Ветровая генерация: выбор и цена, своими руками

Содержание

Принцип действия и устройство ветрогенератора (общие понятия)

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема генератора для ветряка

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Устройство и конструкция ветрогенератора, а также узлов

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

классический ветрогенератор

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

схема увеличения мощности и емкости ветрогенератора

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

Мегаконструкции. Самые большие ветрогенераторы / Хабр


Siemens SWT-7.0-154

Кто говорил, что ветряки не способны конкурировать по мощности с атомными электростанциями? Посмотрите на самую большую в мире ветроэлектрическую установку Siemens SWT-7.0-154. С площадью ометания 18 600 м² этот гигант в одиночку генерирует максимальную мощность 7 МВт при скорости ветра 13-15 м/с. Несколько сотен таких ветряков — и вот вам атомная электростанция.

SWT-7.0-154 — это флагманская модель компании Siemens. В её названии зашифрованы генерируемая мощность (7 МВт) и диаметр ротора с лопастями (154 м). Она пришла на смену предыдущему флагману SWT-6.0-154, от которого практически не отличается по техническим спецификациям, но оснащён более мощными магнитами. Более сильное магнитное поле позволяет генерировать больше электроэнергии при том же диаметре. Другими словами, в этой ВЭН параметр снимаемой мощности с квадратного метра площади ометания выше примерно на 16,7%.

Ветрогенератор включается в работу на минимальной скорости ветра 3-5 м/с, а генерируемая мощность поступательно растёт до максимальной 7 МВт при скорости ветра 13-15 м/с. При достижении скорости ветра 25 м/с генерация прекращается.

Казалось бы, на таких скоростях ветра лопасти ВЭУ должны вращаться быстро, но это совершенно не так. На самом деле они вращаются неторопливо и степенно, делая всего 5-11 оборотов в минуту. То есть полный оборот три лопасти совершают примерно за 5-12 секунд, в зависимости от скорости ветра.

Более сильное магнитное поле в новой модели означает также и то, что эту турбину труднее раскрутить. Для достижения той же скорости вращения 5-11 оборотов в минуту и максимальной генерируемой мощности (7 МВт вместо 6 МВт) этой турбине требуется повышенная скорость ветра: 13-15 м/с вместо 12-14 м/с. Соответственно, и начальная скорость ветрогенерации у неё выше. Вот почему данная модель-гигант наиболее оптимально подходит для размещения на территориях с относительно сильными ветрами, лучше всего в море.

Внутри турбины нет редуктора (коробки передач) — здесь работает система прямого привода, подключенная к синхронному генератору переменного тока с постоянными магнитами. Поскольку скорость генератора определяет напряжение и частоту тока, то «грязный переменный ток» преобразуется в постоянный ток, а затем преобразуется обратно в переменный ток перед подачей в сеть.

В последние годы в области ветряной энергетики происходит очень быстрый научно-технический прогресс. Буквально каждый год появляются новые модели ВЭУ большей мощности и эффективности. Большие и маленькие, рассчитанные на целые посёлки или отдельные дома, на большую скорость ветра в море или на среднюю скорость ветра над крышей частного дома.

Например, мировой рекорд по максимальной генерируемой мощности принадлежит вовсе не Siemens, а другой турбине ещё одного немецкого производителя Enercon E126, которая выдаёт до 7,58 МВт. На видео показан процесс установки такой турбины.


Высота стойки Enercon E126 — 135 м, диаметр ротора — 126 м, общая высота вместе с лопастями — 198 м. Общий вес фундамента турбины — 2500 тонн, а самого ветрогенератора — 2800 тонн. Только электрогенератор весит 220 тонн, а ротор вместе с лопастями — 364 тонны. Общий вес всей конструкции со всеми деталями — 6000 тонн. Первая установка подобного типа была установлена около немецкого Эмдена в 2007 году, хотя в той модификации максимальная мощность была меньше.

Впрочем, ветрогенераторы-гиганты — довольно дорогое удовольствие. Один такой ветряк на 7 МВт обойдётся в $14 млн вместе с установкой, если заказывать все работы у сертифицированных немецких специалистов. Конечно, если освоить производство в своей стране, благо металла хватает, то стоимость вполне можно снизить в несколько раз. Кто знает, может такой гигантский проект национальной стройки занял бы население страны и помог выбраться из экономического кризиса.


Одна из самых последних строящихся в Восточной Европе атомных станций — Белорусская АЭС — получит два энергоблока с реакторами ВВЭР-1200 мощностью по 1200 МВт. Казалось бы, несколько сотен ветряков Siemens сравнятся с атомной электростанцией. Стоимость строительства примерно одинаковая, зато «топливо» бесплатное. Что интересно, Белорусскую АЭС как раз строят в районе, где по климатическим данным за 1962-2000 годы почти самая высокая среднегодовая скорость ветра в Беларуси. Но в реальности эта «самая большая» среднегодовая скорость ветра — всего лишь около 4 м/c (на высоте 10 м), чего едва хватит для запуска ВЭУ на минимальной мощности.

Перед установкой следует сверяться с годовой картой ветров в районе дислокации с данными средней удельной мощности ветрового потока на высоте 100 м и выше. Хорошо бы составить такие карты для всей территории страны, чтобы найти места наиболее оптимального строительства ВЭУ. Нужно иметь в виду, что скорость ветра сильно зависит от высоты, что хорошо известно жителям высотных домов. В обычных прогнозах погоды по ТВ сообщают скорость ветра на высоте 10 м над землёй, а для ветровой турбины следует измерять скорость на высоте 100-150 м, где ветры гораздо сильнее.

Так что наиболее оптимально такие гиганты подходят для установки в море, в нескольких километрах от побережья, на большой высоте. Например, если установить такие установки вдоль северного побережья России с шагом 200 метров, то максимальная мощность массива составит 690,3 ГВт (побережье Северного Ледовитого океана составляет 19724,1 км). Скорость ветра там должна быть приемлемая, только при заливке фундаментов придётся иметь дело с вечной мерзлотой.

Правда, по стабильности работы ВЭУ никогда не сравнятся с АЭС или ГЭС. Здесь энергетикам приходится постоянно следить за прогнозом погоды, потому что генерируемая мощность напрямую зависит от скорости ветра. Ветер должен быть не слишком сильным и не слишком слабым. Хорошо, если в среднем ВЭУ будут выдавать хотя бы треть от максимальной мощности.

из чего состоят ветряные генераторы для дома, их разновидности и особенности

Ветровая генерацияВ настоящее время стала популярной проблема внедрения альтернативных источников электричества. Многие регионы Европы, занимающиеся разработкой таких технологий, уже успешно их применяют с целью экономии. Одним из источников электричества выступает ветровая генерация, обладающая крупным перечнем достоинств.

Особенно выделяются ветровые установки для коттеджей, эффективно добывающие электричество и отличающиеся экологической безопасностью в процессе эксплуатации.

Из чего состоят ветряные электростанции

При желании обустроить автономную систему добычи электричества для дома необходимо понимать, из чего она состоит. Эти данные смогут оптимизировать процесс поиска нужной модели устройства и помогут владельцу стать более компетентным в этом вопросе.

В конструкцию ветряков входят такие детали:

  1. Особенности современных устройств для ветровой генерацииРотор с лопастями (бывают модели с двумя, тремя и более лопастями).
  2. Регулятор скоростных показателей между генератором и ротором (редуктор).
  3. Защитный кожух обеспечивает сохранность всех компонентов ветряка.
  4. «Хвостовая часть» ветряка обеспечивает поворотливость конструкции по направленности ветра.
  5. Аккумулятор, накапливающий электричество (в период непогоды этот механизм способен сохранять определенный запас энергии).
  6. Инвертор отвечает за преобразование постоянного тока в переменный (полезная функция для сохранности бытовой техники).

Принцип действия и разновидности ветряков

Необходимые расчеты перед монтажом ветряных установок для домаАвтономные электростанции, работающие от ветра, отличаются простотой конструкции. Все ветровые генераторы оснащены лопастными хвостовиками, размещенными на мачте. Процесс вращения этих деталей обеспечивает запуск ротора, тем самым вырабатывая электричество.

В свою очередь, ток проходит через преобразователь и попадает в батареи, которые передают энергию на жилой объект при отсутствии ветра. А благодаря инвертору обеспечивается напряжение в 220 вольт.

Стоит отметить, что подобная станция может работать при минимальном ветре за счет наличия специального металла.

Помимо функциональной составляющей генераторов, владельцам домов необходимо знать об их разновидностях. Ветряки могут отличаться по нескольким критериям:

  • Направление оси вращения лопастей (горизонтальное и вертикальное).
  • Количество лопастей.
  • Использованный материал (жесткие и парусные лопасти).
  • Вариант управления лопастями (фиксированный и изменяемый).

У горизонтальной оси вращения присутствует высокий процент добычи электроэнергии. Если присутствуют жесткие лопасти с фиксированным шагом, ветряк сможет дольше эксплуатироваться.

Достоинства и недочеты ветряков

Перед тем как выбрать подобную систему электроснабжения, стоит взвесить все за и против. Дело в том, что ветряной генератор для дома обладает не только достоинствами, но и конкретными недочетами.

К числу достоинств ветряных мельниц можно отнести:

  1. Экологическую чистоту и отсутствие вредных выделений в окружающую среду.
  2. Элементарные конструктивные особенности, облегчающие процесс установки и добычи энергии.
  3. Простоту использования готовой электростанции.
  4. Независимость объекта от электросети.

Принцип действия ветряных электростанцийДаже имея генератор небольших размеров, можно без проблем электрофицировать загородное жилище, но существуют определенные минусы, требующие учета.

Во-первых, техника для обустройства ветряка стоит не дешево, что приводит к вопросу об окупаемости, которая может наступить не ранее, чем через 5−6 лет.

Во-вторых, автономные станции не способны обеспечить максимальный КПД, вследствие чего теряется мощность. А без генератора и аккумулятора, стоящих дорого, работа станции в спокойную погоду будет прекращаться.

Расчет габаритов и точки установки

Виды ветровой генерацииЧтобы разместить ветряной электрогенератор, необходимо провести ряд расчетов, учитывающих нужную мощность, число ветреных дней и особенности местности.

В первую очередь, должны интересовать направление ветра и его сила. Эти данные считаются оптимальными в приморских и горных регионах, так как ветер здесь может достигать до 70 метров в секунду.

На равнинах скорость и поток ветра не такие сильные, а в лесных зонах эти показатели практически минимальны.

Далее нужно определиться с параметром высоты мачты. Оптимальным считается 10−15 метровое удаление от земли.

Монтаж такой мачты может проходить двумя способами:

  • Выкапывание четырех глубоких ям малого диаметра с последующим погружением растяжек устройства и их бетонирование. Это укрепляет станцию при сильных ветрах, а единственной поломкой может стать выход из строя лопастей.
  • С помощью троса из металла ветряная мельница закрепляется перпендикулярно земле. Трос тщательно фиксируется и углубляется под грунт.

Ветряной генератор для домаОт правильного выбора варианта крепления мачты зависит продолжительность службы станции в целом.

Что касается зоны монтажа электростанции, она должна быть удаленной от построек на расстояние, соответствующее размеру трех мачт.

Важно! Если элементы ветряного генератора были произведены под заказ, егомонтажом должны заниматься профессионалы.

Также для эффективного использования автономного генератора, нужно предусмотреть:

  1. Отсутствие деревьев и птичьих гнезд вблизи лопастей.
  2. Укрепление бетоном рыхлой площадки.
  3. Оперативный доступ ко всем элементам станции с целью обслуживания.

В конце следует добавить, что невзирая на минусы, ветряные установки постоянно совершенствуются. При их помощи люди могут создать бесплатный источник электричества для дома в любых регионах. Даже если сила ветра не будет достаточной, установку можно усилить специальным оборудованием.

Почему СССР был лидером в ветроэнергетике, а сейчас нам приходится всех догонять

Самым неожиданным пируэтом на пути человечества к ветровой энергетике может похвастаться Россия. Когда ВЭС были непопулярны на Западе, они были на подъеме у нас. Когда в мире их стали активно развивать, в стране появились просто толпы экспертов из энергетической отрасли, которые указывали: «Место для ветряков в Европе кончилось». Правда, с тех пор, как у нас начали это говорить, мощность ВЭС у европейцев выросла в десятки раз и продолжает расти. Видимо, до них мнение наших экспертов не довели.

Ну а в 2016 году мы внезапно еще раз поменяли мнение, так сказать, вернулись в добрежневский СССР. Первым на государственном уровне сказал свое веское слово Росатом. Его замгендиректора Вячеслав Першуков честно отметил: после выполнения имеющихся заказов на строительство новых АЭС за рубежом Росатом может остаться без зарубежных строек, поскольку этот рынок быстро сокращается. Атомная генерация за пределами России, действительно, переживает упадок, и никаких перспектив выхода из него не видно.

Главная причина проста: энергия АЭС западной постройки стоит дорого. Энергия АЭС российской постройки дешевле, но все равно не настолько, как у новых западных ветряков. Да, для компенсации их непостоянства нужно немного газовых ТЭС, но для АЭС они тоже нужны. Ведь реактор всегда дает одинаковую выработку, а люди потребляют днем куда больше, чем ночью. При равной цене и равных проблемах западный покупатель, на которого вечно давят «зеленые», никогда не выберет атомную генерацию.

Вот Першуков и констатирует: возможности строительства новых крупных АЭС за рубежом практически исчерпаны. «Мы должны зарабатывать не на рынке ядерных технологий. Все. Иначе не получается», – верно отмечает он.

Конечно, если сперва забрасывать какое-то дело на десятилетие, а потом браться за него, когда у конкурентов уже есть отработанные годами технологии, то сразу на лидерские позиции рассчитывать не стоит. Поэтому Росатом пошел по уже проторенному Петром I пути и начал учиться новому (а точнее — хорошо забытому у нас старому) у голландцев. С помощью дочерней структуры он создал партнерство с Lagerwey. До 2020 года госкорпорация планирует построить 26 небольших ВЭС на 610 мегаватт — начиная с Ульяновской области уже в 2018 году. Да, это меньше одной сотой от ежегодного мирового ввода, но на этих крохах Росатом учится. К тому же в 2020 году предполагается локализовать производство ветряков в России на 65 процентов.

Сложнее будет потом, когда придется выйти на большие масштабы. С прибылью производить ветряки общей мощностью лишь на сотни мегаватт в год нельзя. Это большой бизнес, без массового производства низкой цены в нем не будет. Поэтому надо расширять как строительство ветряков у нас, так и выходить на мировой рынок. Однако, здесь конкурировать будет очень тяжело.

Гиганты типа Vestas потратили десятки лет на отработку своих технологий и построили совершенно уникальные мощности. Например, завод по выпуску титанических лопастей в десятки тонн, расположенный на острове специально для того, чтобы проще было вывозить такой сложный для сухопутных дорог груз. Где Росатом построит такое, и сможет ли он угнаться за постоянно совершенствующимся рынком ветряков — вопрос, и непростой.

устройство ветрогенератора, типы и пошаговая инструкция

Сборка ветрогенератора своими рукамиМногие владельцы загородных домов хотели бы использовать альтернативные источники энергии. Аналогичного мнения придерживаются и жители городских квартир из-за постоянного роста стоимости электроэнергии. При желании можно собрать простой ветряной генератор и установить его на своем участке.

Правовые вопросы установки ветряка

Перед началом работ по созданию ветрогенератора своими руками стоит разобраться в законности использования этого агрегата. Чтобы обеспечить дачный участок электроэнергией, вполне достаточно использовать установки, мощность которых не превышает 1 кВт. На территории России они считаются бытовыми, и для их использования не требуется разрешение или сертификат.

Также со стороны государства не предусмотрены и дополнительные налоги на производство энергии для бытовых потребностей. В результате можно смело собирать ветряки своими руками для дома и использовать бесплатную электроэнергию. Однако стоит дополнительно проконсультироваться в местных органах власти на предмет наличия каких-либо правовых нормативов по данному вопросу.

Кроме этого, не стоит исключать возможность жалоб со стороны соседей, если они начнут испытывать неудобства при использовании этого агрегата. Решив собрать ветровой генератор своими руками, стоит обратить внимание на несколько его параметров:

  • Ветрогенератор своими рукамиВысота мачты — вблизи от аэропортов, мостов, а также тоннелей нельзя возводить строения высотой более 15 метров.
  • Шум при эксплуатации — крайне важно после установки проконтролировать показатель шума, чтобы не превысить установленные законом нормы.
  • Помехи в эфире — при создании агрегата стоит предусмотреть соответствующие защитные механизмы.

Кроме этого, могут возникнуть претензии со стороны экологических служб, если ветряк мешает миграции птиц. Однако такая ситуация крайне маловероятна.

Принцип работы

Ветряной генератор представляет собой устройство, преобразующее кинетическую энергию ветра в механическую с ее последующей конвертацией в электрическую. Происходит это благодаря вращению ротора генератора. Агрегат состоит из следующих элементов:

  • Лопасти.
  • Ротор турбины.
  • Генератор с подвижной осью.
  • Инвертор для преобразования переменного тока в постоянный.
  • Аккумуляторные батареи.

Как сделать ветрогенераторНа лопасти воздействуют три силы, две из которых, подъемная и импульсная, преодолевают третью (тормозящую) и приводят в движение маховик. Вращательное движение передается на ротор генератора, и при его вращении в статоре создается магнитное поле. В результате этого появляется переменный ток, который затем с помощью специального контроллера преобразуется в постоянный и заряжает батарею.

Виды ветряных генераторов

Электроустановки этого типа принято классифицировать в соответствии с несколькими параметрами. Одним из главных здесь можно считать количество лопастей, так как многолопастные начинают работать даже при слабом ветре. Решив собрать ветряной генератор для дома своими руками, следует помнить о том, что лопасти могут быть парусными или жесткими. Проще всего сделать изделия первого типа, но они не отличаются высокой прочностью и требуют частого ремонта.

Отличаются ветроустановки и по расположению оси вращения — горизонтальные и вертикальные. Каждый из этих типов имеет как преимущества, так и недостатки. Если вертикальные устройства более чувствительны, то горизонтальные отличаются высокой мощностью. Последний признак классификации ветряных установок — фиксированный либо изменяемый шаг. В домашних условиях проще собрать агрегат первого типа.

Роторная установка

Собрать такую ветряную электростанцию своими руками довольно просто. При этом ее мощности будет достаточно для обеспечения всех потребностей в электрической энергии на садовом участке.

Подготовительный этап

Владельцам загородных домов можно смело ориентироваться на установки мощностью около 1,5 кВт. Наиболее простым устройством станет агрегат с вертикальной осью вращения. Для его создания потребуются следующие детали и материалы:

  • Принципы работы ветрогенератораГенератор от автомобиля на 12 В.
  • Кислотная или гелиевая аккумуляторная батарея.
  • Полугерметичный выключатель типа «кнопка» на 12 В.
  • Вместительная емкость из алюминия либо нержавейки.
  • Реле контроля заряда АКБ от автомобиля.
  • Вольтметр.
  • Провода сечением в 2,5 мм2 и 4 мм2.
  • 2 хомута для монтажа генератора на мачте.

Кроме этого, потребуются болты с гайками, мерительный инструмент, болгарка либо ножницы по металлу и дрель.

Инструкция по изготовлению

Как сделать лопасть ветрогенератораОснову будущего агрегата составит цилиндрическая емкость, например, бочка или ведро. На нее необходимо нанести разметку, разделив емкость на четыре равных части. После этого следует разрезать металл (не до конца), чтобы получились лопасти. В шкиве и днище емкости просверливаются отверстия, которые должны располагаться строго симметрично, чтобы при работе не возник дисбаланс.

После этого лопасти отгибаются с учетом направления вращения используемого генератора, чаще всего по направлению хода часовой стрелки. Также следует помнить, что угол изгиба лопастей оказывает влияние на скорость вращения пропеллера. Закрепив лопасти на шкиве, генератор с помощью хомутов монтируется на мачте.

Основная часть работ на этом завершена, и остается лишь собрать электрическую цепь. Чтобы облегчить эту задачу, во время установки генератора на мачту стоит зарисовать схему соединений. Для подключения батареи следует использовать метровый отрезок провода сечением в 4 мм2. В свою очередь для соединения агрегата с сетью стоит воспользоваться проводником 2,5 мм2. Инвертор также подключается с помощью провода большего сечения.

Если все работы были проведены в соответствии с инструкцией, то ветряк будет хорошо работать, и при его эксплуатации проблем возникнуть не должно. При этом достоинств у роторной установки значительно больше, чем недостатков. К числу последних можно отнести лишь довольно высокую чувствительность к сильным порывам ветра.

Агрегат аксиального типа

Так как рынок насытился неодимовыми магнитами, стоимость этих изделий значительно снизилась. В результате можно на их основе собрать эффективный ветряк. Основой аксиального генератора станет ступица с тормозными дисками от машины. Перед началом работ ее необходимо очистить, проверить и смазать подшипники, а также покрасить.

Установка магнитов

Всего потребуется около 20 магнитов размера 20х8 мм. При желании можно использовать и большее количество этих изделий. Однако в такой ситуации следует руководствоваться двумя правилами:

  • Если генератор будет однофазный, то число магнитов должно соответствовать количеству полюсов.
  • Для трехфазного устройства следует придерживаться соотношения полюсов и катушек соответственно 2/3 или 4/3.

Магниты просто наклеиваются на диски ротора, но при этом их полюса должны чередоваться. Чтобы все сделать правильно, стоит предварительно изготовить шаблон-шпаргалку. Предпочтение следует отдать магнитам прямоугольной формы, так как при работе они создают магнитное поле по всей длине. Также следует отметить, что противостоящие магниты должны иметь разные полюса.

Выбор типа генератора

Детали ветрогенератораПри сравнении одно- и трехфазного устройства, предпочтительнее выглядит второе. Одним из основных недостатков однофазного генератора являются вибрации, возникающие при работе. Причина их появления кроется в разнице амплитуд тока, так как его отдача происходит неравномерно. Благодаря компенсации фаз в трехфазной модели, поддерживается постоянная мощность.

Кроме этого отдача однофазного устройства примерно на 50% меньше. На этом преимущества 3-фазного генератора не заканчиваются. Так как при его работе не возникает вибрация, то шумовые показатели всей ветряной установки будут существенно ниже. При этом не стоит забывать и об увеличении срока эксплуатации, если выбор пал на трехфазную модель генератора.

Изготовление катушек

В создаваемом ветряке процесс зарядки батареи должен стартовать при частоте вращения ротора в 100−150 об/мин. Таким образом, общее число витков на всех катушках находится в диапазоне 1000−1200.Если эти цифры разделить на количество используемых катушек, то можно рассчитать число витков на каждой из них.

Следует помнить, что благодаря увеличению количества полюсов можно повысить мощность всей установки при работе на низких оборотах. На характеристики самодельного генератора серьезное влияние оказывает не только количество магнитов, но и их толщина. Общую мощность генератора можно рассчитать опытным путем. Для этого после изготовления одной катушки ее следует прокрутить в устройстве и измерить напряжение на определенном количестве оборотов без нагрузки.

Дальнейшие расчеты достаточно просты. Можно предположить, что при сопротивлении в 3 Ом на 150 об/мин на выходе получилось 27 В. Если из этого значения вычесть номинальное напряжение аккумулятора (в этом случае 12 В), получится 15 вольт. Для определения силы тока полученный результат (15 В) необходимо разделить на сопротивление катушки (3 Ом), что дает 5 ампер. Катушки необходимо между собой закрепить неподвижно, а выведенные наружу концы фаз соединяются треугольником или звездой. После сборки генератора его стоит проверить на работоспособность.

Финальный этап сборки

Сборка ветрогенератора своими рукамиВысота мачты в среднем должна составлять от 6 до 12 метров, а ее основание стоит забетонировать. Ветряк монтируется на верхней части мачты и для упрощения ремонтных работ стоит предусмотреть механизм ее подъема и спуска, который будет приводиться в движение с помощью ручной лебедки.

Для изготовления пропеллера отлично подойдет труба из ПВХ с диаметром в 160 мм. Выбор формы лопастей осуществляется опытным путем, а основной задачей на этом этапе является усиление крутящего момента при работе на низких оборотах. Чтобы уберечь винт от сильных порывов ветра, его стоит оснастить складным хвостом.

Каждая из рассмотренных моделей ветряка имеет определенные преимущества и недостатки. Они могут быть достаточно эффективными в различных регионах, но максимальный результат будет получен в местности с частыми и сильными ветрами.

Солнечная и ветровая энергетика — самые дешёвые технологии генерации в большинстве регионов мира

Международное агентство по возобновляемой энергии (IRENA) опубликовало новый всеобъемлющий доклад по экономике возобновляемой энергетики Renewable Power Generation Costs in 2018.

Возобновляемая энергия становится все более конкурентоспособным способом удовлетворения потребностей в электроэнергии во всём мире. Таков основной вывод доклада, который основывается на актуальных данных из базы данных Агентства, включающей около 17 000 проектов генерации и параметры 9 000 конкурсных отборов и договоров купли-продажи возобновляемой энергии.

В 2018 году стоимость (LCOE) всех коммерчески доступных технологий выработки возобновляемой энергии снизилась. В тепловой солнечной энергетике концентраторного типа (CSP) средневзвешенная стоимость электроэнергии упала на 26%, в биоэнергетике на 14%, солнечной фотоэлектрической энергетике и наземной ветроэнергетике на 13%, гидроэнергетике на 12%, в геотермальный и офшорной ветроэнергетике на 1%.

Продолжающееся снижение затрат лишний раз подчеркивает, что  возобновляемая энергия является дешёвым решением для декарбонизации и достижения климатических целей. Согласно глобальной базе данных IRENA, более трех четвертей наземных ветровых мощностей и четыре пятых солнечных фотоэлектрических установок, которые должны быть введены в эксплуатацию в мире в 2020 году, будут обеспечивать более дешевую электроэнергию, чем самые дешевые новые объекты угольной, газовой и дизельной генерации.

Некоторые выводы доклада:

Ветровая и солнечная фотоэлектрическая энергия сейчас зачастую дешевле без финансовой поддержки, чем любой вариант генерации на основе ископаемого топлива. Вот, например, «основной» график доклада, обобщающий мировые данные приведенной стоимости электричества (LCOE) технологий ВИЭ в сравнении с LCOE тепловой генерации (горизонтальная полоса):

Новые солнечные и ветровые установки будут все чаще и чаще дешевле даже, чем эксплуатационные расходы существующих (амортизированных) угольных электростанций. Например, ожидается, что в 2020 году средневзвешенная цена договоров купли-продажи электроэнергии (PPA) и цена конкурсных отборов в солнечной фотоэлектрической энергетике (проекты в базе данных IRENA) составит 0,048 долларов США за киловатт-час и будет меньше предельных эксплуатационных расходов угольных электростанций суммарной мощностью примерно 700 гигаватт (ГВт). Аналогичный показатель для материковой ветроэнергетики — 0,045 долларов США / кВт-ч — будет ниже предельных эксплуатационных расходов почти 900 ГВт угольных генерирующих мощностей.

Низкие и постоянно снижающиеся затраты делают возобновляемые источники энергии конкурентоспособной основой декарбонизации энергетического сектора — важнейшей климатической цели.

Прогнозы стоимости солнечной фотоэлектрической и материковой  ветровой энергетики продолжают пересматриваться по мере появления новых данных, причем возобновляемые источники энергии неизменно превосходят предыдущие ожидания.

Наряду с обзором тенденций, в отчёте подробно анализируются компоненты затрат.

Посмотрим на следующий график, на котором показаны капитальные затраты фотоэлектрических солнечных электростанций промышленного масштаба по странам и в разбивке по статьям расходов:

Как мы видим, страновые различия весьма велики — самые низкие капитальные затраты (Индия) и самые высокие (Канада) отличаются в три раза. Обратите внимание на российский показатель.

Средневзвешенные глобальные капитальные затраты в фотоэлектрической энергетике промышленного масштаба, по оценке IRENA, снизились и составили в 2018 году 1210 долларов США на киловатт установленной мощности:

Средневзвешенный (расчётный) КИУМ в солнечной энергетике для проектов, введённых в 2018 году, составляет 18%. В 2010 году этот показатель равнялся 14%.

Средневзвешенные мировые капитальные затраты в материковой ветроэнергетике в 2018 году составили 1497 долларов США на киловатт установленной мощности:

Что касается стоимости турбин, IRENA отмечает, что в Китае она составляет всего $500/кВт, а в остальном мире $855/кВт в среднем.

Средневзвешенный КИУМ проектов материковой ветроэнергетики 2018 года составляет 34%, а офшорной ветроэнергетики 43%.

Читайте также:

Глубокая электрификация на основе ВИЭ — ключ к безопасному климатическому будущему.

Три «профессиональных» мифа о ветроэнергетике / +1

Ветряная электростанция в Китае Ветряная электростанция в Китае
Фото: eniday.com

Обсуждение интеграции вариабельных возобновляемых источников энергии в электросети часто сопровождается мифами и дезинформацией. Этим грешат не только неопытные блогеры, но и профессиональные участники рынка, с высоты своего авторитета потчующие публику ложными сведениями. Об этом пишут авторы из Международного энергетического агентства (МЭА) в работе «Интеграция солнечной и ветровой генерации в энергосети», опубликованной в 2017 году.

В этой статье мы разберем три «профессиональных» заблуждения по поводу ВЭС.

МИФ № 1. Сети не способны справляться с вариабельностью и непредсказуемостью ветровой энергии. Выработка ветрогенераторов может упасть до нуля за секунды. Возмущения в сети могут вызвать отключение установок, что приведет к каскадному отказу ВЭС и коллапсу системы.

Электросетевое хозяйство проектируется таким образом, чтобы надежно управлять изменчивыми нагрузками, включая сбои генерирующих объектов, систем передачи и подстанций. Спрос на электричество колеблется всегда. В энергосистемах уже действуют механизмы, позволяющие справиться с изменчивостью.

При малых объемах стохастической генерации на базе ветра и солнца колебания выработки теряются в «шуме» естественной флуктуации спроса.

По мере добавления в систему новых электростанций на базе вариабельных возобновляемых источников энергии (ВИЭ) краткосрочные колебания выработки установок «компенсируют» друг друга. Переменчивость становится менее выраженной, и серьезные изменения в объемах генерации теперь происходят в масштабах часов, но не минут или секунд.

Ветряки возле Палм-Спрингс (Калифорния, США) Ветряки возле Палм-Спрингс (Калифорния, США)
Фото: scientificamerican.com

Еще в 2008 году было подсчитано, что 15 тыс. МВт ВЭС, распределенных по территории Техаса, привносят в систему лишь 6,5 МВт «добавочной вариабельности» (0,04%) каждую минуту и 328 МВт (2,2%) по часовой временной шкале.

Даже единичная турбина самой простой конструкции обладает инерцией и не останавливается сразу. С увеличением числа установок, распределенных по большой территории, снижение выработки происходит долго и плавно.

Современные ветрогенераторы обладают защитой от отключения в случаях неустойчивых повреждений или возмущений в энергосистеме, регулируют напряжение и реактивную мощность станции, обеспечивают инерционный отклик при существенных отклонениях частоты, снижают скорость изменения нагрузки (ramp rate) и так далее.

Национальная лаборатория возобновляемой энергии США по итогам масштабного исследования 2014 года пришла к выводу, что ветровые турбины пригодны для первичного регулирования частоты и автоматического управления мощностью: «Динамические исследования энергосистемы показывают, что ветровая энергетика может в целом повысить надежность при обеспечении ПРЧ и синтетического инерционного контроля».

Ветровая электростанция у берегов Нидерландов Ветровая электростанция у берегов Нидерландов
Фото: erneuerbareenergien.de

МИФ № 2. Работа объектов ветровой генерации приводит к излишней цикличности в функционировании ТЭС, а это значительно повышает стоимость тепловой генерации и увеличивает выбросы CO2.

Действительно, дополнительная изменчивость выработки, привносимая в систему ветровыми электростанциями, как правило, заставляет традиционную генерацию увеличивать количество циклов снижения/увеличения нагрузки. В то же время в масштабе системы связанные с этим дополнительные затраты незначительны и компенсируются экономией топлива. При этом «лишние» выбросы многократно перекрываются снижением эмиссии парниковых газов в результате замещения тепловой генерации выработкой на базе ВИЭ.

Еще по теме: Почему глобальные корпорации инвестируют «чистую» энергию

Все это давно, многократно и основательно подсчитано. Согласно модели NREL, для случая 33%-ной доли ветра и солнца, выбросы CO2 сокращаются на 29–34%, и влияние цикличности на эту цифру несущественно. Эмиссия диоксида серы снижается на 14–24%, при компенсации за счет увеличения числа циклов на 2–5%.

МИФ № 3. Ветроэнергетика подразумевает высокие системные затраты, поскольку требует резервирования и хранения энергии.

Пожалуй, это любимая сказка наших экспертов. Вновь и вновь приходится повторять, что резервируются не отдельные объекты, а система в целом. Она должна быть способной в любой момент времени выдать необходимые электроэнергию и мощность. То есть 1 МВт резерва для 1 МВт ветровой электростанции — миф.

В Германии почти трехкратный рост установленной мощности СЭС и ВЭС за период 2008–2014 годов сопровождался не ростом, а снижением балансирующего резерва.

В какой-то момент интеграция вариабельных ВИЭ требует увеличения гибкости энергосистемы. Однако накопители — это не единственный инструмент для повышения маневренности. Диспетчерируемые генераторы, включая ТЭС и ГАЭС, постоянно управляют колебаниями на стороне спроса. Также существует множество других средств обеспечения гибкости, в том числе управление спросом или торговля с другими энергосистемами. «Таким образом, накопители электроэнергии являются лишь одним из пакетов решений — и до сих пор в большинстве стран с долей вариабельных ВИЭ более 20% он не был представлен широко», — заключает Международное энергетическое агентство.

В исследовании МЭА за 2014 год «Сила трансформации: ветер, солнце и экономика гибких энергетических систем» показано, что даже «крупные доли вариабельной возобновляемой энергии (до 45% ежегодно) могут быть интегрированы без существенного увеличения расходов в энергосистеме в долгосрочной перспективе».

Плавучая ветровая электростанция у Род-Айленда (США) Плавучая ветровая электростанция у Род-Айленда (США)
Фото: hightech.fm

Мифы появляются из-за незнания и страха перед неизведанным. Когда 35 лет назад Дания начинала развивать ветроэнергетику, скептики говорили: при достижении 5%-ной доли ВЭС национальная энергосистема пойдет вразнос. Но сегодня она входит в тройку мировых лидеров по надежности (индекс SAIDI), хотя доля ветроэнергетики в выработке находится на уровне 40%.

Автор

Владимир Сидорович, к. э. н., директор информационно-аналитического центра «Новая энергетика»

Мнение автора может не совпадать с мнением редакции

Энергия ветра

Энергия ветра — одна из самых быстрорастущих технологий возобновляемой энергетики. Количество пользователей во всем мире растет, отчасти потому, что снижаются затраты. Согласно последним данным IRENA, глобальная установленная мощность ветроэнергетики на суше и на море увеличилась почти в 75 раз, с 7,5 гигаватт (ГВт) в 1997 году до примерно 564 ГВт к 2018 году. В период с 2009 по 2013 год производство ветровой электроэнергии увеличилось вдвое, а в 2016 году на ветровую энергию приходилось 16% электроэнергии, производимой из возобновляемых источников.Во многих частях мира сильный ветер, но лучшие места для выработки энергии ветра иногда находятся в удаленных местах. Оффшорная ветроэнергетика предлагает огромный потенциал.

Ветряные турбины впервые появились более века назад. После изобретения электрического генератора в 1830-х годах инженеры начали попытки использовать энергию ветра для производства электроэнергии. Производство энергии ветра имело место в Соединенном Королевстве и Соединенных Штатах в 1887 и 1888 годах, но считается, что современная ветровая энергия впервые была разработана в Дании, где в 1891 году были построены ветряные турбины с горизонтальной осью и 22.8-метровая ветряная турбина пущена в эксплуатацию в 1897 году.

Ветер используется для производства электричества с использованием кинетической энергии, создаваемой движущимся воздухом. Она преобразуется в электрическую энергию с помощью ветряных турбин или систем преобразования энергии ветра. Ветер сначала поражает лопасти турбины, заставляя их вращаться и вращать присоединенную к ним турбину. Это изменяет кинетическую энергию на энергию вращения, перемещая вал, подключенный к генератору, и тем самым вырабатывая электрическую энергию за счет электромагнетизма.

Количество энергии, которое можно получить от ветра, зависит от размера турбины и длины ее лопастей. Мощность пропорциональна размерам ротора и кубу скорости ветра. Теоретически, когда скорость ветра удваивается, потенциал ветровой энергии увеличивается в восемь раз.

Мощность ветряных турбин со временем увеличивалась. В 1985 году типовые турбины имели номинальную мощность 0,05 мегаватт (МВт) и диаметр ротора 15 метров. Сегодняшние новые ветроэнергетические проекты имеют турбинную мощность около 2 МВт на суше и 3–5 МВт на море.

Имеющиеся в продаже ветряные турбины достигли мощности 8 МВт с диаметром ротора до 164 метров. Средняя мощность ветряных турбин увеличилась с 1,6 МВт в 2009 году до 2 МВт в 2014 году.

Согласно последним данным IRENA, производство ветровой электроэнергии в 2016 году составило 6% электроэнергии, произведенной с помощью возобновляемых источников энергии. Во многих частях мира сильный ветер, но лучшие места для выработки энергии ветра иногда находятся в удаленных местах.Оффшорная ветроэнергетика предлагает огромный потенциал.



.

Энергия ветра — образование в области энергетики

Рисунок 1. Ветряная электростанция в Техасе. [1]

Энергия ветра — это выработка электроэнергии из ветра. Энергия ветра использует поток первичной энергии атмосферы, образующийся в результате неравномерного нагрева поверхности Земли Солнцем. Следовательно, энергия ветра — это косвенный способ использования солнечной энергии. Энергия ветра преобразуется в электрическую энергию ветряными турбинами. [2]

Wind Resource

Несколько различных факторов влияют на потенциальный ветровой ресурс в районе.На выходную мощность влияют три основных фактора: скорость ветра , плотность воздуха и радиус лопасти . [3] Ветряные турбины должны постоянно находиться в районах с сильным ветром, что более важно, чем периодические сильные ветра.

Скорость ветра

Рис. 2. Произвольная кривая мощности ветряной турбины мощностью 1 МВт в сравнении со скоростью ветра. Обратите внимание на скорость резки. [4]

Скорость ветра во многом определяет количество электроэнергии, вырабатываемой турбиной.Более высокая скорость ветра генерирует больше энергии, потому что более сильный ветер позволяет лопастям вращаться быстрее. [3] Более быстрое вращение приводит к большей механической мощности и большей электрической мощности от генератора. Взаимосвязь между скоростью ветра и мощностью для типичной ветряной турбины показана на рисунке 2.

Турбины предназначены для работы в определенном диапазоне скоростей ветра. Пределы диапазона известны как скорость включения и скорость отключения. [5] Скорость включения — это точка, при которой ветряная турбина может вырабатывать энергию.Между скоростью включения и номинальной скоростью, где достигается максимальная мощность, выходная мощность будет увеличиваться кубическим образом со скоростью ветра. Например, если скорость ветра увеличится вдвое, выходная мощность увеличится в 8 раз. Это кубическое соотношение делает скорость ветра таким важным фактором для ветроэнергетики. Эта кубическая зависимость действительно отключается при номинальной скорости ветра. Это приводит к относительно пологой части кривой на рисунке 2, поэтому кубическая зависимость наблюдается при скоростях ниже 15 м / с (54 км / ч).

Скорость отключения — это точка, при которой турбина должна быть остановлена, чтобы избежать повреждения оборудования.Скорости включения и выключения зависят от конструкции и размера турбины и определяются до начала строительства. [6]

Плотность воздуха

Выходная мощность зависит от местной плотности воздуха, которая является функцией высоты, давления и температуры. Плотный воздух оказывает большее давление на роторы, что приводит к увеличению выходной мощности. [7]

Конструкция турбины

Ветровые турбины предназначены для увеличения радиуса лопастей ротора и увеличения выходной мощности.Лопасти большего размера позволяют турбине улавливать больше кинетической энергии ветра, перемещая больше воздуха через роторы. [8] Однако для работы более крупных лопастей требуется больше места и более высокая скорость ветра. Как правило, турбины имеют расстояние в четыре раза больше диаметра ротора. [6] Это расстояние необходимо для предотвращения помех между турбинами, что снижает выходную мощность. [5] Относительное расстояние между ветряными турбинами показано на Рисунке 1.

Интерактивный график

Ветроэнергетика развивается довольно быстро во многих регионах; изучите данные ниже, чтобы увидеть, как растет энергия ветра в разных странах. [9]

Для дальнейшего чтения

Список литературы

  1. ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:GreenMountainWindFarm_Fluvanna_2004.jpg#/media/File:GreenMountainWindFarm_Fluvanna_2004.jpg
  2. ↑ Развитие ветроэнергетики. (18 августа 2015 г.). Основы ветроэнергетики [онлайн], доступно: http://windeis.anl.gov/guide/basics/
  3. 3,0 3,1 Европейская ветроэнергетическая ассоциация.(2013, 4 ноября). Как работает ветряная турбина [Online]. Доступно: http://www.ewea.org/wind-energy-basics/how-a-wind-turbine-works/
  4. ↑ По материалам: R. Wolfson, Energy, Environment and Climate, 2nd ed. Нью-Йорк: Norton, 2012. и WindPowerProgram, [Online], Доступно: http://www.wind-power-program.com/popups/powercurve.htm
  5. 5,0 5,1 Д. Вуд, частное сообщение, октябрь 2013 г.
  6. 6.0 6.1 Energy Research Unit (н.о.). (2013, 4 ноября). Energy Research Unit Meteorological Data [Online]. Доступно: http://www.elm.eru.rl.ac.uk/ins4.html
  7. ↑ WindTurbines.net (2013, 4 ноября). Факторы, влияющие на КПД ветряных турбин [Online]. Доступно: http://www.slideshare.net/windturbinesnet/factors-affecting-wind-turbine-efficiency-7146602
  8. ↑ Оренда. (2013, 4 ноября). Имеет ли значение длина лопастей ветряной турбины? [онлайн]. Доступно: http: // orendaenergy.com / действительно-имеет-значение-длина-лопасти-ветряной турбины /
  9. ↑ BP Worldwide. (2014, 1 июля). Статистический обзор мировой энергетики, 2017 г. [Онлайн]. Доступно: https://calculators.io/statistical-review-of-world-energy/
.

Alliant Energy — Генерация ветра

Собственная, чистая и недорогая энергия

Энергия, которую мы доставляем клиентам, включает ветровую энергию из районов Айовы, южной Миннесоты и Висконсина.

К концу 2020 года мы планируем добавить до 1200 мегаватт дополнительной ветровой генерации для наших клиентов.

Эта добавленная энергия ветра добавляет разнообразия в наш энергобаланс, позволяя нам поставлять безопасную, надежную и доступную энергию для клиентов.

Энергия ветра — это бестопливный возобновляемый ресурс, который поможет нам достичь нашей цели по сокращению выбросов углекислого газа на 50% по сравнению с уровнями 2005 года к 2030 году на всей территории нашего обслуживания.

Как мы производим энергию ветра

Собственные и управляемые ветряные электростанции

Мы владеем и управляем ветряными электростанциями в штатах Айова, Висконсин и Миннесота. Мы также владеем частью ветряной электростанции в Оклахоме, которая продает энергию Google.

30 мая 2018 г. мы объявили о планах строительства дополнительной ветровой генерации для наших клиентов из Висконсина. Узнайте больше о нашем проекте в Висконсине, который будет построен в округе Кошут, штат Айова.

17 апреля 2018 г. мы объявили о планах строительства дополнительной ветряной электростанции в Айове.Узнайте, как эти проекты в Айове будут обеспечивать клиентов экологически чистой и доступной энергией, улучшать нашу заботу об окружающей среде и стимулировать экономический рост.

Узнайте о разработке ветряных электростанций и посмотрите видео о том, что нужно для строительства ветряных электростанций.

Закупленная энергия ветра

Мы закупаем энергию ветра у ветряных электростанций в Айове, южной Миннесоте и Висконсине. В среднем в год мы закупаем более 600 мегаватт ветровой энергии по долгосрочным контрактам.

Узнайте больше обо всех наших производителях энергии ветра

Производство собственной ветровой энергии

Хотите знать, подходит ли вам ветроэнергетика? Клиенты Alliant Energy могут позвонить на нашу горячую линию по возобновляемым источникам энергии по телефону 1-800-972-5325, чтобы поговорить с одним из наших экспертов по возобновляемым источникам энергии.

Готовы подключить ветровую систему к нашей распределительной системе? Наш процесс взаимодействия с клиентами обеспечивает безопасную установку.

.

Как работают ветряные турбины?

Вы здесь

Ветровые турбины работают по простому принципу: вместо того, чтобы использовать электричество для производства ветра, как вентилятор, ветровые турбины используют ветер для производства электроэнергии.Ветер вращает похожие на пропеллер лопасти турбины вокруг ротора, который вращает генератор, который вырабатывает электричество.

Ветер — это форма солнечной энергии, вызванная комбинацией трех одновременных событий:

  1. Солнце неравномерно нагревает атмосферу
  2. Неровности земной поверхности
  3. Вращение Земли.

Характер и скорость ветрового потока сильно различаются на территории Соединенных Штатов и зависят от водоемов, растительности и особенностей местности. Люди используют этот поток ветра или энергию движения для многих целей: для плавания, запуска воздушного змея и даже для выработки электроэнергии.

Термины «энергия ветра» и «энергия ветра» описывают процесс, с помощью которого ветер используется для выработки механической энергии или электричества. Эту механическую мощность можно использовать для конкретных задач (например, измельчения зерна или перекачивания воды), или генератор может преобразовывать эту механическую мощность в электричество.

Ветряная турбина превращает энергию ветра в электричество, используя аэродинамическую силу от лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер проходит через лезвие, давление воздуха с одной стороны лезвия уменьшается. Разница в давлении воздуха на двух сторонах лопасти создает подъемную силу и сопротивление. Сила подъема сильнее сопротивления, и это заставляет ротор вращаться. Ротор подключается к генератору либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют использовать генератор меньшего размера.Этот перевод аэродинамической силы во вращение генератора создает электричество.

Типы ветряных турбин

Большинство ветряных турбин делятся на два основных типа:

Деннис Шредер | NREL 25897

Ветровые турбины с горизонтальной осью — это то, что многие люди представляют, когда думают о ветряных турбинах.

Чаще всего они имеют три лопасти и работают «против ветра», при этом турбина поворачивается наверху башни, так что лопасти обращены против ветра.

Ветровые турбины с вертикальной осью бывают нескольких разновидностей, включая модель Дарье в стиле взбивания яиц, названную в честь ее французского изобретателя.

Эти турбины являются всенаправленными, что означает, что для работы их не нужно настраивать так, чтобы они были направлены против ветра.

Ветряные турбины можно строить на суше или на море в больших водоемах, таких как океаны и озера. Министерство энергетики США в настоящее время финансирует проекты по развитию морских ветроэнергетических установок в США.С. вод.

Области применения ветряных турбин

Современные ветряные турбины можно разделить на категории по месту их установки и способу подключения к сети:

Наземные ветряные турбины имеют размеры от 100 киловатт до нескольких мегаватт.

Более крупные ветряные турбины более рентабельны и объединены в ветряные электростанции, которые обеспечивают большую мощность в электросети.

Деннис Шредер | NREL 40484

Морские ветряные турбины обычно массивные и выше Статуи Свободы.

У них нет таких же проблем с транспортировкой, как у наземных ветряных установок, поскольку крупные компоненты можно перевозить на кораблях, а не по дорогам.

Эти турбины способны улавливать мощные океанские ветры и генерировать огромное количество энергии.

Когда ветряные турбины любого размера устанавливаются на стороне потребителя электросчетчика или устанавливаются в месте или рядом с местом, где будет использоваться производимая ими энергия, их называют «распределенным ветром».

Многие турбины, используемые в распределенных приложениях, представляют собой небольшие ветряные турбины. Одиночные небольшие ветряные турбины мощностью менее 100 киловатт обычно используются в жилых, сельскохозяйственных и небольших коммерческих и промышленных целях.

Небольшие турбины могут использоваться в гибридных энергетических системах с другими распределенными энергоресурсами, такими как микросети с питанием от дизельных генераторов, батарей и фотоэлектрических элементов.

Эти системы называются гибридными ветровыми системами и обычно используются в удаленных местах вне сети (где подключение к коммунальной сети недоступно) и становятся все более распространенными в приложениях, подключенных к сети, для обеспечения отказоустойчивости.

Узнайте больше о распределенном ветре из Distributed Wind Animation или прочтите о том, что делает Управление технологий ветровой энергии для поддержки развертывания распределенных ветровых систем для домов, предприятий, ферм и местных ветровых проектов.

В этом видео освещаются основные принципы работы ветряных турбин и показано, как работают различные компоненты для улавливания и преобразования энергии ветра в электричество.См. Текстовую версию. История ветроэнергетики США

На протяжении истории использование энергии ветра увеличивалось и уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных фермах и т. Д …

Выучить больше

Узнайте больше о ветровой энергии, посетив веб-страницу офиса Wind Energy Technologies Office или просмотрев информацию о финансируемых офисом мероприятиях.

Подпишитесь на информационный бюллетень WETO

Будьте в курсе последних новостей, событий и обновлений ветроэнергетики.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *