Кривая сопротивления гидравлической системы: Гидравлический расчет простых трубопроводов

Гидравлический расчет простых трубопроводов

6.5. Гидравлический удар

Гидравлическим ударом называется резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении потока рабочей жидкости. Этот процесс является очень быстротечным и характеризуется чередованием резких повышений и понижений давления, которое связано с упругими деформациями жидкости и стенок трубопровода. Гидравлический удар чаще всего возникает при резком открытии или закрытии крана или другого устройства, управляемого потоком.

Пусть в конце трубы, по которой движется жидкость со скоростью υ0, произведено мгновенное закрытие крана (рис. 6.10, а).

Рис. 6.10. Стадии гидравлического удара

При этом скорость частиц, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается в соответствии с увеличением давления на величину ΔPуд, которое называется ударным.

Область (сечение n — n), в которой происходит увеличение давления, называется ударной волной. Ударная волна распространяется вправо со скоростью c, называемой скоростью ударной волны.

Когда ударная волна переместится до резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы — растянутыми. Ударное повышение давления распространится на всю длину трубы (рис. 6.10, б).

Далее под действием перепада давления ΔPуд частицы жидкости устремятся из трубы в резервуар, причем это течение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение n-n перемещается обратно к крану с той же скоростью c, оставляя за собой выровненное давление P0 (рис. 6.10, в).

Жидкость и стенки трубы предполагаются упругими, поэтому они возвращаются к прежнему состоянию, соответствующему давлению

P0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость υ0, но направленную теперь в противоположную теперь сторону.

С этой скоростью весь объем жидкости стремится оторваться от крана, в результате возникает отрицательная ударная волна под давлением P0 — ΔPуд, которая направляется от крана к резервуару со скоростью c, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость, что обусловлено снижением давления (рис. 6.10, д). Кинетическая энергия жидкости вновь переходит в работу деформаций, но противоположного знака.

Состояние трубы в момент прихода отрицательной ударной волны к резервуару показано на рис. 6.10, е. Так же как и для случая, изображенного на рис. 6.10, б, оно не является равновесным. На рис. 6.10, ж, показан процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью υ

0.

Очевидно, что как только отраженная от резервуара ударная волна под давлением ΔP уд достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится.

Протекание гидравлического удара во времени иллюстрируется диаграммой, представленной на рис. 6.11, а и б.

Штриховыми линиями показано теоретическое изменение давления у крана в точке А, а сплошной действительный вид картины изменения давления по времени (рис. 6.11, а). При этом затухание колебаний давления происходит за счет потерь энергии жидкости на преодоление сил трения и ухода энергии в резервуар.

Если давление P0 невелико (P0 P уд), то картина изменения амплитуды давления получается несколько иная, примерно такая, как показано на рис. 6.11, б.

Рис. 6.11. Изменение давления по времени у крана

Повышение давления при гидравлическом ударе можно определить по формуле

ΔPуд = ρυ0c

Данное выражение носит название формулы Жуковского. В нем скорость распространения ударной волны c определится по формуле:

где r — радиус трубопровода;
E — модуль упругости материала трубы;
δ — толщина стенки трубопровода;
K — объемный модуль упругости (см. п.1.3)

Если предположить, что труба имеет абсолютно жесткие стенки, т.е. E = , то скорость ударной волны определится из выражения

Для воды эта скорость равна 1435 м/с, для бензина 1116 м/с, для масла 1200 — 1400 м/с.

6.6. Изменение пропускной способности трубопроводов в процессе их эксплуатации

При проектировании напорных трубопроводов следует учитывать, что их пропускная способность в период эксплуатации снижается (например, для водопроводных труб до 50% и даже ниже). Вследствие коррозии и образования отложений в трубах (инкрустации), шероховатость труб увеличивается. Это можно оценить по формуле:

kt = k0 + αt

где k0 — абсолютная шероховатость для новых труб, (мм),
kt — шероховатость через t лет эксплуатации,
α — коэффициент характеризующий быстроту возрастания шероховатости (мм/год).

Таблица 6.1

Проверить себя ( Тест )

Наверх страницы

Вывод уравнения гидравлической характеристики трубопровода.

При гидравлическом расчете трубопроводов весьма широко используется гидравлические методы расчета. Применение этого метода значительно облегчает и улучшает решение некоторых сложных задач, а в отдельных случаях (например, при исследовании совместной работы некоторых центробежных насосов на один общий трубопровод) является практически единственно возможным приемом, позволяющим получать искомое решение.

Гидравлической характеристикой трубопровода называется графическая зависимость напора, необходимого для перемещения жидкости по трубопроводу, от заданного расхода, т.е.

Для построения графической характеристики трубопровода необходимо знать уравнение, которым выражается интересующая нас зависимость.

 
 

Рассмотрим схему насосной установки, подающей жидкость из одного резервуара в другой (рисунок. 1).

 

Рисунок 1.

 

На рисунке представлена производная схема трубопровода, соединяющего приемный резервуар (2) с напорным резервуаром (3). Из рисунка видно, что напор, созданный в начальном сечении трубопровода насосом (1), затрачивается на:

— сообщение жидкости геометрического напора путем поднятия её с приемного резервуара в напорный;

— создание скоростного напора;

— преодоление гидравлических сопротивлений трубопровода;

— поддержание избыточного давления в конечном сечении трубопровода, которое необходимо для преодоления гидростатического давления в напорном резервуаре на уровень конечного сечения.

Величина гидростатического давления в напорном резервуаре определяется расстоянием h от оси трубопровода, входящего в резервуар 3, и равна

PK = gh

 

где PK — величина давления в конечном сечении трубопровода.

Для вывода уравнение, характеризующего зависимость

 

воспользуемся уравнением Бернулли для реальной жидкости и применим его к схеме насосной установки (рисунок 1).

Выберем два сечения, проходящих по свободной поверхности жидкости в резервуарах 2 и 3 (сечения 1-1 и 2-2). За плоскость отсчета принимаем свободную поверхность жидкости в резервуаре 2.

Для выбранных двух сечений напишем уравнение Бернулли

 

 

Проанализируем члены уравнения Бернулли:

z1=0 ; z2Г; 1= 2 — т.к. при одинаковых диаметрах скорости также одинаковы.

 

Тогда уравнение Бернулли примет вид

 

Обозначим

,

где — разность напоров в начальном и конечном сечениях.

 

Потери напора между сечениями 1-1 и 2-2 складывается из суммы напора по длине трубопровода и суммы потерь напора на местные сопротивления:

Потер напора по длине трубопровода определяются по формуле Дарси-Вейсбаха

Потери напора на местные сопротивления определяются из выражения :

Тогда общие потери будут равны

(1) В полученном уравнение (1) выразим скорость через расход:

;

тогда

С учетом принятых значений и уравнение Бернулли будет иметь вид

 

Обозначим ,

где — характеристический коэффициент трубопровода (иначе называется сопротивлением трубопровода).

Характеристический коэффициент определяется длиной трубопровода, его диаметром, шероховатостью, местными сопротивлениями и для данного трубопровода является постоянной величиной.

Окончательное уравнение гидравлической характеристики трубопровода имеет вид

Для полевых магистральных трубопроводов потеря напора на местные сопротивления по сравнению с потерями по длине трубопровода являются незначительными и при гидравлических расчетах ПМТ ими пренебрегают. С учетом этого характеристический коэффициент для ПМТ имеет вид

По виду уравнение

 

можно заключить, что гидравлическая характеристика трубопровода представляет собой параболу, симметричную относительно вертикальной оси, направленную выпуклостью вниз с вершиной, смещенной относительно начала координат на величину НГ.

Если конечное сечение трубопровода размещено на одном уровне с начальным сечением трубопровода относительно плоскости отсчета (т. е. Z2-Z1=0), тогда геометрическая высота НГ равна нулю, а вершина параболы совпадает с началом осей координат (рисунок 2а).

Если конечное сечение трубопровода расположено выше начального сечения, тогда геометрическая высота НГ будет иметь знак плюс и вершина параболы будет лежать выше начала координат на величину Z2-Z1 (рисунок 2б).

Если конечное сечение трубопровода лежит ниже начального сечения трубопровода, тогда геометрическая высота НГ будет иметь знак минус и вершина параболы будет лежать ниже начала координат на величину Z2-Z1 (рисунок 2в).

Гидравлическая характеристика трубопровода может выражаться одним из трех графиков (рисунок 2 а,б,в.)

 
 

Рисунок 2

Вывод по первому вопросу

Полученное уравнение гидравлической характеристики может быть использовано при решении задач по определению режимов работы насосных агрегатов на трубопровод.

 

2. Методика построения гидравлической характеристики трубопровода.

 

Чтобы построить график гидравлической характеристики трубопровода необходимо выдержать следующую последовательность.

1. Вычислить характеристический коэффициент “С” и составить уравнение.

Характеристический коэффициент определяют по формуле:

Если вместо коэффициентов местных сопротивлений дана эквивалентная длина местных сопротивлений, то в уравнение подставляется расчетная длина трубопровода lp , которая равна

lp = l + lэ

где l — фактическая длина трубопровода;

lэ — эквивалентная длина местных сопротивлений.

Тогда уравнение для определения характеристического коэффициента трубопровода примет вид

При составлении расчетного уравнения

H = HГ + СQ2

в него подставляются значение Нг и определено по уравнению значение С.

2. Задаться расходом жидкости Q и вычислить для каждого заданного значения расхода Q значение . При этом могут быть два случая:

а) расход жидкости не задан. Тогда задаются произвольным значением расхода по арифметической прогрессии, начиная с нуля, с одной и той же разностью;

б)расход жидкости задан. Тогда заданный расход необходимо взять в “вилку” расходов, начиная с нуля.

3. Построить гидравлическую характеристику трубопровода.

Для этого выбирают два масштаба — горизонтальный по оси расхода в м2/с и вертикальный для разности напоров в метрах. Нанести точки и соединить их плавной кривой.

Методику построения гидравлических характеристик трубопровода рассмотрим на примере практического решения задачи.

 

ЗАДАЧА.

Построить гидравлическую характеристику трубопровода, подающего автобензин, если :

— длина трубопровода l=6000 м

— диаметр d=150 мм

— геометрическая высота Нг=18 м

— коэффициент Дарси =003

— эквивалентная длина местных сопротивлений lэ=4% от l

 

Решение

1. Вычислим характеристический коэффициент С и составим расчетное уравнение

lp = l + lэ=6000 + 240 = 6240 м

с25

 

Расчетное уравнение будет иметь вид

2. Задаемся расходом и вычисляем

 

Q м3 0.004 0.008 0.012 0.016 0.02
H м

 

При Q1=0 Н1= 18 м

При Q2=0/004 H2= 18+208000*(0.004)2= 21 м и т.д.

Выбираем масштаб

— горизонтальный — в 1 см — 0.004 м3

— вертикальный — в 1 см — 10 м

3. Строим гидравлическую характеристику трубопровода (рисунок 3).

 

 
 

Рисунок 3

По построенной характеристике мы можем для данного трубопровода решать следующие задачи без вычислений :

— определять необходимый напор для перекачки горючего с заданной производительностью;

— определять производительность трубопровода при заданном напоре.

Вывод по второму вопросу.

Рассмотренная методика облегчает процесс построения гидравлических характеристик простых трубопроводов.

 

3.Принцип построения гидравлических характеристик сложных трубопроводов.

 

В зависимости от конфигурации трубопроводы делятся на простые и сложные.

Простым трубопроводом называется трубопровод не имеющий разветвлений на пути движения жидкости от точки забора до точки потребления. Примером такого трубопровода может быть ПМТ, развернутый от фронтового склада до его отделения.

Сложным трубопроводом называется трубопровод, который представляет собой сеть труб, состоящую из основной магистральной линии и ряда отходящих от нее ответвлений.

Сложные трубопроводы делятся на следующие основные виды: последовательное соединение, параллельное соединение, разветвленные трубопроводы и др.

Рассмотренная во втором вопросе лекции методика построения гидравлической характеристики относится к простому трубопроводу. Построение гидравлической характеристики сложного трубопровода имеет ряд особенностей.

Рассмотрим принцип построения гидравлических характеристик для некоторых сложных трубопроводов.

а) Последовательное соединение трубопроводов

Схему последовательного соединения трубопроводов можно представить так :

 

 

d1 d 2

 

 

Рисунок 4

 

Расход жидкости в любом сечении трубопровода, исходя из уравнения неразрывности потока будет одинаковым, т. е.

 

Q = const

 

а общие потери напора будут равны сумме потерь напора на отдельных участках

h = h1 + h2

 

Для построения гидравлической характеристики такого трубопровода необходимо построить гидравлические характеристики каждого участка трубопровода отдельно (по методике построения гидравлической характеристики для простого трубопровода), а затем построить суммарную гидравлическую характеристику для всей линии трубопровода.

На рисунке 5 построены характеристики участков последовательного включения трубопроводов: кривая I представляет собой характеристику участка 1, крива II — участка 2.

 
 

Дальнейшее построение суммарной характеристики ведут следующим порядком. Так как при последовательном соединении потери напора суммируются, то кривые I и II сложим по вертикали. Для этого проведем ряд прямых параллельных оси ординат, каждая из которых пересечет обе кривые, сложим ординаты точек этих прямых с кривыми

 

Рисунок 5

 

В результата получим ряд точек а, б, с принадлежащих новой кривой I+II. Соединив эти точки плавной кривой, получим искомую суммарную характеристику всего рассматриваемого трубопровода, кривая I+II (рисунок 5).

б) Параллельное соединение трубопроводов

При параллельном соединении трубопроводов (рисунок 3, участки 2, 3, 4) построение характеристики этого сложного трубопровода следует начинать с построения

 

2

 

1 3 5

 

 
 

Рисунок 6

 

 

гидравлических характеристик отдельных параллельно включенных участков трубопровода по известной методике.

На рисунке 4 кривые II, III, IV представляют собой такие характеристики участков 2, 3 и 4.

 
 

Рисунок 7

 

При параллельном соединении трубопроводов жидкость, подходя с определенным расходом к точке их разветвления, проходит по разветвлениям и далее снова сливается в точке соединения этих трубопроводов. При этом общий расход определяется как сумма расходов в отдельных параллельно включенных участках, т.е.

 

Q = Q2 + Q3 + Q4

 

Потери же напора в этих участках одинаковы, и полная потеря напора определяется как потеря в одном из них, т.е.

 

h = const

 

Поэтому для полстроения суммарной характеристики необходимо провести ряд горизонтальных прямых, параллельных оси абсцисс, и сложить при постоянных ординатах абсциссы точек их пересечения с характеристиками отдельных участков. В результате получим ряд точек а, б, с, определяющих суммарную характеристику II+III+IV трубопровода при параллельном включении

 

в)Разветвленный трубопровод

Разветвленный трубопровод можно представить в виде схемы (рисунок 5)

Если длина и диаметр каждого из участков трубопровода, известен коэффициент гидравлического сопротивления, то можно построить гидравлическую характеристику каждого из этих участков.

По известной методике построим гидравлические характеристики каждого участка трубопровода (1, 2 и 3) в отдельности (рисунок 8).

 
 

 

 

 
 

 

Рисунок 8.

 
 

 

Рисунок 9

 

Решение разветвленной системы трубопровода начнем со второго и третьего участков, которые соединены параллельно.

Заменим участки 2 и 3 эквивалентным трубопроводом (2+3), т.е. сложим гидравлические характеристики участков трубопровода 2 и 3 по оси расходов. После чего получим два участка трубопровода, соединенных последовательно (рисунок 9 ).

Далее строим суммарную характеристику двух последовательно соединенных трубопроводов 1+(2+3). Таким образом, мы получили суммарную характеристику развернутой сети трубопровода 1 + 2 + 3 ( рисунок 9).

о суммарной характеристике разветвленного трубопровода можно решать следующие задачи :

— задать напор Н, определить расход при этом напоре. Для решения этой задачи необходимо на оси ординат найти напор Н, и двигаясь от этой точки слева направо дойти до характеристики 1+(2+30, и опустив перпендикуляр на ось абсцисс получим искомый расход (QH) (рисунок 6).

— чтобы определить расход отдельно по трубопроводам 2 и 3 необходимо от QH восстановить перпендикуляр до пересечения с характеристикой (2+3), точка пересечения А (Рис. 6) дает напор, который одинаков для обеих участков 2 и 3 (рисунок 7 ). Двигаясь от точки А справа налево до точек пересечения с характеристиками 2 и 3 и, опускаясь по перпендикуляру от этих точек, найдем расходы Q2 и Q3.

 

Вывод по третьему вопросу

Рассмотренные способы построения суммарной гидравлической характеристики сложных трубопроводов имеет важное прикладное значение для специалистов службы горючего.

Заключение .

В лекции дано определение гидравлической характеристики трубопровода. выведено уравнение гидравлической характеристики простого трубопровода и на конкретном примере рассмотрена методика построения гидравлической характеристики простого трубопровода. изложен принцип построения гидравлической характеристики сложных трубопроводов.

Умение рассчитывать и строить гидравлическую характеристику трубопровода позволит офицеру службы горючего грамотно принимать решение при эксплуатации перекачивающих средств и трубопроводов.

 

Профессор П.Германович

 

 


Похожие статьи:

Потери напора при движении жидкости

Потери напора при движении жидкости

Подробности
Категория: Гидравлика

Документальные учебные фильмы. Серия «Физика».

 

Гидравлические потери или гидравлическое сопротивление — безвозвратные потери удельной энергии (переход её в теплоту) на участках гидравлических систем (систем гидропривода, трубопроводах, другом гидрооборудовании), обусловленные наличием вязкого трения. Хотя потеря полной энергии — существенно положительная величина, разность полных энергий на концах участка течения может быть и отрицательной (например, при эжекционном эффекте).

Гидравлические потери принято разделять на два вида:

  • потери на трение по длине — возникают при равномерном течении, в чистом виде — в прямых трубах постоянного сечения, они пропорциональны длине трубы;
  • местные гидравлические потери — обусловлены т. н. местными гидравлическими сопротивлениями — изменениями формы и размера канала, деформирующими поток. Примером местных потерь могут служить: внезапное расширение трубы, внезапное сужение трубы, поворот, клапан и т. п.

Гидравлические потери выражают либо в потерях напора в линейных единицах столба среды, либо в единицах давления : , где  — плотность среды, g — ускорение свободного падения.

 

Формула Дарси — Вейсбаха

Во многих случаях приближённо можно считать, что потери энергии при протекании жидкости через элемент гидравлической системы пропорциональны квадрату скорости жидкости. По этой причине удобно бывает характеризовать сопротивление безразмерной величиной ?, которая называется коэффициент потерь или коэффициент местного сопротивления и такова, что

То есть в предположении, что скорость w по всему сечению потока одинакова, ?=?p/eторм, где eторм = ?w?/2 — энергия торможения единицы объёма потока относительно канала. Реально в потоке скорость жидкости не равномерна, в справочной литературе в данных формулах принимается среднерасходная скорость w=Q/F, где Q — объёмный расход, F — площадь сечения, для которого рассчитывается скорость. Таким образом, средняя энергия торможения потока обычно несколько больше ?w?/2, см. Среднее квадратическое.

Для линейных потерь обычно пользуются коэффициентом потерь на трение по длине (также коэффициент Дарси) ?, фигурирующего в формуле Дарси — Вейсбаха

,

где L — длина элемента, d — характерный размер сечения (для круглых труб это диаметр). Иначе в единицах давления

;

таким образом, для линейного элемента относительной длины L/d коэффициент сопротивления трения ?тр=?L/d.

По материалам Wikipedia

Местные гидравлические потери, способы их вычисления и влияние на них режимов движения жидкости и видов сопротивления

Местными гидравлическими сопротивлениями называются участки трубопроводов (каналов), на которых поток жидкости претерпевает деформацию вследствие изменения размеров или формы сечения, либо направления движения. Простейшие местные со­противления можно условно разделить на расширения, сужения, которые могут плавными и внезапными, и повороты, которые также могут плавными и внезапными. Но большинство местных сопротивлений являются комбинациями указанных случаев, так как поворот потока может привести к изменению его сечения, а расширение (сужение) потока — к отклонению от прямолинейного движения жидкости. Кроме того, различная гидравлическая арматура (краны, вентили, клапаны и т.д.) практически всегда является комбинацией простейших местных сопротивлений. К местным сопротивлениям также относят участки трубопроводов с разделением или слиянием потоков жидкости.

Необходимо иметь в виду, что местные гидравлические сопротивления оказывают существенное влияние на работу гидросистем с турбулентными потоками жидкости. В гидросистемах с ламинарными потоками в большинстве случаев эти потери напора малы по сравнению с потерями на трение в трубах.

Таким образом, основной причиной гидравлических потерь напора в большинстве местных сопротивлений является вихреобразование. Практика показывает, что эти потери пропорциональны квадрату скорости жидкости, и для их определения используется формула Вейсбаха .При вычислении потерь напора по формуле Вейсбаха наибольшей трудностью является определение безразмерного коэффициента местного сопротивления ζ, большинство значений этого коэффициента получено в результате экспериментальных исследований. Значения коэффициентов ζ для наиболее распространенных видов местных сопротивлений принимают следующими: для штуцеров и переходников для труб ζ = 0,1…0,15; для угольников с поворотом под углом 90° ζ = 1,5…2,0; для прямоугольных тройников для разделения и объединения потоков ζ = 0,9…2,5; для плавных изгибов труб на угол 90° с радиусом изгиба, равным (3÷5)d ζ = 0,12…0,15; для входа в трубу ζ = 0,5; для выхода из трубы в бак или в цилиндр ζ = 1. При ламинарном режиме Т.М. Башта для определения коэффициента гидравлического трения λ рекомендует при Re<2300 где Re — число Рейнольдса, применять формулу  а при турбулентном режиме течения жидкости в диапазоне Re = 2 300…100 000 коэффициент λ определяется по полуэмпирической формуле Блазиуса  Если где ΔЭ — эквивалентная шероховатость труб (для новых бесшовных стальных труб ΔЭ = 0,05 мм, для латунных — ΔЭ = 0,02 мм, для медных — 0,01, для труб из сплавов из алюминия — 0,06, для резиновых шлангов — 0,03), то коэффициент гидравлического трения определяется по формуле А.Д. Альтшуля Потери давления в гидроаппаратуре ΔPга принимают по ее технической характеристике после выбора гидроаппаратуры. После этого суммируют потери давления ΔP=ΔPдл+ΔPм+ΔP га 

 

34. Гидравлический расчет тупиковой водопроводной сети. Сущность расчета водопроводных сетей сводится к подбору правильных диаметров труб и определению потерь напора для преодоления сопротивлений в трубах при пропуске по ним расчетных расходов воды. Определять потери напора необходимо для расчета водопроводных сооружений, работающих совместно с сетью (водонапорной башни, насосов, подающих воду в сеть). Расчет тупиковой сети Требуется определить диаметр труб, потери напора в трубах тупиковой сети, изображенной на рис.с отбором воды в узлах сети, построить на чертеже линию пьезометрических напоров и определить высоту водонапорной башни при заданном наименьшем свободном напоре Н = 20 м.

 Схема к расчету тупиковой сети и линия пьезометрических напоров

Решение. Для расчета вносим известные данные и результаты подсчета в табл. Отметим, что в данном случае при отборе воды в узлах сети расчетный расход для каждого участка сети равен соответс-му транзитному расходу. Так, расчетный расход для участка 1—2 равен 5 л/сек, для участка 2—3 5 + 6+5=16 л/сек. Соответственно расчетным расходам воды для других участков, подберем диаметры труб, принимая при этом скорости в пределах. Затем определим потери напора на отдельных участках главной магистрали, пользуясь таблицами ВОДГЕО, и определяем сумму потерь напора в магистрали от водонапорной башни до наиболее удаленной точки. Отложив в точке 1 величину заданного свободного напора Нсв = 20 м, получим начальную точку А пьезометрической линии. В точке 2 напор, очевидно, должен быть выше напора в точке 1 на величину 2,82 м (потери напора в трубах на участке 1—2), которую берем из табл. 10; отложив ее, получим точку В. Таким же образом находим точки Г, Д и Б пьезометрической линии. Линию АВГДБ называют пьезометрической линией. Пьезометрическая отметка в точке Б будет одновременно отметкой дна бака башни. В нашем примере величина этой отметки 137,93 м. Вычитая из нее величину отметки поверхности земли, получим высоту башни, которая равна 137,93— ПО = = 27,93 м. Для построения линии пьезометрических напоров и определения высоты башни вычерчивают продольный профиль (рис. 35, б) по главной магистрали от башни до наиболее удаленной от нее точки 1 с указанием их отметок. Далее проверяют величины свободных напоров во всех точках ответвлений: они не должны быть менее заданного свободного напора. В том случае, когда в каком-либо узле или на ответвлении сети величина свободного напора окажется меньше заданной, нужно увеличить либо высоту башни, либо диаметр трубы этого ответвления, чтобы уменьшить сопротивления, или же (при проектировании водопроводной сети промышленных предприятий) поставить насосы внутри здания для повышения напора во внутренней сети. Этот вопрос решается путем технико-экономического сравнения вариантов.

35. Средства для механизации подъема воды, начертить их принципиальные схемы Предшественники современных гидравлических машин появились в глубокой древности. Древнейший известный нам механизм — водоподъемное колесо — поднимал 8 м3 воды в час на высоту 3 метра. В 1700 г. до н.э. в Каире для подъема воды из колодца глубиной 90 м использовали так называемый цепной насос (цепь с прикрепленными ковшами). Архимедов винт стали применять для орошения полей за 1000 лет до н.э. Наклонно расположенный вал с винтовой нарезкой вращался в полуоткрытом лотке и обеспечивал подъем воды на высоту до 5 м. Первым насосом был поршневой. Изобретателем его считают древнегреческого механика Ктезебия (II — I в. до н.э.). В настоящее время во всем мире практически невозможно назвать такую отрасль промышленности или сельского хозяйства, в которых не применялся бы гидропривод. А возросшие в последние годы темпы создания и освоения серийного производства новых машин с гидравлическим приводом являются наглядным подтверждением научно- технического прогресса. Использование гидроприводов в строительных и дорожных машинах способствует значительному повышению уровня механизации в этих отраслях. Гидравлические устройства устанавливаются в системах управления на экскаваторах, бульдозерах, подъемниках, погрузчиках, кранах, а также в качестве силовых передач на движитель этих машин. Для подачи воды из водозаборных сооружений их оборудуют насосами и водоподъемниками. Насосы создают свободный напор, достаточный для подъема воды на некоторую высоту над поверхностью земли. По принципу действия насосы подразделяют на лопастные, объемные, струйные и инерционные. Лопастные насосы могут быть центробежными, вихревыми и пропеллерными. Объемные насосы, или насосы вытеснения, разделяют на поршневые, плунжерные, ротационные (винтовые, шестеренчатые и пластинчатые), диафрагмальные и насосы замещения. Работа этих насосов основана на попеременном изменении объема рабочей камеры. В первой половине процесса объем рабочей камеры увеличивается, в камере создается разрежение, и жидкость из источника вследствие разностей давлений засасывается в камеру. В течение второй половины процесса объем рабочей камеры уменьшается, и жидкость вытесняется из нее. Объемные насосы отличаются от центробежных тем, что их подача не зависит от напора, развиваемого насосом. Инерционные (вибрационные) насосы могут быть с поверхностным и погружным вибратором. Работа инерционных насосов основана на использовании силы инерции, возникающей в столбе жидкости при изменении давления в трубопроводе насоса. Водоструйные установки подают воду из шахтных колодцев и буровых скважин.+ Водоподъемники (ленточные, шнуровые, водочерпальные) не располагают свободным напором и могут поднимать воду из источника только на поверхность земли.+ Гидравлические тараны — это автоматически действующие водоподъемники, простые по конструкции, надежные в эксплуатации и не требующие двигателя для их пуска и работы. Принцип действия этих водоподъемников основан на использовании силы гидравлического удара, всегда возникающего в трубопроводе, если резко затормозить в нем движение жидкости. Ими поднимают воду из открытых источников при наличии естественного перепада воды от 0,5 до 10 м.

 

36. Расходная характеристика насадка Гидравлический насадок, гидравлическая насадка, короткая труба для выпуска жидкости в атмосферу или перетекания жидкости из одного резервуара в другой, тоже заполненный жидкостью. Г. н. являются не только трубы, но и каналы, отверстия в толстых стенках, а также щели и зазоры между деталями машин. Длина Г. н., при которой возможно заполнение всего сечения канала и достигается максимальная пропускная способность для внешних и внутренних цилиндрических насадков, составляет (3—4) d. Для конических сходящихся и расходящихся насадков существуют оптимальные углы конусности. Наибольшей пропускной способностью обладает коноидальный Г. н., продольное сечение которого выполняется по форме вытекающей из отверстия струи. Г. н. специальных конструкций применяют в форсунках для распыления топлива. Основным вопросом, который интересует в данном случае, является определение скорости истечения и расхода жидкости для различных форм отверстий и насадков. Расход жидкости при её истечении через Г. н. определяется по формуле   где wвых — площадь выходного сечения насадка, Н — напор, который обусловливает течение жидкости, mнас — коэффициент расхода, определяемый опытным путём и зависящий от конструкции насадка, напора, а также от физических свойств жидкости. В результате сжатия потока при истечении жидкости в атмосферу в Г. н. может образоваться область с пониженным давлением (до образования вакуума — hвак = 0,75 Н). Если давление достигнет предельного (0,1 Мн/м2, или 10,33 м вод. ст.), произойдёт т. н. срыв работы насадка (нарушение сплошности сечения) и mнас станет равным коэффициенту расхода для отверстия. Напор, при котором наступает это явление, называют предельным Нпред, а его величина зависит от рода жидкости, её температуры и длины насадка [например, для холодной воды Нпред = 0,14 Мн/м2 (14 м вод. ст.)].

 

37. Принцип действия струйного насоса Пожалуй, среди всех гидравлических машин струйные насосы можно назвать самыми простыми по конструктивному исполнению. Они не имеют движущихся деталей, которые подвержены износу, просты в эксплуатации и ремонте. Струйные насосы относят к классу гидравлических аппаратов. Ж., пар, или газ под большим давлением подается по трубе, имеющей сопло, в подводящую камеру. Из-за сужения сопла жидкость обладает большей скоростью, следовательно, и кинетической энергией. В подводящей камере давление падает ниже атмосферного, и из питающего трубопровода, соединенного с этой камерой, происходит всасывание. Обе ж. попадают в следующую камеру, где смешиваются и обмениваются кинетической энергией. Затем перемешавшееся вещество попадает в диффузор насоса, где теряет часть давления, а оттуда — в напорный трубопровод или сборный резервуар. В зависимости от назначения рабочая и перекачиваемая среда может быть одной и той же (например, в водоструйных насосах), или различной. Струйные насосы относят к т.н. «динамическим насосам». Главным недостатком таких насосов является низкий коэффициент полезного действия — до 30%. Струйные насосы почти никогда не соединяют параллельно — чаще последовательно. Выпускаются насосы с изменяемым соплом, что позволяет изменять характеристики в заданных заводом-изготовителем пределах. Иногда струйные аппараты применяют как вспомогательное оборудование для откачки воздуха в центробежных насосах перед их пуском. Одним из параметров, характеризующим струйные насосы, является коэффициент подсоса, или безразмерный расход. Это отношение расхода перекачиваемой ж. к расходу рабочей. Несмотря на кажущуюся простоту и низкий КПД, струйные насосы незаменимы во многих случаях, например, когда необходимо произвести откачку жидкости из каких-либо резервуаров, а применить насосы другой конструкции не представляется возможным. Широкое применение струйные аппараты получили в пищевой промышленности, где одновременно с функцией перекачивания жидкостей ими выполняется функция смешения различных сред. Струйные насосы легко монтируются в систему трубопроводов, они малогабаритны и иногда используются на стороне высокого давления как дополнительные насосы. Благодаря своим конструктивным особенностям струйные аппараты отличаются высокой надежностью и эффективностъю, особенно в осложненных условиях эксплуатации, например, при добыче пластовой жидкости со значительным содержанием механических примесей и коррозионно-активных веществ из наклонно направленных скважин. К преимуществам относят их малые габариты, большую пропускную способность и возможность стабильно отбирать пластовую жидкость с высоким содержанием свободного газа. Кроме того, проста конструкция установок, отсутствуют движущиеся детали, возможно исполнение струйного насоса в виде свободного, сбрасываемого агрегата.

 

38. Гидростатическое давление. Гидростатический парадокс. Гидростатическое давление — Благодаря полной малоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой Р, пропорциональной величине w этой поверхности, и направленной по нормали к ней. Отношение Pw, то есть давление р на поверхность равную единице, называется гидростатическим давлением. Это основное свойство жидкостей было открыто и проверено на опыте Паскалем, в 1653 г., хотя несколько ранее оно было уже известно Стивену. Простое уравнение P = pw может действительно служить для точного вычисления давления на данную поверхность сосуда, газов и капельных жидкостей, находящихся при таких условиях, что часть давления, зависящая от собственного веса жидкостей, ничтожно мала по сравнению с давлением, передаваемым им извне. Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах. Условно-принятые меры Г. давления всегда выражают отношения силы к поверхности, поэтому в системе абсолютных единиц (см. Единицы мер) они выражают число «дин» на кв. см, В практике Гидростатическое измеряют давление в кг на 1 кв. см. Большие давления выражают часто в атмосферах, принимая за 1 атмосферу давление в 76 см столба ртути, при температуре 0° под широтой, где ускорение силы тяжести = 0,0635 кг на 1 кв. см = 6,21×106 дин на 1 кв. см. 1 атмосфера = 1,0333 кг на 1 кв. см = 1,0136×106 дин на 1 кв. см для широты Парижа или 1,0132×106 для широты в 45°. Гидростатический парадокс заключается в том, что вес жидкости, налитой в сосуд, может отличаться от силы давления, оказываемой ею на дно сосуда. Так, в расширяющихся кверху сосудах (рис.) сила давления на дно меньше веса жидкости, а в суживающихся — больше. В цилиндрическом сосуде обе силы одинаковы. Если одна и та же ж. налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на различный вес налитой ж., сила Р на дно одинакова для всех сосудов и = весу ж. в цилиндрическом сосуде. Это следует из того, что давление покоящейся ж. зависит только от глубины под свободной поверхностью и от плотности ж.. Объясняется Г. п. тем, что поскольку гидростатическое давление р всегда нормально к стенкам сосуда, сила давления на наклонные стенки имеет вертикальную составляющую p1, которая компенсирует вес излишнего против цилиндра 1 объёма жидкости в сосуде 3 и вес недостающего против цилиндра 1 объёма жидкости в сосуде 2. Г. п. обнаружен французским физиком Б. Паскалем

39. Назначение, устройство и принцип действия гидравлического распределителя (ГР) объемного гидропривода Гидравлический распределитель (гидрораспределитель) — устройство, предназначенное для управления гидравлическими потоками в гидросистеме с помощью внешнего воздействия Гидрораспределитель управляет движением выходного звена гидродвигателя путём перенаправления потоков рабочей жидкости. На рисунке показана простейшая гидросхема. В показанном положении распределителя (Р) жидкость от насоса (Н) к гидроцилиндру (Ц) не поступает, и идёт на слив в гидробак (Б) через предохранительный клапан (КП). Если оператор перемещает ручку гидрораспределителя таким образом, что запорно-регулирующий элемент смещается в положение 1, то рабочая жидкость поступает в поршневую полость гидроцилиндра и поршень движется вправо, а жидкость из штоковой полости гидроцилиндра идёт на слив (направления движения рабочей жидкости через распределитель указаны стрелками). Если оператор возвращает ручку гидрораспределителя в исходное положение, то поршень гидроцилиндра останавливается, и рабочая жидкость опять идёт на слив в бак. Чтобы поршень гидроцилиндра начал движение влево, оператору необходимо переместить ручку распределителя таким образом, чтобы запорно-регулирующий элемент сместился в положение 2. Гидрораспределители разделяют по типу запорно-регулирующих элементов на золотниковые, крановые, клапанные, струйные и распределители типа «сопло-заслонка». Золотниковые распределители получили наибольшее распространение в гидроприводе благодаря простоте их изготовления, компактности и высокой надёжности в работе. Они применяются при весьма высоких значениях давления (до 32 МПа) и значительно бо́льших расходах, чем крановые распределители. Крановые распределители в гидроприводе нашли самое широкое применение. Конструктивно их запорный элемент выполнен в виде цилиндрической, конической, шаровой пробки или в виде плоского поворотного крана. Клапанные распределители. Главным недостатком наиболее распространённых золотниковых распределителей являются утечки, которые не позволяют удерживать гидродвигатель под нагрузкой в неподвижном состоянии, а также невозможность работы при высоких давлениях (свыше 32 МПа). В таких случаях для позиционного переключения предпочтительны клапанные распределители, имеющие увеличенные по сравнению с золотниками размеры и массу, но позволяющие герметически перекрывать гидролинии. Клапанные распределители применяются, в основном, в гидросистемах, в которых необходимо обеспечить хорошую герметичность. Для этого запорный элемент распределителя выполняют, как правило, в виде конического или шарового клапана.

 

40. Гидравлический расчет кольцевой водопроводной сети В основе гидравлического расчёта кольцевой водопроводной сети лежит два следующих закона движения воды. Первый закон устанавливает зависимость расходов приходящих к узлу и уходящих от него. Согласно этому закону алгебраическая сумма расходов в каждом узле сети равна нулю, Второй закон – движение воды устанавливает зависимости между потерями напора в каждом замкнутом контуре сети, т.е. алгебраическая сумма потерь напора в каждом замкнутом контуре равна нулю, .Практически при расчете кольцевой сети поступают следующим образом: имея узловые расходы и точки питания сети намечают распределения потоков воды по всем участкам сети, соблюдая для каждого узла сети условия . Распределения потоков воды по всем участкам сети, соблюдая для каждого узла воды, следует производить, идя от конца сети к началу. Основными факторами, определяющими диаметр участка водопроводной сети, является расчетный расход и скорость. Для труб диаметр D, мм, определяют:  где Q – расчетный расход, м3/с; ν – средняя экономическая скорость, принимаемая для труб малых диаметров (до 300 мм) – 0,7 – 1,0 м/с, для средних и больших диаметров (более 300 мм) – 1,0 – 1,5 м/с. А также диаметр может быть определен по таблице предельных расходов, составленных на основании формул проф. Л.Ф. Коичеина. Следует отметить, что метод определения диаметров труб по предельным расходам применим лишь для независимо работающей линии. Для кольцевой сети этот метод приближенные значения экономических диаметров. Потери напора во всех линиях h, м, опред-ся по формуле: где α – удельное сопротивление;k 2 – поправочный коэффициент.

Путем арифметического суммирования определяют для каждого кольца и путем алгебраического суммирования невязки потерь напора в кольцах . При этом для подсчета потерь напора по контуру кольца величина потери напора считается положительной в том месте, где направление потока совпадает с ходом часовой стрелки и отрицательный там, где направление потока противоположно ходу часовой стрелки.

Если невязки потерь напора в отдельных кольцах получались не допустимы (более 0,50 м), необходимо произвести исправления предварительно намеченных расходов отдельных линий, для чего необходимо знать величину увязочного расхода.

Для увязки сети предложено много способов, из которых широкое применение в практических расчетах получил метод проф. В.Г. Лобачёва, величина увязочного расхода , л/с, по которому: где  — невязка кольца; S – сопротивление участка; q – расчетный расход участка. Заметим, что знак минус перед выражением для определения увязочного расхода, легко можно определить направлением расходов линий, не принадлежащих двум смежным кольцам, т.е. линий, расположенных по внешнему контуру сети. Очевидно, что положительные увязочные расходы должны прибавляться к положительным расходам линии и вычитаться из отрицательных расходов, а отрицательные наоборот, соответственно этому увязочные расходы записываются против каждого участка кольца со знаком плюс или минус.

 

41. Свободная затопленная струя, ее геометрия и дальность действия. Наиболее простым струйным течением считается свободная затопленная струя, вытекающая в среду той же плотности. Струя, вытекающая из насадки в среду той же плотности, имеет два характерных участка, отличающихся по структуре течения: начальный и основной. Иногда выделяют также переходный участок. В начальном сечении струи (совпадающем с выходным сечением насадки) профиль скоростей потока иo близок к равномерному. В пределах начального участка сохраняется ядро постоянных скоростей, ширина которого линейно уменьшается от paзмера внутреннего диаметра насадки до нуля. За пределами границы участка постоянных скоростей, скорости потока и закономерно уменьшаются как по направлению к периферии течения, так и по длине струи. Профиль скорости и на начальном участке изменяется по законам пограничного слоя, рассматри ваемого специальным разделом гидродинамики. На основном участке струи происходит падение скорости по оси струи ит и по сечению и. Длина начального участка Хн определяется выражением:  где R0 — внутренний радиус насадки в выходном сечении, м; а — коэффициент структуры струи; для осесимметричных струй а ≈ 0,08. Изменение скорости по оси струи иmна основном участке для осесимметричной струи определяется зависимостью: х — расстояние от начального сечения струи, м.

 

42. Под регулированием работы насоса подразумевается процесс изменения подачи и напора. Существует два основных способа регулирования подачи центробежных насосов — изменение характеристики системы (дросселирование задвижками на напорной или на всасывающей линиях, перепуск части жидкости из напорного трубопровода во всасывающий, впуск воздуха во всасывающий патрубок насоса) и изменение частоты вращения рабочего колеса насоса. Первым способом можно только уменьшать подачу насоса. Как правило, этот способ неэкономичен, однако на практике им приходится часто пользоваться. Кроме того, следует иметь в виду, что системы с центробежными насосами могут непроизвольно регулироваться при изменении характеристики системы. Характеристики регулирования при постоянной частоте вращения. Способ регулирования подачи задвижкой на напорном патрубке насоса основан на увеличении сопротивления напорной линии.  Если менять сопротивление сети, закрывая задвижку на напорной линии, то . насос будет выбирать режим работы на меньшей подаче, так как «вынужден» работать с большим напором, чтобы преодолеть дополнительное сопротивление задвижки. Существует ещё один способ изменения условий работы насоса на сеть — это байпасирование, т. е. установка регулируемого или нерегулируемого перепуска (байпаса) с напорной линии на всасывание. По отношению к насосу — это аналогично снижению сопротивления, т. е. происходит повышение подачи (с учётом объёма жидкости, возвращаемой в линию всасывания) и соответствующее снижение напора. По отношению к потребительской сети — это аналогично снижению подачи. В результате в потребительской сети можно получить одновременно меньший напор и меньшую подачу (энергия жидкости идёт на сброс). Снижение напора с помощью перепуска жидкости с напорной линии во всасывающую составляет 10… 30 % в зависимости от крутизны напорной характеристики насоса. Однако следует иметь в виду, что при этом способе регулирования есть опасность выхода за пределы рабочей зоны напорной характеристики. Это может привести к снижению КПД насоса, ухудшению условий всасывания и перегрузке двигателя

 

43. С вободная незатопленная струя, дальность полета и характер распада Струя, вытекающая под давлением в атмосферу и не ограниченная какими-либо стенками (так называемая «свободная струя») возле отверстия, из которого она вытекает, является практически монолитной, а затем постепенно превращается в поток отдельных капель. В гидродинамике выделяют 3 стадии развития свободной струи. 1.Компактная стадия начинается возле отверстия, через которое истекает жидкость, и продолжается на некотором расстоянии от него. Обычно это расстояние составляет от нескольких сантиметров до метра с небольшим и зависит от множества условий, среди которых не только скорость истечения и вызвавший её перепад давлений, но и вязкость жидкости, сила её поверхностного натяжения, а также сопротивление внешней среды (воздуха). На протяжении компактной части струя сохраняет свой средний диаметр практически неизменным. 2.Раздробленная стадия характеризуется началом разделения струи на отдельные очень мелкие капли, однако они не разлетаются далеко, а продолжают «сопровождать» ядро струи. При этом значительная часть струи остаётся компактной и сохраняет монолитность, но по мере удаления от начала струи кажется, что ядро струи слегка сужается. Длина раздробленной части обычно примерно равна или несколько меньше длины компактной части струи. 3.На распылённой (капельной) стадии струя уже представляет собой расширяющийся поток отдельно летящих капель — в центре более крупных, по краям более мелких. Постепенно под действием воздуха крупные капли дробятся до тех пор, пока силы поверхностного натяжения не смогут компенсировать разрывающее воздействие скоростного напора воздуха.

Длина первого участка струи составляет около (диаметр выходного отверстия насадки), второй находится в пределах 80…33(третий начинается на расстоянии от сопла свыше 3. Для струй низкого давления характерны гладкая поверхность и прозрачность на начальном участке. На определенном расстоянии от насадки на поверхности струи образуются волны, амплитуды которых нарастают по длине струи, в результате происходит отрыв отдельных капель, а затем дробление на капли всего объема воды и далее — факельное распыление раздробленной струи. Поэтому в свободной незатопленной струе выделяют участки компактного движения, дробления и распыления. Характер распада струи, описанный выше, называют волновым. При увеличении начальной скорости струи длина компактного участка уменьшается. В струях высокого давления компактный участок практически отсутствует. В этом случае характер распада струи определяется как турбулентный распыл.

44. При конструировании и эксплуатации центробежных насосов пользуются законами их подобия и в первую очередь законом подобия рабочих колес этих насосов. Различают геометрическое к кинематическое подобие рабочих колес. Геометрическое подобие рабочих колес означает пропорциональность всех соответственных размеров их проточной части (диаметра, ширины лопаток, радиусов кривизны лопаток и т. п.). Кинематическое подобие предполагает одинаковые направления векторов скорости в сходственных точках потоков. На практике часто возникает необходимость пересчета на другую частоту вращения насоса. Это может быть замена двигателя или осуществление регулирования подачи изменением частоты вращения. Зависимости создаваемого насосом напора и расхода от числа оборотов могут быть выведены из соответствующих теоретических зависимостей для скорости и напора. При необходимости Вы можете обратиться к рекомендуемой литературе, а сейчас попробуем получить эти уравнения из простых логических рассуждений. Прежде всего, расход определяется скоростью движения жидкости или просто скоростью движения кромки лопасти и площадью живого сечения рабочего колеса. Скорость численно равна произведению угловой скорости на радиус W = w * R. Площадь живого сечения (площадь сечения для прохода жидкости) – геометрическая характеристика колеса и не зависит от числа оборотов. Радиус лопаток также не изменяется. Следовательно мы получаем зависимость расхода и оборотов вала насоса Q / Q1 = n / n1, где n и n1 – новое и исходное числа оборотов соответственно; Q и Q1 – новый и исходный расходы (при старом числе оборотов). Аналогичные рассуждения можно привести для напора. Для этого необходимо вспомнить, что создаваемый напор определяется кинетической энергией жидкости. Кинетическая энергия в свою очередь пропорциональна квадрату скорости, а значит: H ~ n2. Н / Н1 = n2 / n12 Учитывая, что полезная мощность рассчитывается как N = g * Q * H, получим N / N1 = (Q * H) / (Q1 * h2) =n3 / n13

Замечание. При изменении числа оборотов изменяется и расход и напор. В связи с этим, при построении новой характеристики каждой точке старой характеристики будет соответствовать точка на новой характеристике с иными напором и расходом. Недопустимо строить новую характеристику только по одному из приведенных выше уравнений для напора или расхода. При изменении числа оборотов, каждая точка на старой характеристике будет смещаться по вполне определенной траектории, которая называется параболой подобия. Парабола подобия может быть построена при необходимости по простой зависимости: Н / Н1 = n2 / n12 = Q2 / Q12 Преобразуя получим:  Н = (Н1 / Q12) * Q2

45. (49) Гидравлический удар, явление резкого изменения давления в жидкости, вызванное мгновенным изменением скорости её течения в напорном трубопроводе. Может возникать вследствие резкого закрытия или открытии задвижки. В первом случае удар называют положительным, во втором — отрицательным. Опасен положительный гидроудар. Г.у. — сложный процесс образования упругих деформаций жидкости и их распространения по длине трубы. При очень большом увеличении давления Г.у. может вызывать аварии. Для их предупреждения на трубопроводе устанавливают предохранительные устройства (уравнительные резервуары, воздушные колпаки, вентили и др.). Способы предотвращения возникновения гидравлических ударов 1. для ослабления силы этого явления или его полного предотвращения можно уменьшить скорость движения жидкости в трубопроводе, увеличив его диаметр. 2. увеличивать время закрытия затвора 3.Установка демпфирующих устройств Для предотвращения гидроударов, вызванных резкой переменой направления потока рабочей среды, на трубопроводах устанавливаются обратные клапаны.

Как упоминалось ранее, явление гидравлического удара может быть использовано для подъема воды специальным устройством, называемым гидравлическим тараном Гидравлический таран состоит из подводящего трубопровода А, обычно имеющего небольшую длину, рабочей коробки В с двумя клапанами С и Д, и воздушного колпака Е с нагнетающим трубопроводом F, подающим воду в резервуар К. Ударный клапан С открывается под действием собственного веса. При его открытии через подводящий трубопровод А под небольшим напором Н1 начинает поступать вода, которая вытекает через открытый клапан С. Вследствие увеличения силы воздействия вытекающий с нарастающей скоростью воды на ударный клапан он закрывается и скорость потока в трубопроводе падает до нуля. В связи с внезапной остановкой потока в подающем трубопроводе и рабочей коробке произойдет гидравлический удар с резким повышением давления. Под влиянием этого давления открывается нагнетательный клапан и часть воды поступит в воздушный колпак Е, сжимая имеющийся там воздух, который вытеснит часть воды в напорной трубопровод F, подняв ее на высоту h3 в резервуар К. После ухода части воды в воздушный колпак давление в рабочей коробке уменьшится и ударный клапан С под действием собственного веса откроется. При этом вода снова начнет выливаться через клапан С, а нагнетательный клапан Д закроется под действием силы давления воздуха в воздушном колпаке Е. Затем происходит повторение процесса: снова произойдет закрытие ударного клапана С и открытие нагнетательного клапана Д и т. д. Таким образом, происходит непрерывное повторение рассмотренного процесса подачи воды. Поступающий из напорного резервуара расход воды Q затрачивается в основном на излив воды Q1 через клапан С и создание давления на этот клапан, при котором он закрывается. Этот первый период работы гидравлического тарана называется разгонным периодом. Второй период его работы называется ударным, когда после закрытия клапана С произойдет гидравлический удар и в рабочей коробке появится повышенное (ударное) давление, соответствующее напору Н > Н1. Третий период называется рабочим. В течение этого периода вода из воздушного колпака будет поступать через напорный трубопровод F с расходом Q2 в резервуар К под давлением воздуха на высоту Н2. Напор Н1 обычно равен 1,5—5 м, а высота нагнетания Н2 от 15 до 40 м. При этом подача расхода Q2 = (0,4…0,07) Q, где Q= Q1+ Q2. Выпускаемые промышленностью гидравлические тараны могут поднимать воду на высоту до 60 м с расходом до 20—22 л/мин. Они очень просты в эксплуатации и могут беспрерывно работать длительное время, снабжая водой потребителей. Известны мощные тараны, производительность которых достигает 150 л/с.

 

46. Фильтры служат для очистки рабочей жидкости от содержащихся в ней примесей. Эти примеси состоят из посторонних частиц, попадающих в гидросистему извне (через зазоры в уплотнениях, при заливке и доливке рабочей жидкости в гидробак и т.д.), из продуктов износа гидроагрегата и продуктов окисления рабочей жидкости. Механические примеси вызывают абразивный износ и приводят к заклиниванию подвижных пар, ухудшают смазку трущихся деталей гидропривода, снижают химическую стойкость рабочей жидкости, засоряют узкие каналы в регулирующей гидроаппаратуре. Примеси задерживаются фильтрами (рис.7.3), принцип работы которых основан на пропуске жидкости через фильтрующие элементы (щелевые, сетчатые, пористые) или через силовые поля (сепараторы). В первом случае примеси задерживаются на поверхности или в глубине фильтрующих элементов, во втором рабочая жидкость проходит через искусственно создаваемое магнитное, электрическое, центробежное или гравитационное поле, где происходит оседание примесей. Гидравлическое сопротивление фильтра — Падение давления на фильтре при прохождении через него фильтруемой жидкости. Гидравлическое сопротивление фильтра (Rф)определяется как сумма гидравлических сопротивлений фильтродержателя (Rдф), фильтровальной перегородки (Rфп) и слоя осадка (Rос), образовавшегося на фильтровальной перегородке в процессе фильтрации. Гидравлическое сопротивление фильтра зависит от производительности фильтрации. В фильтре происходит задержка молекул гидравлической жидкости на стенках канала, которая приводит к увеличению гидравлического сопротивления и уменьшению скорости течения. Гидродинамическое сопротивление растёт за счёт снижения общей площади пор фильтрующего материала. Итог: У фильтров есть три главные характеристики. 1. Степень отсева — это минимальный размер частиц, который задерживает фильтр. Все частицы меньшего размера через него проходят. 2. Гидродинамическое сопротивление. Это падение давления при прокачивании через него воздуха (или жидкости для масляного фильтра) с расходом, соответствующим максимальному для данного двигателя. 3. Ёмкость. Это количество загрязнителя, которое фильтр может аккумулировать в себе при условии, что сопротивление ещё лежит в пределах допуска.

 

47. При равномерном движении потока скорость течения вдоль потока, расход Q, площадь живого сечения w и его форма остаются неизменными, а гидравлический уклон  постоянен и равен геометрическому уклону дна водотока (i0): iс = i = const. Равномерное движение имеет место в искусственных водотоках и наиболее часто рассматривается в различных гидравлических расчетах. Элементы равномерного движения участвуют в решениях как общих, так и специальных гидравлических задач. Гидравлически наивыгоднейшим сечением канала является сечение, способное при заданной площади обеспечить максимальную пропускную способность. Как известно из геометрии, наименьшим периметром (из всех возможных) обладает круг, и гидравлически наивыгоднейшим сечением для открытых каналов было бы сечение, имеющее форму полукруга. Далее при данной площади меньшими периметрами обладают правильные многоугольники, причем длина их периметра будет тем меньше, чем больше число сторон. Следовательно, далее по выгодности идут различные сечения в форме половин правильных многоугольников, например половина шестиугольника, т. е. равнобочная трапеция с углом наклона боковых сторон ? = 60°. Из прямоугольных профилей наивыгоднейшим является сечение в виде половины квадрата. Величина гидравлического радиуса для всех этих сечений равняется половине наибольшей глубины наполнения.

На практике наиболее употребительны каналы трапецеидального сечения Полукруглые или многогранные сечения применяются значительно реже, ввиду трудности их выполнения и значительной стоимости. Однако в наиболее часто встречающихся случаях земляных стенок трапецеидальные сечения редко получают форму наивыгоднейшего профиля в виде половины правильного шестиугольника с углом ? = 60°, так как при этом требуется крепление боковых стенок канала. Обычно этот угол выбирается в соответствии с углом естественного откоса грунта, и задача сводится к определению при заданных площади сечения и угле откоса соотношения между шириной и глубиной, при котором смоченный периметр будет наименьшим.

 

48. Работа насоса сформирована на передаче энергии от вращающегося колеса к жидкости, находящейся между его лопастями. Действие центробежного насоса определяется путем центробежной силы, которая в свою очередь возникает при действии лопаток рабочего колеса на жидкость. Так возникает нужный напор и движение жидкости. Использование центробежного насоса для горячего и холодного водоснабжения – не единственное его предназначение. Его так же можно использовать для перекачивания вязких и агрессивных жидкостей (кислот и щелочей). Чтобы давление жидкости было полностью уравнено на боковые поверхности колеса, насос может быть как с односторонним подводом жидкости, так и двухсторонним. Так же колеса могут быть двух типов: закрытый тип и открытый тип. У каждого типа могут быть как преимущества, та и недостатки. Не рекомендуется запускать работу центробежного насоса без перекачиваемого продукта. Как и любой агрегат, насос определяется потребляемой мощностью, которая характеризует комплектующий двигатель. Потребляемая мощность увеличивается в зависимости от величины удельного веса перекачиваемой жидкости и увеличением вязкости. Одной из важных практических характеристик рабочих колёс центробежных насосов является коэффициент быстроходности — число оборотов в 1 мин такого рабочего колеса, которое геометрически по-добно рассматриваемому и при подаче 75 л/с. развивает напор 1 м. Для создания больших напоров применяют многоступенчатые насосы, в которых жидкость проходит последовательно несколько рабочих колёс, получая от каждого из них соответствующую энергию. Важнейшей особенностью центробежных насосов является непосредственная зависимость напора, а также мощности, КПД и допустимой высоты всасывания от подачи, которая для каждого типа насос выражается соответствующими графиками, называемыми характеристиками. КПД центробежного насоса при определенном режиме его работы достигает максимального значения, а затем с увеличением подачи снижается.

 

49. Гидравлический удар, явление резкого изменения давления в жидкости, вызванное мгновенным изменением скорости её течения в напорном трубопроводе. В результате жидкость останавливается, а её кинетическая энергия превращаются в потенциальную — потенциальную энергию упругого сжатия жидкости (ведь жидкости считаются несжимаемыми лишь по сравнению с газами, а на самом деле сжимаются примерно в той же степени, что и твёрдые тела с кристаллической структурой), а также потенциальную энергию упругого (а если не повезёт — то и пластического, то есть необратимого) растяжения стенок трубы. Всё это приводит к тому, что давление в месте остановки стремительно возрастает, тем больше, чем выше была скорость жидкости и чем меньше её сжимаемость Может возникать вследствие резкого закрытия или открытии задвижки. В первом случае удар называют положительным, во втором — отрицательным. Опасен положительный гидроудар. Также гидроудары чрезвычайно опасны и для другого оборудования, такого как теплообменники, насосы и сосуды, работающие под давлением. Увеличение давления при Г.у. определяется Dp = r(v0 — v1) c, где Dp — увеличение давления в н/м2, r — плотность жидкости в кг/м3, v0 и v1 — средние скорости в трубопроводе до и после закрытия задвижки в м/сек, с — скорость распространения ударной волны вдоль трубопровода. При абсолютно жёстких стенках с равна скорости звука в жидкости а (в воде а = 1400 м/сек). скорость распространения ударной волны c находится в прямо пропорциональной зависимости от сжимаемости жидкости, величины деформации стенок трубопровода, определяемой модулем упругости материала E, из которого он выполнен, а также от диаметра трубопровода. Следовательно, гидравлический удар не может возникнуть в трубопроводе, содержащем газ, так как газ легко сжимаем.Зависимость между скоростью ударной волны c, её длиной и временем распространения (L и τ соответственно) выражается следующей формулой:

 Г. у. — сложный процесс образования упругих деформаций жидкости и их распространения по длине трубы. При очень большом увеличении давления Г. у. может вызывать аварии. Для их предупреждения на трубопроводе устанавливают предохранительные устройства (уравнительные резервуары, воздушные колпаки, вентили и др.). Способы предотвращения возникновения гидравлических ударов 1. для ослабления силы этого явления или его полного предотвращения можно уменьшить скорость движения жидкости в трубопроводе, увеличив его диаметр. 2. увеличивать время закрытия затвора 3.Установка демпфирующих устройств Для предотвращения гидроударов, вызванных резкой переменой направления потока рабочей среды, на трубопроводах устанавливаются обратные клапаны.

 

50. Нормальная эксплуатация гидропривода возможна при использовании таких рабочих жидкостей ,которые одновременно могут выполнять различные функции. В первую очередь рабочая жидкость в гидроприводе является рабочим телом, т.е. является носителем энергии, обеспечивающим передачу последней от источника энергии (двигателя) к её потребителю (исполнительным механизмам). Кроме того, рабочая жидкость выполняет роль смазки в парах трения гидропривода, являясь смазывающим и охлаждающим агентом, и средой, удаляющей продукты изнашивания. К функциям рабочей жидкости относится и защита деталей гидропривода от коррозии. В связи с этим к рабочим жидкостям предъявляются разносторонние требования, в некоторой степени противоречивые и выполнение которых в полной мере не всегда возможно. К ним относятся: — хорошие смазочные свойства; — малое изменение вязкости при изменении температуры и давления; — малая склонность к вспениванию; — антикоррозийные свойства; способность предохранять детали гидропривода от коррозии; — малый коэффициент теплового расширения и т.д. Невыполнение этих условий приводит к различным нарушениям в функционировании гидропривода. В частности плохие смазочные или антикоррозийные свойства приводят к уменьшению сроков службы гидропривода; неоптимальная вязкость или её слишком большая зависимость от режимов работы гидропривода снижают общий к.п.д. и т.д. Нормальная и долговременная работа гидропривода определяется в равной мере как правильностью выбора марки рабочей жидкости при конструировании, так и грамотной эксплуатацией гидропривода. 1.Рабочие жидкости на нефтяной основе наиболее часто используются в гидроприводах. Однако базовые масла за редким исключением (веретенное АУ, турбинное и некоторые другие масла) не применяются, т.к. не обладают требуемыми для гидропривода свойствами. Для получения рабочих жидкостей с нужными эксплуатационными свойствами базовые масла подвергаются доработке с помощью различных присадок. 2. Для гидроприводов, работающих в условиях, отличающихся от нормальных (tраб >1000C, повышенные требования к пожаробезопасности, чрезмерно низкие температуры окружающей среды и т.п.), или от которых требуется повышенная стабильность характеристик, применяются синтетические рабочие жидкости.

 

51. Сопротивление, вызываемое трением, зависит от диаметра и длины трубопровода и скорости воды (если скорость увеличивается в 2 раза, то сопротивление — в 4 раза). Чем меньше диаметр и больше длина трубопровода и чем выше скорость воды, тем больше сопротивление создается на пути воды и наоборот. При большой длине труб сопротивление возрастает, с увеличением диаметра труб оно падает. Длина, диаметр и материал трубопровода, а также количество фитингов (уголков, тройников, клапанов) – необходимы для расчета потерь на гидравлические сопротивления в трубопроводе. Рост потерь находится в прямой зависимости от длины трубопровода и в квадратичной зависимости от расхода (при увеличении расхода вдвое, потери напора на гидравлические сопротивления возрастают вчетверо). Величину потерь для трубопроводов и фитингов различных диаметров и находят по таблицам.

Установить, в каком режиме будет работать насос, можно лишь при условии, если известна характеристика системы, в которую этот насос подает жидкость. В простейшем случае система—это напорный трубопровод, соединяющий насос с баком’. Как известно, напор, развиваемый насосом, складывается из геометрической высоты подъема жидкости и суммы гидравлических сопротивлений: H=Hг+∑hп, где ∑hп— сумма потерь напора. Она зависит от диаметра и длины трубопровода, шероховатости его стенок, числа местных сопротивлений и расхода Q подаваемой жидкости, т. е. ∑hп=SQ2=(Aι+Am∑ζ)Q2 где S — полное сопротивление системы; А — удельное сопротивление по длине труб; Am— удельное местное сопротивление; ι— длина трубопровода; ∑ζ— сумма коэффициентов местных сопротивлений

 

 

52/17. Гидротрансформатор. Принцип действия ГТ такой же, как и Гмуфты. Те же самые относительное и переносное движения масла. (При вращении насосного колеса масло под воздействием центробежной силы начинает двигаться по направляющим лопаткам к периферии, приобретая при этом кинетическую энергию. Из насосного колеса оно попадает в турбинное колесо, где при соприкосновении с лопатками турбины отдает ему часть своей энергии, приводя его, тем самым, во вращение.) Но для увеличения крутящего момента на выходном валу трансформатора введен дополнительный элемент – реакторное колесо (реактор, иногда статор). Реактор устанавливается между выходом из турбины и входом в насосное колесо, и предназначен для направления потока масла, выходящего из турбинного колеса, таким образом, чтобы его скорость совпадала с направлением вращения насосного колеса. В этом случае неизрасходованная в турбинном колесе энергия масла используется для дополнительного увеличения частоты вращения насосного колеса, что соответствующем образом увеличивает кинетическую энергию масла. Следствием этого является увеличение крутящего момента на валу турбинного колеса, по сравнению с моментом, подводимым к насосному колесу от двигателя. Следует отметить, что соотношение моментов на насосном и турбинном колесах определяется отношением угловых скоростей этих элементов. Максимальное увеличение крутящего момента происходит при полностью остановленной турбине. Такой режим работы трансформатора называется стоповым. Под термином “коэффициент трансформации” понимается отношение момента, развиваемого турбинным колесом, к моменту на насосном колесе. Затем, в процессе увеличения частоты вращения турбинного колеса, происходит снижение эффективности работы реактора, и крутящий момент на валу турбинного колеса уменьшается. Это вполне объяснимо, поскольку, чем выше частота вращения турбинного колеса, тем меньше влияние переносной скорости потока масла на лопатки этого колеса. В момент, когда частота вращения турбины составит приблизительно 85% частоты вращения насосного колеса, реакторное колесо, благодаря муфте свободного хода, теряет связь с картером трансмиссии и начинает свободно вращается вместе с потоком, не воздействуя на него. В результате этого трансформатор переходит в режим работы гидромуфты. ГТ обладает несколькими благоприятными свойствами. Его установка приводит к плавному изменению крутящего момента, нагружающего трансмиссию, что увеличивает долговечность агрегатов трансмиссии и снижает затраты на ее ремонт. Плавное изменение крутящего момента самым благоприятным образом сказывается при движении по слабонесущим грунтам и скользкой дороге (лед, снег), поскольку в этом случае снижается вероятность срыва грунта и буксования ведущих колес. ГТ является превосходным демпфером крутильных колебаний двигателя, которые гасятся маслом и не пропускаются в механическую часть трансмиссии.

53. Используют перемещение принудительным смещением порции жидкости из рабочей камеры в напорный трубопровод, путем изменения рабочего объема камеры или механического перемещения порции жидкости. Насосы, работающие по такому принципу, называются насосами объемного действия. Насосы объемного действия не нарушают структуру перекачиваемой жидкости. Это: Поршневые. Роторные насосы Шестеренные насосы с внешним зацеплением шестерен Шестеренный насос с внутренним зацеплением шестерен Импеллерные насосы Кулачковые насосы Перистальтические насосы Винтовые насосы Основные особенности объемных насосов следующие: — Наличие рабочих камер (полостей), периодически сообщающихся с всасывающим и нагнетательным патрубками. — Нагнетательный патрубок геометрически изолирован от всасывающего.- Подача перекачиваемой жидкости неравномерная.- Количество жидкости, подаваемой насосом, не зависит от развиваемого давления. Максимальный развиваемый напор теоретически не ограничен и определяется мощностью двигателя, прочностью деталей насоса и нагнетательного трубопровода. Объемные насос

Гидравлическое сопротивление

Существует два типа гидравлического сопротивления: сопротивление трению и местное сопротивление. В первом случае гидравлическое сопротивление обусловлено передачей импульса твердым стенкам. В последнем случае сопротивление вызывается рассеянием механической энергии при резком изменении конфигурации или направления потока, образованием вихрей и вторичных потоков в результате отрыва потока, центробежными силами и т. Д. классифицируя местные сопротивления, мы обычно называем сопротивления адаптеров, сопел, удлинителей, диафрагм, аксессуаров трубопроводов, поворотных колен, входов в трубы и т. д.

При определении полного сопротивления (потеря давления Δp f ) используется условная суперпозиция

(1)

Сопротивление трению (перепад давления по длине каналов) рассчитывается по эмпирической формуле Дарси

(2)

где — коэффициент трения Муди (в 4 раза больше коэффициента трения Фаннинга — см. Коэффициент трения), 1 и D H = 4S / P — длина и гидравлический диаметр канала, ρ — плотность жидкости, u — средняя скорость потока.

Для определения местного гидравлического сопротивления (ΔP 1 ) используется формула Вайсбаха.

(3)

где ζ — коэффициент местного сопротивления.

Для потока в гладких каналах коэффициент трения f зависит от условий потока и является функцией только Re = ūD H / ν. Для ламинарного потока значение для прямых труб определяется по формуле Пуазейля:

(4)

Значения C зависят от формы сечения и приведены в таблице 1.

Мы можем видеть из уравнения. (2) что в ламинарном потоке перепад давления изменяется со средней скоростью движения до первой степени: линейный закон сопротивления (область I, рисунок 1). В турбулентном потоке гидравлическое сопротивление трения резко возрастает (область II). Такое повышение сопротивления связано с большими потерями энергии, связанными с пульсирующим движением турбулентных вихрей в потоке жидкости. Значение в турбулентном потоке в круглой трубе может быть рассчитано по формуле Блазиуса для 5 × 10 3 ≤ Re ≤ 10 5

(5)

и из формулы Никурадзе для 10 5 ≤ Re ≤ 4 × 10 6

(6)

Приведенные выше формулы действительны для течения в каналах с гладкими стенками с полностью развитыми гидравлическими и тепловыми режимами.Во входной зоне канала (длиной до 20D H ) имеет более высокое значение, чем рассчитанное по формулам. (5) и (6). На коэффициент трения влияют изменения физических свойств жидкости, вызванные изменениями температуры и действием сил плавучести.

В неровных каналах гидравлическое сопротивление увеличивается за счет образования вихрей на элементах шероховатости, приводящих к дополнительной потере удельной энергии потока. Можно выделить три типа шероховатости:

  1. Естественная шероховатость, образующаяся в результате длительной эксплуатации трубопроводов.

  2. Шероховатость песка, характеризующаяся высокой плотностью и различной формой конкреций.

  3. Искусственная (или регулярная) шероховатость, когда элементы шероховатости имеют определенную геометрическую форму и расположение.

Каждый вид шероховатости имеет свою специфику изменения коэффициента трения сопротивления от Re. В случае шероховатости песка в качестве параметра шероховатости принимается отношение радиуса трубы r 0 к средней высоте выступа δ r на поверхности стенки (k = r 0 / δ r ).До определенного значения Re сопротивление шероховатой трубы изменяется так же, как и у гладкой (рисунок 2) (в ламинарном потоке оно изменяется согласно уравнению (4) (кривая 1) в турбулентном потоке , согласно уравнению (5) (кривая 2). Это связано с тем, что сначала толщина ламинарного подслоя у стенки δlam превышает среднюю высоту выступов шероховатости (δ lam > δ r ). Re увеличивается далее, δ r становится больше, чем δ lam .Это приводит к увеличению сопротивления трению шероховатой трубы по сравнению с гладкой при превышении определенного числа перехода Re tr , значение которого зависит от параметра шероховатости: Re tr 100k. При Re> Re tr (поток самоподобия) наблюдается квадратичный закон сопротивления, когда коэффициент сопротивления трения зависит только от значения параметра k (кривая 3 на рисунке 2):. Значение для труб с технической шероховатостью можно оценить по формуле Колебрука-Уайта.

(7)

Здесь k s — эквивалентная шероховатость песка, которая для новых труб, вытянутых из черных металлов, составляет около 0.01 мм, а для новых стальных труб — около 0,014 мм; через несколько лет эксплуатации он увеличивается примерно до 0,2 мм. Для старых ржавых труб k s 1-3 мм и для новых оцинкованных труб 0,5 мм; для новых асбестоцементных труб — 0,085 мм.

Таблица 1. Коэффициент, связывающий коэффициент трения и Re -1 в уравнении. (4)

Рис. 1. Изменение давления иона в зависимости от средней скорости.

Рис. 2. Изменение коэффициента трения в зависимости от числа Рейнольдса.

Для искусственной шероховатости из-за ее разнообразия не существует однозначных обобщающих параметров шероховатости. В таком случае для определения гидравлического сопротивления можно использовать специальные процедуры расчета. Значения для типовой арматуры и др. Приведены в книге Идельчика (1992).

В гладких изгибах и в спиральных трубах с R / r 0 ≥ 3 мы предполагаем, что ΔP 1 = 0, а влияние центробежных сил учитывается путем подстановки эффективного значения коэффициента сопротивления трения в уравнение.(2): для ламинарного потока

(8)

для турбулентного течения (Re> 10 4 )

(9)

где — коэффициент сопротивления трения для прямой трубы; D = 1/2 Re — число Дина, r 0 — радиус трубы, R — радиус кривизны.

ССЫЛКИ

Идельчик, I, (1992) Справочник по гидравлическому сопротивлению (2-е изд.) Бегелл Хаус, Нью-Йорк.

Шлихтинг, Х. (1979) Теория пограничного слоя , МакГроу Хилл, Нью-Йорк.

Теплообменник, Руководство по проектированию (1983) т. 1 и 2, Hemisphere Publishing Corporation.

Кривая системы и кривая производительности насоса

Кривая системы

Система потока жидкости характеризуется кривой системы — графическим представлением уравнения энергии.

Напор системы, отображаемый на системной кривой выше, является функцией высоты — или статического напора, а также больших и малых потерь в системе и может быть выражен как:

h = dh + h l (1)

где

h = системная головка (м)

dh = h 2 — h 1 = высота ) разница напора между входом и выходом в системе (м)

ч л = большая и малая потеря напора в системе (м)

Общее выражение большого и малого потери напора:

ч л = kq 2 (2)

где

9 0033 q = расход

k = константа, описывающая общие характеристики системы, включая все основные и второстепенные потери

Увеличение постоянной — k — путем закрытия некоторых клапанов, уменьшая размер трубы или аналогичный — увеличит потерю напора и сдвинет кривую системы вверх.Начальная точка кривой — при отсутствии потока — будет такой же.

Кривая производительности насоса

Характеристика насоса обычно графически описывается производителем как кривая производительности насоса. Кривая производительности насоса описывает соотношение между расходом и напором фактического насоса. Также включена другая важная информация для правильного выбора насоса, такая как кривые КПД, кривая NPSH r , кривые насоса для нескольких диаметров рабочего колеса и различных скоростей, а также потребляемая мощность.

Увеличение диаметра рабочего колеса или скорости увеличивает напор и пропускную способность, и кривая насоса перемещается вверх.

Напор можно увеличить, подключив два или более насосов последовательно, или производительность можно увеличить, подключив два или более насосов параллельно.

Выбор насоса

Подходящий насос можно выбрать, объединив кривую системы и кривую насоса:

Рабочая точка — это точка пересечения кривой системы и фактической кривой насоса.

Точка наилучшей эффективности — BEP

Наилучшие условия эксплуатации в целом будут близки к точке максимальной эффективности — BEP .

Особое внимание следует уделять приложениям, в которых условия системы часто меняются во время работы — например, в системах отопления и кондиционирования воздуха или в системах водоснабжения с регулируемым потреблением и регулирующими клапанами.

Выполнить

Когда насосы работают в крайнем правом углу кривой с низким КПД, насосы выполняют.

Запорная головка

Запорная головка — это напор, возникающий, когда насос работает с жидкостью, но без расхода.

Churn

Насос находится в Churn, когда он работает с запорным напором или при отсутствии потока.

Гидравлическое сопротивление

Размер заделки (пикс.) 344 x 292429 x 357514 x 422599 x 487

Текст гидравлического сопротивления

TFD-FD06 Локальные (незначительные!) Потери гидравлического сопротивления 1 ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ Локальные (незначительные!) Потери давления TFD-FD06 Гидравлическое сопротивление Локальные (незначительные!) Потери 2 Незначительные потери!) Q Хотя они часто составляют основную часть общей потери давления, дополнительные потери из-за входов и выходов, фитингов и клапанов традиционно называют незначительными потерями! Q Эти потери представляют собой дополнительное рассеивание энергии в потоке, обычно вызывается вторичными потоками, вызванными кривизной или рециркуляцией.q Незначительные потери — это любые общие потери давления, присутствующие в дополнение к общим потерям давления для той же длины прямой трубы. TD-FD06 Гидравлическое сопротивление Локальные (незначительные!) потери 3 Модифицированное уравнение Бернулли q Уравнение Бернулли справедливо вдоль любой линии тока в любом потоке без трения Однако это очень ограничительно. Твердые стены создают эффект трения. Фитинги в системе трубопроводов, а также изменения площади поперечного сечения приводят к потерям давления на трение. Q Уравнение Бернуллиса может быть изменено, чтобы учесть эти потери на трение, присутствующие в любой сети жидкостной системы22 2122 21222 2 121 1 2121 v K vDfLhgh vp gh vp + + + + + + Трение стенок Местные потери K — коэффициент гидравлического сопротивления TFD-FD06 Гидравлическое сопротивление Локальные (незначительные!) Потери 4 Коэффициент гидравлического сопротивления — KA Безразмерный параметр Энергия) (кинетическое давление Динамические потери Давление Общее сопротивление Поток q Коэффициент гидравлического сопротивления определяется как отношение полной энергии, потерянной на данном участке, к кинетической энергии на участке Отношение полного давления, потерянного на участке к динамическому давлению на участке q Коэффициент гидравлического сопротивления K, для случая равномерного распределения статического давления и плотности на участке сегмент, но переменный по потоку221ototalvpKTFD-FD06 Гидравлическое сопротивление Локальные (незначительные!) потери 5Ba se Площадь сопротивления потоку q Коэффициенты сопротивления потоку могут быть выражены в терминах скорости компонента вверх или вниз по потоку. Термин потерь может быть добавлен к скорости вверх или вниз по потоку с тем же чистым эффектом. K v K q Базовая площадь для всех сопротивлений потоку (K), показанных в этом разделе, дана на основе наименьшей площади поперечного сечения компонента, а затем наибольшей скорости.221basevpK221221221221221221) () (вниз вверх вверх вверх вниз вниз вверх вверх pv pv pv pv KDfLv KDfL + + ++ +++ + TFD-FD06 Гидравлическое сопротивление Местные (незначительные!) Потери 6 Эквивалентная длина фитингов q Местные (незначительные) потери могут быть представлены другим способом с использованием концепции эквивалентной длины. Включение локальных потерь в уравнение Бернулли может сделать задачи итерационного типа трудоемкими. Локальные потери могут быть значительно выше для относительно коротких трубопроводных систем, и их нельзя игнорировать23 2123 2123 21) () ( 323 213 121 211323 213 121 211V KDfLV K VDfLhhgh V p gh V pgh V p gh V p + ++ ++ + + ++ + + + heqDfLK TFD-FD06 Гидравлическое сопротивление Местные (незначительные!) Потери 7 Эквивалентная длина фитинговq Концепция Эквивалентная длина позволяет нам заменить местный (незначительный) член потерь на эквивалентную длину трубы f K DLDfLK heqheq) (f — коэффициент трения, который применяется ко всей трубе D — гидравлический диаметр трубы (характеристическая длина) Leq — эквивалентная длина: Длина трубы, которая может заменить фитинг (локальные потери), чтобы получить такую ​​же потерю давления TD-FD06 Гидравлическое сопротивление Локальные (незначительные!) Потери 8 Список конфигураций Внезапное расширение Внезапное расширение в одной плоскости Внезапное сокращение Внезапное сжатие Эффект конического расширения Коническое расширение Коническое сокращение равномерно распределено Барьеры Проволочный экран Резьбовой экран Две плоские решетки Screenq на одной линии с отверстием Flowq в прямой трубе Острый край Закругленный скошенный Толстый край q Отверстие в переходе трубы Острый край Скругленный скошенный толстый крайTFD-FD06 Гидравлическое сопротивление Локальные (незначительные!) Потери 9 Устойчивость к резким изменениям потока Площадь потокаВнезапное расширениеВнезапное сжатиеVena Contracta EffectTFD-FD06 Гидравлическое сопротивление Локальные (незначительные!) Потери 10Внезапные потери давления при расширенииq Резкое расширение площади поперечного сечения трубы приводит к так называемым ударным потерям.q Местная потеря давления из-за этого скачка уплотнения зависит только от соотношения площадей поперечного сечения A1 / A2.221exp) 1 (AAK Отношение площадей A1 / A2 меньше 1,0 q Допущения: равномерное распределение скорости в поперечном сечении A1 Число Рейнольдса> 104A1A2ВихриJ etP1P2P1P2J etA2A1L2Площадь основания — A18-12 DhTFD-FD06 Локальные (незначительные!) Потери гидравлического сопротивления 11Внезапные потери давления при расширенииq Струя, образовавшаяся в результате внезапного расширения, отделяется от остальной среды. Образует значительную турбулентность, как показывают вихри.q Требуется длина трубы (L2) 8-12 гидравлических диаметров (Dh), чтобы установился относительно однородный поток со скоростью v2. TD-FD06 Гидравлическое сопротивление Локальные (незначительные!) потери 12 Внезапное расширение в одной плоскости q При резком расширении трубы поперечное сечение происходит только в одной плоскости (как показано на рисунке), ударные потери уменьшаются с увеличением аспектного отношения B / H. B — ширина большего поперечного сечения. H — постоянная высота канала. Q Коэффициент потерь: 2211 exp) 1 (AAk K q Где k1 = <1 - поправочный коэффициент, который зависит от соотношения сторон B / H.Зависимость k1 ​​от B / HTFD-FD06 Гидравлическое сопротивление Локальные (незначительные!) Потери 13A1A1A3Ac Внезапное сжатиеq Когда поперечное сечение резко сокращается, это явление в основном аналогично тому, которое наблюдается при ударных потерях при резком расширенииq Потери на сжатие возникают при дальнейшем сжатии струи после попадание в секцию A3 - эффект контракта вены Эффективный диаметр потока уменьшается до Ac Расширяется, пока он не заполнит всю секцию узкого канала A3Vena ContractaAcA375. 0131 5.0

, _

AAKContBase area is A3TFD-FD06 Гидравлическое сопротивление Локальные (незначительные!) Потери 14Vena ContractaEffectq Прохождение потока через сжатие сопровождается искажением траекторий частиц, в результате чего они продолжают движение по инерции к оси отверстия. q Это уменьшает начальную площадь поперечного сечения струи в точке CC до тех пор, пока площадь не станет меньше, чем площадь поперечного сечения отверстия. Плоскость вены контракта. C-CP Плоскость вены Contractaq. Начиная с среднего сечения СС, траектории движущихся частиц выпрямляются.q После этого происходит резкое расширение струи. TFD-FD06 Локальные (незначительные!) потери гидравлического сопротивления 15 Стенки трубы, следующие за линиями тока потока q Потери давления в сужающемся поперечном сечении могут быть значительно уменьшены, если граница трубы будет следовать линиям тока потока. Обеспечение плавного перехода от широкого участка к узкому С криволинейными границами Сходящееся и расходящееся (расширяющееся) сопло Стенка трубыСходящееся соплоРасходящее соплоTFD-FD06 Гидравлическое сопротивление Локальные (незначительные!) Потери 16 Сопротивление потоку Изменения направления потока Потери потока в коленеФланцевое колено Стандартное BendTFD-FD06 Локальные (незначительные!) Потери гидравлического сопротивления 17 Изменение направления потока q В коленях линии тока изогнуты, и центробежная сила вызывает повышение давления около внешней стенки колена.q Начало в точке Давление увеличивается и увеличивается до максимального значения в точке B. q В области AB потоку жидкости препятствует отрицательный градиент давления. q Внутри колена давление снижается до точки C, а затем снова возрастает в выходном сечении Dq По этой причине существует также отрицательный градиент давления от C к D на внутренней стенке. q Эти условия могут привести к разделению и турбулентность и соответствующие потери энергии потока. q Величина этих потерь в значительной степени зависит от резкости кривизны.ABCD Область более высокого давления Область низкого давления TD-FD06 Гидравлическое сопротивление Локальные (незначительные!) Потери 18 Потери потока в изгибе q Основная часть потерь давления потока в изогнутых трубах происходит из-за образования завихрений на внутренней стенке. Q При прочих равных условиях изогнутая труба обеспечивает наибольшее сопротивление в том случае, если кривизна внутренней стенки имеет острый угол. q Закругление углов колена делает разделение потока более плавным и, следовательно, снижает сопротивление. В большинстве случаев потери потока могут быть компенсированы закруглением внутреннего угла и острым внешним коленом.Площадь поперечного сечения в месте изгиба резко увеличивается (как показано красным крестиком). Скругление внешнего угла локтя и сохранение острого внутреннего угла не снижает сопротивления локтя. Большой радиус на внешнем колене даже увеличит потери потока, поскольку он значительно уменьшит площадь поперечного сечения (как показано зеленым x-сек) TFD-FD06 Гидравлическое сопротивление Локальные (незначительные!) Потери 19 Минимальное сопротивление коленаq Минимальное сопротивление достигается за счет локоть, когда внешний и внутренний радиусы связаны какror1Rodo6.01+ ooo drdrq ​​Сопротивление угловых колен можно значительно снизить, установив обтекатель на внутренний угол Оптимальный обтекатель с соотношением ro / do = 0,45 снижает потери давления примерно на 50% Дополнительный обтекатель на внешнем углу с соотношение r1 / do = 0,45 снижает потери еще на 5%. q Уменьшение сопротивления колена также может быть достигнуто за счет снятия фаски с острых углов изгиба, особенно внутреннего угла ror1doTFD-FD06 Гидравлическое сопротивление Локальные (незначительные!) потери 20Минимизация колена Сопротивление Пример колена возврата охлаждающей жидкости Вычислительная гидродинамика (CFD) использовалась для минимизации потерь потока в колене возврата охлаждающей жидкости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *