Ветрогенераторы – Ветрогенератор — Википедия

Содержание

Мегаконструкции. Самые большие ветрогенераторы / Habr


Siemens SWT-7.0-154

Кто говорил, что ветряки не способны конкурировать по мощности с атомными электростанциями? Посмотрите на самую большую в мире ветроэлектрическую установку Siemens SWT-7.0-154. С площадью ометания 18 600 м² этот гигант в одиночку генерирует максимальную мощность 7 МВт при скорости ветра 13-15 м/с. Несколько сотен таких ветряков — и вот вам атомная электростанция.

SWT-7.0-154 — это флагманская модель компании Siemens. В её названии зашифрованы генерируемая мощность (7 МВт) и диаметр ротора с лопастями (154 м). Она пришла на смену предыдущему флагману SWT-6.0-154, от которого практически не отличается по техническим спецификациям, но оснащён более мощными магнитами. Более сильное магнитное поле позволяет генерировать больше электроэнергии при том же диаметре. Другими словами, в этой ВЭН параметр снимаемой мощности с квадратного метра площади ометания выше примерно на 16,7%.

Ветрогенератор включается в работу на минимальной скорости ветра 3-5 м/с, а генерируемая мощность поступательно растёт до максимальной 7 МВт при скорости ветра 13-15 м/с. При достижении скорости ветра 25 м/с генерация прекращается.

Казалось бы, на таких скоростях ветра лопасти ВЭУ должны вращаться быстро, но это совершенно не так. На самом деле они вращаются неторопливо и степенно, делая всего 5-11 оборотов в минуту. То есть полный оборот три лопасти совершают примерно за 5-12 секунд, в зависимости от скорости ветра.

Более сильное магнитное поле в новой модели означает также и то, что эту турбину труднее раскрутить. Для достижения той же скорости вращения 5-11 оборотов в минуту и максимальной генерируемой мощности (7 МВт вместо 6 МВт) этой турбине требуется повышенная скорость ветра: 13-15 м/с вместо 12-14 м/с. Соответственно, и начальная скорость ветрогенерации у неё выше. Вот почему данная модель-гигант наиболее оптимально подходит для размещения на территориях с относительно сильными ветрами, лучше всего в море.

Внутри турбины нет редуктора (коробки передач) — здесь работает система прямого привода, подключенная к синхронному генератору переменного тока с постоянными магнитами. Поскольку скорость генератора определяет напряжение и частоту тока, то «грязный переменный ток» преобразуется в постоянный ток, а затем преобразуется обратно в переменный ток перед подачей в сеть.

В последние годы в области ветряной энергетики происходит очень быстрый научно-технический прогресс. Буквально каждый год появляются новые модели ВЭУ большей мощности и эффективности. Большие и маленькие, рассчитанные на целые посёлки или отдельные дома, на большую скорость ветра в море или на среднюю скорость ветра над крышей частного дома.

Например, мировой рекорд по максимальной генерируемой мощности принадлежит вовсе не Siemens, а другой турбине ещё одного немецкого производителя Enercon E126, которая выдаёт до 7,58 МВт. На видео показан процесс установки такой турбины.


Высота стойки Enercon E126 — 135 м, диаметр ротора — 126 м, общая высота вместе с лопастями — 198 м. Общий вес фундамента турбины — 2500 тонн, а самого ветрогенератора — 2800 тонн. Только электрогенератор весит 220 тонн, а ротор вместе с лопастями — 364 тонны. Общий вес всей конструкции со всеми деталями — 6000 тонн. Первая установка подобного типа была установлена около немецкого Эмдена в 2007 году, хотя в той модификации максимальная мощность была меньше.

Впрочем, ветрогенераторы-гиганты — довольно дорогое удовольствие. Один такой ветряк на 7 МВт обойдётся в $14 млн вместе с установкой, если заказывать все работы у сертифицированных немецких специалистов. Конечно, если освоить производство в своей стране, благо металла хватает, то стоимость вполне можно снизить в несколько раз. Кто знает, может такой гигантский проект национальной стройки занял бы население страны и помог выбраться из экономического кризиса.


Одна из самых последних строящихся в Восточной Европе атомных станций — Белорусская АЭС — получит два энергоблока с реакторами ВВЭР-1200 мощностью по 1200 МВт. Казалось бы, несколько сотен ветряков Siemens сравнятся с атомной электростанцией. Стоимость строительства примерно одинаковая, зато «топливо» бесплатное. Что интересно, Белорусскую АЭС как раз строят в районе, где по климатическим данным за 1962-2000 годы почти самая высокая среднегодовая скорость ветра в Беларуси. Но в реальности эта «самая большая» среднегодовая скорость ветра — всего лишь около 4 м/c (на высоте 10 м), чего едва хватит для запуска ВЭУ на минимальной мощности.

Перед установкой следует сверяться с годовой картой ветров в районе дислокации с данными средней удельной мощности ветрового потока на высоте 100 м и выше. Хорошо бы составить такие карты для всей территории страны, чтобы найти места наиболее оптимального строительства ВЭУ. Нужно иметь в виду, что скорость ветра сильно зависит от высоты, что хорошо известно жителям высотных домов. В обычных прогнозах погоды по ТВ сообщают скорость ветра на высоте 10 м над землёй, а для ветровой турбины следует измерять скорость на высоте 100-150 м, где ветры гораздо сильнее.

Так что наиболее оптимально такие гиганты подходят для установки в море, в нескольких километрах от побережья, на большой высоте. Например, если установить такие установки вдоль северного побережья России с шагом 200 метров, то максимальная мощность массива составит 690,3 ГВт (побережье Северного Ледовитого океана составляет 19724,1 км). Скорость ветра там должна быть приемлемая, только при заливке фундаментов придётся иметь дело с вечной мерзлотой.

Правда, по стабильности работы ВЭУ никогда не сравнятся с АЭС или ГЭС. Здесь энергетикам приходится постоянно следить за прогнозом погоды, потому что генерируемая мощность напрямую зависит от скорости ветра. Ветер должен быть не слишком сильным и не слишком слабым. Хорошо, если в среднем ВЭУ будут выдавать хотя бы треть от максимальной мощности.

habr.com

Принцип действия и устройство ветрогенератора (общие понятия)

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

tcip.ru

Ветроэнергетика — Википедия

Ветроэнергетика — отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.

Ветропарк в Эстонии

Энергию ветра относят к возобновляемым видам энергии, так как она является следствием активности Солнца. Ветроэнергетика является бурно развивающейся отраслью. К началу 2016 года общая установленная мощность всех ветрогенераторов составила 432 гигаватта[1] и, таким образом, превзошла суммарную установленную мощность атомной энергетики (однако на практике использованная в среднем за год мощность ветрогенераторов (КИУМ) в несколько раз ниже установленной мощности, в то время как АЭС почти всегда работает в режиме установленной мощности). В 2014 году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 706 тераватт-часов (3 % всей произведённой человечеством электрической энергии)[2]. Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2015 год в Дании с помощью ветрогенераторов производится 42 % всего электричества; 2014 год в Португалии — 27 %; в Никарагуа — 21 %; в Испании — 20 %; Ирландии — 19 %; в Германии — 18,8% [3]; в ЕС в целом — 7,5 %[4]. В 2014 году 85 стран мира использовали ветроэнергетику на коммерческой основе. По итогам 2015 года в ветроэнергетике занято более 1 000 000 человек во всем мире[5] (в том числе 500 000 в Китае и 138 000 в Германии)[6].

Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии[7][8][9]. Для решения подобных проблем используется интеллектуальное управление распределением электроэнергии.

История использования энергии ветра[править | править код]

Мельница со станиной

Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в XIII веке принесены в Европу крестоносцами[10].

Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI века единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашёл способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле.

Маркс К. Машины: применение природных сил и науки.

Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых.

В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы: Толедо — 1526 год, Глостер — 1542 год, Лондон — 1582 год, Париж — 1608 год и так далее.

В Нидерландах многочисленные ветряные мельницы откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.

Ветряные мельницы, производящие электричество, были изобретены в XIX веке в Дании. Там в 1890 году была построена первая ветроэлектростанция, а к 1908 году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 метра и четырёхлопастные роторы диаметром 23 метра. Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941 году единичная мощность ветроэлектростанций достигла 1,25 МВт.

В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги.

Возрождение интереса к ветроэнергетике началось в 1970-х после нефтяного кризиса 1973 года. Кризис продемонстрировал зависимость многих стран от импорта нефти и привел к поиску вариантов снижения этой зависимости. В середине 1970-х в Дании начались испытания предшественников современных ветрогенераторов. Позднее чернобыльская катастрофа также стимулировала интерес к возобновляемым источникам энергии. Калифорния осуществила одну из первых программ стимулирования ветроэнергетики, начав предоставление налоговых льгот для производителей электроэнергии из ветра[10].

В России[править | править код]

В середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л. с., 8 л. с. до 45 л. с. Такая установка могла освещать 150—200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор[11]. В 1931 году в Курске была построена ветроэлектростанция Уфимцева, первая в мире ветроэлектрическая станция с инерционным аккумулятором, она является объектом культурного наследия федерального значения. В том же году в Балаклаве вошла в строй ветроэлектростанция мощностью 100 киловатт, на тот момент самая мощная в мире, разрушена в 1941 году во время боёв Великой Отечественной войны[12].

Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт⋅ч/год. Экономический потенциал составляет примерно 260 млрд кВт⋅ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России[13].

Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период — период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16 % — в Западной и Восточной Сибири.

Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

Самые крупные ветроэлектростанции России находятся в Крыму и построены украинскими предпринимателями: Донузлавская ВЭС (суммарная мощность 18,7 МВт), Останинская ВЭС («Водэнергоремналадка») (26 МВт), Тарханкутская ВЭС (15,9 МВт) и Восточно-Крымская ВЭС. В общей сложности они располагают 522 ветроагрегатами мощностью 59 МВт.

Ещё одна крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области. Зеленоградская ВЭУ состоит из 21 установки датской компании SEAS Energi Service A.S.

На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт). Годовая выработка в 2011 году не превысила 0,2 млн кВт⋅ч.

В Республике Башкортостан действует ВЭС Тюпкильды мощностью 2,2 МВт, располагающаяся около одноимённой деревни Туймазинского района[13]. ВЭС состоит из четырёх ветроагрегатов немецкой фирмы Hanseatische AG типа ЕТ 550/41 мощностью по 550 кВт. Годовая выработка электроэнергии в 2008—2010 годах не превышала 0,4 млн кВт⋅ч.

В Республике Калмыкия в Приютненском районе, компанией ООО «АЛТЭН» была построена ветровая электростанция мощностью 2,4 МВт, суммарной выработкой 10 млн кВт⋅ч в год. ООО «АЛТЭН» управляет активами установленного ветропарка, а также проводит мероприятия по его обслуживанию и эксплуатации совместно с компанией Vensys-Elektrotechnik.

В Республике Коми вблизи Воркуты недостроена Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.

На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.

Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.

Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край, Валаамской ВЭС 4 МВт Карелия, Приютненской ВЭС 51 МВт Республика Калмыкия.

Ветряной насос «Ромашка» производства СССР

Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС, действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива.

В 2003—2005 годах в рамках РАО ЕЭС проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций[14].

Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка».

В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

Современные методы генерации электроэнергии из энергии ветра[править | править код]

Мощность ветрогенератора зависит от площади, ометаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Воздушные потоки у поверхности земли/моря являются турбулентными — нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 2 км, но резко снижается уже на высотах больше 100 метров.[15] Высота расположения генератора выше этого приземного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире.[16] Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность пропорциональна третьей степени скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в восемь раз.[17]

В августе 2002 года компания Enercon построила прототип ветрогенератора E-112 мощностью 4,5 МВт. До декабря 2004 года турбина оставалась крупнейшей в мире. В декабре 2004 года германская компания REpower Systems построила свой ветрогенератор мощностью 5,0 МВт. Диаметр ротора этой турбины 126 метров, масса гондолы — 200 тонн, высота башни — 120 м. В конце 2005 года Enercon увеличил мощность своего ветрогенератора до 6,0 МВт. Диаметр ротора составил 114 метров, высота башни 124 метра. В 2009 году турбины класса 1,5 — 2,5 МВт занимали 82 % в мировой ветроэнегетике[18].

В январе 2014 года датская компания Vestas начала тестировать турбину V-164 мощностью 8 МВт. Первый контракт на поставку турбин был заключен в конце 2014 года. На сегодняшний день V-164 — наиболее мощный ветрогенератор в мире. Ведутся разработки генераторов мощностью более 10 МВт.

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т. н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть ещё несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет. Системы торможения, разработанные в последние годы, гарантируют стабильную работу даже при периодических шквальных порывах до 60 м/с.

Дания, Нидерланды и Германия собираются заложить искусственный остров в Северном море для выработки ветровой энергии. Проект планируется реализовывать на самой крупной отмели Северного моря Доггер-банка (в 100 километрах от восточного побережья Англии), так как здесь удачно сочетаются следующие факторы: относительно низкий уровень моря и мощные потоки воздуха. Остров площадью в шесть квадратных километров будет оборудован ветряными фермами с тысячами мельниц, также там будут построены взлетно-посадочная полоса и порт. Главная инновация данного строительства заключается в концентрации на максимально низкой стоимости транзита энергии. Основной целью проекта является создание ветропарка, который может вырабатывать до 30 Гвт дешевой электроэнергии. Долгосрочные планы предполагают увеличение этого количества до 70-100 Гвт, что позволит обеспечивать энергией около 80 миллионов жителей Европы, в том числе Германии, Нидерландов и Дании. [19]

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5-2 раза. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Также оффшорная электростанция включает распределительные подстанции и подводные кабели до побережья.

Помимо свай для фиксации турбин могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.[20]

Несмотря на снижение затрат на строительство ветрогенераторов в море в 2010-х годах, офшорная ветроэнергетика является одним из наиболее дорогих источников электричества. Стоимость производства электричества на офшорных ветроэлектростанциях колеблется от 200 до 125 долларов США / МВт*ч. MHI-Vestas, Siemens и DONG Energy подписали соглашение, в соответствии с которым компании стремятся снизить к 2020 году стоимость офшорного электричества ниже 120 долларов США / МВт*ч.

Статистика по использованию энергии ветра[править | править код]

К началу 2019 года общая установленная мощность всех ветрогенераторов превысила 600 гигаватт. Среднее увеличение суммы мощностей всех ветрогенераторов в мире, начиная с 2009 года, составляет 38-40 гигаватт за год и обусловлено бурным развитием ветроэнергетики в США, Индии, КНР и ЕС [21].

Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов[22][23].

В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии — 31 %, в Северной Америке — 22 %.

Суммарные установленные мощности, МВт по данным блога WWEA.[источник не указан 143 дня]
1997199819992000200120022003200420052006200720082009201020112012201320172018
74759663136961803924320311643929047686590047390493849120791157000196630237227282400318529546380600278

В 2014 году 39 % электроэнергии в Дании вырабатывалось из энергии ветра.

В 2014 году ветряные электростанции Германии произвели 8,6 % от всей произведённой в Германии электроэнергии.

В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % электроэнергии страны. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.[24]

В декабре 2014 года ветроэнергетика обеспечила 164 % электричества, потребляемого домохозяйствами Шотландии[25][нет в источнике]. 28 октября 2013 в 2 часа ночи ветрогенераторы Дании произвели в пике 122 процента от потребляемой мощности электричества в стране[26]. Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии[27]. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны[28].

Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

Германия планирует к 2025 году производить 40-45 % электроэнергии из возобновляемых источников энергии. Ранее Германия устанавливала цель 12 % электричества к 2010 году. Эта цель была достигнута в 2007 году.

Дания планирует к 2020 г. 50 % потребности страны в электроэнергии обеспечивать за счет ветроэнергетики[29].

Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6000 МВт — офшорных[30].

В 2008 году Европейским Союзом установлена цель: к 2010 году установить ветрогенераторов на 40 тыс. МВт, а к 2020 году — 180 тыс. МВт. Согласно планам Евросоюза общее количество электрической энергии, которую выработают ветряные электростанции, составит 494,7 Тв-ч.[31][32].

В Китае принят Национальный План Развития. Планируется, что установленные мощности Китая должны вырасти до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 году[33]. Однако бурное развитие ветроэнергетического сектора позволило Китаю превысить порог в 30 ГВт установленной мощности уже в 2010 году.[34]

Индия планировала к 2012 году увеличить свои ветряные мощности в 2 раза (на 6 тысяч МВт) в сравнении с 2008 годом[35]. Эта цель была достигнута.

Венесуэла за 5 лет с 2010 года намеревалась построить ветряных электростанций на 1500 МВт.[36]. Цель не была достигнута.

Экономические аспекты ветроэнергетики[править | править код]

Лопасти ветрогенератора на строительной площадке.

Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (стоимость 1 кВт установленной мощности ВЭУ ~$1000).

Экономия топлива[править | править код]

Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

Себестоимость электроэнергии[править | править код]

Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра[37].

Скорость ветраСебестоимость (для США, 2004 год)
7,16 м/c4,8 цента/кВт·ч;
8,08 м/с3,6 цента/кВт·ч;
9,32 м/с2,6 цента/кВт·ч.

Для сравнения: себестоимость электричества, производимого на угольных электростанциях США, 9 — 30 цента/кВт·ч. Средняя стоимость электричества в Китае 13 цента/кВт·ч.

При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35—40 % к концу 2006 г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

В марте 2006 года Earth Policy Institute (США) сообщил о том, что в двух районах США стоимость ветряной электроэнергии стала ниже стоимости традиционной энергии. Осенью 2005 года из-за роста цен на природный газ и уголь стоимость ветряного электричества стала ниже стоимости электроэнергии, произведённой из традиционных источников. Компании Austin Energy из Техаса и Xcel Energy из Колорадо первыми начали продавать электроэнергию, производимую из ветра, дешевле, чем электроэнергию, производимую из традиционных источников.

Экономика ветроэнергетики в России[править | править код]

Солнечный ветрогенератор для уличного освещения

В большинстве регионов России среднегодовая скорость ветра не превышает 5 м/с[источник не указан 2650 дней], в связи с чем привычные ветрогенераторы с горизонтальной осью вращения практически не применимы — их стартовая скорость начинается с 3-6 м/с, и получить от их работы существенное количество энергии не удастся. Однако на сегодняшний день все больше производителей ветрогенераторов предлагают т. н. роторные установки, или ветрогенераторы с вертикальной осью вращения. Принципиальное отличие состоит в том, что вертикальному генератору достаточно 1 м/с чтобы начать вырабатывать электричество. Развитие этого направления снимает ограничения по использованию энергии ветра в целях электроснабжения. Наиболее прогрессивная технология — сочетание в одном устройстве генераторов двух видов — вертикального ветрогенератора и солнечных батарей. Дополняя друг друга, совместно они гарантируют производство достаточного количества электроэнергии на любых территориях и в любых климатических условиях. Достаточных, например, для уличного освещения или питания объектов инженерно-технической инфраструктуры (базовые станции сотовой связи[источник не указан 2591 день], пункты наблюдения, погодные и метеостанции и так далее).

Другие экономические проблемы[править | править код]

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезах. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы. Для России это будет показатель, близкий к 50 тыс. — 55 тыс. МВт.

По данным испанских компаний «Gamesa Eolica» и «WinWind» точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке «на день вперёд» или спотовом режиме превышает 95 %.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередачи и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими. Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляемую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередачи оказываются менее нагруженными, хотя общее потребление мощности может быть выше.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 метров является сложным и дорогостоящим мероприятием.

В России считается, что применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:

  • Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора впараллель)
  • Высокой стоимости аккумуляторных батарей — около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
  • Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.

В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительной величины у основной массы производств по сравнению с другими затратами; ключевыми для потребителя остаются надёжность и стабильность электроснабжения.

Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:

  • Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)
  • Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)
  • Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)

В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

  • Отопление является основным энергопотребителем любого дома в России.
  • Схема ветрогенератора и управляющей автоматики кардинально упрощается.
  • Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
  • В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
  • Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25 °C, а в бойлерах горячего водоснабжения 40—97 °C без ущерба для потребителей.

Экологические аспекты ветроэнергетики[править | править код]

Выбросы в атмосферу[править | править код]

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота[38].

По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн[39].

Влияние на климат[править | править код]

Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например, в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее[40][41].

Согласно моделированию Стэнфордского университета, большие оффшорные ветроэлектростанции могут существенно ослабить ураганы, уменьшая экономический ущерб от их воздействия[42].

Шум[править | править код]

Ветряные энергетические установки производят две разновидности шума:

  • механический шум — шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
  • аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.

Источник шумаУровень шума, дБ
Болевой порог человеческого слуха120
Шум турбин реактивного двигателя на удалении 250 м105
Шум от отбойного молотка в 7 м95
Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м65
Шумовой фон в офисе60
Шум от легковой автомашины при скорости 64 км/ч55
Шум от ветрогенератора в 350 м35—45
Шумовой фон ночью в деревне20—40

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

Примером подобных конструктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Низкочастотные вибрации[править | править код]

Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса.

ru.wikipedia.org

описание, конструкция, принцип работы и изготовление своими руками

Подключение к магистральной сети электроснабжения до сих пор доступно не всем. Есть немалое число населенных пунктов, до которых линии электропередач не дошли. Да и подключенные поселки и деревни, вследствие общей изношенности линий, испытывают частые перебои с электроснабжением. Кроме того, дачные поселки, выстроенные недавно, зачастую не имеют возможности подключиться к линии, расположенной в солидном отдалении.

Решение вопроса с электроснабжением традиционно возлагается на бензиновые или дизельные электростанции, нуждающиеся в снабжении топливом, капризные и требующие постоянного наблюдения устройства. При этом, есть альтернативные источники, не нуждающиеся в топливе. Одним из них является ветрогенератор.

Что из себя представляет ветрогенератор?

Ветрогенератор — это устройство, использующее энергию ветра для выработки электрического тока. Воздушные потоки, свободно перемещающиеся в атмосфере, имеют гигантскую энергию, причем, совершенно бесплатную. Ветроэнергетика — это попытка извлечь ее и обратить на пользу.

Ветрогенератор представляет собой набор устройств, принимающих, обрабатывающих и подготавливающих для использования энергию. Потоки ветра взаимодействуют с ротором ветряка, заставляя его вращаться. Ротор посредством повышающей передачи (или напрямую) соединяется с генератором, который заряжает аккумуляторные батареи. Заряд через инвертор перерабатывается в стандартный вид (220 В, 50 Гц) и подается на приборы потребления.

На первый взгляд, комплекс устроен довольно сложно. Существуют и более простые конструкции, например, ветряки, питающие насосы. Тем не менее, для сложных приборов требуется полный комплект оборудования, способный обеспечить стабильное и качественное электроснабжение.

Зачем он нужен?

Отличительное свойство электроэнергии состоит в том, что ее можно производить в любых количествах, если позволяет оборудование. Ветрогенератор как раз и относится к таким устройствам — он производит электроэнергию. Таким образом, ветряк представляет собой электростанцию, способную обеспечивать как крупные участки с большим количеством потребителей, так и отдельные дома или приборы.

Возможности устройства зависят от размеров крыльчатки и мощности генератора. Эти два параметра являются определяющими и зависят друг от друга. Чем мощнее ротор, тем большей мощности генератор он сможет вращать, вырабатывая большое количество энергии.

При этом, ветряк может быть создан самостоятельно и обеспечивать потребности отдельной группы приборов — например, освещения, водоснабжения, вентиляции и т.д. Такая избирательность удобна для сокращения расходов на электроэнергию, обеспечения бесперебойной подачи питания на старых изношенных линиях.

Конструкция и принцип работы

Конструктивно ветрогенераторы сочетают механическую, электромеханическую и электрическую части. К механической относится ветряк, непосредственно принимающий энергию ветра и преобразующий ее во вращательное движение. Оно передается на электромеханическое устройство — генератор, преобразующий кинетическую энергию вращения в электрический ток. После этого действуют чисто электронные устройства:

  • выпрямитель. Генератор вырабатывает переменный ток, который не годится для заряда аккумуляторных батарей. Для дальнейшего использования его надо выпрямить, для чего используется выпрямительное устройство
  • контроллер заряда. Обеспечивает своевременное переключение аккумуляторных батарей с режима зарядки на режим питания потребителей, чтобы избежать выхода АКБ из строя
  • аккумулятор (АКБ). Накапливает заряд, необходимый для поддержания напряжения в сети при ослаблении ветра
  • инвертор. Преобразует постоянный ток аккумулятора в обычные 220В 50 Гц переменного тока, необходимых для питания стандартных потребителей.

Все перечисленные электронные устройства являются типичным комплектом оборудования, используемым с любым типом ветряка. Изменение конструкции крыльчатки не влияет на состав комплекта, если только не происходит значительного увеличения скорости вращения, требующего изменения параметров генератора.

Виды ветрогенераторов

Используются два основных вида ветряков, имеющих принципиальные различия:

  • горизонтальные
  • вертикальные

В обоих случаях речь идет об оси вращения ротора. Конструкция различных моделей горизонтальных устройств мало отличается друг от друга, представляя собой подобие бытового вентилятора или пропеллера. Вертикальные устройства обладают намного большим разнообразием типов конструкции, внешне значительно отличаясь друг от друга. Рассмотрим их подробнее:

Горизонтальные ветряки

Горизонтальные конструкции имеют большую эффективность, так как поток ветра они воспринимают только рабочей стороной лопастей. Наибольшее распространение получили трехлопастные крыльчатки, но для небольших конструкций число лопастей может быть увеличено.

Именно горизонтальные конструкции используются для изготовления больших промышленных образцов, имеющих огромный размах лопастей (больше 100 м), которые в объединенном виде образуют довольно производительные электростанции. Государства западной Европы, такие как Дания, Германия, скандинавские страны активно используют ветряки для обеспечения населения энергией.

Устройства имеют один недостаток — они нуждаются в наведении на ветер. Для небольших ветрогенераторов проблема решается установкой хвоста наподобие самолетного, который автоматически располагает конструкцию по ветру. Большие модели имеют специальное устройство наведения, контролирующее положение крыльчатки относительно потока.

Вертикальные конструкции

Ветрогенераторы вертикального типа имеют меньшую эффективность, вследствие чего используются для обеспечения энергией лишь отдельных потребителей — частный дом, коттедж, группу приборов и т.д. Для самостоятельного изготовления такие устройства подходят больше всего, так как обладают широким выбором вариантов конструкции, не нуждаются в подъеме на очень высокую мачту (хотя это им и не противопоказано).

Вертикальные роторы могут быть собраны из любых подручных материалов, в качестве образца можно использовать любой тип из множества известных:

  • роторы Савониуса или Дарье
  • более современный ротор Третьякова
  • ортогональные конструкции
  • геликоидные устройства и т.д.

Описывать все типы подробно незачем, так как их количество постоянно увеличивается. Практически все новые разработки базируются на вертикальной оси вращения и предназначены для использования в частных домах или усадьбах. Большинство разработок предлагает собственный вариант решения основной проблемы вертикальных устройств — низкого КПД. Некоторые варианты имеют довольно высокие показатели, но обладают сложным устройством корпуса (например, конструкция Третьякова).

Расчет и выбор

Расчет мощности ветряка сводится к подсчету суммарной мощности потребления осветительными, вспомогательными и бытовыми приборами. Полученное значение увеличивается на 15-20% (запас мощности необходим при возникновении непредвиденных ситуаций), и на основании этих данных рассчитывается или выбирается готовый генератор.

От его параметров ведется построение всего остального комплекта — механические требования ложатся в основу проектирования ветряка, а эксплуатационные параметры — мощность, напряжение, сила тока — используются при создании системы накопления и обработки полученного тока.

Выбирая приборы, следует также обеспечивать небольшой (15-20%) запас мощности, который обеспечит устойчивость комплекса при возникновении форс-мажорных ситуаций.

Изготовление ветряка своими руками

Основные работы, которые предстоит сделать, это — изготовление и установка вращающегося ротора. Прежде всего следует выбрать тип конструкции и ее размеры. Определиться в этом поможет знание требуемой мощности устройства и производственные возможности.

Большинство узлов (если не все целиком) придется изготовить самостоятельно, поэтому на выбор повлияет, какие познания имеются у создателя конструкции, с какими приборами и устройствами он знаком наилучшим образом. Обычно сначала делается пробный ветряк, с помощью которого проверяется работоспособность и уточняются параметры сооружения, после чего приступают к изготовлению рабочего ветрогенератора.

Рекомендуемые товары

energo.house

Ветрогенератор — как выбрать ветряк

С целью экономии расходов на электроснабжение на производствах и в частных домах устанавливают ветрогенераторы. В данной статье рассмотрим основные характеристики, разновидности и принцип работы ветрогенераторов.

Оглавление:

  1. Устройство и принцип работы ветрогенератора
  2. Разновидности ветряков
  3. Рекомендации по выбору ветрогенератора
  4. Обзор производителей ветрогенераторов

Устройство и принцип работы ветрогенератора

Основные составляющие ветрогенератора:

1. Генератор — преобразователь механической энергии в электрическую. Генератор заряжает аккумуляторные батареи. Чем выше скорость ветра, тем быстрее заряжаются батареи.

2. Лопасти ветрогенератора — часть ветрогенератора, которая подвергается силе ветра, а затем воздействует на генераторный вал.

3. Мачта — устройство на котором крепится генератор и лопасти. От высоты мачты зависит скорость и устойчивость работы ветрогенератора.

Дополнительные компоненты ветрогенератора:

1. Контроллеры — устройство управления ветрогенератором, отвечающее за направление лопастей, особенности заряда аккумулятора, защиту ветрогенератора. Основной функцией контроллера является преобразование переменной энергии в электрическую постоянную.

2. Батареи аккумулятора — приборы для накапливания энергии, которую используют в то время когда отсутствует ветер. Еще одной функцией аккумулятора выступает выравнивание и стабилизация энергии, вырабатываемой генератором. Аккумуляторные батареи обеспечивают электропитание.

3. Анемоскопы или устройства измерения направления ветра — собирают и обрабатывают данные о скорости, направлении и порывах ветра. Анемоскопы устанавливают на более мощных ветрогенераторах, предназначенных для переработки большого количества энергии.

4. Автоматические регуляторы питания предназначены для объединения ветрогенератора, электросети, дизельного генератора или других источников энергии.

5. Инверторы — устройства для переработки постоянного тока в переменный, предназначенный для работы бытовой и электротехники.

При попадании ветра на лопасти ветрогенератора происходит вращение устройства. Во время работы ветрогенератора вырабатывается переменный ток, который попадает в контроллер и перерабатывается в постоянный. Постоянный ток заряжает аккумуляторы, которые обеспечивают электричеством частный дом или большое предприятие. Но, для работы большинства электроприборов необходим переменный однофазный или трехфазный ток, который образуется в инверторе.

Варианты использования ветрогенератора в системе электроснабжения:

  • работа ветряка с аккумулятором в автономном режиме;
  • параллельная работа ветрогенератора на аккумуляторах и солнечных батареях;
  • работа ветрогенератора с параллельным использованием резервного (дизельного, бензинового или газового) генератора;
  • параллельная работа ветрогенератора и обычной электросети.

Преимущества использования ветрогенератора:

  • получение экологически чистой, безопасной и надежной электроэнергии,
  • снижение расходов оплаты за электричество;
  • бесшумность работы устройства;

  • наибольшее количество энергии ветрогенератор производит осенью или зимой, во время большей востребованности электричества для обогрева помещений;
  • цена на ветрогенераторы намного ниже, чем стоимость альтернативных источников получения электроэнергии;
  • возможность ветрогенератора параллельно работать с другими источниками электроэнергии;
  • возможность выбора мощности ветроустановки, в зависимости от типа местности и количества необходимой электроэнергии;
  • возможность использования ветрогенераторов на яхтах или кораблях;
  • потратившись один раз на ветроустановку, обеспечивается электроснабжение минимум на 20 лет.

Разновидности ветряков

В зависимости от размещения турбин выделяют ветрогенераторы:

  • вертикального типа,
  • горизонтального типа.

Ветрогенератор вертикального типа имеет вертикально размещенную турбину, по отношению к поверхности земли, а горизонтальный наоборот. Вертикальный ветрогенератор легко улавливает самые малейшие дуновения ветерка, а горизонтальный — более мощный, по преобразованию энергии.

Разновидности вертикальных ветрогенераторов:

1. Изобретение вертикального ветрогенератора принадлежит шведскому изобретателю Савониусу. Вертикальный ветряк состоит из двух цилиндров, которые имеют вертикальную ось вращения. Независимости от силы и направления ветра вертикальный ветряк постоянно вращается вокруг своей оси. Основным недостатком вертикального ветрогенератора является неполное использование ветровой энергии. Во время исследований было выявлено, что вертикальный ветряк использует только третью часть ветровой энергии.

2. Вертикальный ветряк с наличием ротора Дарье был изобретен на несколько десятков лет позже обычного. Роторный ветрогенератор имеет две или три лопасти и ротор. Ветрогенераторы с ротором просты в изготовлении и легки в монтаже. Главным недостатком такого ветрогенератора является то, что ротор нужно запускать вручную.

3. Ветрогенератор с вертикальной осью вращения и с наличием геликоидного ротора — имеет закрученные лопасти. которые обеспечивают равномерное вращение ветрогенератора. Преимущество: уменьшение нагрузки на подшипники, тем самым увеличение срока службы устройства. Недостатки: высокая стоимость, сложность монтажа.

4. Вертикальный ветрогенератор с наличием многопластного ротора — самое эффективное устройство по переработке ветровой энергии. Имеет сложный ротор, который состоит из большого количества лопастей.

5. Ортогональные ветрогенераторы не требуют большой скорости ветра. Для работы такого устройства подойдет скорость ветра от 0,7 м/с. Ортогональные вертикальные ветроустановки имеют высокие технические характеристики, бесшумное вращение мотора и интересный дизайн. Устройство ортогонального ветрогенератора основывается на вертикальной оси вращения и на нескольких лопастях, которые удалены от оси на определенном расстоянии. Несмотря на большое количество преимуществ, ортогональная ветроустановка имеет недостатки:

  • небольшой строк службы опорных узлов;
  • лопасти более массивные, чем у обычных ветрогенераторов;
  • большой вес установки затрудняет монтаж устройства.

Горизонтальные ветрогенераторы имеют более высокий коэффициент полезного действия. Главным недостатком горизонтальных ветрогенераторов является необходимость в постоянном поиске ветра при помощи флюгеля, который устанавливается отдельно от устройства.

Горизонтальные ветрогенераторы разделяют на:

  • устройства однолопастного типа — характеризуются высокими оборотами вращения, имеют небольшой вес и легкую конструкцию;
  • ветрогенераторы двухлопастного типа — по устройству схожи с однолопастными, только отличаются количеством лопастей;
  • ветряки трехлопастного типа имеют наибольшую мощность около 7 мВт, считаются одними из самых популярных среди ветрогенераторов, предназначенных для дома;
  • многолопастные ветрогенераторы имеют от четырех до пятидесяти лопастей, данные устройства используют для обеспечения работы водяных установок.

В соотношении с количеством лопастей все ветрогенераторы подразделяются на:

  • однолопастные,
  • двухлопастные,
  • трехлопастные,
  • многолопастные.

По материалам, из которых состоит ветрогенераторная установка выделяют:

  • ветрогенераторы парусного типа,
  • ветрогенераторы жесткого типа, изготовлены из стекловолокна или металла.

В зависимости от шагового признака винта ветрогенераторы разделяют на:

  • устройства измеряемого шага,
  • устройства фиксированного шага.

Ветрогенератор на основе изменяемого шага имеет довольно сложную конструкцию, но в то же время увеличенную скорость вращения. Ветрогенератор с фиксированный шагом отличается надежностью и простотой.

Все ветрогенераторы условно разделяют на два вида:

  • ветрогенераторы промышленного типа;
  • домашние ветрогенераторы.

Промышленные ветряки используют для получения большого количества электроэнергии. Для устройства ветрового парка, состоящего из нескольких десятков или сотен ветрогенераторов требуется тщательное обследование местности, которое проводят на протяжении года или двух. Промышленные ветрогенераторы позволяют получать электроэнергию для обеспечения электричеством нескольких десятков домов или определенного производства.

Ветрогенератор для дома — позволяет значительно снизить расходы на электроснабжение и обеспечивает независимость от работы общей электросети.


Рекомендации по выбору ветрогенератора

1. Перед выбором ветрогенератора следует определиться с мощностью и функциональным назначением данного устройства.

2. Внимательно изучите разновидности ветряков и ознакомьтесь с климатическими условиями данного региона, в котором планируется установка ветрогенератора.

3. Определите выходную мощность ветряка, которая напрямую зависит от мощности преобразователя (инвертора). Второе название выходной мощности — пиковая нагрузка — совокупность количества приборов, которые одновременно будут работать с ветрогенератором. То есть, выходная мощность определяется как общая мощность ветряка. Даже при редком, но большом потреблении электроэнергии следует выбирать ветрогенератор с большой мощностью. Чтобы увеличить выходную мощность, следует установить несколько инверторов.

4. Время на непрерывную работу устройства — определяют мощностью аккумулятором, которые устанавливаются на ветряк. При безветренной погоде аккумуляторы обеспечивают помещение электричеством.

5. Темпы заряда аккумулятора определяются мощностью устройства, скоростью ветра, высотой установки и рельефом территории, на которой установлен ветрогенератор. Чем выше мощность ветрогенератора, тем быстрее происходит заряд батарей. При постоянном потреблении электроэнергии или при слабом ветре выбирайте более мощные модели ветряков. Чтобы увеличить скорость заряда батарей, следует подключить несколько генераторов к ветроустановке.

6. Не следует покупать много аккумуляторных батарей, при слабой силе ветра, так как ветрогенератор не успеет заряжать все батареи. Если батареи не до конца заряжаются это приводит к быстрому выходу их строя, поэтому количество батарей следует рассчитывать из потребляемой мощности всех электроприборов в доме.

7. Чтобы ветряк купить, следует обратить внимание на главный фактор — вырабатываемую энергию устройства. Этот критерий указан в технических характеристиках ветрогенератора.

8. Чтобы определить потребляемую мощность дома, в котором будет производиться установка ветряка, следует просмотреть счета за электричество за последние 12 месяцев, и вывести минимальный, средний и максимальный коэффициент потребления энергии.

9. С помощью исследований ближайшей метеорологической станции, узнайте о среднегодовой скорости ветра на предполагаемом участке установки ветряка. Оптимальная работа ветрогенератора обеспечивается при ветре 5 м/с.

10. Лучше устанавливать ветрогенератор как дополнительный источник питания в паре с дизельным или бензиновым генератором.

11. Испытайте ветрогенератор в работе, обратите внимание на уровень шума и необходимость в техническом обслуживании ветряка. Некоторые мощные ветрогенераторы имеют достаточно высокий уровень шума, что приводит к дискомфорту и проблемам с соседями.

12. Средний срок эксплуатации ветрогенератора составляет шесть-семь лет.

13. Лучше отдать предпочтение ветрогенератору, лопасти которого изготовлены из твердых материалов: стекловолокна или металла.

14. Обратите внимание на оптимальную работу ветрогенератора при средней скорости ветра, которая характерна для данного региона.

15. Безредукторные ветрогенераторы намного проще в установке, легко собираются и не требуют дополнительного техобслуживания, в то время как редукторные несмотря на сложность монтажа обеспечивает большую мощность и лучшее качество работы ветряка.

16. Не следует обращать внимание на такие рекламные лозунги о том, что ветрогенератор имеет улучшенную конструкцию, магнитную левитацию или большой контроллер, в большинстве случаи такая реклама, направлена на то, чтобы за обычный ветрогенератор получить больше денег.

17. При покупке ветрогенератора, потребуйте гарантию и выполнение всех обязательств производителя ветрогенераторов перед покупателем. Например, наличие креплений — комплект ветрогенератора, который включает все комплектующие: инверторы, генераторы, аккумуляторы. При покупке данных устройств у разных производителей, риск неправильной работы ветрогенератора увеличивается.

18. Формула расчета мощности ветрогенератора: Р = 0,5 * rho * S * Ср * V3 * ng * nb. Р — мощность ветрогенератора, rho — величина обозначения плотности воздуха, S — величина площади метания ротора, Ср — коэффициент аэродинамического действия, V — величина скорости ветра, ng — радиаторный коэффициент полезного действия, nb — при наличии редуктора. КПД редуктора.

19. Стоимость ветрогенератора напрямую зависит от таких факторов:

  • количество лопастей,
  • мощность аккумуляторов,
  • мощность генератора,
  • количество инверторов,
  • материал изготовления лопастей,
  • наличие редуктора,
  • номинальная мощность ветряка,
  • тип ветрогенератора: горизонтальный, вертикальный,
  • материал, из которого изготовлена установка,
  • наличие дополнительных комплектующих.

Обзор производителей ветрогенераторов

Чтобы ветрогенератор купить, нужно предварительно рассчитать мощность ветрогенератора и потребляемое электричество. После проведения расчетов обратите внимание на стоимость ветряка.

Первые позиции по производству ветрогенераторов занимает Германия, Дания и Франция. Несколько десятков лет назад началось изготовление российских ветрогенераторов, которые, по сравнению с зарубежными моделями, требуют усовершенствования.

Рассмотрим основных популярных производителей ветрогенератовор для дома:

1. AEOLOS (Дания)

Особенности ветрогенераторов AEOLOS:

  • компания занимается разработкой ветрогенераторов более 35 лет;
  • мощность вертикальных ветрогенераторов составляет от 500 Вт до 500 кВт;
  • мощность горизонтальных ветряков — 300-10000 Вт;
  • сфера применения ветрогенераторов: частный сектор, фермерское хозяйство, обеспечение электричеством поселков и школ;
  • высокий уровень выработки электроэнергии;
  • использование генератора без редуктора обеспечивает высокий уровень надежности ветроустановки;
  • небольшая стоимость технического обслуживания;
  • высокий уровень безопасности обеспечивает функция контроля положения устройства ветрогенератора;
  • наличие электронной системы торможения.

Технические характеристики AEOLOS Н 1кВт:

  • величина номинальной мощности: 1 кВт;
  • величина максимальной мощности: 1,5 кВт;
  • выходное напряжение: 48 В;
  • характеристика лопастей: 3 штуки, материал — стекловолокно;
  • особенности генератора: генератор трехфазного магнитноэлектрического типа, который обеспечивает постоянный ток;
  • коэффициент полезного действия: менее 0,95;
  • гарантийный строк: 5лет;
  • максимальный строк эксплуатации: 20 лет.

2. ENERCON (Германия)

Особенности:

  • мощность ветрогенераторов компании ENERCON от 330 Вт до 7,58 мВт;
  • наличие кольцевого генератора;
  • отсутствие трансмиссии;
  • выполнение мировых стандартов качества: надежность и долговечность.

Технические особенности ENERCON Е80:

  • величина номинальной мощности: 80 кВт;
  • величина высоты башни: 53 м;
  • величина номинальной скорости ветра: 12 м/с;
  • минимальная скорость ветра: 3 м/с;
  • максимальная скорость ветра: 30 м/с;
  • количество лопастей: 3 штуки;
  • величина диаметра ротора: 18 м.

3. AMPAIR (Великобритания)

Характеристика сферы использования:

  • катера;
  • лодки;
  • удаленные автономные системы питания.

Особенности:

  • небольшой размер;
  • легкий монтаж;
  • возможность установки на ограниченном пространстве;
  • высокое качество и надежность.

Технические особенности Ampair 100:

  • величина номинальной мощности: 100 Вт;
  • величина напряжения генератора: 12 Вт;
  • характеристика лопастей: 6 штук;
  • необходимая скорость ветра: от 3 м/с;
  • стоимость: 2700 $.

4. Fair Wind (Бельгия)

Особенности:

  • возможность использования в частном доме, отеле, АЗС, на ферме;
  • высокий уровень европейского качества;
  • изготовление лопастей — бельгийское;
  • происхождение генераторов — финское;
  • производством инверторов и контроллеров занимается немецкая компания;
  • произведение тестирования и проверки каждой ветроустановки;
  • максимальные порывы ветра 55 м/с;
  • система безопасности имеет полную автоматизацию;
  • присутствует пассивное аэродинамическое торможение;
  • ветроустановки Fair Wind используют вместе с установками солнечных батарей;
  • большая вариация мощностей поможет подобрать ветроустановку для каждого участка индивидуально.

Технические особенности Fair Wind F16:

  • величина номинальной мощности: 10 кВт;
  • величина диаметра ветроколеса: 4 м;
  • величина номинальной скорости ветра: 15 м/с;
  • минимальная скорость ветра: 3 м/с;
  • количество лопастей: 3 штуки, выполнены из авиационного алюминия;
  • величина диаметра ротора: 18 м;
  • стоимость: 20000 $.

5. Fuller Wind (США)

Особенности:

  • полное отсутствие лопастей;
  • компактность использования;
  • небольшая стоимость, по сравнению с классическими ветрогенераторами;
  • основа ветрогенератора — Турбина Теслы, которая состоит из большого количества металлических дисков, которые разделены кольчатыми прокладками;
  • высокий уровень производительности электроэнергии.

6. Fortiss (Нидерланды)

Особенности:

  • использование: электроснабжение домов, снабжение телекоммуникационного оборудования, водоочистительные системы;
  • обеспечение полной независимости от промышленных источников электроэнергии;
  • возможно совместное использование ветроустановок и традиционных источников электропитания;
  • стабильное электроснабжение и понижение расходов на электричество;
  • простота конструкции и легкость монтажа ветрогенераторов;
  • возможность использования солнечных батарей или дизельных генераторов;
  • низкий уровень шума;
  • высокий уровень безопасности.

Технические особенности Fortiss Montana 5,8:

  • характеристика генератора: генератор синхронного магнитного типа;
  • максимальная скорость ветра: 55 м/с;
  • количество лопастей: 3 штуки;
  • необходимая скорость ветра: от 2,5 м/с;
  • варианты системы торможения: механический, электрический;
  • стоимость: 20000 $.

strport.ru

Ветрогенераторы. Устройство и виды. Работа и применение

Электричество сегодня считается чем-то обыденным, ведь оно есть в каждом доме. И никто не задумывается, откуда оно берется. Электричество в основной массе вырабатывается электростанциями, работающими на нефти, природном газе, ядерном топливе или угле. Эти традиционные источники представляют определенную опасность для окружающей среды, вследствие чего все большее внимание уделяется альтернативным видам энергии. К последним можно отнести ветрогенераторы, которым для выработки электричества нужен лишь ветер.

Устройство

Конструктивно ветрогенераторы в большинстве случаев предполагают наличие следующих элементов:
  • Лопасти турбины (пропеллер).
  • Турбина (вращающаяся часть).
  • Электрогенератор.
  • Ось электрогенератора.
  • Инвертор, преобразующий переменный ток в постоянный, для возможности зарядки батареи.
  • Механизм вращения лопастей.
  • Механизм вращения турбины.
  • Аккумулятор.
  • Мачта.
  • Контроллер вращения(анемометр).
  • Демпфер.
  • Датчик ветра и анемоскоп.
  • Хвостовик анемоскопа.
  • Гондола и ряд других элементов.

В зависимости от вида ветрогенератора конструкция и входящие в него элементы могут разниться. К примеру, промышленные устройства также предусматривают наличие системы молниезащиты, силового шкафа, поворотного механизма, надежного фундамента, системы пожаротушения, системы изменения угла атаки лопасти, телекоммуникационной системы для передачи информации о работе ветрогенератора и так далее.

Принцип действия

Ветрогенератор представляет устройство, преобразующее энергии ветра в электрическую энергию. Прародителями современных видов ветрогенераторов являются ветряные мельницы, которые применялись для получения муки из зерен. И принцип их работы изменился ненамного: лопасти вращают вал, который передает необходимую энергию на другие элементы.

  • Ветер вращает лопасти, передавая крутящий момент через редуктор на вал генератора.
  • При вращении ротора образуется трехфазный переменный ток.
  • Полученный ток направляется на аккумуляторную батарею через контроллер. Аккумуляторы применяют для создания стабильности работы ветрогенератора. Генератор заряжает аккумуляторы при наличии ветра. При его отсутствии всегда можно взять энергию с аккумулятора, чтобы потребитель не прекращал получать электричество.
  • С целью защиты от ураганов в ветрогенераторах применяется система с уводом ветроколеса от ветра при помощи складывания хвоста, либо торможения ветроколеса электротормозом.
  • Для зарядки аккумуляторов ставится контроллер между ветряком и АКБ. Он отслеживает зарядку АКБ, чтобы не испортить аккумуляторы. При необходимости он может сбрасывать лишнюю энергию на определенный балласт, к примеру, большой резистор или тэны для отопления.
  • В аккумуляторах имеется лишь постоянное низкое напряжение рядностью 12/24/48 вольт. Однако потребителю нужно напряжение в 220 вольт, именно поэтому ставится инвертор. Это устройство преобразует постоянное напряжение в переменное, создавая напряжение в 220 вольт. Естественно, что можно обойтись и без инвентора, но придется использовать электрические приборы, специально рассчитанные на низкое напряжение.
  • Преобразованный ток направляется потребителю, чтобы питать отопительные батареи, освещение, телевизор и иные устройства.

В промышленных ветряках могут применяться и другие элементы, которые обеспечивают автономную работу устройства.

Типы и виды ветрогенераторов

Классифицировать ветряки можно по материалам, количеству лопастей, шагу винта и оси вращения.

Выделяют два основных типа ветрогенераторов по оси вращения:
  1. С горизонтальной осью круглого вращения, то есть крыльчатые.
  2. С вертикальной осью вращения, то есть «лопастные» ортогональные, «карусельные».

Горизонтальные классические ветрогенераторы имеют пропеллер (в большинстве случаев трехлопастной), а вертикальные ветряки обладают ветроколесом, которое вращается вертикально.

По количеству лопастей ветряки могут быть:
  • Трехлопастные и двухлопастные.
  • Многолопастные.

Вращение многолопастных ветряков начинается при слабом ветре, тогда как для двухлопастных и трехлопастных устройств требуется более сильный ветер. Однако каждая
дополнительная лопасть создает дополнительное
сопротивление ветроколеса, вследствие чего достигнуть рабочих оборотов генератора становится сложнее.

По материалам лопастей ветряки могут быть:
  • Парусные генераторы.
  • Жесткие лопасти ветрогенератора.

Парусные лопасти дешевле и проще в изготовлении, однако, когда необходима стабильная и надежная работа для автономного электроснабжения они не подойдут.

По шагу винта:
  • Изменяемый шаг винта.
  • Фиксированный шаг винта.
Изменяемый шаг винта дает возможность повысить диапазон эффективных скоростей работы. В то же время данный механизм неизбежно:
  • Усложняет конструкции лопасти.
  • Снижает общую надежность ветрогенератора.
  • Утяжеляет ветроколесо и требует дополнительного усиления конструкции.
Применение
Устройства могут использоваться в различных местах. В большинстве случаев в открытые пространства, где большой потенциал ветров:
  • Горы.
  • Мелководье.
  • Острова.
  • Поля.

В то же время ветрогенераторы современных конструкций дают возможность задействовать энергию даже слабых ветров – от 4 м/с. Благодаря им можно решать задачи электроснабжения и энергосбережения объектов любой мощности.

  • Стационарные ветряные электростанции в виде альтернативных источников энергии способны полностью обеспечить электрической энергией небольшой производственный объект или жилой дом. В периоды отсутствия ветра необходимый запас электроэнергии будет выбираться из аккумуляторных батарей. Они отлично могут сочетаться с фотоэлектрическими батареями, газовым или дизельным генератором.
  • Ветрогенераторы могут использоваться и для экономии при наличии центральной электросети.
  • Ветроустановки средней и малой мощности часто используются владельцами фермерских хозяйств и домов, удаленных от централизованных электросетей, в качестве автономного источника.
Достоинства и недостатки
К преимуществам можно отнести:
  • Энергия ветра является возобновляемой энергией. Ветер создается бесплатно и постоянно, без ущерба окружающей среде. Энергия ветра доступна в любом месте на планете.
  • Энергия ветра является достаточно дешевой.
  • Ветряные турбины находятся на мачтах, им требуется минимум места. Благодаря этому их можно устанавливать совместно с иными объектами и строениями.
  • Ветрогенераторы в процессе эксплуатации не производят вредных выбросов.
  • Энергия ветра в особенности требуется в удаленных местах, куда затруднена доставка электричества иными привычными способами.
К недостаткам можно отнести:
  • Сила ветра очень переменчива и непредсказуема, вследствие чего требуется дополнительный буфер для накапливания электроэнергии, либо дублирования источника.
  • Высокая начальная стоимость создания и установки ветрогенераторов.
  • Ветряные турбины создают шум, который сравним с шумом автомобиля, перемещающегося со скоростью 70 км/ч. Это отпугивает животных и создает определенный дискомфорт для людей.
  • Вращающиеся лопасти представляют потенциальную опасность для птиц.
Похожие темы:

electrosam.ru

Чем лучше и чем хуже вертикальный ветрогенератор в плане эксплуатации



Использование энергии ветра для выработки электричества – одна из перспективных форм развития альтернативной энергетики. Вертикальный ветрогенератор является перспективным направлением развития отрасли, т.к. имеет ряд преимуществ по сравнению с горизонтальными аналогами.

Принцип работы

Вертикальный ветряк представляет собой цилиндр, устанавливаемый на основание. Благодаря своей форме, работает вне зависимости от направления ветра. Вне зависимости от вида вертикального ветрогенератора,  он устроен таким образом, чтобы давление потока воздуха на одну из его сторон было выше, чем на другую.

Благодаря такой разнице в давлении происходит вращение оси генератора и выработка электричества. Из-за того, что сила ветра направлена на обе стороны ветрогенератора, показатель стартовой скорости ветра немного больше, чем у горизонтальных ветряков, но при должном качестве деталей, существует самораскрутка – т.е. значительное увеличение оборотов генератора даже при небольшом (от 3,5 м/с) ветре.

Какая конструкция лучше



Существует несколько принципиально разных конструкций вертикальных ветрогенераторов, каждая из них обладает своими достоинствами и недостатками.

  1. Ветряк Савониуса — полукруглые лопасти

    Ротор Савониуса. Модель такого вертикального ветряка включает в себя две или более лопасти, выполненные в форме полукруга. При этом давление, оказываемое на «открытую» часть круга значительно превышает то, которое воздействует на противоположную сторону. Конструкция достаточно проста в изготовлении, поэтому пользуется наибольшей популярностью среди самодельных вертикальных ветрогенераторов. Недостатки:
    • Большая «парусность». Воздействие ветра кренит всю конструкцию, создавая напряжение в оси и выводя из строя подшипник, на котором вращается весь ротор.
    • Конструкция не способна начать вращаться самостоятельно при наличии двух или трех лопастей, поэтому два таких ротора необходимо закреплять на одной оси одну под другой под углом в 90°
  2. На ортогональный ротор устанавливают дополнительные статические экраны для увеличения производительности

    Ротор Дарье или ортогональный. Существует множество модификаций такого вертикального ветрогенератора, но принцип работы остается неизменным. Вращение происходит за счет крылообразной формы лопасти генератора. При воздействии потока воздуха создается подъемная сила, за счет которой и вращается ось. Недостатки:
    • Низкая, даже по меркам ветрогенераторов, эффективность.
    • Скорость ветра для полной раскрутки такого генератора должна быть не менее 4 м/с. При этом до набора полной скорости вращения такого ротора, нагрузку к ветряку подключать нельзя – остановится.
    • Шумность. Если в остальных моделях шум издают только подвижные части (подшипники), то вертикальный ветрогенератор такого типа шумит лопастями. Очень сильно.
    • Из-за вибрации быстро выводит из строя подшипники и все несущие элементы конструкции.
  3. Геликоидный ротор имеет сложную конструкцию

    Геликоидный ротор. Этот вертикальный ветрогенератор имеет замысловатую форму, но по — сути это ортогональный ветрогенератор с вертикальной осью, только лопасти у него закручены вдоль несущей оси, что значительно повышает срок службы всей конструкции, т.к. обеспечивает равномерную нагрузку на подшипник и мачту со всех сторон. Недостатки:
    • Сложность в изготовлении, отсюда высокая стоимость вертикального ветряка.
  4. Многолопастной ветряк

    Многолопастной вертикальный ветрогенератор. Если рассматривать только коммерческие образцы – этот тип ротора является наиболее производительным и дает наименьшую нагрузку на несущие детали. Внутри такого вертикального ветряка содержится дополнительный ряд статичных лопастей, которые направляют поток воздуха таким образом, чтобы максимально увеличить эффективность ротора. Недостатки:
    • Высокая стоимость устройства из-за большого количества деталей.

Плюсы вертикальной оси

Положительные качества всех вертикальных ветрогенераторов:

  1. Не направляются по ветру, работают при любой его направленности.
  2. В отличие от ветрогенераторов с горизонтальной осью, имеет только одну ось вращения, следовательно бо́льший срок службы.
  3. Возможна установка на небольшой высоте — от 1,5м, в зависимости от модели.
  4. Все важные подвижные элементы находятся в нижней части генератора, что позволяет удобно его обслуживать.

    Важно. При необходимости вал ротора увеличивается до необходимой длины для удобства доступа к статору, без существенной потери КПД.

  5. Возможность собрать действующий ветрогенератор своими руками из подручных материалов.
  6. Благодаря возможности создания жесткой конструкции с несколькими точками опоры, вертикальные ветрогенераторы работают при бо́льшей максимальной скорости ветра.
  7. Более высокая устойчивость к разрушающему воздействию ветра.
  8. В этих ветряках возможно создание собственной циркуляции воздуха, за счет чего образуется быстроходный эффект, когда линейная скорость лопастей в 20 и более раз превышает скорость ветра.

Минусы

  1. Громоздкость конструкции. Самые легкие вертикальные ветряки весят не менее 300 кг вместе со стойкой.
  2. Низкая эффективность по сравнению с горизонтальным.
  3. Шумность. Ветряк издает шум от лопастей во время работы.

Видео. Геликоидный ветрогенератор

В ролике наглядно показана работа геликоидного ветряка, установленного на специальной мачте



Бестопливный генератор — способ заработать на безграмотности Как выбрать солнечную панель — обзор важных параметров Виды садовых светильников и фонарей на солнечных батареях, как и где использовать. Принцип действия солнечных батарей.

electricadom.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *