалов) на внешней стороне строительного элемента.В этом случае, конечно, будут интересны только значения внутреннего результата. (Для диаграммы вы должны использовать среднемесячную или среднегодовую температуру почвы на этой глубине).
Диаграмма
Диаграмма поможет вам понять эффект буферизации вашего компонента здания, а также происходящие сдвиги фаз с обеих сторон. Вы можете предположить, что температура колеблется только с одной стороны, чтобы лучше понять последствия, или вы можете предположить, что колебания температуры на обеих поверхностях отражают более реалистичную ситуацию.Суточные колебания температуры можно определить, указав среднюю температуру, амплитуду температуры, а также определенное время для максимальной температуры.
Конечно, возникающие колебания температуры также будут зависеть от результирующих тепловых потоков, проходящих через ваш компонент, но в основном они зависят от солнечной энергии и вентиляции. Следовательно, для точного определения фактических значений потребуется полное моделирование здания. Чтобы понять процесс и оценить потенциальный диапазон температур поверхности и тепловых потоков, будет достаточно использовать реалистичные предположения для внутренних и внешних температур.
Список материалов
Инструмент также включает в себя список параметров материала для прибл. 200 распространенных материалов. Вы можете использовать копирование и вставку для переноса соответствующих материалов в виде слоев на расчетный лист. Для точных расчетов следует использовать точные значения, которые обычно можно найти в паспорте конкретного продукта. Если вы используете наше программное обеспечение HTflux, вы можете использовать дополнительные материалы онлайн-базы данных материалов.
Ссылка для скачивания на бесплатный инструмент расчета
Для более подробного анализа, моделирования, базы данных свойств материалов и т. Д.пожалуйста, используйте наше программное обеспечение HTflux.
www.htflux.com, Даниэль Рюдиссер, © 2018
Этот инструмент Excel разработан для бесплатного использования и распространения. Инструменты прошли валидацию, однако мы не несем ответственности за результаты расчетов или связанные с ними убытки или ущерб.
проводимости | Физика
Цели обучения
К концу этого раздела вы сможете:
- Рассчитать теплопроводность.
- Наблюдать за теплопроводностью при столкновении.
- Изучение теплопроводности обычных веществ.
Рис. 1. Изоляция используется для ограничения теплопроводности изнутри наружу (зимой) и снаружи внутрь (летом). (кредит: Джайлз Дуглас)
Вам холодно в ногах, когда вы идете босиком по ковру в гостиной в холодном доме, а затем ступаете на плиточный пол кухни. Этот результат интригует, так как ковер и кафельный пол имеют одинаковую температуру.Различные ощущения, которые вы испытываете, объясняются разной скоростью теплопередачи: потери тепла в течение одного и того же промежутка времени больше для кожи, контактирующей с плиткой, чем с ковром, поэтому перепад температуры больше на плитке.
Некоторые материалы проводят тепловую энергию быстрее, чем другие. В целом, хорошие проводники электричества (металлы, такие как медь, алюминий, золото и серебро) также являются хорошими проводниками тепла, тогда как изоляторы электричества (дерево, пластик и резина) являются плохими проводниками тепла.На рисунке 2 показаны молекулы в двух телах при разных температурах. (Средняя) кинетическая энергия молекулы в горячем теле выше, чем в более холодном теле. Если две молекулы сталкиваются, происходит передача энергии от горячей молекулы к холодной. Кумулятивный эффект от всех столкновений приводит к чистому потоку тепла от горячего тела к более холодному телу. Таким образом, тепловой поток зависит от разности температур Δ Τ = Τ горячий — T холодный .Таким образом, вы получите более сильный ожог от кипятка, чем от горячей воды из-под крана. И наоборот, если температуры одинаковы, чистая скорость теплопередачи падает до нуля и достигается равновесие. Благодаря тому, что количество столкновений увеличивается с увеличением площади, теплопроводность зависит от площади поперечного сечения. Если прикоснуться ладонью к холодной стене, рука остынет быстрее, чем при прикосновении к ней кончиком пальца.
Рис. 2. Молекулы в двух телах при разных температурах имеют разные средние кинетические энергии.Столкновения, происходящие на контактной поверхности, имеют тенденцию передавать энергию из высокотемпературных областей в низкотемпературные области. На этом рисунке молекула в области более низких температур (правая сторона) имеет низкую энергию перед столкновением, но ее энергия увеличивается после столкновения с контактной поверхностью. Напротив, молекула в области более высоких температур (слева) имеет высокую энергию до столкновения, но ее энергия уменьшается после столкновения с контактной поверхностью.
Третий фактор в механизме теплопроводности — это толщина материала, через который передается тепло.На рисунке ниже показана плита из материала с разными температурами с каждой стороны. Предположим, что T 2 больше T 1 , так что тепло передается слева направо. Передача тепла с левой стороны на правую осуществляется серией столкновений молекул. Чем толще материал, тем больше времени требуется для передачи того же количества тепла. Эта модель объясняет, почему толстая одежда зимой теплее, чем тонкая, и почему арктические млекопитающие защищаются толстым салом.
Рис. 3. Теплопроводность происходит через любой материал, представленный здесь прямоугольной полосой, будь то оконное стекло или моржовый жир. Температура материала составляет T 2 слева и T 1 справа, где T 2 больше, чем T 1 . Скорость теплопередачи за счет теплопроводности прямо пропорциональна площади поверхности A, разности температур T 2 — T 1 и проводимости вещества k .Скорость теплопередачи обратно пропорциональна толщине d .
Наконец, скорость теплопередачи зависит от свойств материала, описываемых коэффициентом теплопроводности. Все четыре фактора включены в простое уравнение, выведенное из экспериментов и подтвержденное экспериментами. Скорость кондуктивной теплопередачи через пластину материала, такую как та, что на Рисунке 3, задается как
.[латекс] \ displaystyle \ frac {Q} {t} = \ frac {kA \ left (T_2-T_1 \ right)} {d} \\ [/ latex],
, где [латекс] \ frac {Q} {t} \\ [/ latex] — скорость теплопередачи в ваттах или килокалориях в секунду, k — теплопроводность материала, A и d — это его площадь поверхности и толщина, как показано на рисунке 3, а ( T 2 — T 1 ) — разность температур по пластине.В таблице 1 приведены типичные значения теплопроводности.
Пример 1. Расчет теплопроводности: скорость теплопроводности через ледяной ящик
Ледяной ящик из пенополистирола имеет общую площадь 0,950 м 2 и стенки со средней толщиной 2,50 см. В коробке есть лед, вода и напитки в банках с температурой 0 ° C. Внутренняя часть ящика охлаждается за счет таяния льда. Сколько льда тает за сутки, если хранить ледяной ящик в багажнике автомобиля при температуре 35,0ºC?
Стратегия
Этот вопрос включает как тепло для фазового перехода (таяние льда), так и передачу тепла за счет теплопроводности.{\ circ} \ text {C}; \\ t & = & 1 \ text {day} = 24 \ text {hours} = 86 400 \ text {s}. \ end {array} \\ [/ latex]
Определите неизвестные. Нам нужно найти массу льда м . Нам также нужно будет вычислить чистое тепло, передаваемое для плавления льда, Q . Определите, какие уравнения использовать. Скорость теплопередачи за счет теплопроводности определяется по формуле
.[латекс] \ displaystyle \ frac {Q} {t} = \ frac {kA \ left (T_2-T_1 \ right)} {d} \\ [/ latex]
Тепло используется для плавления льда: Q мл f .{\ circ} \ text {C} \ right)} {0,0250 \ text {m}} = 13,3 \ text {J / s} \\ [/ latex]
Умножьте скорость теплопередачи на время (1 день = 86 400 с): Q = [латекс] \ left (\ frac {Q} {t} \ right) t \\ [/ latex] = ( 13,3 Дж / с) (86400 с) = 1,15 × 10 6 Дж
Установите равным теплу, передаваемому для растапливания льда: Q = мл f . Решим относительно массы м :
[латекс] \ displaystyle {m} = \ frac {Q} {L _ {\ text {f}}} = \ frac {1.3 \ text {Дж / кг}} = 3,44 \ text {кг} \\ [/ latex]
Обсуждение
Результат 3,44 кг, или около 7,6 фунта, кажется примерно правильным, если судить по опыту. Вы можете рассчитывать на использование мешка льда весом около 4 кг (7–10 фунтов) в день. Если вы добавляете горячую пищу или напитки, потребуется немного льда.
Проверка проводимости в таблице 1 показывает, что пенополистирол — очень плохой проводник и, следовательно, хороший изолятор. Среди других хороших изоляторов — стекловолокно, шерсть и перья из гусиного пуха. Как и пенополистирол, все они включают в себя множество маленьких карманов с воздухом, благодаря низкой теплопроводности воздуха.
Таблица 1. Теплопроводность обычных веществ | |
---|---|
Вещество | Теплопроводность, k (Дж / с⋅м⋅ºC) |
Серебро | 420 |
Медь | 390 |
Золото | 318 |
Алюминий | 220 |
Стальной чугун | 80 |
Сталь (нержавеющая) | 14 |
Лед | 2.2 |
Стекло (среднее) | 0,84 |
Бетонный кирпич | 0,84 |
Вода | 0,6 |
Жировая ткань (без крови) | 0,2 |
Асбест | 0,16 |
Гипсокартон | 0,16 |
Дерево | 0,08–0,16 |
Снег (сухой) | 0,10 |
Пробка | 0.042 |
Стекловата | 0,042 |
Шерсть | 0,04 |
Пуховые перья | 0,025 |
Воздух | 0,023 |
Пенополистирол | 0,010 |
Рис. 4. Ватина из стекловолокна используется для изоляции стен и потолков, чтобы предотвратить теплопередачу между внутренней частью здания и внешней средой.
Комбинацией материала и толщины часто манипулируют для создания хороших изоляторов — чем меньше проводимость k и чем больше толщина d , тем лучше.Соотношение [латекс] \ frac {d} {k} \\ [/ latex], таким образом, будет большим для хорошего изолятора. Отношение [латекс] \ frac {d} {k} \\ [/ latex] называется коэффициентом R . Скорость кондуктивной теплопередачи обратно пропорциональна R . Чем больше значение R , тем лучше изоляция. R Коэффициент чаще всего указывается для бытовой теплоизоляции, холодильников и т.п. — к сожалению, он все еще выражается в неметрических единицах футов 2 · ° F · ч / британских тепловых единиц, хотя единицы обычно не указываются (1 британский тепловая единица [BTU] — это количество энергии, необходимое для изменения температуры на 1.0 фунтов воды при температуре 1,0 ° F). Пара типичных значений: коэффициент R, , равный 11, для стекловолоконных войлоков (кусков) изоляции толщиной 3,5 дюйма и коэффициент R, , равный 19, для стекловолоконных войлоков толщиной, так и 6,5 дюймов. Стены обычно утепляются 3,5-дюймовыми ватными покрытиями, а потолки — 6,5-дюймовыми. В холодном климате для потолков и стен можно использовать более толстые войлоки.
Обратите внимание, что в таблице 1 лучшие теплопроводники — серебро, медь, золото и алюминий — также являются лучшими электрическими проводниками, что опять же связано с плотностью свободных электронов в них.Кухонная утварь обычно изготавливается из хороших проводников.
Пример 2. Расчет разницы температур, поддерживаемой теплопередачей: теплопроводность через алюминиевую сковороду
Вода кипит в алюминиевой кастрюле, поставленной на электрический элемент на плите. Дно кастрюли имеет толщину 0,800 см и диаметр 14,0 см. Кипящая вода испаряется со скоростью 1,00 г / с. Какая разница температур на дне сковороды?
Стратегия
Проводимость через алюминий является здесь основным методом теплопередачи, поэтому мы используем уравнение для скорости теплопередачи и решаем разницу температур .
[латекс] \ displaystyle {T} _2-T_1 = \ frac {Q} {t} \ left (\ frac {d} {kA} \ right) \\ [/ latex]
Решение
Определите известные значения и преобразуйте их в единицы СИ Толщина поддона, d = 0,900 см = 8,0 × 10 −3 м площадь поддона, A = π (0,14 / 2) 2 м 2 = 1,54 × 10 −2 м 2 , а теплопроводность k = 220 Дж / с ⋅ м ⋅ ° C.
Рассчитайте необходимую теплоту испарения 1 г воды: Q = мл v = (1.{\ circ} \ text {C} \\ [/ latex]
Обсуждение
Значение теплопередачи [латекс] \ frac {Q} {t} \ [/ latex] = 2,26 кВт или 2256 Дж / с типично для электрической плиты. Это значение дает очень небольшую разницу температур между плитой и сковородой. Учтите, что конфорка печи раскалилась докрасна, а температура внутри сковороды почти 100ºC из-за контакта с кипящей водой. Этот контакт эффективно охлаждает дно сковороды, несмотря на его близость к очень горячей конфорке плиты.Алюминий настолько хороший проводник, что достаточно лишь этой небольшой разницы температур для передачи тепла в сковороду 2,26 кВт.
Проводимость вызывается случайным движением атомов и молекул. По сути, это неэффективный механизм переноса тепла на макроскопические расстояния и короткие временные расстояния. Возьмем, к примеру, температуру на Земле, которая была бы невыносимо холодной ночью и чрезвычайно высокой днем, если бы перенос тепла в атмосфере происходил только за счет теплопроводности.В другом примере автомобильные двигатели будут перегреваться, если не будет более эффективного способа отвода избыточного тепла от поршней.
Проверьте свое понимание
Как изменяется скорость теплопередачи за счет теплопроводности, когда все пространственные размеры удваиваются?
Решение
Поскольку площадь является произведением двух пространственных измерений, она увеличивается в четыре раза, когда каждое измерение удваивается ( A final = (2 d ) 2 = 4 d 2 = 4 А начальный ).А расстояние просто удваивается. Поскольку разница температур и коэффициент теплопроводности не зависят от пространственных размеров, скорость передачи тепла за счет теплопроводности увеличивается в четыре раза, деленные на два или два:
[латекс] \ left (\ frac {Q} {t} \ right) _ {\ text {final}} = \ frac {kA _ {\ text {final}} \ left (T_2-T_1 \ right)} {d_ {\ text {final}}} = \ frac {k \ left (4A _ {\ text {initial}} \ right) \ left (T_2-T_1 \ right)} {2d _ {\ text {initial}}} = 2 \ frac {kA _ {\ text {initial}} \ left (T_2-T_1 \ right)} {d _ {\ text {initial}}} = 2 \ left (\ frac {Q} {t} \ right) _ {\ text {initial}} \\ [/ latex]
Сводка раздела
- Теплопроводность — это передача тепла между двумя объектами, находящимися в непосредственном контакте друг с другом.
- Скорость теплопередачи [латекс] \ frac {Q} {t} \\ [/ latex] (энергия в единицу времени) пропорциональна разнице температур T 2 — T 1 и площадь контакта A и обратно пропорциональна расстоянию d между объектами: [latex] \ frac {Q} {t} = \ frac {\ text {kA} \ left ({T} _ {2} — {T} _ {1} \ right)} {d} \\ [/ latex].
Концептуальные вопросы
- Некоторые электроплиты имеют плоскую керамическую поверхность со скрытыми нагревательными элементами.Кастрюля, поставленная над нагревательным элементом, будет нагрета, при этом безопасно прикасаться к поверхности всего в нескольких сантиметрах от нее. Почему керамика с проводимостью меньше, чем у металла, но больше, чем у хорошего изолятора, является идеальным выбором для плиты?
- Свободная белая одежда, закрывающая большую часть тела, идеальна для обитателей пустыни как на жарком солнце, так и в холодные вечера. Объясните, чем выгодна такая одежда днем и ночью.
Рисунок 5.Джеллабию носят многие мужчины в Египте. (кредит: Зерида)
Задачи и упражнения
- (a) Рассчитайте коэффициент теплопроводности через стены дома толщиной 13,0 см, у которых средняя теплопроводность в два раза выше, чем у стекловаты. Предположим, что нет ни окон, ни дверей. Площадь стен составляет 120 м 2 2 , их внутренняя поверхность имеет температуру 18,0ºC, а их внешняя поверхность — 5,00ºC. (b) Сколько комнатных обогревателей мощностью 1 кВт потребуется для уравновешивания теплопередачи за счет теплопроводности?
- Скорость теплопередачи из окна в зимний день достаточно высока, чтобы охладить воздух рядом с ним.Чтобы увидеть, насколько быстро окна передают тепло за счет теплопроводности, рассчитайте коэффициент теплопроводности в ваттах через окно размером 3,00 м 2 толщиной 0,635 см (1/4 дюйма), если температура внутренней и внешней поверхностей составляет 5,00 ºC и −10,0ºC соответственно. Такая высокая скорость не будет поддерживаться — внутренняя поверхность остынет и даже может образоваться иней.
- Рассчитайте скорость отвода тепла от тела человека, предполагая, что внутренняя температура ядра составляет 37,0 ° C, а температура кожи равна 34.0ºC, толщина тканей в среднем составляет 1,00 см, а площадь поверхности составляет 1,40 м 2 .
- Предположим, вы стоите одной ногой на керамическом полу и одной ногой на шерстяном ковре, соприкасаясь каждой ногой на площади 80,0 см 2 . И керамика, и ковер имеют толщину 2,00 см и температуру на нижней стороне 10,0 ° C. С какой скоростью должна происходить теплопередача от каждой ступни, чтобы верхняя часть керамики и ковра поддерживала температуру 33,0 ° C?
- Человек потребляет 3000 ккал пищи за один день, преобразовывая большую ее часть для поддержания температуры тела.Если он теряет половину этой энергии из-за испарения воды (при дыхании и потоотделении), сколько килограммов воды испаряется?
- (a) Огненосец бежит по раскаленному углю, не получив ожогов. Рассчитайте теплопроводность, передаваемую подошве одной ступни огнехожника, учитывая, что нижняя часть ступни представляет собой мозоль толщиной 3,00 мм с проводимостью на нижнем пределе диапазона для древесины, а ее плотность составляет 300 кг / м 2. 3 . Площадь контакта 25,0 см 2 , температура углей 700ºC, время контакта 1.00 с. (b) Какое повышение температуры происходит в 25,0 см 3 пораженной ткани? (c) Как вы думаете, какое влияние это окажет на ткань, учитывая, что каллус состоит из мертвых клеток?
- (а) Какова скорость теплопроводности через мех толщиной 3 см у крупного животного с площадью поверхности 1,40 м 2 ? Предположим, что температура кожи животного 32,0ºC, температура воздуха –5,00ºC и мех имеет такую же теплопроводность, как воздух.(б) Какой прием пищи потребуется животному в течение одного дня, чтобы восполнить эту теплопередачу?
- Морж передает энергию путем теплопроводности через свой жир с мощностью 150 Вт при погружении в воду с температурой –1,00 ° C. Внутренняя температура моржа составляет 37,0ºC, а его площадь поверхности составляет 2,00 м 2 . Какова средняя толщина его подкожного жира, который имеет проводимость жировых тканей без крови?
Рис. 6. Морж на льду. (Источник: капитан Бадд Кристман, Корпус NOAA)
- Сравните коэффициент теплопроводности через 13.Стена толщиной 0 см, имеющая площадь 10,0 м 2 и удвоенную теплопроводность, чем у стекловаты, со скоростью теплопроводности через окно толщиной 0,750 см и площадью 2,00 м 2 , предполагая одинаковую разницу температур между ними.
- Предположим, что человек покрыт с головы до ног шерстяной одеждой средней толщины 2,00 см и передает энергию путем теплопроводности через одежду со скоростью 50,0 Вт. Какова разница температур в одежде, если площадь поверхности равна 1.40 м 2 ?
- Некоторые поверхности плит сделаны из гладкой керамики, что облегчает их очистку. Если керамика имеет толщину 0,600 см и теплопроводность происходит через ту же площадь и с той же скоростью, что и в примере 2, какова разница температур в ней? Керамика имеет такую же теплопроводность, как стекло и кирпич.
- Один из простых способов сократить расходы на отопление (и охлаждение) — это добавить дополнительную изоляцию на чердаке дома. Предположим, что в доме уже есть 15 см стекловолоконной изоляции на чердаке и на всех внешних поверхностях.Если добавить на чердак еще 8,0 см стеклопластика, то на какой процент упадет стоимость отопления дома? Возьмем одноэтажный дом размером 10 м на 15 м на 3,0 м. Не обращайте внимания на проникновение воздуха и потерю тепла через окна и двери.
- (a) Рассчитайте коэффициент теплопроводности через окно с двойным остеклением, которое имеет площадь 1,50 м 2 и состоит из двух стекол толщиной 0,800 см, разделенных воздушным зазором 1,00 см. Температура внутренней поверхности 15.0ºC, а снаружи −10,0ºC. (Подсказка: на двух стеклянных панелях наблюдаются одинаковые перепады температуры. Сначала найдите их, а затем перепад температуры в воздушном зазоре. Эта проблема игнорирует повышенную теплопередачу в воздушном зазоре из-за конвекции.) (B) Рассчитайте скорость теплопроводность через окно толщиной 1,60 см той же площади и с такими же температурами. Сравните свой ответ с ответом на часть (а).
- Многие решения принимаются на основе периода окупаемости: времени, которое потребуется за счет экономии, чтобы равняться капитальным затратам на инвестиции.Приемлемые сроки окупаемости зависят от бизнеса или философии. (Для некоторых отраслей период окупаемости составляет всего два года.) Предположим, вы хотите установить дополнительную изоляцию, о которой идет речь в вопросе 12. Если стоимость энергии составляет 1 доллар США за миллион джоулей, а стоимость изоляции составляет 4 доллара США за квадратный метр, тогда рассчитайте простой срок окупаемости. . Возьмем среднее значение Δ T для 120-дневного отопительного сезона равным 15,0 ° C.
- Для человеческого тела, какова скорость теплопередачи через ткани тела при следующих условиях: толщина ткани 3.00 см, изменение температуры 2,00ºC, а площадь кожи 1,50 м 2 . Как это соотносится со средней скоростью передачи тепла телу в результате потребления энергии около 2400 ккал в день? (Никакие упражнения не включены.)
Глоссарий
R-фактор: отношение толщины материала к проводимости
скорость кондуктивной теплопередачи: скорость теплопередачи от одного материала к другому
теплопроводность: способность материала проводить тепло
Избранные решения проблем и упражнения
1.(а) 1.01 × 10 3 Вт; (б) Один
3. 84.0 Вт
5. 2,59 кг
7. (а) 39,7 Вт; (б) 820 ккал
9. 35 к 1, окно к стене
11. 1,05 × 10 3 К
13. (а) 83 Вт; (b) в 24 раза больше, чем у окна с двойным остеклением.
15. 20,0 Вт, 17,2% от 2400 ккал в день
Краткое и простое руководство по значениям U
Понимание и измерение U-значений становится все более важным, поскольку мы стремимся повысить экологичность и производительность наших зданий.
U-Value — это мера общей скорости теплопередачи всеми механизмами при стандартных условиях через конкретную секцию конструкции.
Другими словами, коэффициент теплопередачи используется для измерения того, насколько хорошо или плохо компонент передает тепло изнутри наружу. Чем медленнее или труднее теплопередача через компонент, тем ниже коэффициент теплопередачи. Это означает, что мы ищем более низкую U-ценность.
Чем ниже значение U, тем лучше.
Когда мы говорим о компоненте, мы можем иметь в виду стеклянную панель, деревянную дверь или полную конструкцию здания, такую как полая стена. Мы можем определить, сколько тепла проходит через каждый элемент конструкции здания, и определить коэффициент теплопередачи на основе количества энергии, потерянной через квадратный метр материала.
Не забывайте, что вы можете скачать наше удобное руководство, нажав кнопку ниже:
Нажмите здесь, чтобы загрузитьКакие единицы измерения U-значений?
Показатель U измеряется в Вт / м² K
Это разбивается как: Скорость теплового потока (в ваттах) через 1 м² конструкции при разнице температур в конструкции в 1 градус (K или ˚C)
Пример:
Стена 1 с U-значением 0.3 Вт / м2 K будет терять тепло вдвое меньше, чем стена 2, имеющая коэффициент теплопроводности 0,6 Вт / м2 K
Итак, чем НИЖЕ значение U, тем ЛУЧШЕ.
Чем ниже значение коэффициента теплопередачи, тем эффективнее конструкция сохраняет тепловой поток через конструкцию до минимума.
Важны ли значения U в части L документа, утвержденного строительными нормами?
Показатели Uучитываются в Части L. Утвержденного Строительными нормами документа.В следующих ссылках на Строительные нормы и правила предполагается, что мы всегда имеем в виду новое жилье.
Достижение определенного U-значения — это не упражнение для галочки. Важно, чтобы здание рассматривалось как единое целое. Это отражено в том, как изложена Утвержденная часть L документа. Чтобы соответствовать строительным нормам, необходимо учесть следующие моменты:
Здание должно быть спроектировано таким образом, чтобы показывать, что уровень выбросов углекислого газа для всего здания (уровень выбросов CO2 в жилище или DER) не превышает максимального или целевого уровня выбросов CO2 (TER).
Потери энергии через структуру здания для всего здания (энергоэффективность жилой ткани DFEE) не должны превышать максимального или целевого допуска (целевая энергоэффективность жилой ткани TFEE).
Многие из этих вычислений можно выполнить с помощью программного обеспечения SAP.
Область, которая относится к U-значениям, — это DFEE и TFEE.
DFEE (энергоэффективность жилой ткани) не должна быть хуже, чем TFEE (целевая энергоэффективность ткани).TFEE, кратко изложенный в разделе 5 ADL1A, предоставляет сопутствующие рекомендации по спецификации условного жилища.
Какие значения U необходимы для строительных норм?
В настоящее время Часть L1A строительных норм и правил (которая относится к новым жилищам) выглядит следующим образом:
- Требуемый коэффициент теплопроводности Внешние стены 0,18 Вт / м² · K
- Требуемое значение коэффициента теплопередачи U Стены для вечеринок 0,0 Вт / м²K
- Требование к показателю теплопроводности Этаж 0,13 Вт / м²K
- Требование к U-значению Крыша 0.13 Вт / м² · K
- Требуемый коэффициент теплопроводности Окна (коэффициент теплопередачи всего окна) 1,4 Вт / м² · K
- Требование к показателю U Непрозрачные двери 1,0 Вт / м²K
- Требование к коэффициенту теплопередачи U Полуостекленные двери 1,2 Вт / м²K
Калькулятор U-значения:
В Интернете есть несколько хороших калькуляторов коэффициента U, которые стоит проверить, если у вас мало времени. Некоторые из них предназначены для расчета любого накопления, тогда как другие были разработаны производителями изоляции, которые специально занимаются своими собственными продуктами.
Прокрутите вниз, чтобы просмотреть рекомендуемые онлайн-калькуляторы U-значения.
Как рассчитать значение u
Хотя онлайн-калькуляторы U-значения действительно полезны, а некоторые более интеллектуальные программы для моделирования рассчитают U-значение за вас, стоит научиться делать это самостоятельно, на случай, если он появится на экзамене. В конце концов, это довольно просто, если вы знаете, как это сделать.
Чтобы рассчитать коэффициент теплопередачи для конкретной части конструкции здания, вам нужно немного знать о каждом элементе конструкции.
Тепловое сопротивление (R)
U-значения рассчитываются на основе теплового сопротивления частей, составляющих определенную часть конструкции. Передача тепла противодействует в разной степени в зависимости от материала и поверхности. Термическое сопротивление определяется как мера сопротивления теплопередаче, обеспечиваемая конкретным компонентом строительного элемента.
Для расчета теплового сопротивления необходимо знать толщину материала и значение теплопроводности (K).Эти значения можно найти в справочнике Metric Handbook или Architects Pocket Book (очень полезен Architects Pocket Book , я бы рекомендовал каждому студенту-архитектору иметь копию этой книги).
Теплопроводность материалов (Вт / мК)
R = д / к
Где
R = термическое сопротивление (м2K / Вт)
d = Толщина материала (в метрах — очень важно)
k = теплопроводность материала (Вт / м · K)
Вы должны знать тепловое сопротивление (R), чтобы рассчитать значение u.Если вы указываете стандартные изделия, часто легко найти значения сопротивления для этих элементов. Иногда для получения этих сведений стоит взглянуть на веб-сайты конкретных производителей.
Общее сопротивление (Rt)
Ra — это полость в воздушном пространстве, и ее значения также можно найти в Карманной книге архитекторов.
Как узнать значение Rso и RSI?
Rso — сопротивление внешней поверхности, а Rsi — сопротивление внутренней поверхности.Эти значения указаны в Карманной книге архитекторов как:
.Значение U
Теперь у вас есть значение Rt, расчет прост: один делится на Rt. Вот и ваша U-ценность.
Другие полезные биты:
Architecture.com руководство по U-Value Руководство BRE по U-значениямОдин из наших читателей, Брайан, любезно предоставил доступ к расчетам U-Value живого проекта, чтобы вы могли понять, в чем дело.Щелкните ссылку ниже для просмотра.
Расчет значений U, взвешенных по площади
Брайан также предоставил нам доступ к очень полезному « Part L1B & Что вам нужно знать, чтобы ваше здание прошло »
Онлайн-калькуляторы коэффициента теплопередачи:
Thermal Calc Online
Калькулятор Vesma (Кажется, лучший)
Калькулятор U-Value Rockwool — Только для продуктов Rockwool
Калькулятор U-Value Kingspan — только продукты Kingspan
Британский калькулятор гипса
Артикул
Макмаллан, Р.2007. Науки об окружающей среде в здании
Не забывайте, что вы можете скачать наше удобное руководство, нажав кнопку ниже:
Нажмите здесь, чтобы загрузитьКалькулятор теплоизоляции и проводимости (тепловой поток)
Теплоизоляция — это уменьшение потерь тепла с одной стороны барьера на другую. Свойства материала, используемого для изоляционного слоя (слоев), будут определять скорость потери внутреннего тепла. Все четыре свойства, которые описывают тепловые характеристики барьера, описаны ниже.
Теплопроводность (k)
Теплопроводность одинаково хорошо применима к газу, жидкости и твердому телу, каждый из которых имеет собственное характеристическое значение (например, теплопроводность воды составляет 0,591 Вт / м / К (0,341 БТЕ / ч / фут / об).
В частности, это количество тепла (британские тепловые единицы или калории), которое проходит через барьер единичной толщины (1,0 фут или метр), разделяющий разность единиц температуры (1,0 Ренкина или Кельвина) за единичный период времени (1.0 секунд, минут или часов). Единицы, используемые для описания этого свойства, могут быть в различных формах, смешивая различные единицы длины, но обычно выражаются в британских единицах измерения как «БТЕ / ч / фут / R», а в метрических единицах — как «Вт / м / К».
См. «Применимость» ниже
Скорость передачи тепла (q)
Скорость теплопередачи одинаково хорошо применима к газу, жидкости и твердому телу и относится к скорости, с которой его объем будет терять тепло в окружающую среду.
В частности, это количество тепла (британские тепловые единицы или калории), которое проходит от материала или вещества за единицу времени (1.0 секунд, минут или часов). Единицы, используемые для описания этого свойства, могут быть в различных формах, но обычно выражаются в британских единицах измерения как «Британские тепловые единицы / ч» и в метрических единицах как «W».
См. «Применимость» ниже
Коэффициент теплопередачи (U & h)
Рис. 1. Потери тепла из воды
Коэффициент теплопередачи одинаково хорошо применим к газу, жидкости и твердому телу, но обычно используется в качестве спецификации тепловых свойств для коммерческих продуктов, таких как изоляционные плиты или материалы заданной толщины.Таким образом, если вы умножите это значение на толщину барьерного материала, вы получите теплопроводность материала, из которого барьер изготовлен.
В частности, это количество тепла (британские тепловые единицы или калории), которое проходит через барьер, разделяющий разницу температур (1,0 по Рэнкину или Кельвину) за единичный период времени (1,0 секунда, минута или час). Единицы, используемые для описания этого свойства, обычно выражаются в британской системе мер как «Британские тепловые единицы / ч / фут² / R» или в метрической форме как «Вт / м² / K».
См. «Применимость» ниже
Термическое сопротивление (R)
Термическое сопротивление одинаково хорошо применимо к газу, жидкости и твердому телу и описывает способность материала предотвращать потерю тепла.
В частности, это разница температур (по шкале Ренкина или Кельвина) через барьер, когда через него проходит единичная мощность тепла (британские тепловые единицы в час или ватт) в течение единичного периода времени (1,0 секунда, минута или час). Единицы, используемые для описания этого свойства, обычно выражаются в британской системе мер как «R.ft² / Btu / h / «или в метрической форме как» K.m² / W «.
См. «Применимость» ниже
Тепловые потери
Это то, что вы делаете, чтобы узнать, насколько быстро выравниваются разные температуры через барьер:
1) Умножьте объем (м³) высокотемпературного вещества на его плотность (кг / м³)
2) Умножьте результат на его удельный теплоемкость (Втч / кг / K)
3) Разделите результат на площадь поверхности барьера (м²)
4) Разделите результат на его коэффициент теплопередачи или теплопроводность (Вт / м² / K)
Единицы аннулируются следующим образом: ( м³ . кг . W .h. м² . K ) / ( кг . м³ . K . м² . W ), оставляя вас с «h» (часы)
Если вы хотите попробовать это с водой (cp = 1,163 Втч / кг / K, ρ = 1000 кг / м³) в трубе длиной один метр; Определите среднюю площадь поверхности вашей трубы и объем воды внутри нее:
(Площадь = l.π.Øm = 0,52 м² и объем = l.π.ز / 4 = 0,012668 м³)
примечание: Øm — диаметр середины толщины стенки трубы (включая изоляцию)
и с помощью ThermIns рассчитайте коэффициент теплопередачи (рис. 1):
1) 1000 x 0.012668 = 12,668 кг
2) 1,163 x 12,668 = 14,73252 Втч / К
3) 14,73252 ÷ 0,52 = 28,33539 Втч / К / м²
4) 28,33539 ÷ 0,918082 = 30,86 часов
ThermIns не включает вышеуказанное средство расчета, поскольку это усложняет использование программы и предполагает неверную точность. Например, такой расчет должен предполагать, что….
1) окружающая среда не нагревается в результате теплопередачи
2) емкость изготовлена идеально
3) материалы на 100% однородны
4) все стороны сделаны из одинаковых материалов
5) емкость не соприкасается с любой другой поверхностью
6) источник тепла не пополняется
и т.п.
Немногие из них, если таковые имеются, были бы точными.
В то время как CalQlata планирует выпустить в будущем более полный калькулятор теплопроводности, Thermins может предоставить вам достаточную информацию для проектирования трубы, барьера или контейнера с достаточной уверенностью и точностью.
Калькулятор теплопроводности— Техническая помощь
Рис. 2. Расчет контейнера
Вы можете ввести отрицательные или положительные отклонения температуры в калькуляторе теплопроводности, и оба они дадут вам аналогичные результаты в примере расчета плоского барьера, но вы заметите значительные различия в результатах, которые вы получите при переключении полярности в параметре расчета трубчатого барьера.Это связано с тем, что площади поверхности внутри и снаружи различаются, и, поскольку температура всегда меняется от горячей к холодной, скорость потока в трубу и из нее будет разной.
Контейнеры
Если вы хотите рассчитать тепловые свойства шестигранного контейнера, просто откройте его и обращайтесь с ним как с плоским барьером (см. Рис. 2). В большинстве случаев результаты будут очень близки к реальным.
Конечно, возможны отклонения площади из-за толщины углов, но если толщина стенок не велика по сравнению с размером коробки, ошибка будет минимальной.
Применяемость
Все формулы в калькуляторе теплопроводности основаны на линейных скоростях передачи через все материалы, и все слои изоляции на 100% контактируют со своими соседними слоями. Любые отклонения от приведенного выше не будут отражать реальных ситуаций, однако, если отклонения не значительны, эти ошибки будут минимальными.
Дополнительная литература
Дополнительную информацию по этому вопросу можно найти в справочных публикациях (2, 3 и 12)
Калькулятор U-значения— CBA Block
Он разработан для всех пользователей, но особенно для тех, кто хочет оценить коэффициент теплопередачи, достигаемый с помощью различных комбинаций блоков и теплоизоляции, до завершения проектирования стены.Пользователи должны сделать выбор из каждого раскрывающегося списка.
В раскрывающемся списке внутренней отделки значения R для 5 вариантов изоляционного гипсокартона указаны для гипсокартона, изоляции и воздушного зазора. Некоторые раскрывающиеся списки требуют ввода от пользователя, а другие разрешают внесение изменений:
Внешний рендеринг
Выберите вариант из раскрывающегося списка
Внешняя изоляция
Выберите вариант из раскрывающегося списка. Если будет использоваться внешняя изоляция, необходимо добавить толщину изоляции.
Подробная информация о внешней створке
Выберите вариант из раскрывающегося списка. Можно использовать значения по умолчанию или изменить λ-значение блок-схемы, если соответствующее значение доступно от производителя блока.
Подробная информация о полости
Выберите вариант из раскрывающегося списка. Необходимо указать толщину утеплителя. Необходимо выбрать R-значение остаточной полости (руководство можно получить у производителя изоляции).
Подробная информация о внутренней створке
Выберите вариант из раскрывающегося списка.Можно использовать значения по умолчанию или изменить λ-значение блокирования, если соответствующее значение доступно от производителя блока.
Подробная информация о внутренней отделке
Выберите вариант из раскрывающегося списка.
Примечание: Хотя калькулятор прост в использовании и дает результаты, близкие к результатам, полученным при подробном расчете коэффициента теплопроводности, он включает ряд допущений, таких как тип и плотность стеновых связей. В результате расчет может не соответствовать BS EN ISO 6946 (т. Е. Если допущения программы не совпадают с предположениями проекта)
Коэффициент теплопередачи (значение U) — tec-science
Коэффициент теплопередачи (коэффициент U или коэффициент U) описывает теплопередачу через твердый объект, который находится между двумя жидкостями (газом или жидкостью) с разными температурами.
Определение и единица U-значения
U-значение U показывает, сколько тепловой энергии в единицу времени и единицу площади передается через твердый объект при разнице температур жидкостей в 1 Кельвин (1 ° C). Поэтому значение U также называют коэффициентом теплопередачи . Поэтому значение U указывается в единицах «Ватт на квадратный метр и Кельвин» Вт / (м²⋅K). Тепло, передаваемое за единицу времени и единицу площади, также называется тепловым потоком q *.
\ begin {align}
\ label {def}
& \ boxed {U: = \ frac {Q} {\ Delta t \ cdot A \ cdot \ Delta T}} \\ [5px]
& U = \ underbrace { \ frac {Q} {\ Delta t}} _ {\ text {скорость теплового потока} \ dot Q} \ cdot \ frac {1} {A \ cdot \ Delta T} \\ [5px]
& U = \ underbrace {\ frac {\ dot Q} {A}} _ {\ text {heat flux} \ dot q} \ cdot \ frac {1} {\ Delta T} \\ [5px]
& \ boxed {U: = \ frac {\ dot q} {\ Delta T}} \\ [5px]
\ end {align}
Чем выше значение U, тем больше тепла проходит через объект в течение определенного времени и тем ниже изоляция.Таким образом, низкие значения U означают хорошие теплоизоляционные свойства.
Значение U зависит в основном от теплопроводности твердого тела (передача тепла за счет теплопроводности), но также от коэффициента теплопередачи между жидкостью и твердым телом или твердым телом и жидкостью (передача тепла за счет тепловой конвекции). Кроме того, происходит передача тепла за счет теплового излучения. Однако на практике значение U для различных компонентов обычно не определяется на основе теплопроводности или коэффициента теплопередачи, а определяется экспериментально.
Рис.: Тепловой поток через стену за счет тепловой конвекции и теплопроводностиСогласно уравнению (\ ref {def}) для заданной разности температур ΔT в установившемся состоянии только количество тепла Q, проходящего через площадь поверхности A в пределах время Δt необходимо определить. Для измерения теплового потока используются специальные измерители теплового потока (HFM).
Значение U-значения
Показатель U особенно важен для оболочки зданий. В строительстве это воздух.В этом случае окна, кладка, штукатурка или другие изоляционные материалы служат теплопередающими твердыми телами. Эти компоненты должны максимально предотвращать теплопередачу между интерьером дома и окружающей средой. Что касается теплоизоляции, целью всегда является использование материалов с наименьшими возможными значениями коэффициента теплопередачи для достижения максимально возможного изоляционного эффекта.
Рисунок: Сборка стены здания для расчета значения UИспользуя значение U объектов, тепловой поток q *, проходящий через компонент, может быть определен на основе текущей разницы температур ΔT:
\ begin {align}
& \ boxed {\ dot q = U \ cdot \ Delta T} ~~~ \ text {тепловой поток (скорость теплового потока на единицу площади)} \\ [5px]
\ end {align }
Если площадь объекта A известна, то можно определить скорость теплового потока Q *, передаваемого через компонент:
\ begin {align}
& \ boxed {\ dot Q = U \ cdot A \ cdot \ Delta T} ~~~ \ text {скорость теплового потока} \\ [5px]
\ end {align}
Количество тепла Q, которое прошло за время Δt, окончательно вычисляется по следующей формуле:
\ begin {align}
& \ boxed {Q = U \ cdot A \ cdot \ Delta T \ cdot \ Delta t} ~~~ \ text {тепло, которое проникло в объект} \\ [5px]
\ end { align}
Расчет коэффициента теплопередачи (тепловое сопротивление)
Для расчета коэффициента теплопередачи полезно определить различных тепловых сопротивления в зависимости от различных механизмов теплопередачи.Сумма этих сопротивлений дает общее тепловое сопротивление, обратное значение которого в конечном итоге соответствует коэффициенту теплопередачи (U-значению).
Коэффициент теплопроводности и термическое сопротивление проводимости
Коэффициент теплопроводности материала λ показывает, сколько тепла в единицу времени и единицу площади проходит через материал при заданной разности температур ΔT.
Рисунок: Коэффициент теплопередачи и тепловое сопротивление проводимостиЧем выше теплопроводность материала, тем выше теплопередача за счет теплопроводности.Для заданной разницы температур результирующий тепловой поток q * λ существенно зависит от толщины Δx материала (см. Закон Фурье) — например, в течение определенного времени через толстую стенку проходит меньше тепла, чем через тонкую. .
\ begin {align}
& \ boxed {\ dot q_ \ lambda = \ lambda \ cdot \ frac {\ Delta T} {\ Delta x}} ~~~~~ \ text {закон Фурье} \\ [5px]
& \ dot q_ \ lambda = \ underbrace {\ frac {\ lambda} {\ Delta x}} _ {\ text {коэффициент теплопередачи} \\ {\ text {проводимости} \ Lambda}} \ cdot \ Delta T \ \ [5px]
\ end {align}
Поскольку сочетание теплопроводности и толщины материала является свойством компонента, эти величины объединяются в новую величину: коэффициент теплопроводности и теплопроводность Λ.Обратите внимание, что эта величина не описывает общий коэффициент теплопередачи (значение U) компонента, а описывает только теплопередачу за счет теплопроводности):
\ begin {align}
\ label {ql}
& \ boxed {\ dot q_ \ lambda = \ Lambda \ cdot \ Delta T} ~~~ \ text {where} ~~ \ boxed {\ Lambda = \ frac { \ lambda} {\ Delta x}} ~~ \ text {коэффициент теплопроводности} \\ [5px]
\ end {align}
Коэффициент теплопроводности — это величина, зависящая от компонента, которая описывает передачу тепла через компонент за счет теплопроводности!
Чем больше коэффициент теплопроводности, тем больше тепла передается за счет теплопроводности и тем ниже эффект изоляции.Следовательно, величина, обратная коэффициенту теплопередачи, называется термическим сопротивлением R:
. \ begin {align}
& R: = \ frac {1} {\ Lambda} \\ [5px]
\ label {a}
& \ boxed {R = \ frac {\ Delta x} {\ lambda}} ~ ~ [R] = \ frac {\ text {m²K}} {\ text {W}} ~~~ \ text {тепловое сопротивление теплопроводности} \\ [5px]
\ end {align}
Тепловое сопротивление теплопроводности — это величина, зависящая от компонента, которая является мерой теплоизоляции компонента с точки зрения теплопроводности!
Коэффициент теплопередачи и тепловое сопротивление конвекции
Коэффициент теплопередачи α описывает, сколько тепла в единицу времени и единицу площади при заданной разности температур ΔT протекает через границу раздела между жидкостью и твердым телом или наоборот.
В отличие от теплопроводности, которая описывает теплопередачу внутри твердого тела, коэффициент теплопередачи описывает теплопередачу за счет тепловой конвекции на границе раздела между жидкостью и твердым телом! Чем выше коэффициент теплопередачи, тем сильнее теплопередача за счет конвекции. Для теплового потока в данном случае применяется:
\ begin {align}
\ label {qk}
& \ boxed {\ dot q_ \ text {s} = \ alpha \ cdot \ Delta T} \\ [5px]
\ end {align}
Индекс s означает s urface и означает, что этот тепловой поток относится к границе раздела между жидкостью и твердым телом.
Коэффициент теплопередачи описывает как величину, зависящую от компонентов, теплопередачу на границе раздела между жидкостью и твердым телом за счет конвекции!
Примечание : В строительстве коэффициент теплопередачи часто обозначается буквой h вместо α.
Чем выше коэффициент теплопередачи, тем больше тепла передается за счет конвекции и тем ниже эффект изоляции. Следовательно, величина, обратная коэффициенту теплопередачи, называется тепловым сопротивлением конвекции R s (также называемым сопротивлением теплопередаче ):
\ begin {align}
\ label {rk}
& \ boxed {R_ \ text {s} = \ frac {1} {\ alpha}} ~~ [R_ \ text {s}] = \ frac {\ text {m²K}} {\ text {W}} ~~~ \ text {тепловое сопротивление конвекции} \\ [5px]
\ end {align}
Тепловое сопротивление конвекции — это величина, зависящая от компонента, которая является мерой теплоизоляции компонента по отношению к тепловой конвекции!
Передача тепла тепловым излучением
Математическое описание теплового излучения в принципе можно описать аналогично описанию теплопроводности или конвекции.Однако на практике экспериментальное определение коэффициента теплопередачи всегда включает тепловое излучение. Таким образом, тепловой поток согласно уравнению (\ ref {qk}) является результатом той части, которая фактически обусловлена конвекцией (α c ) и тепловым излучением (α r ):
\ begin {align}
\ label {qs}
& \ boxed {\ dot q_ \ text {s} = \ left (\ alpha_ \ text {c} + \ alpha_ \ text {r} \ right) \ cdot \ Дельта T} \\ [5px]
\ end {align}
В этом отношении тепловое излучение уже учитывается термическим сопротивлением конвекции в соответствии с уравнением (\ ref {rk}):
\ begin {align}
& \ boxed {R_ \ text {s} = \ frac {1} {\ alpha} = \ frac {1} {\ alpha_ \ text {c} + \ alpha_ \ text {r}} } \\ [5px]
\ end {align}
В строительстве тепловое излучение обычно играет заметную роль только при больших перепадах температур.Эта ситуация обычно не дается с оболочкой здания. В этом случае тепловое излучение имеет второстепенное значение. В случае труб с горячей водой, однако, из-за большой разницы температур между водой и окружающей средой тепловое излучение может играть более значительную роль, и в этом случае необходимо явно учитывать.
Чтобы также принять меры по ограничению потерь тепла через излучение, трубы с горячей водой обычно оборачиваются светоотражающей пленкой в дополнение к теплоизоляционному слою.Это сводит к минимуму потери излучения из-за возникающих отражений и, таким образом, предотвращает передачу тепла излучением в максимально возможной степени.
Рисунок: Теплоизоляция трубы для горячей воды с отражающей фольгойОбщее тепловое сопротивление и коэффициент теплопередачи (значение U)
Если тепло должно переходить от одной текучей среды к другой текучей среде, разделенной твердым телом, тепло должно сначала преодолеть тепловое сопротивление конвекции на внутренней внутренней части твердого тела, так сказать.Затем необходимо преодолеть тепловое сопротивление проводимости , чтобы пройти через твердое тело на другую сторону. Наконец, происходит дальнейшая теплопередача между твердым телом и жидкостью, которая также будет регулироваться конвекцией ( тепловое сопротивление конвекции ).
Рисунок: Тепловое сопротивление конвекции и теплопроводности и общее тепловое сопротивлениеОбратите внимание, что тепловое сопротивление конвекции внутри обычно отличается от теплового сопротивления снаружи. Это особенно верно, если компонент изготовлен из разных слоев материала, и поэтому внешняя и внутренняя поверхности сделаны из разных материалов, каждый из которых имеет разное тепловое сопротивление.Скорость ветра также играет роль, особенно в зданиях, которые, очевидно, внутри здания отличаются от скорости снаружи. Это также означает, что конвективная теплопередача внутри стены отличается от таковой снаружи.
Разница в тепловом сопротивлении обозначается дополнительной буквой. Термическое сопротивление R si обозначает тепловое сопротивление конвекции на внутренней стороне и , а R se обозначает тепловое сопротивление на внешней стороне и .Термины внутренний и внешний относятся к направлению теплового потока, то есть от «холода к теплу».
Сумма двух тепловых сопротивлений конвекции на внешней и внутренней стороне (R si и R se ), а также тепловое сопротивление проводимости R твердого тела, в конечном итоге дает общее тепловое сопротивление R T :
\ begin {align}
& \ boxed {R_ \ text {T} = R_ \ text {si} + R + R_ \ text {se}} ~~~ \ text {общее тепловое сопротивление} \\ [5px]
\ end {align}
Если рассматриваемый компонент представляет собой сборку из нескольких различных слоев материала, за основу следует взять сумму соответствующих термических сопротивлений (обратите внимание, что нет тепловой конвекции между отдельными слоями):
\ begin {align}
& \ boxed {R_ \ text {T} = R_ \ text {si} + \ sum R + R_ \ text {se}} ~~~ \ text {общее тепловое сопротивление} \\ [5px ]
\ end {align}
Отдельные сопротивления тепловому потоку можно рассматривать как аналог электрических сопротивлений в электротехнике.Если резисторы соединены последовательно, отдельные сопротивления могут быть добавлены к общему сопротивлению.
Обратное значение общего теплового сопротивления в конечном итоге соответствует общему коэффициенту теплопередачи (значение U):
\ begin {align}
& \ boxed {U = \ frac {1} {R_ \ text {T}} = \ frac {1} {R_ \ text {si} + \ sum R + R_ \ text {se} }} ~~~ \ text {значение U} \\ [5px]
\ end {align}
Пример расчета коэффициента теплопередачи в наружной оболочке здания
Далее будет рассчитан коэффициент теплопроводности стены здания.Изнутри наружу стена имеет следующую конструкцию:
- штукатурка (2 см)
- Кладка из кирпича (30 см)
- Слой теплоизоляции (16 см)
- штукатурка (2 см)
Строгое говоря, теплопередача между воздухом и внутренней штукатуркой или внешней штукатуркой и воздухом зависит не только от температуры. Также скорость воздуха (скорость ветра вне здания) влияет на теплопередачу.Поскольку разница в плотности воздуха приводит к свободной конвекции, направление теплового потока также влияет на теплопередачу. Следовательно, необходимо различать горизонтальный, восходящий и нисходящий тепловой поток.
Для упрощения расчета следующие значения теплового сопротивления конвекции в зависимости от направления теплового потока приведены в соответствии с DIN EN 6946:
термическое сопротивление конвекция м²⋅K / Вт | горизонтально | вверх | вниз |
---|---|---|---|
3 с.13 | 0,10 | 0,17 | |
R se | 0,04 | 0,04 | 0,04 |
Значения теплопроводности указанных слоев материала можно найти в таблицах. При соответствующей толщине слоя тепловое сопротивление проводимости может быть определено в соответствии с уравнением (\ ref {a}):
материал | термический проводимость λ ( м²⋅K / Вт ) | слой толщина Δx (м) | термическое сопротивление 33 R (м²⋅K / Вт) | |||||
---|---|---|---|---|---|---|---|---|
гипс | 0.40 | 0,02 | 0,05 | |||||
кладка | 0,50 | 0,30 | 0,60 | |||||
слой теплоизоляции | 0,032 | 0,16 | 0,032 | 0,16 | 9032 0,08 |
Сумма отдельных тепловых сопротивлений дает общее тепловое сопротивление R T
\ begin {align}
R_ \ text {T}
& = R_ \ text {si} + \ sum R + R_ \ text {se} \\ [5px]
& = R_ \ text {si} + R_ \ text {штукатурка} + R_ \ text {masonry} + R_ \ text {изоляция} + R_ \ text {render} + R_ \ text {se} \\ [5px]
& = \ left (0.13+ 0,05 + 0,60 + 5,00+ 0,08 + 0,04 \ right) \ tfrac {\ text {m²} \ cdot \ text {K}} {\ text {W}} \\ [5px]
& = \ underline {5.90 \ tfrac {\ text {m²} \ cdot \ text {K}} {\ text {W}}} \\ [5px]
\ end {align}
Обратное значение полного теплового сопротивления в итоге дает U-значение стены нашего здания:
\ begin {align}
& U = \ frac {1} {R_ \ text {T}} = \ frac {1} {5.90 \ tfrac {\ text {m²} \ cdot \ text {K}} {\ text { W}}} = \ underline {0.44 \ tfrac {\ text {W}} {\ text {m²} \ cdot \ text {K}}} \\ [5px]
\ end {align}
Коэффициент теплопроводности стены равен 0.17 (в основном обозначается без единиц измерения) и, таким образом, ниже значения 0,24, предписанного Постановлением об энергосбережении Германии (EnEV). В этом случае значение U значительно зависит от слоя теплоизоляции, без которого значение U было бы 1,11. Таким образом, без теплоизоляции потери тепла через стену здания будут примерно в 6,5 раз выше.
Как рассчитать коэффициент теплопередачи (значение U) в оболочке здания
Как рассчитать коэффициент теплопередачи (значение U) в оболочке здания
Cortesía de ArchDaily ShareShare-
Facebook
-
Twitter
-
Pinterest
-
Whatsapp
-
Почта
Или
https: // www.archdaily.com/898843/how-to-calculate-the-thermal-transmittance-u-value-in-the-envelope-of-a-buildingПри разработке пакета проектов мы должны уделять особое внимание каждому из элементы, которые составляют его, поскольку каждый из этих слоев имеет определенные качества, которые будут иметь решающее значение для теплового поведения нашего здания в целом.
Если мы разделим 1 м2 нашего конверта на разницу температур между его поверхностями, мы получим значение, соответствующее коэффициенту теплопередачи, также называемое U-Value.Это значение говорит нам об уровне теплоизоляции здания по отношению к проценту энергии, которая проходит через него; если результирующее число будет низким, мы получим хорошо изолированную поверхность, и, наоборот, большое число предупреждает нас о термически дефектной поверхности.
Выраженное в Вт / м² · К, коэффициент теплопередачи зависит от теплового сопротивления каждого из элементов, составляющих поверхность (процент, в котором строительный элемент препятствует прохождению тепла), и это, в В частности, подчиняется толщине каждого слоя и его теплопроводности (способности проводить тепло от каждого материала).Давайте рассмотрим формулы, необходимые для расчета коэффициента теплопередачи нашей оболочки.
Тепловая оболочка
Тепловая оболочка определяется как «оболочка» здания, которая защищает тепловой и акустический комфорт его внутренних помещений. Он состоит из его непрозрачных стен (стены, полы, потолки), его рабочих элементов (дверей и окон) и его тепловых мостов, которые представляют собой все те точки, которые позволяют теплу легче проходить (точки с геометрическими вариациями или изменениями формы). материалы).
Cortesía de ArchDailyВ случае конвертов, которые не являются полностью однородными по своей длине, например, в металлических или деревянных конструкциях, можно выполнить дифференцированные расчеты для разных областей и получить более точные результаты. Итоговая сумма затем рассчитывается на основе приблизительного процента для каждого из них, которое можно найти в местных стандартах и правилах, соответствующих местоположению проекта.
Расчет коэффициента теплопередачи
Общая формула для расчета значения U:
U = 1 / Rt
Где:
- U = коэффициент теплопередачи (Вт / м² · K) *
- Rt = Общее термическое сопротивление элемента, состоящего из слоев (м² · K / Вт), получено согласно:
Rt = Rsi + R1 + R2 + R3 +… + Rn + Rse
Где:
- Rsi = Термическое сопротивление внутренней поверхности (согласно нормативам по климатическим зонам)
- Rse = термическое сопротивление внешней поверхности (согласно нормативам по климатическим зонам)
- R1, R2, R3, Rn = термическое сопротивление каждого слоя, которое получается согласно:
R = D / λ
Где:
Коэффициент теплопередачи обратно пропорционален тепловому сопротивлению: чем больше сопротивление материалов, из которых состоит оболочка, тем меньше тепла теряется через нее.
U = 1 / R
R = 1 / U
Cortesía de ArchDailyКлиматические зоны
При получении нашего значения U мы должны сравнить его со значением максимального (или предельного) коэффициента теплопередачи, указанного для климатическая зона, в которой расположен наш проект, зимой и летом. Это число было определено официальными местными правилами, которые вы должны внимательно изучить, чтобы обеспечить надлежащее функционирование.