Стабилизатор напряжения фото: 80 фото и советы по выбору

Содержание

80 фото и советы по выбору

Низким напряжением и его скачками в сети сейчас никого не удивишь. Эта проблема является актуальной для многих семей. Ее следствием является выход из строя бытовой техники. Чтобы защитить все или отдельные приборы и устройства в доме, используются стабилизаторы напряжения.

Но для правильного выбора нужного устройства, необходимо понять принцип действия и достоинства отдельных типов.

Назначение и особенности функционирования

Стабилизатор напряжения представляет собой прибор электронного или электромеханического типа действия, предназначенный для преобразования электроэнергии на входе.

В результате появляется возможность поддерживать параметры сетевого напряжения в заданном диапазоне в случае, если будут происходить существенные по величине скачки входного напряжения и нагрузочного тока на выходе.

Стабилизатор на 220 В может быть сетевого или магистрального типа. Первая модификация используется для контроля напряжения при подключении одного или нескольких по выбору устройств. Присоединение производится к стандартной розетке в доме.

А вот магистральные устройства рассчитаны на преобразование электроэнергии до нужных параметров для всех приборов в квартире. Их мощность достаточно высока – более 4 кВт, поэтому подключают к электромагистрали.

Благодаря работе стабилизаторов, решаются такие задачи:

  • при отклонениях в параметрах напряжения осуществляется повышение или понижение до стандартных значений 220-230 В;
  • при возникновении серьезных перепадов в сети, например меньше 165 В и выше 255 В, производится отключение электроприборов в автоматическом режиме.

Основные типы стабилизаторов

Прежде чем определять, какие стабилизаторы напряжения лучше, целесообразно рассмотреть основные типы устройств, принцип их действия и основные преимущества.

Релейные

Такие ступенчатые модели функционируют по схеме переключения трансформаторных обмоток специальным реле силового вида, которое активизируется автоматически. Располагаются такие реле или на плате, или на корпусе устройства.

Параметры напряжения на входе оцениваются непрерывно, а при их отклонении от заданного уровня активизируется переключатель на увеличение или снижение напряжения. Достоинствами моделей считаются:

  • компактность;
  • высокая точность корректировки;
  • расширенный предел регулировки;
  • устойчивость к перегрузкам;
  • возможность нормальной работы при температуре от -20 до +40 градусов;
  • невысокий уровень шума;
  • долговечность эксплуатации.

Это недорогие модификации, недостатком которых является ступенчатый механизм выравнивания напряжения.

Электронные

Такие стабилизаторы могут быть симисторными и тиристорными. Первый вид имеет высокие параметры КПД и отличную скорость реагирования.

Вторые также демонстрируют прекрасные свойства стабилизации, но имеют более высокую стоимость. Например, в однофазных моделях устанавливаются два параллельных тиристора, а стабилизатор на 380 В для дома имеет шесть единиц – на все фазы.

Электронные устройства отличаются такими преимуществами:

  • повышенной точностью регулировки;
  • исключение потерь в мощности при стабилизации;
  • устранение задержек;
  • малая шумливость.

Но при этом прибор достаточно массивен по весу и размерам, стоит он дорого.

Электромеханические

Такие стабилизаторы имеют в составе автотрансформатор, а регулирование происходит за счет движения электрода угольного типа по обмоткам. Приводится в действие электроприводом. Устройства могут быть сетевого и магистрального подключения.

А достоинства следующие:

  • компактность и невысокая цена;
  • работа в диапазоне напряжения на входе от 130 В до 260 В;
  • отсутствие искажений;
  • стойкость к высоким нагрузкам и помехам.

Однако даже лучшие стабилизаторы данного типа имеют невысокие параметры быстродействия, работают шумно, не могут задействоваться при низких температурах.

Феррорезонансные

В цепи «конденсатор-трансформатор» возникает эффект феррорезонанса напряжения. На этом принципе и основана работа стабилизатора. Это очень крупные и шумные устройства, которые могут задействоваться в условиях высокой влажности и повышенных температур.

Инверторные

Это очень дорогие модели. В них установлен микроконтроллер, а также генератор кварцевого типа. В приборе последовательно происходит два типа преобразований:

  • переменное входное напряжение во внутреннее постоянное;
  • постоянное напряжение в переменное на выходе.

Сами приборы очень компактны, работают бесшумно с пределом параметров на входе 115-290 В. Стабилизация производиться очень быстро.

Основные условия выбора

Многих людей интересует вопрос, как выбрать стабилизатор напряжения для дома, чтобы он работал эффективно и без поломок. Здесь нужно учитывать несколько свойств.

Фазность

Существуют однофазные стабилизаторы и трехфазные. Для безопасной эксплуатации стандартных бытовых приборов требуется 220 В, а поэтому поддержание производится однофазными моделями.

А вот электроплиты, насосы и другие агрегаты работают от сети 3х380 В. Следовательно, вам надо будет приобрести трехфазный стабилизатор.

Мощность

Покупая стабилизирующее устройство надо знать суммарную мощность всех электроприборов, которые будут к нему подключаться. Сведения о потребляемой номинальной мощности можно узнать из паспорта.

Но при этом агрегаты с электродвигателем работают с пусковыми токами – для них требуемое количество электроэнергии будет превышать номинальные параметры.

В связи с этим рекомендуют брать устройства с допустимой мощностью в 3-5 раз, превышающей суммарную величину всех подключаемых электроприборов.

Кроме того, нужно учитывать что существуют:

  • приборы с активной нагрузкой. Они преобразуют электроэнергию в тепловую энергию или освещение – утюги, чайники, лампочки и т.д.
  • устройства с реактивной нагрузкой, например имеющие электродвигатели.

Для первых нет поправочных коэффициентов, и в расчет принимается номинальная мощность в кВт. А вот для вторых надо полную мощность в кВА корректировать на косинус фи или его усредненную величину 0,7. И, конечно же, стоит предусмотреть запас 20% по мощности стабилизатора для долговечности его работы.

Рабочий диапазон

Этот параметр отражает размер входного напряжения, при котором стабилизирующее устройство будет его корректировать без отключения от сети. При превышении предела произойдет отключение.

Средний диапазон составляет 130-270 В для бытовых моделей. Для подбора стабилизатора следует произвести замеры напряжения в доме.

Точность корректировки

Данный параметр отражает величину наибольшего допустимого отклонения выходного питания от номинала. Обычно бытовые приборы работают в режиме 220 В ± 5-7%, в вот для освещения точность не должна быть больше 3%. Поэтому изучайте паспортные данные домашних агрегатов и используйте несколько стабилизаторов или ставьте минимальный параметр.

Способы установки оборудования

На фото стабилизаторов напряжения изображены разнообразные модификации устройств. При этом они могут крепиться на стену или устанавливать на полу.

Приборы требовательны к условиям эксплуатации. Не допускается работа в помещениях с высокой влажностью, запыленностью, перегревом.

Известные производители

Рекомендуется при покупке устройства отдавать предпочтение только известным брендам, например ORTEA, «Бастион», «РЕСАНТА», «Штиль». Среди моделей на 5 кВт популярностью пользуются RUCELF SRFII-6000-L, Ресанта ACH-5000/1-Ц, Эра STA-W-5000.

Для более мощных подключений на 5-10 кВт целесообразно выбирать RUCELF SRWII-9000-L, Sven AVRPRO LCD10000, Ресанта LUX АСН-10000Н/1-Ц, Luxeon WDR – 10000, Энергия Voltron PCH-10000.

Для обеспечения надежной работы бытовых приборов требуется выбор качественных и надежных стабилизаторов. Решения надо принимать, основываясь на технических параметрах подключаемых агрегатов и подбираемых моделей стабилизирующих устройств.

Фото стабилизаторов напряжения для дома


Также рекомендуем посетить:

Стабилизаторы напряжения для дома — обзор лучших моделей с фото и видео

Современную жизнь нельзя представить без стабилизаторов напряжения. Эти устройства применяются повсеместно в электросетях и подразделяются на бытовые и промышленные. Различаются они также по типу напряжения. На 220 вольт — однофазный стабилизатор или на 380 вольт — трехфазный. Есть различия также по мощности.

К бытовым относятся устройства до 20 киловатт мощности и применяются для выравнивания напряжения до необходимого значения в жилых зданиях. Как правило, в быту используются однофазные устройства.

Где применяются подобные устройства

Чаще всего выравнивание значения напряжения необходимо за пределами городов, где значительные расстояния до потребителей электроэнергии. На протяжении всей линии электропередачи значение напряжения будет различным и зависеть от расстояния между источником снабжения электроэнергией и конечным потребителем.

Чем дальше потребитель от распределительной подстанции или энергоустановки, тем больше потери. Поэтому на регулирующей подстанции устанавливается такой уровень, чтобы ровно 220 вольт было на средне удаленном от подстанции участке. Поэтому чем ближе потребитель к источнику энергоснабжения, тем выше будет напряжения в сети, а чем дальше, тем ниже.

Применение стабилизаторов напряжения для дома в таких точках необходимо. На промышленные объекты распространяется то же правило.

В каких случаях необходимы регулирующие устройства

В городских условиях стабилизаторы напряжения применяются не так часто. Но если Вы живете в районе с электросетями длительной эксплуатации, то стоит обзавестись таким устройством. Скачки напряжения в таких районах случаются довольно часто, что приводит в большинстве случаев к выходу из строя дорогостоящей техники.

В загородном доме почти всегда нужен стабилизатор. Это связано как с удаленностью от электроподстанции, так и с тем, что надежность и стабильность в загородных сетях поддерживать крайне сложно. Здесь скачки случаются чаще, чем в городе, а в некоторых местах это происходит постоянно.

С чего начать

Чтобы разобраться в конструктивных особенностях того или иного устройства, а также сделать правильный выбор необходимо по фото стабилизаторов напряжения изучить их конструктивные особенности.


Это важно для последующей надежной работы оборудования. Такие приборы делятся на три основных типа:

  • механические — производят регулировку механическим способом;
  • электронные — необходимый уровень регулируется электроникой;
  • релейные — за счет работы реле подключаются те или иные регулирующие элементы.

Как не ошибиться в выборе

Для того, чтобы ответить на вопрос как выбрать стабилизатор напряжения, рассмотрим их конструктивные различия. Самые надежные — электронные стабилизаторы. В них регулировка происходит без применения механических элементов, поэтому такие устройства самые надежные и долговечные.

Конструктивно — это набор трансформаторов и дросселей, которые при правильной эксплуатации могут безотказно прослужить десятилетия. Такое оборудование весьма громоздко и стоит дороже, однако не требует никакого обслуживания.

Релейные устройства используют электромеханику, которая периодически выходит из строя. Некоторые элементы необходимо менять по истечении определенного срока. Такие стабилизаторы вполне надежны, но работают достаточно шумно, также, как и сервоприводные.

Третий тип устройства называется так, потому, что для регулировки потенциала напряжения используют небольшие электромоторы — сервоприводы, ползунки которых перемещаются по обмоткам трансформатора, за счет чего и происходит регулировка напряжения.

Такие стабилизаторы обойдутся совсем недорого, но в процессе работы требуют к себе особого внимания. Периодическая профилактика и замена механических элементов должна производиться в соответствии с инструкцией производителя.

В каких случаях обязательно устанавливается регулирующее оборудование

Бывают случаи, когда на отдельное устройство требуется установить свой стабилизатор. Как правило, это мощное электрооборудование, например, отопительные котлы.


Стабилизаторы напряжения для котлов желательно приобретать с запасом мощности. Для этого лучше всего подойдут электронные стабилизаторы. Если Вам необходимо обеспечить стабильным электропитанием весь дом, то надежнее всего использовать именно электронный стабилизатор напряжения.

Что важно знать

Самыми лучшими стабилизаторами считаются электронные. Они неприхотливы в работе, не требуют обслуживания, не шумные. Однако занимают значительный объем пространства и стоят достаточно дорого. Если у Вас на даче завалялся старый советский стабилизатор, не спешите его выбрасывать. Отнесите мастеру на проверку, который почистит его от пыли и заменит электрический провод.

Старый электропровод скорее всего не будет пригоден к эксплуатации. Отремонтированное устройство прослужит еще много лет, а Вам не придется нести дополнительные расходы. Стоит учесть, что подобный стабилизатор скорее всего будет невысокой мощности и сможет обеспечить стабильным электропитанием одно или два бытовых устройства.

Для дома в целом необходим стабилизатор мощностью 10-20 киловатт. Этого хватит с запасом. Лучше всего приобретать устройства с запасом мощности.

Максимальная рабочая нагрузка не должна превышать 70-80% от номинальной мощности устройства. Тогда прибор прослужит очень долго и выдержит незапланированные перегрузки.

Необходимые дополнительные элементы для надежного электроснабжения

Если в Вашем загородном доме часто случаются перебои с электроэнергией, то кроме стабилизатора Вам придется приобрести автономную систему энергоснабжения. Это может быть недорогой электрогенератор, который обеспечит Ваш дом электроэнергией в случае полного отключения электричества.


Стабилизатор напряжения будет хорошим дополнением любой, в том числе и автономной, системы электроснабжения и сделает энергообеспечение Вашего жилища надежным и безопасным.

Фото стабилизаторов напряжения


Также рекомендуем посетить:

Post Views: Статистика просмотров 130

Подключение стабилизатора напряжения и установка своими руками

Когда мы рассказывали об устройствах защиты сети от перенапряжения, особое внимание было уделено бесперебойникам и данным устройствам. Автоматические стабилизаторы могут использоваться где угодно: в квартире, частном доме и даже на даче. Стоимость устройств не слишком велика, а установка и подключение стабилизатора напряжения своими руками не представляет ничего сложного. Далее мы как раз поговорим о том, как самостоятельно установить и подключить защитную аппаратуру на весь дом либо квартиру, предоставив пошаговую инструкцию по монтажу!

Шаг 1 – Определяемся с типом защиты

На сегодняшний день существуют стационарные стабилизаторы напряжения, установка которых производится на весь дом и мобильные модели, которые способны обслуживать один либо несколько отдельных электроприборов. Помимо этого стационарное оборудование может быть трехфазным либо однофазным, в зависимости от условий применений. Подключение своими руками в этом случае имеет свои отличия: то ли Вы будете подсоединять прибор к 220 В, то ли к 380.

Как правило, в частных домах и квартирах правильнее всего будет подключить однофазный стабилизатор напряжения к сети возле распределительного щитка, что позволит защищать всю сеть от перегрузок. Именно поэтому инструкция по подключению будет предоставлена для однофазного стационарного электроприбора.

Шаг 2 – Выбираем место установки

При установке своими силами дела обстоят куда сложнее, т.к. если Вы неправильно установите корпус в доме, может произойти в лучшем случае выход защитного прибора из строя, не говоря уже о таких последствиях, как пожар.

Итак, чтобы самому установить стабилизатор напряжения в помещении, учитывайте следующие рекомендации:

  • комната должна быть сухой и хорошо вентилируемой, т.к. одной из главных причин поломки устройства является появление конденсата внутри корпуса;
  • при установке изделия в нише, позаботьтесь о том, чтобы отделочные материалы были пожаробезопасные – кирпич, бетон, металл либо стеклотекстолит;
  • соблюдайте воздушный зазор между корпусом техники и стенками, со всех сторон отступ должен быть не меньше, чем 10 см;
  • если Вы решите установить стабилизатор напряжения на стене своими руками, позаботьтесь, чтобы подставка (либо анкера) смогла выдержать вес настенного корпуса.

Рекомендуем также просмотреть наглядную видео инструкцию по установке и подключению аппарата на стене в доме:

Как правильно осуществить монтаж

Шаг 3 – Производим подсоединение к электросети

На самом деле самостоятельно подключить стабилизатор напряжения к сети в доме довольно просто. Сзади устройства находится клеммная колодка на 5 разъемов. Обычно очередность подключения проводов следующая (слева направо): вводные фаза и ноль, заземление, фаза и ноль, идущие на нагрузку. На фото ниже Вы можете увидеть расположение разъемов:

Все, что Вам нужно, правильно выбрать сечение кабеля по мощности и току, после чего произвести монтаж своими руками, согласно схеме (для однофазного устройства):

Требования и рекомендации к подключению стабилизатора напряжения своими руками:

  1. Обязательно перед электромонтажными работами отключите электроэнергию на вводном щитке.
  2. Дополнительно защитите изделие автоматическим выключателем и УЗО, что продлит его срок службы. Установить автоматику рекомендуется после счетчика, но перед защитой от перенапряжения.
  3. Бытовая электросеть обязательно должна иметь заземляющий контур. Производить подключение без заземления запрещается из соображений электробезопасности.
  4. Установка стабилизатора напряжения в доме перед счетчиком запрещается, и добиться размещения защиты до прибора учета электричества очень сложно. Лучше производить монтаж так, как показано на схеме выше.
  5. Нельзя производить подключение аппарата сразу же после того, как Вы занесете его с мороза в дом. Пусть электроника «отойдет» и весь конденсат внутри испариться, иначе, как мы уже говорили Выше, срок службы устройства резко сократится. Сюда же можно отнести запрет на подключение изделия на улице.
  6. Защита, мощностью менее 5 кВт подключается напрямую к розетке. Такой вариант идеально подходит для гаража, загородного дома и дачи. Некоторые производят установку мобильного стабилизатора напряжения отдельно на компьютер, телевизор, котел, кондиционер, генератор либо стиральную машину, что позволяет защитить только определенный вид бытовой техники.
  7. Если Вам нужно подключить устройство защиты от перенапряжения в трехфазной сети, лучше купите три однофазных аппарата на 220в и подключите их по схеме звезда, чем один на 380 Вольт. Так Вы сэкономите деньги не только на покупке стабилизатора, но и на его ремонте (отремонтировать однофазное устройство на порядок дешевле, нежели трехфазное).
  8. После электромонтажных работ проверьте правильность подключения и установки, включив вводные автоматы на распределительном щите. Если ничего не гудит, не трещит и не искрит, значит, Вы все сделали правильно.
  9. Запрещается подключать устройство к нагрузке большей мощности. Запас мощности защиты должен составлять от 20 до 30%.
  10. Правильная схема монтажа обычно обозначена на корпусе продукции. В первую очередь ориентируйтесь на нее, но если подсказка от производителя отсутствует, рекомендуем производить подсоединение согласно данной инструкции. Все популярные модели (от фирм Ресанта, Лидер) следует подключить именно по этой технологии.

Вот и вся технология установки и подключения стабилизатора напряжения своими руками. Как Вы видите, ничего сложного нет, главное учитывать все требования и рекомендации. Напоследок хотелось бы отметить, что ежегодно Вы должны проверять надежность соединения проводов в клеммной колодке и при необходимости подтягивать винтики.

Также читают:

Стабилизаторы напряжения — цена на 250 моделей

Компания «ВИНГО-Групп» предлагает стабилизаторы напряжения однофазные 220 В, трехфазные 380 В, для дома, промышленности и для котлов.

Плачевное состояние трансформаторных подстанций является довольно распространенной проблемой в России, к одной линии передачи электроэнергии подключается большое количество домов. Те, кто живет ближе к трансформаторной подстанции, получают большее напряжение те, кто дальше – меньшее, в результате в розетке напряжение может быть как выше, так и ниже требуемого. Стабилизаторы напряжения предназначены для поддержания постоянной величины питающего напряжения в сети. Стабилизатор напряжения представляет собой трансформатор, коэффициент трансформации (отношение выходного напряжения к входному) которого изменяется при помощи электронной схемы или с помощью реле. Установка стабилизаторов напряжения позволяет обеспечить уровень напряжения в сети на уровне соответствующем требованиям ГОСТ 13109-97, который допускает напряжение в розетке в пределах 220 В ±5% (от 209 В до 231 В), а предельно допустимые отклонения 220 В ±10%. Именно такие отклонения закладываются производителями электроники, электрооборудования и других электрических приборов. Результаты исследований американских компаний Bell Labs и IBM показали, что каждый персональный компьютер в России сталкивается со 120 опасными ситуациями в месяц связанными со скачками напряжения в сети. Следовательно, и вся остальная техника подвергается такому же риску. Таким образом, чтобы избежать выхода из строя дорогостоящей техники стабилизатор напряжения необходим, в каждом доме.

Почему стабилизатор напряжения выгодно купить в нашей компании:

  • Стабилизатор напряжения – это одно из наших приоритетных направлений деятельности. Мы всегда находимся в курсе появления последних моделей и внедрения новых технологий. Поэтому наши специалисты всегда помогут подобрать Вам модель стабилизатора, который будет полностью соответствовать Вашим требованиям и условиям эксплуатации.
  • Постоянный мониторинг рынка стабилизаторов позволяет нам выбирать из большого кол-ва стабилизаторов те, которые заслужили доверие покупателей своей надежной и безотказной работой. Мы напрямую сотрудничаем с производителями стабилизаторов, что позволяет нам держать цены на уровне заводских, а иногда и ниже благодаря большим объемам продаваемого оборудования.
  • Ассортимент стабилизаторов напряжения, предлагаемый нашей компанией постоянно расширяется за счет приборов пользующихся заслуженным спросом среди потребителей.

Какой стабилизатор напряжения выбрать для частного дома?

Дачные домики часто строятся по принципу «я тебя слепила из того, что было», а избы в деревне — не ремонтируются с тех пор, как их поставил колхоз. В этом есть своя романтика, но она, определенно, не идет на пользу электрической проводке. Подача электроэнергии в дачном поселке далеко не так стабильна, как в городе, плюс сырость и зимний холод упорно точат старые провода. Что делать, чтобы в один прекрасный день дряхлая проводка не полыхнула, аки свеча? В этой статье расскажем, какой стабилизатор напряжения 220В для дачи выбрать.

Содержание

  1. Что такое стабилизатор напряжения, и зачем он нужен
  2. Какой стабилизатор напряжения выбрать для частного дома
  3. Стабилизатор напряжения для частного дома: как выбрать
  4. Стабилизаторы напряжения для дома: отзывы и какой лучше

Что такое стабилизатор напряжения, и зачем он нужен

Как ясно из самого названия, стабилизатор электрического напряжения — это устройство, которое стабильно поддерживает напряжение 220 В в вашем доме. Для дачи это устройство чрезвычайно полезно, так как скачки напряжения в дачно-садовых товариществах — вещь нередкая.

Часто на весь поселок один-единственный трансформатор, который обслуживается  постольку-поскольку. Поэтому напряжение в сети может то падать, то наоборот — взлетать до шокирующих высот (например, если в трансформатор попадает молния — случай, едва не стоивший инфаркта одному из наших редакторов).

Стабилизатор — это своего рода переходник между электросетью и проводкой вашего дома. Он принимает входной ток и усиливает или ослабляет его напряжение до 220 В, чтобы все электроприборы в доме получали равномерное питание. В случае значительных перепадов напряжения в сети стабилизатор может аварийно отключить электричество в доме.

Какой стабилизатор напряжения выбрать для частного дома

Выбор стабилизатора напряжения следует начинать с его типа. Во-первых, они бывают сетевыми и магистральными. Сетевые работают от розетки и стабилизируют напряжение для одного-двух подключенных устройств. Магистральные — подключаются прямо к проводке и защищают всю электросеть в доме. В случае частного дома имеет смысл вести речь о покупке магистрального стабилизатора.

Магистральные стабилизаторы делятся на несколько видов.

Ступенчатые стабилизаторы

Ступенчатые стабилизаторы разделяются на релейные и электронные.

Релейный стабилизатор содержит трансформатор, обмотки которого замыкаются с помощью программно управляемых реле. При переключении происходит повышение или понижение напряжения. Релейные стабилизаторы компактные, имеют широкий диапазон изменения напряжения, выдерживают длительную перегрузку в сети, работают даже в условиях низких температур, бесшумно и очень долго — до 10 лет. А стоят при этом недорого, так что очень широко применяются в быту.

Например, это стабилизаторы Ресанта:

Электронный стабилизатор вместо реле использует микроэлектронные компоненты, которые способны замыкать обмотки — ключи-тиристоры. По сигналу с управляющей платы они включаются и выключаются с определенной периодичностью, тем самым регулируя напряжение.

Электронные стабилизаторы имеют более высокую точность регулировки напряжения, более эффективно поддерживают мощность тока в сети при стабилизации (тогда как при переключении реле свет может «моргать») и также работают совершенно бесшумно. Однако, они имеют большие габариты и вес, а также стоят дорого.

Среди популярных марок — например, БАСТИОН:

Электромеханические стабилизаторы

Электромеханические стабилизаторы разделяются на собственно электромеханические, электродинамические и гибридные.

Электромеханический стабилизатор имеет графитную щеточку с сервоприводом, которая переключает количество витков обмотки трансформатора, тем самым повышая или понижая напряжение. Эти стабилизаторы имеют широкий диапазон входных напряжений, устойчивы к перегрузкам и искажениям тока на входе. Но зато у них недолгий срок работы — через 3-4 года угольная щеточка уже подлежит замене. Кроме того, он плохо работает в условиях низких температур и высокой влажности, а при стабилизации на долю секунды раздаются характерные щелчки. Стоят они намного дешевле электронных, но куда дороже релейных.

Популярные модели таких стабилизаторов выпускает, к примеру, RUCELF

Электродинамические стабилизаторы — это подвид электромеханических стабилизаторов, в которых вместо щеточки переключения используется специальный ролик, который практически не изнашивается. Таким образом, они лишены главного недостатка элекромеханических стабилизаторов — быстрого выхода из строя, при этом сохраняя их достоинства.

К сожалению, это самый дорогой вид стабилизаторов. К этому виду относятся, к примеру, итальянские стабилизаторы ORTEA:

Гибридные стабилизаторы представляют собой комбинацию между электромеханическим и релейным стабилизатором. В них применяется и замыкание обмоток при помощи реле, и переключение количества витков, что позволяет объединить достоинства двух типов и побороть недостатки — к примеру, невозможность работы при низкой температуре.

Такие стабилизаторы стоят примерно как электронные — то есть, недешево. Например, их делает фирма Энергия:

Стабилизаторы с двойным преобразованием

Предыдущие типы стабилизаторов принимают на входе переменный ток из сети и выдают на выходе переменный ток. Стабилизаторы с двойным преобразованием сначала преобразуют переменный ток в постоянный, который питает инвертор, на выходе опять отдающий переменный ток — но со стабильным напряжением 220 В, частотой 50 Гц и синусоидальной формой.

Такой правильный, «выхолощенный» от всех помех ток — главное преимущество стабилизаторов с двойным преобразованием: он безопасен для питания любой техники, поэтому их рекомендуют для дорогостоящего оборудования. Недостаток — низкий коэффициент полезного действия: слишком много пустого расхода электроэнергии.

У стабилизаторов с двойным преобразованием широкий разброс цен. Например, вот такой стабилизатор Штиль относительно недорог:

Как выбрать стабилизатор для дачи? Для сезонного дачного домика наиболее рентабелен обыкновенный релейный стабилизатор. Но если вы живете в частном доме постоянно, и у вас есть отопление, можно задуматься об одной из электромеханических моделей. А если у вас, к тому же, дорогая бытовая техника, то и устройство с двойным преобразованием не будет лишним.

Стабилизатор напряжения для частного дома: как выбрать

Рассмотрим основные параметры, по которым выбирается стабилизатор любого типа:

  • Мощность. суммарная мощность приборов, подключаемых к стабилизатору — это ваш телевизор, холодильник, обогреватель и все остальное, вплоть до светильников. Узнать ее можно в инструкциях к вашей бытовой технике, или прямо на корпусе (например, у лампочек). У стабилизатора должен быть определенный запас мощности. Лучше, если он будет превышать суммарную мощность всей техники как минимум в 3 раза.
  • Рабочее напряжение (минимальное и максимальное). Диапазон напряжений, в котором стабилизатор может работать без перегрузки. Чем он шире, тем лучше.
  • Фазность. Стабилизаторы бывают однофазными и трехфазными — то есть, состоящими из одного или трех стабилизаторов, имеющих единую систему управления. Для частного дома нет никакого смысла приобретать трехфазный стабилизатор, если только вы не используете на даче электрическую печь или особо мощный насос. Для проводки в доме хватит однофазного.
  • Скорость стабилизации. Стабилизатор работает с определенной скоростью — она измеряется в вольтах в секунду (В/c). Чем она больше, тем лучше, тем меньше времени понадобится прибору, чтобы справиться с перепадом в сети.
  • Точность стабилизации. Под этим термином, на самом деле, понимается погрешность, с которой стабилизатор отклоняется от стандартных 220 В. Не рекомендуется приобретать приборы с погрешностью более 8%, для частного дома хватит 5-8%.
  • Размещение. Стабилизатор может крепиться на стену, устанавливаться на пол или в специальные стойки. Настенные и напольные варианты — самые удобные в быту.

Стабилизаторы напряжения для дома: отзывы и какой лучше

Приведем несколько удачных моделей стабилизаторов разных типов, чтобы вы могли ориентироваться на отзывы других покупателей.

РЕСАНТА ACH-5000/1-Ц

Качественный и бесшумный релейный стабилизатор с большим запасом мощности в 5000 Вт. Способен стабилизировать колебания напряжения от 140 до 260 В. На выходе получается напряжение с погрешностью 8% от 220 В — в среднем, от 202 до 238 В. Устанавливается на полу.

Штиль IS550

Простой в установке настенный стабилизатор с оптическими индикаторами и двойным преобразованием, а самое главное — недорогой. Впрочем, это обусловлено низким запасом мощности — 400 Вт. Зато диапазон входного напряжения огромный — от 90 до 310 В, и точность стабилизации высокая — погрешность всего 2%. Этим устройством можно отдельно экранировать от перепадов напряжения критически важные в частном доме приборы — к примеру, отопительный котел.

Энергия Classic 9000

Мощный электронный стабилизатор напряжения на 6300 Вт способен защитить целый дачный домик. Входное напряжение 125-254 В, выходное — 209-231 В. Точность стабилизации — 5%, хорошая норма. Стабилизатор крепится на стену и работает совершенно бесшумно.

Читайте еще полезные статьи о технике для дачи:

Фото: Flickr, MaxPixel, компании-производители

Стабилизаторы напряжения — типы, особенности, выбор

Выбор стабилизатора напряжения?

Электромеханический или электронный прибор, преобразующий на входе электрическую энергию и поддерживающий в сети напряжение в  нужном диапазоне при достаточно больших отклонениях входного напряжения и тока нагрузки на выходе, — это стабилизатор напряжения.

Поскольку число электроприборов в домах быстро увеличивается в связи с новыми разработками и растущими потребностями хозяев, нагрузка на сети возрастает. Особенно это заметно за чертой города, в загородных коттеджах, на дачах, где перепады напряжения становятся неизбежными. При этом пострадать может совсем недешевая электроника, которую именно стабилизатор напряжения предохранит от выхода из строя. Лучшие автоматические приборы отрегулируют выходное напряжение до оптимальных значений без вмешательства человека.

Сетевые стабилизаторы подключаются к обычной розетке и контролируют отдельные устройства.

Магистральные — имеют мощность более 4 кВт и встраиваются непосредственно в электромагистраль, обеспечивая работу всех потребителей в доме, включая освещение.

Стабилизаторы при работе в бытовых условиях либо повышают, либо понижают напряжение до 220-230 В, либо отключают питание совсем в случае перепадов ниже 160 и выше 250 В.

Типы стабилизаторов напряжения

Проблема выбора стабилизатора для дома, прежде всего, решается изучением типов стабилизаторов, их особенностей и достоинств. Наиболее распространенные устройства:

  • релейные;
  • электромеханические;
  • электронные.

Релейные или «ступенчатые» стабилизаторы — это бытовые приборы, принцип работы которых построен на использовании силовых реле. Функционируя в автоматическом режиме, они переключают обмотки трансформатора. При анализе напряжения на входе и на выходе срабатывает определенное реле, понижающее напряжение или повышающее.

К преимуществам такого стабилизатора можно отнести:

  • невысокую чувствительность к искажениям напряжения на входе;
  • значительный диапазон настройки входного напряжения;
  • бесшумную работу;
  • возможность выдерживать длительные перегрузки — 110% от номинала, а также двукратные кратковременные — до 4 сек;
  • работу при температуре окружающей среды от -20 + 40оС;
  • небольшие габаритные размеры;
  • срок службы — до 10 лет.

Небольшим недостатком можно считать изменение освещенности в обычной лампочке накаливания при ступенчатой стабилизации.

Стоит отметить, что за последние годы появились новые релейные стабилизаторы с улучшенными характеристиками, которые выпускает российский производитель «Энергия». Это модели разной серии и мощности — на 5, 8, 10 кВт, а также мощные трехфазные «гибридные» — на 24-30 кВт, сочетающие в себе регулировку, как релейного типа, так и электромеханическую.

В новых стабилизаторах «Энергия» предусмотрена более надежная защита от перегрузок и короткого замыкания, а также система принудительного охлаждения. Поэтому, потребители стали отдавать предпочтение долговечным стабилизаторам отечественного производителя. Кроме того, разработчики создали универсальный корпус, получив два варианта: стабилизатор для размещения на поверхности и стабилизатор навесной, еще более удобный в эксплуатации.

Электромеханические стабилизаторы

Электромеханические стабилизаторы еще называются сервоприводными, они широко используются, благодаря плавности регулировки и точности поддержания выходного напряжения в рабочем диапазоне. Конструктивно они состоят из электродвигателя, автотрансформатора и системы, которая управляет электродвигателем.

Главный узел такого прибора — автотрансформатор, меняющий коэффициент трансформации и, тем самым, компенсирующий изменение напряжения на входе. Если напряжение в сети упало, то графитовая щетка приходит в движение и на выходе получается 220 В, если напряжение повысилось, то электродвигатель автотрансформатора перемещает контактор в противоположную сторону, и стабилизатор выдает те же 220 В. При большом скачке, выше 260 В, стабилизатор совсем отключит приборы-потребители.

Преимущества электромеханических стабилизаторов состоят в том, что они:

  • не вносят искажения во внешнюю сеть;
  • имеют хороший КПД — 97%;
  • плавно обрабатывают изменение входного напряжения;
  • обеспечивают высокую точность выходного напряжения с погрешностью не более 2%;
  • регулируют напряжение в широком диапазоне — от 140 до 260 В.

Электромеханические стабилизаторы отлично подходят для работы при сезонных или суточных изменениях напряжения в сети. Например, при вечерних массовых подключениях к сети, когда напряжение падает, такой стабилизатор незаменим. Но при выборе учитывайте и некоторые недостатки:

  • скорость регулировки невысока: после скачка или просадки напряжения требуется некоторое время;
  • трущиеся части, в том числе, угольные щетки изнашиваются;
  • не работает при низких температурах;
  • нуждается в техобслуживании, смазывании трущихся частей один раз в год.

При резких и частых повторяющихся скачках напряжения электромеханический стабилизатор может выйти из строя, в этом случае, поможет только релейный стабилизатор.

Электронные стабилизаторы напряжения

Электронный стабилизатор выполняет аналогичные функции: поддерживает максимально приближенное к 220 В выходное напряжение. В основе работы, так же, как и у электромеханических стабилизаторов, используется трансформатор с регулировкой коэффициента трансформации в ответ на изменение входного напряжения.

Управление происходит с помощью электроники (микропроцессора), при этом, электронные ключи переключают обмотки трансформатора по ступенчатому типу. Это влияет на плавность работы и является, пожалуй, единственным недостатком таких стабилизаторов, если не считать достаточно высокую стоимость.

Преимуществ значительно больше, чем недостатков:

  • точность регулировки напряжения высока, погрешность выходного напряжения менее 1%;
  • работа трансформатора бесшумная;
  • отсутствие задержек, быстродействие — реакция на изменение входных параметров составляет доли секунды;
  • в режиме стабилизации мощность сохраняется;
  • чистая синусоида на выходе, без помех.

Электронные стабилизаторы наиболее выносливые и долговечные. Эффект бесшумности достигается отсутствием двигающихся механических деталей при переключении ступеней — в отличие от электромеханического стабилизатора. Поскольку количество ступеней огромное, то и точность результата высокая. Многие пользователи выбирают электронные стабилизаторы, благодаря полному набору функций защиты приборов-потребителей:

  • защита от перегрузок;
  • аварийно низкого или высокого напряжения;
  • короткого замыкания;
  • сверхтоков;
  • от утечки тока в землю;
  • от перегрева электронных ключей и трансформатора.

Все это происходит с помощью предусмотренных конструкцией автоматических выключателей, цифровых температурных датчиков, принудительного охлаждения вентилятором. Приобретение электронного стабилизатора означает наличие стабильного энергоснабжения в вашем жилище.

Инверторы

Кроме стабилизаторов постоянное напряжение обеспечивают такие приборы, как инверторы. В них совмещены несколько важных функций, поэтому, они могут исполнять роль стабилизатора напряжения, ИБП (источника бесперебойного питания) и зарядного устройства.

С инвертором у вас не будет перерыва в электроснабжении, даже если оно отключится совсем. Особенно качественную систему электроснабжения дома можно получить с помощью инверторов «Энергия». По сравнению с обычным ИБП они создают на выходе более точные показатели, работают долго и непрерывно за счет возможности применения дополнительных аккумуляторов.

Солидный перечень стабилизаторов и инверторов компании «Энергия» и других производителей ожидает вас в интернет-магазине стройматериалов Kuzmich34.ru. Вы подберете для своего загородного дома или дачи устройство стабилизации напряжения любого типа и мощности, подходящих габаритов и способа установки, которое станет надежным «щитом» для всего имеющегося в вашем хозяйстве оборудования. 

Стабилизаторы напряжения 30000 (30 кВт)

Стабилизаторы напряжения 30000 (30 кВт) — купить

Стабилизаторы напряжения 30000 (30 кВт).

Крупный интернет магазин предлагает к покупке различные модели российского электротехнического оборудования для обеспечения бытовой техники и промышленных приборов качественным круглосуточным напряжением. Стабилизатор 30 (30 кВт) 220В и 380В представлены в нашем каталоге самыми популярными марками Энергия и Voltron мощностью на 30 кВа. Данные устройства имеют систему самоконтроля входного и выходного напряжения, а также разработаны для стабильной работы в широком диапазоне от 60В до 280 Вольт в зависимости от серии. Все имеющиеся модели оборудования компании ЭТК Энергия работают полностью в автоматическом режиме. Купить стабилизатор напряжения 30000 (30 кВт) можно в Москве, МО и регионах России. Отличительной чертой линейки российских электроприборов Энергия Voltron является их хорошая круглосуточная работоспособность и выполнение всех главных функций в различных условиях температуры отрицательной до -30 и положительной до +40 градусов Цельсия. Стабилизатор 30 кВт пользуется спросом для дома, дачи, коттеджа, офиса, квартиры, гаража, магазина и промышленного производства. Работают они очень тихо и имеют бесшумный или малошумный режим работы.

Стабилизатор напряжения 30 кВa Энергия Voltron оборудованы самой последней интеллектуальной системой защиты благодаря которой достигается максимальная безопасность бытовых приборов и оборудования во время эксплуатации. Возможность надежно и качественно выполнять свои задачи при кратковременных перегрузках 130% — 150% от максимальной нагрузки является не маловажным для всех приборов с двигателями или моторами, т.к. они создают высокие пусковые токи при включении. Во всех моделях имеет современный цифровой дисплей и целая система индикаций. Купить стабилизатор напряжения 30000 (30 кВт) у нас в интернет-магазине по приемлемой цене можно оптом и в розницу. Российские электроприборы производителя ЭТК Энергия разработаны для круглосуточного поддержания качественного электропитания в частных домах, на даче, в квартире и промышленном производстве. У нас представлены стабилизаторы напряжения 30000 однофазные и трехфазные с плавной регулировкой. Подключение отечественного оборудования происходит через клеммную колодку. В случае если питание сети выходит за рамки диапазона регулирования аппарат автоматический отключается.

Стабилизаторы напряжения 30000 (30 кВт) — в Москве, СПБ и всей России.

Недорогие цены. Официальная гарантия на однофазные (220В) и трёхфазные (380В) стабилизаторы напряжения для дома, дачи и промышленного производства. Выбирайте и заказывайте наши надёжные стабилизаторы напряжения от российского производителя Энергия, Штиль, Rucelf, Ресанта, Вольт Engineering и д.р. в интернет-магазине «Стабилизатор-ру.ру» Доставка в городе Москва и Московской области, СПБ, Екатеринбург, Ростов-на-дону, Новосибирск, Краснодар, Нижний Новгород при покупке от 10000 — бесплатная. Работаем по всей России! 2011-2021 г.

Предлагаем купить стабилизатор напряжения для дома, дачи 220В, 380В в Москве, СПБ, Екатеринбурге, Ростове-на-дону, Новосибирске, Краснодаре и других городах России с оплатой наличными, курьером или самовывозом. Срок доставки в г. Москва, Санкт-Петербург, Апрелевка, Балашиха, Видное, Голицыно, Дедовск, Дзержинский, Долгопрудный, Домодедово, Железнодорожный, Жуковский, Звенигород, Ивантеевка, Климовск, Королёв, Котельники, Красногорск, Краснознаменск, Лобня, Лосино-Петровский, Лыткарино, Люберцы, Московский, Мытищи, Ногинск, Одинцово, Подольск, Пушкино, Раменское, Реутов, Троицк, Фрязино, Химки, Щёлково, Щербинка, Электросталь, Электроугли, Юбилейный и другие населённые пункты Московской и Ленинградской области — 1 день. г. Москва 2021 г.

ТОП-10 линейных регуляторов напряжения

В электронике для стабилизации напряжения обычно используются линейные регуляторы напряжения. Независимо от входного напряжения или условий нагрузки они будут обеспечивать фиксированное выходное напряжение, тем самым защищая устройства от колебаний выходных сигналов, которые могут привести к неэффективной работе или даже к повреждению.

При разработке источника питания для приложения, в котором требуется небольшая разница между входным и выходным напряжениями, разработчикам оборудования следует учитывать линейные регуляторы напряжения.

Простота и стоимость — основные преимущества использования линейных регуляторов перед импульсными регуляторами напряжения. Кроме того, отсутствие шума переключения делает линейные регуляторы особенно полезными для аудио- и видеосвязи, медицинских устройств и других чувствительных к шуму приложений.

С другой стороны, линейные регуляторы напряжения выделяют тепло, и их эффективность довольно низкая, варьируется от 30% до 60%. Вот почему они используются в основном для маломощных устройств и небольших различий между входным и выходным напряжениями.

По сравнению с линейными регуляторами импульсные регуляторы напряжения (также известные как импульсные регуляторы) превосходят по эффективности и выделяют гораздо меньше тепла, но также являются более дорогими и сложными.

При выборе между различными регуляторами напряжения для вашего приложения следует учитывать несколько факторов, включая их максимальное входное напряжение, разницу между входным и выходным напряжениями, номинальные токи, номинальные температуры и выходной шум.

Большинство линейных регуляторов напряжения в нашем списке 10 имеют максимальную токовую защиту и тепловую защиту.Большинство из них также имеют максимальное входное напряжение от 5,5 до 40 В и выходное напряжение от 3,3 до 15 В. Самыми популярными поставщиками стабилизаторов напряжения для SnapEDA являются Diodes Inc, Richtek USA Inc, Microchip, STMicroelectronics и Texas Instruments.

Давайте теперь взглянем на 10 лучших линейных регуляторов напряжения на SnapEDA!

# 10 — LP2985-33DBVR от Texas Instruments

Этот стабилизатор с низким падением напряжения имеет максимальное входное напряжение 16 В, выходное напряжение 3,3 В, выходной ток 150 мА, напряжение отключения 280 мВ и диапазон температур перехода от -40 ° C до 125 ° C.
Средняя цена у дистрибьюторов: $ 0,60

Загрузить Symbol & Footprint

# 9 — L7805ACD2T от STMicroelectronics

Этот положительный стабилизатор имеет максимальное входное напряжение 35 В, выходное напряжение 5 В, выходной ток 1,5 А, падение напряжения 2 В и диапазон температур перехода от 0 ° C до 125 ° C.

Средняя цена по дистрибьюторам: N / A

Загрузить Symbol & Footprint

# 8 — L7805CV-DG от STMicroelectronics

Этот положительный стабилизатор имеет максимальное входное напряжение 35 В, выходное напряжение 5 В, 1.Выходной ток 5 А, падение напряжения 2 В и диапазон температур перехода от 0 ° C до 125 ° C.

Средняя цена у дистрибьюторов: $ 0,52

Загрузить Symbol & Footprint

# 7 — REG1117 от Texas Instruments

Этот положительный стабилизатор с низким падением напряжения имеет максимальное входное напряжение 15 В, выходное напряжение 1,8 В, выходной ток 800 мА и диапазон температур перехода от -40 ° C до 125 ° C.

Средняя цена у дистрибьюторов: $ 2,02

Скачать Symbol & Footprint

# 6 — L7805CV от STMicroelectronics

Этот положительный стабилизатор имеет максимальное входное напряжение 35 В, выходное напряжение 5 В, 1.Максимальный выходной ток 5 А, падение напряжения 2 В и диапазон температур перехода от 0 ° C до 125 ° C.

Средняя цена у дистрибьюторов: $ 0,41

Загрузить Symbol & Footprint

# 5 — LD1117S33CTR от STMicroelectronics

Этот регулятор напряжения с низким падением напряжения имеет максимальное входное напряжение 15 В, выходное напряжение 3,3 В, максимальный выходной ток 950 мА, падение напряжения 1 В и диапазон температур перехода от -40 ° C до 125 ° C.

Средняя цена у дистрибьюторов: $ 0.36

Загрузить Symbol & Footprint

# 4 — AP2112K-3.3TRG1 от Diodes Inc.

Этот положительный стабилизатор имеет максимальное входное напряжение 6 В, выходное напряжение 3,3 В, максимальный выходной ток 600 мА, напряжение падения 0,4 В и диапазон температур перехода от -40 ° C до 85 ° C.

Средняя цена у дистрибьюторов: $ 0,24

Загрузить Symbol & Footprint

# 3 — RT9193-33GB от Richtek USA Inc.

Этот регулятор с низким падением напряжения имеет 5.Максимальное входное напряжение 5 В, выходное напряжение 3,3 В, максимальный выходной ток 300 мА, падение напряжения 0,3 В и диапазон температур перехода от -40 ° C до 125 ° C.

Средняя цена у дистрибьюторов: 0,50 доллара США

Загрузить Symbol & Footprint

# 2 — MIC29302WU от Microchip

Этот стабилизатор с низким падением напряжения имеет максимальное входное напряжение 26 В, выходное напряжение 3,3 В, выходной ток 3 А, максимальное падение напряжения 0,6 В и диапазон температур перехода от -40 ° C до 125 ° C.

Средняя цена по дистрибьюторам: N / A

Скачать Symbol & Footprint

И верхний линейный стабилизатор напряжения на SnapEDA — это…

# 1- LM1117MP-3.3 от Texas Instruments

Этот стабилизатор с низким падением напряжения имеет максимальное входное напряжение 15 В, выходное напряжение 3,3 В, максимальный выходной ток 800 мА, напряжение падения 1,2 и диапазон температур перехода от 0 ° C до 125 ° C.

Средняя цена по дистрибьюторам: N / A

Загрузить Symbol & Footprint

* Эти данные были собраны с помощью аналитики SnapEDA при просмотре загрузок из нашей библиотеки моделей деталей (символы, посадочные места и 3D-модели).Ежегодно в SnapEDA оцениваются миллионы деталей, однако, если детали нет в нашей базе данных, она не будет отображаться в этом списке. Мы постоянно увеличиваем охват и периодически обновляем этот список!

Создавайте электронные устройства в мгновение ока. Начать сейчас.

Бесплатный автоматический регулятор напряжения (avr) векторное изображение — 1247497

ПОЛИТИКА КОНФИДЕНЦИАЛЬНОСТИ — ПОЛЬЗОВАТЕЛИ И ПОСЕТИТЕЛИ

Настоящим мы информируем вас о нашей текущей политике и практике, применимых к обработке ваших личных данных (« Персональные данные »), собранных Inmagine Group через веб-сайт https: // www.stockunlimited.com/ («Веб-сайт , »).

Основная информация

Stockunlimited (https://www.stockunlimited.com/) — один из веб-сайтов, которыми управляет соответствующая организация в Inmagine Group, в которую входят различные юридические лица по всему миру.

Stockunlimited Limited, действующая в качестве контроллера данных для обработки ваших Персональных данных, будет зависеть от того, как вы взаимодействуете с Веб-сайтом, на котором вы находитесь, и от лица, которое имеет с вами отношения, в зависимости от обстоятельств.Соответствующие подразделения Inmagine Group в настоящей политике конфиденциальности именуются « Inmagine Group », « Наши », « We » или « Us ».

По любым общим вопросам вы можете связаться с Нами по адресу: [email protected] или по почте по адресу 2003, 20 / F, Tower 5, China Hong Kong City, 220 N Green St., Chicago, IL 60607, USA.

Вы можете связаться с нашим уполномоченным сотрудником по защите данных по адресу [email protected].


На что распространяется данная Политика конфиденциальности?

Эта политика конфиденциальности в целом описывает, среди прочего , Персональные данные, которые Мы можем собирать от вас, обработку таких Персональных данных и ваши права в отношении них.


Информация, которую мы можем получить от вас

Термин «Персональные данные» относится к данным, которые вы предоставляете Нам через Веб-сайт, и может варьироваться в зависимости от типа ваших отношений с Нами. Персональные данные включают:

Просмотр данных

Информационные системы и программные процедуры, используемые для работы этого Веб-сайта, получают персональные данные в рамках своего стандартного функционирования. Передача таких данных является неотъемлемой особенностью протоколов Интернет-связи.Эта категория данных включает, помимо прочего, IP-адреса и / или доменные имена компьютеров и оконечного оборудования, используемых любым пользователем, расположение устройств, адреса URI / URL (унифицированный идентификатор ресурса / указатель ) запрошенные ресурсы, время таких запросов, метод, используемый для отправки данного запроса на сервер, размер возвращаемого файла, числовой код, относящийся к статусу ответа сервера (успешно выполнено, ошибка и т. д.) и другие параметры, относящиеся к пользователям операционная система и компьютерная среда.

Регистрационный профиль

Если вы решите создать учетную запись на Веб-сайте, вам может потребоваться предоставить Нам ваши Личные данные, такие как полное имя, адрес электронной почты, страну и зашифрованный пароль, при отправке регистрационной формы. Вы также можете указать дополнительные личные данные, такие как адрес, номер телефона, название компании и номер плательщика НДС.

Если вы решили создать учетную запись через существующий профиль в социальной сети ( e.г. , Facebook), вам может потребоваться предоставить личные данные, такие как информация вашего общедоступного профиля (включая имя, фамилию и изображение) и адрес электронной почты.

Финансовая информация и платежные реквизиты

Если вы приобретаете или подписываетесь на какой-либо из наших продуктов и / или услуг, вы также должны будете предоставить нам личные данные, связанные с платежами и выставлением счетов, включая имя, фамилию, адрес, почтовый индекс, номер телефона, адрес электронной почты, выставление счетов. адрес, а также данные кредитной карты, счет Paypal или банковские реквизиты.Мы не храним данные кредитной карты, счета PayPal или банковские реквизиты. После завершения покупки или подписки на наши продукты и / или услуги Мы собираем детали транзакции только от поставщика платежного шлюза.

Прочая информация

Когда вы связываетесь с Нами по адресу [email protected], от вас могут потребовать предоставить нам ваши персональные данные, такие как адрес электронной почты, и, по вашему усмотрению, другую информацию, которую вы решите поделиться с нами, которую Мы можем получить от вас. .

Файлы cookie

Мы используем файлы cookie и аналогичные технологии или инструменты для сбора информации о ваших действиях на нашем веб-сайте, в том числе для использования функций или услуг социальных сетей на нашем веб-сайте, которые могут позволить вам подключиться к нашей странице в социальных сетях или поделиться любыми рекламными действиями с друзьями и социальные сети. Подробная информация об используемых нами файлах cookie и целях, для которых мы их используем, изложена в нашей Политике использования файлов cookie.


Как мы используем вашу информацию и почему?

Ваши личные данные будут собираться и обрабатываться для следующих целей:


Категории данных: Цели обработки Правовая основа:
Просмотр данных Для получения статистической информации об использовании сервиса (наиболее посещаемые страницы, посетители по времени / дате, географические регионы происхождения и т. Д.) и проверить работу сервисов. Законный интерес Inmagine Group состоит в том, чтобы анализировать и улучшать производительность своих услуг, а также предотвращать преступления и мошенничество (статья 6 (1) (f) GDPR). Мы проанализируем ваши Персональные данные, чтобы улучшить наши услуги и ваш опыт работы с нашим веб-сайтом (если ваше согласие не требуется, статья 6 (1) (а) GDPR).
Регистрация / создание профиля Для обработки создания вашей учетной записи и профиля на Веб-сайте, а также для предоставления или разрешения вам доступа к определенным областям, функциям и особенностям нашего Веб-сайта. Необходимо для выполнения контракта, стороной которого вы являетесь, или для того, чтобы предпринять действия до заключения контракта (ст. 6 (1) (b) GDPR).
Биографические данные, финансовая информация и платежные реквизиты Для предоставления вам продуктов и / или услуг, которые вы приобрели или на которые подписались, а также для обработки транзакций и платежей в связи с этим. Необходимо для выполнения контракта, стороной которого вы являетесь, или для того, чтобы предпринять действия до заключения контракта (ст. 6 (1) (b) GDPR).
Для административных целей, связанных с выполнением коммерческих отношений с вами или выполнением юридических требований (, например, , бухгалтерские или налоговые требования) или для выполнения любых запросов от компетентных органов. Соблюдение юридического обязательства, которому мы подчиняемся (ст. 6 (1) (c) GDPR), или, в случае отсутствия такого юридического обязательства, Наш законный интерес вести надлежащий учет в связи с исполнением коммерческие отношения (ст. 6 (1) (f) GDPR).
Передавать Персональные данные другим компаниям Группы Inmagine в Европейской экономической зоне (ЕЭЗ) для внутренних административных и бухгалтерских целей. Законный интерес Inmagine Group заключается в передаче Персональных данных внутри группы предприятий для внутренних административных целей, включая обработку Персональных данных клиентов (статья 6 (1) (f) GDPR).
Аккаунт и контактные данные Для связи с вами с информацией о текущих или новых продуктах, коммерческих возможностях, рекламных акциях и услугах или спонсируемых нами мероприятиях, которые могут вас заинтересовать, а также для проверки удовлетворенности клиентов и проведения маркетинговых исследований, анализов и опросов, а также чтобы вы могли участвовать в розыгрышах призов, наградах, поездках и / или получать подарки. Ваше согласие (ст. 6 (1) (а) GDPR).
Чтобы ответить на ваши запросы и вопросы и предоставить любую необходимую информацию (, например, ., Информация и предложения о продуктах). Законный интерес Inmagine Group состоит в том, чтобы обслуживать клиентов и отвечать на ваши запросы (статья 6 (1) (f) GDPR).

Предоставление ваших Персональных данных не является обязательным.Любой отказ предоставить согласие не будет иметь никаких последствий, кроме нашей неспособности предоставить вам продукты и / или услуги. В такой ситуации мы не несем ответственности за любые убытки, обязательства и убытки, возникшие в результате и каким бы то ни было образом. В любой момент вы имеете право отозвать свое согласие. Отзыв согласия не влияет на законность обработки на основании согласия до отзыва.


Информация, которую мы можем передавать, и получатели данных

Ваши Персональные данные обрабатываются Нашим персоналом, и, если это необходимо или функционально для достижения целей, указанных выше, ваши Персональные данные могут обрабатываться третьими сторонами, которые могут быть назначены нами в качестве обработчиков данных.

Категории получателей, которым могут быть раскрыты ваши Персональные данные, следующие:


  • а. третьи стороны, такие как (i) поставщики ИТ; (ii) финансовые учреждения или провайдеры платежных шлюзов в связи с обработкой финансовой и платежной информации; (iii) маркетинговые агентства для проведения маркетинговых кампаний, опросов и рекламных акций; (iv) консультанты по правовым, бухгалтерским, налоговым, трудовым вопросам и другие специалисты; (v) другие компании Inmagine Group в Европейской экономической зоне (ЕЭЗ), и
  • г.государственные организации и органы власти, исключительно с целью выполнения юридических и нормативных обязательств.

При определенных обстоятельствах ваши Персональные данные могут быть переданы за пределы Европейской экономической зоны (ЕЭЗ) другим компаниям Inmagine Group или сторонним обработчикам данных. В таких случаях Мы гарантируем, что Мы приняли соответствующие меры безопасности, включая обязательные корпоративные правила или стандартные положения о защите данных, принятые Европейской комиссией, чтобы гарантировать субъектам данных адекватный уровень защиты.Вы можете получить копию этих соответствующих или подходящих мер предосторожности, связавшись с нами по указанным выше контактным данным.


Сохранение ваших личных данных

Данные хранятся до тех пор, пока это необходимо для оказания услуг, предоставляемых Веб-сайтом, и для соблюдения юридических обязательств (включая цели аудита или налогообложения), для выполнения нормативных требований, разрешения споров, поддержания безопасности и / или предотвращения мошенничества. и злоупотребления.

Что касается Персональных данных вашего профиля, Мы сохраним то же самое, пока ваша учетная запись у Нас все еще активна.Если вы решите закрыть учетную запись или если ваша учетная запись будет закрыта, Мы удалим ваши Персональные данные и информацию в течение 30 (тридцати) дней. Это не наносит ущерба Нашему праву хранить информацию (такую ​​как имя пользователя и детали транзакции) для соблюдения юридических обязательств, предотвращения мошенничества и защиты своих законных интересов.


Безопасность

Мы серьезно относимся к безопасности всей информации, предоставленной или предоставленной вами Нам, и она важна для Нас. Мы предпримем разумные меры для защиты этих данных, включая Персональные данные.Соответственно, Мы можем потребовать от наших сотрудников или сторонних поставщиков услуг помочь Нам в реализации или применении соответствующих мер безопасности (таких как межсетевые экраны, тестирование на проникновение и т. Д.). Вам также рекомендуется не разглашать и защищать собственное имя пользователя и пароль.


Ваши права

Вы имеете право получить от Нас подтверждение того, обрабатываются ли ваши Персональные данные Нами, и, при указанных обстоятельствах, вы имеете право запросить доступ, исправление или удаление этих данных или ограничение обработки, а также возражать против обработка в любое время, а также при определенных обстоятельствах право на переносимость данных.Что касается переносимости данных, вы имеете право получать свои Персональные данные в структурированном, широко используемом и машиночитаемом формате и запрашивать передачу этих данных.

Что касается права на возражение, если обработка основана на Нашем законном интересе, вы можете возразить против обработки в любое время, и Мы прекратим обработку ваших Персональных данных, если у нас нет веских законных оснований для продолжения такой обработки или если обработка необходимо по юридическим причинам.Кроме того, вы можете возразить против обработки ваших Персональных данных в тех случаях, когда мы обрабатываем Персональные данные в целях прямого маркетинга.

Если вы подписались или согласились получать Наши маркетинговые сообщения, вы можете в любое время бесплатно отказаться, потребовав, чтобы ваши Персональные данные не использовались в маркетинговых целях.

Вы можете воспользоваться любым из вышеперечисленных прав, связавшись с Нами по адресу [email protected] или по почте по адресу 2003, 20 / F, Tower 5, China Hong Kong City, 220 N Green St., Чикаго, Иллинойс 60607, США.

У вас есть право подать жалобу в надзорный орган.


Ссылки на сторонние веб-сайты

Наш веб-сайт или любые продукты / услуги, предоставляемые вам, могут содержать ссылки на другие веб-сайты, которые не управляются нами и чья политика конфиденциальности может отличаться от нашей. Если вы нажмете на стороннюю ссылку, вы можете быть перенаправлены на сторонний веб-сайт. Любая отправка ваших Персональных данных на любой из этих сторонних веб-сайтов будет регулироваться политиками конфиденциальности соответствующих сторонних организаций.Мы не контролируем и не берем на себя никаких обязательств, как бы они ни возникали, и мы настоятельно рекомендуем вам внимательно ознакомиться с политикой конфиденциальности перед раскрытием какой-либо информации.

Реклама

Мы можем время от времени сотрудничать с третьей стороной для отображения нашей или третьей рекламы (рекламы) на Нашем веб-сайте или привлекать третью сторону для управления Нашей рекламой на нашем веб-сайте. Для получения более подробной информации, пожалуйста, обратитесь к нашей Политике использования файлов cookie.


Мобильные приложения или мобильный веб-сайт

Мы можем предоставлять Вам наши продукты или услуги через наши мобильные приложения или мобильный веб-сайт, который предназначен для использования на мобильных вычислительных устройствах (« Приложения »). Вам может потребоваться войти в наши мобильные приложения или мобильный веб-сайт с вашим именем пользователя и паролем, чтобы вы могли установить связь с учетной записью пользователя, созданной на нашем веб-сайте. Обработка содержащихся в них Персональных данных также будет регулироваться в соответствии с настоящей Политикой конфиденциальности и Нашей Политикой в ​​отношении файлов cookie.


Свяжитесь с нами

Если у вас: (i) есть какие-либо вопросы, запросы или комментарии к Нашей Политике конфиденциальности; (ii) у вас есть какие-либо опасения по поводу того, как Мы обрабатываем ваши Персональные данные; (iii) хотели бы отказаться от прямой маркетинговой деятельности; (iv) хотели бы, чтобы Мы обновили информацию или предпочтения, которые вы нам предоставили; или (v) у вас есть какие-либо другие вопросы, связанные с этой политикой конфиденциальности, вы также можете связаться с нашим уполномоченным сотрудником по защите данных по адресу [email protected].


Изменения в Политике конфиденциальности

Мы будем регулярно пересматривать настоящую Политику конфиденциальности и можем время от времени обновлять эту Политику конфиденциальности.Обновленная версия должна применяться и заменять все предыдущие версии. Следовательно, рекомендуется регулярно проверять эту Политику конфиденциальности.


Последнее обновление: 01 февраля 2021 г.

Типы регуляторов напряжения

В этом руководстве мы узнаем об одном из наиболее важных компонентов конструкции системы: регуляторах напряжения. Они являются неотъемлемой частью системы или, в частности, частью системы электропитания. Мы узнаем о регуляторах напряжения, о различных типах регуляторов напряжения, о принципе работы некоторых важных регуляторов напряжения.

Роль источника питания

Прежде чем углубляться в детали регулятора напряжения и различных типов регуляторов напряжения, мы сначала рассмотрим важность источника питания в конструкции системы.

Возьмем любую работающую систему: электронные наручные часы, современный смартфон или портативный компьютер. Что вы думаете о самом большом предприятии в целом? Это блок питания.

Роль источника питания заключается в обеспечении системы надежным, постоянным и повторяемым питанием для ее компонентов.В контексте электронных устройств источник питания должен обеспечивать постоянную, стабильную и регулируемую мощность для правильной работы цепей.

Итак, каковы источники питания?

Двумя основными источниками питания являются: 1. Источник переменного тока от наших сетевых розеток и 2. Источник постоянного тока от батарей.

ПРИМЕЧАНИЕ: Приведенный выше список основан на доступных источниках энергии и источниках энергии.

Несмотря на то, что источник питания доступен, он еще не «готов к работе».Что это значит? Давайте разберемся в этом на примере компьютерной системы.

Обычно компьютерная система или, скорее, электроника компьютерной системы требует регулируемого напряжения постоянного тока. ЦП работает от 1,2 В до 1,8 В постоянного тока (зависит от ЦП), порты USB работают от 5 В постоянного тока, механическим жестким дискам требуется как 5 В, так и 12 В постоянного тока и так далее.

Если напряжение выше или ниже требуемой величины, компонент может не работать или, в худшем случае, он может выйти из строя и не подлежит ремонту.Поэтому важно «отрегулировать» напряжение до допустимого диапазона.

Вот где на сцену выходят регуляторы напряжения. Источником может быть переменный ток от сетевой розетки или постоянный ток от батарей, требования для любой электронной системы одинаковы: регулируемое постоянное напряжение.

Регуляторы напряжения

Регулятор напряжения — это устройство или цепь, которая отвечает за обеспечение постоянного постоянного напряжения для электронной нагрузки. На следующем изображении показан типичный блок питания с регулятором напряжения.

Как упоминалось ранее, работа источника питания постоянного тока состоит в том, чтобы принимать мощность переменного тока из сетевых розеток (обычно 240 В при 50 Гц) и преобразовывать ее в постоянный выходной ток постоянного тока. В этом процессе напряжение переменного тока из сети сначала выпрямляется с помощью схемы выпрямителя, чтобы создать пульсирующее напряжение постоянного тока.

Затем этот пульсирующий постоянный ток фильтруется для получения относительно плавного напряжения. Наконец, регулятор напряжения обеспечивает постоянное выходное напряжение.

Компоненты регулятора напряжения

Вообще говоря, этап регулятора напряжения источника питания обычно состоит из трех компонентов:

  • Цепь обратной связи
  • Стабильное опорное напряжение
  • Цепь управления проходным элементом

Процесс регулирования напряжения просто.Схема обратной связи помогает обнаруживать изменения выходного постоянного напряжения. В зависимости от обратной связи и опорного напряжения затем вырабатывается управляющий сигнал для управления проходным элементом для компенсации отклонений.

Говоря о проходном элементе, это твердотельное полупроводниковое устройство, такое как диод с PN переходом, транзистор BJT или полевой МОП-транзистор. Теперь выходное напряжение D остается почти постоянным.

Различные типы регуляторов напряжения

Регуляторы напряжения могут быть реализованы с использованием дискретных компонентных схем или ИС.Независимо от реализации, регуляторы напряжения можно разделить на два типа:

  • Линейные регуляторы напряжения
  • Импульсные регуляторы напряжения

Принимая во внимание приведенное выше обсуждение компонентов регулятора напряжения и его основных функций, предположим, что проходным элементом в цепи регулятора напряжения является транзистор.

Этот транзистор может работать как в активной области, так и как переключатель для регулирования выходного напряжения.Если транзистор остается в активной или омической области или линейной области своей работы в процессе регулирования напряжения, то регулятор называется линейным регулятором напряжения.

Когда транзистор работает в состоянии отсечки и состояния насыщения, то есть он переключается между состоянием выключения и состоянием насыщения, тогда регулятор называется регулятором напряжения переключения.

Теперь давайте углубимся в оба этих регулятора напряжения и поближе познакомимся с их работой и типами.

Линейные регуляторы напряжения

Первоначальной формой регуляторов в регулирующих источниках питания являются линейные регуляторы напряжения. В линейном регуляторе напряжения переменная проводимость активного проходного элемента (обычно BJT или MOSFET) отвечает за регулирование выходного напряжения.

Когда нагрузка подключена, изменения входа или нагрузки приведут к изменению тока через транзистор, так что выход будет оставаться постоянным. Чтобы транзистор мог изменять свой ток (ток коллектор-эмиттер в случае BJT), он должен работать в активной или омической области (также известной как линейная область).

Во время этого процесса линейный регулятор напряжения тратит много энергии, так как сетевое напряжение, то есть разница между входом и выходом падает в транзисторе и рассеивается в виде тепла.

Обычно линейные регуляторы напряжения делятся на пять категорий. Это:

  • Положительные регулируемые регуляторы
  • Отрицательные регулируемые регуляторы
  • Регуляторы с фиксированным выходом
  • Следящие регуляторы
  • Плавающие регуляторы

Примером положительно регулируемых линейных регуляторов напряжения является знаменитая ИС регулятора LM317.Выходное напряжение LM317 можно регулировать в пределах от 1,2 В до 37 В.

Что касается линейных регуляторов напряжения с фиксированным выходом, то в эту категорию попадает известная серия стабилизаторов напряжения серии 78XX. 7805 — это обычно используемый стабилизатор постоянного напряжения с выходным напряжением 5 В.

Преимущества линейных регуляторов напряжения

Преимущества линейных регуляторов напряжения заключаются в следующем:

  • Реализация линейных регуляторов напряжения очень проста и удобна в использовании.
  • Несмотря на рассеиваемую мощность, линейные регуляторы напряжения обладают надежной защитой от перегрузки по току и тепловой защитой.
  • Регулируемые регуляторы напряжения требуют очень небольшого количества внешних компонентов для своей работы. Стабилизаторы постоянного напряжения почти не требуют внешних компонентов (может быть пара байпасных конденсаторов).
  • При невысокой стоимости у вас есть широкий выбор напряжения и тока.
Недостатки линейных регуляторов напряжения

Недостатки линейных регуляторов напряжения следующие:

  • Обычно линейные регуляторы напряжения понижают только i.е. выходное напряжение всегда меньше входного.
  • При работе от сети переменного тока требуется понижающий трансформатор для доведения напряжения до рабочего уровня. Следовательно, они обычно громоздкие.
  • Поскольку регулирование осуществляется путем рассеивания избыточной мощности в виде тепла, они имеют тенденцию сильно нагреваться, и использование радиатора неизбежно.
  • Кроме того, у линейных регуляторов обычно очень низкий КПД, где-то от 20% до 60%.

Кроме того, линейные регуляторы напряжения снова классифицируются в зависимости от того, как подключена нагрузка.Это:

    Регуляторы напряжения серии
  • Шунтирующие регуляторы напряжения

Давайте теперь кратко рассмотрим оба этих типа линейных регуляторов напряжения.

Регулятор напряжения серии

В линейных регуляторах напряжения, если активный проходной элемент, например, транзистор, подключен последовательно с нагрузкой, то это называется последовательным регулятором напряжения.

На следующей схеме показан типичный линейный последовательный регулятор напряжения.

В этой схеме выходное напряжение регулятора измеряется через сеть делителей напряжения R1 и R2. Это напряжение сравнивается с опорным напряжением V REF . Результирующий сигнал ошибки будет контролировать проводимость проходного транзистора.

В результате напряжение на транзисторе изменяется, а выходное напряжение на нагрузке, по существу, поддерживается постоянным.

Тип последовательного регулятора напряжения — стабилизатор напряжения на стабилитроне, который может поддерживать постоянное напряжение на нагрузке.

Этот тип регулятора напряжения может уменьшить пульсации в источнике питания и улучшить регулирование. Но из-за ненулевого сопротивления стабилитрона эффективность невысока. Это можно улучшить, ограничив ток Зенера.

Шунтирующий регулятор напряжения

Шунтирующий регулятор напряжения отличается от последовательного регулятора напряжения. Если проходной транзистор в линейном регуляторе напряжения подключен параллельно нагрузке, то регулятор известен как шунтирующий регулятор напряжения.

Дополнительно имеется резистор ограничения напряжения, подключенный последовательно с нагрузкой. На следующем изображении показан типичный шунтирующий стабилизатор напряжения.

В этой схеме проводимость транзистора регулируется на основе обратной связи и опорного напряжения, так что ток через последовательный резистор остается постоянным. При изменении тока через транзистор напряжение на нагрузке остается практически постоянным.

По сравнению с последовательными регуляторами, шунтирующие регуляторы немного менее эффективны, но имеют более простую реализацию.

Импульсные регуляторы напряжения

В обоих линейных регуляторах напряжения, то есть последовательном регуляторе и шунтирующем регуляторе, активный проходной элемент, то есть транзистор, работает в своей линейной области. Изменяя проводимость транзистора, выходное напряжение поддерживается на желаемом уровне.

Напротив, импульсный регулятор работает несколько иначе, чем линейный регулятор, в том смысле, что проходной транзистор действует как переключатель, то есть он либо остается в выключенном состоянии (область отсечки), либо во включенном состоянии (область насыщения).

Регулируя время включения проходного транзистора, выходное напряжение поддерживается на постоянном уровне.

Блок-схема типичного импульсного источника питания показана ниже.

Фактически, есть отдельное руководство по импульсному источнику питания или SMPS с рабочими, типами и их работой. Для получения дополнительной информации прочтите « Импульсный источник питания ».

Преимущества импульсного регулятора напряжения
  • Основным преимуществом импульсного источника питания или импульсного регулятора напряжения является эффективность.Обычно с лучшей конструкцией можно достичь КПД до 95%.
  • Поскольку транзистор колеблется между состояниями ВКЛЮЧЕНО и ВЫКЛЮЧЕНО, и время, в течение которого он остается в активной области, очень мало, количество потерянной мощности очень меньше.
  • Выходное напряжение может быть выше или ниже входного.
  • Не требуется понижающий или повышающий трансформатор, но требуется крошечный высокочастотный переключающий трансформатор.
Недостатки импульсных регуляторов напряжения
  • Сложность конструкции импульсного блока питания очень высока.
  • Из-за частого переключения транзистора и, как следствие, тока транзистора, возникают высокие помехи и шум.

По конструкции схемы импульсные регуляторы напряжения можно разделить на две топологии.

  • Неизолированные преобразователи
  • Изолированные преобразователи

В неизолированных преобразователях также есть несколько типов, но наиболее важными из них являются:

  • Понижающий регулятор напряжения (понижающий преобразователь)
  • Повышающий регулятор напряжения (повышающий Преобразователь)
  • Понижающий / повышающий преобразователь

Изолированные преобразователи в основном бывают двух важных типов.Это:

  • Обратные преобразователи
  • Прямые преобразователи

Все эти типы обсуждаются в разделе «Импульсный источник питания». Так что обратитесь к этому документу для получения дополнительной информации.

Понижающий регулятор напряжения (понижающий преобразователь)

В понижающем регуляторе напряжения или понижающем преобразователе выходное напряжение меньше входного. На следующем изображении показан типичный понижающий преобразователь.

Повышающий регулятор напряжения (повышающий преобразователь)

В отличие от понижающего преобразователя повышающий преобразователь или повышающий регулятор напряжения обеспечивает на выходе напряжение выше, чем на входе.

На следующем изображении показан типичный повышающий преобразователь.

Существует множество других топологий импульсных регуляторов напряжения, таких как непрерывная, прерывистая, полумостовая, полная мостовая и т. Д.

Типы регуляторов напряжения: работа и их ограничения

В блоке питания регуляторы напряжения играют ключевую роль роль. Итак, прежде чем переходить к обсуждению регулятора напряжения, мы должны знать, какова роль источника питания при проектировании системы? Например, в любой рабочей системе, такой как смартфон, наручные часы, компьютер или ноутбук, источник питания является важной частью для работы системы Owl, поскольку он обеспечивает последовательное, надежное и непрерывное питание внутренних компонентов системы.В электронных устройствах источник питания обеспечивает стабильную, а также регулируемую мощность для правильной работы цепей. Источники питания бывают двух типов, такие как источник питания переменного тока, который поступает от сетевых розеток, и источник питания постоянного тока, который поступает от батарей. Итак, в этой статье рассматривается обзор различных типов регуляторов напряжения и их работы.


Что такое регулятор напряжения?

Регулятор напряжения используется для регулирования уровней напряжения. Когда требуется стабильное и надежное напряжение, предпочтительным устройством является регулятор напряжения.Он генерирует фиксированное выходное напряжение, которое остается постоянным при любых изменениях входного напряжения или условий нагрузки. Он действует как буфер для защиты компонентов от повреждений. Стабилизатор напряжения — это устройство с простой конструкцией с прямой связью, в котором используются контуры управления с отрицательной обратной связью.

Регулятор напряжения

Существует два основных типа регуляторов напряжения: линейные регуляторы напряжения и импульсные регуляторы напряжения; они используются в более широких приложениях. Линейный регулятор напряжения — самый простой тип регулятора напряжения.Он доступен в двух типах: компактных и используемых в маломощных и низковольтных системах. Обсудим различные типы регуляторов напряжения.

Основными компонентами , используемыми в регуляторе напряжения , являются

  • Цепь обратной связи
  • Стабильное опорное напряжение
  • Цепь управления проходным элементом

Процесс регулирования напряжения очень прост за счет использования трех вышеуказанных компонентов. Первый компонент регулятора напряжения, такой как цепь обратной связи, используется для обнаружения изменений в выходном напряжении постоянного тока.На основе опорного напряжения, а также обратной связи может быть сгенерирован управляющий сигнал, который приводит в действие элемент Pass для компенсации изменений.

Здесь проходной элемент — это один из видов твердотельного полупроводникового устройства, похожий на BJT-транзистор, PN-Junction Diode в противном случае MOSFET. Теперь выходное напряжение постоянного тока можно поддерживать приблизительно стабильным.


Работа регулятора напряжения

Схема регулятора напряжения используется для создания, а также поддержания постоянного выходного напряжения, даже когда входное напряжение в противном случае изменяется.Регулятор напряжения получает напряжение от источника питания, и его можно поддерживать в диапазоне, который хорошо подходит для остальных электрических компонентов. Чаще всего эти регуляторы используются для преобразования мощности постоянного / постоянного тока, переменного / переменного тока или переменного / постоянного тока.

Типы регуляторов напряжения и их работа

Эти регуляторы могут быть реализованы посредством интегральных схем или дискретных компонентных схем. Стабилизаторы напряжения подразделяются на два типа: линейный регулятор напряжения и импульсный регулятор напряжения.Эти регуляторы в основном используются для регулирования напряжения в системе, однако линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД. В импульсных регуляторах с высоким КПД большая часть i / p-мощности может передаваться на o / p без рассеивания.

Типы регуляторов напряжения

В основном существует два типа регуляторов напряжения: линейный регулятор напряжения и импульсный регулятор напряжения.

  • Существует два типа линейных регуляторов напряжения: последовательные и шунтовые.
  • Существует три типа импульсных регуляторов напряжения: повышающие, понижающие и инверторные регуляторы напряжения.

Линейные регуляторы напряжения

Линейный регулятор действует как делитель напряжения. В омической области используется полевой транзистор. Сопротивление регулятора напряжения меняется в зависимости от нагрузки, что приводит к постоянному выходному напряжению. Линейные регуляторы напряжения — это оригинальный тип регуляторов, используемых для регулирования источников питания. В этом типе регулятора переменная проводимость активного проходного элемента, такого как MOSFET или BJT, отвечает за изменение выходного напряжения.

Как только нагрузка объединена, изменения на любом входе, в противном случае нагрузка приведет к разнице в токе по транзистору, чтобы поддерживать постоянный выход. Чтобы изменить ток транзистора, он должен работать в активной, иначе омической области.

Во время этой процедуры этот тип регулятора рассеивает много энергии, потому что сетевое напряжение падает внутри транзистора и рассеивается подобно теплу. Как правило, эти регулирующие органы делятся на разные категории.

  • Положительный регулируемый
  • Отрицательный регулируемый
  • Фиксированный выход
  • Отслеживание
  • Плавающий
Преимущества

К преимуществам линейного регулятора напряжения можно отнести следующее.

  • Обеспечивает низкую пульсацию выходного напряжения
  • Быстрое время отклика на нагрузку или изменение линии
  • Низкие электромагнитные помехи и меньший шум
Недостатки

К недостаткам линейного регулятора напряжения относятся следующие.

  • Очень низкий КПД
  • Требуется большое пространство — необходим радиатор
  • Напряжение выше входа не может быть увеличено
Регуляторы напряжения серии

В последовательном регуляторе напряжения используется регулируемый элемент, включенный последовательно с нагрузкой. Изменяя сопротивление этого последовательного элемента, можно изменить падение напряжения на нем. И напряжение на нагрузке остается постоянным.

Количество потребляемого тока эффективно используется нагрузкой; это главное преимущество последовательного регулятора напряжения.Даже когда нагрузка не требует тока, последовательный регулятор не потребляет полный ток. Следовательно, последовательный стабилизатор значительно эффективнее шунтирующего регулятора напряжения.

Шунтирующие регуляторы напряжения

Шунтирующий регулятор напряжения работает, обеспечивая путь от напряжения питания к земле через переменное сопротивление. Ток через шунтирующий регулятор отклоняется от нагрузки и бесполезно течет на землю, что делает эту форму, как правило, менее эффективной, чем последовательный регулятор.Однако он проще, иногда состоит только из диода опорного напряжения и используется в схемах с очень низким энергопотреблением, в которых потери тока слишком малы, чтобы вызывать беспокойство. Эта форма очень распространена для схем опорного напряжения. Шунтирующий регулятор обычно может только поглощать (поглощать) ток.

Применение шунтирующих регуляторов

Шунтирующие регуляторы используются в:

  • Импульсные источники питания с низким выходным напряжением
  • Цепи источника и стока тока
  • Усилители ошибки
  • Регулируемые линейные и импульсные источники питания напряжения или тока
  • Мониторинг
  • Аналоговые и цифровые схемы, требующие точных ссылок
  • Прецизионные ограничители тока

Импульсные регуляторы напряжения

Импульсный регулятор быстро включает и выключает последовательные устройства.Рабочий цикл переключателя устанавливает количество заряда, передаваемого нагрузке. Это контролируется механизмом обратной связи, аналогичным линейному регулятору. Импульсные регуляторы эффективны, потому что последовательный элемент либо полностью проводит ток, либо выключен, потому что он почти не рассеивает мощность. Импульсные регуляторы способны генерировать выходное напряжение, превышающее входное напряжение, или противоположную полярность, в отличие от линейных регуляторов.

Импульсный регулятор напряжения быстро включается и выключается для изменения выхода.Он требует управляющего генератора, а также заряжает компоненты накопителя.

В импульсном регуляторе с частотно-импульсной модуляцией, изменяющейся частотой, постоянным рабочим циклом и спектром шума, налагаемым PRM, изменяются; отфильтровать этот шум труднее.

Импульсный стабилизатор с широтно-импульсной модуляцией, постоянной частотой, изменяющимся рабочим циклом, эффективен и легко отфильтровывает шум.
В импульсном регуляторе ток в непрерывном режиме через катушку индуктивности никогда не падает до нуля.Это обеспечивает максимальную выходную мощность. Это дает лучшую производительность.

В импульсном стабилизаторе ток в прерывистом режиме через катушку индуктивности падает до нуля. Это дает лучшую производительность при низком выходном токе.

Топологии коммутации

Имеет два типа топологий: диэлектрическая изоляция и неизолированная.

Изолированный

Он основан на радиации и интенсивных средах. Опять же, изолированные преобразователи делятся на два типа, включая следующие.

  • Обратные преобразователи
  • Прямые преобразователи

В перечисленных выше изолированных преобразователях рассматривается тема импульсных источников питания.

Без изоляции

Он основан на небольших изменениях Vout / Vin. Примеры: повышающий регулятор напряжения (Boost) — увеличивает входное напряжение; Step Down (Buck) — снижает входное напряжение; Повышение / Понижение (повышение / понижение) Регулятор напряжения — понижает, повышает или инвертирует входное напряжение в зависимости от контроллера; Зарядный насос — обеспечивает многократный ввод без использования индуктора.

Опять же, неизолированные преобразователи подразделяются на разные типы, однако наиболее важными из них являются

  • Понижающий преобразователь или понижающий регулятор напряжения
  • Повышающий преобразователь или повышающий регулятор напряжения
  • Понижающий или повышающий преобразователь

Преимущества топологий коммутации

Основными преимуществами импульсного источника питания являются эффективность, размер и вес. Это также более сложная конструкция, способная обеспечить более высокую энергоэффективность.Импульсный регулятор напряжения может обеспечивать выходной сигнал, который больше или меньше, или инвертирует входное напряжение.

Недостатки топологий коммутации

  • Повышенное пульсирующее напряжение на выходе
  • Более медленное переходное время восстановления
  • Электромагнитные помехи создают очень шумный выходной сигнал
  • Очень дорогие

Повышающие переключающие преобразователи, также называемые повышающими импульсными регуляторами, обеспечивают более высокое выходное напряжение за счет увеличения входного напряжения.Выходное напряжение регулируется до тех пор, пока потребляемая мощность находится в пределах выходной мощности схемы. Для управления цепочками светодиодов используется повышающий импульсный регулятор напряжения.

Повышающие регуляторы напряжения

Предположим, что вывод цепи без потерь = Pout (входная и выходная мощности одинаковы)

Тогда V на входе I на входе = V на выходе I на выходе ,

I на выходе / I in = (1-D)

Из этого следует, что в этой цепи

  • мощности остаются прежними
  • Напряжение увеличивается
  • Ток уменьшается
  • Эквивалентно трансформатору постоянного тока
Понижающее (понижающее) напряжение Регулятор

Понижает входное напряжение.

Понижающие регуляторы напряжения

Если входная мощность равна выходной мощности, то

P на входе = P на выходе ; V вход I вход = V выход I выход ,

I выход / I дюйм = V вход / V выход = 1 / D

Понижающий преобразователь эквивалентен к трансформатору постоянного тока, в котором коэффициент трансформации находится в диапазоне 0-1.

Повышение / Понижение (повышение / понижение)

Его также называют инвертором напряжения.Используя эту конфигурацию, можно повышать, понижать или инвертировать напряжение в соответствии с требованиями.

  • Выходное напряжение имеет полярность, противоположную входной.
  • Это достигается за счет прямого смещения диода VL с обратным смещением во время выключения, выработки тока и зарядки конденсатора для выработки напряжения во время выключения.
  • Используя этот тип импульсного стабилизатора, можно достичь КПД 90%.
Повышающие / понижающие регуляторы напряжения

Регуляторы напряжения генератора

Генераторы переменного тока вырабатывают ток, необходимый для удовлетворения электрических требований транспортного средства, когда двигатель работает.Он также восполняет энергию, которая используется для запуска автомобиля. Генератор имеет способность производить больше тока на более низких скоростях, чем генераторы постоянного тока, которые когда-то использовались в большинстве транспортных средств. Генератор состоит из двух частей.

Регулятор напряжения генератора

Статор — это неподвижный компонент, который не движется. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.
Ротор / Якорь — Это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов: (i) индукцией (ii) постоянными магнитами (iii) с помощью возбудителя.

Электронный регулятор напряжения

Простой регулятор напряжения может быть изготовлен из резистора, соединенного последовательно с диодом (или серией диодов). Из-за логарифмической формы кривых V-I на диоде напряжение на диоде изменяется незначительно из-за изменений потребляемого тока или изменений на входе. Когда точный контроль напряжения и эффективность не важны, эта конструкция может работать нормально.

Электронный регулятор напряжения

Транзисторный регулятор напряжения

Электронные регуляторы напряжения имеют источник нестабильного опорного напряжения, который обеспечивается стабилитроном, который также известен как рабочий диод обратного напряжения пробоя.Он поддерживает постоянное выходное напряжение постоянного тока. Пульсации переменного напряжения заблокированы, но фильтр не может быть заблокирован. Регулятор напряжения также имеет дополнительную схему защиты от короткого замыкания, схему ограничения тока, защиту от перенапряжения и тепловое отключение.

Основные параметры регуляторов напряжения

  • Основные параметры, которые необходимо учитывать при работе регулятора напряжения, в основном включают в себя напряжение i / p, напряжение o / p, а также ток включения / выключения. Как правило, все эти параметры в основном используются для определения топологии типа VR, хорошо согласованной или нет с ИС пользователя.
  • Остальные параметры этого регулятора: частота коммутации, ток покоя; напряжение обратной связи тепловое сопротивление может применяться на основе требования
  • Ток покоя является значительным, если эффективность во всех режимах ожидания или малой нагрузке является основной проблемой.
  • Если частота коммутации рассматривается как параметр, использование частоты коммутации может привести к решениям небольшой системы. Кроме того, тепловое сопротивление может быть опасным для отвода тепла от устройства, а также для отвода тепла от системы.
  • Если контроллер имеет полевой МОП-транзистор, после этого все проводящие, а также динамические потери будут рассеиваться внутри корпуса и должны учитываться при измерении предельной температуры регулятора.
  • Наиболее важным параметром является напряжение обратной связи, поскольку оно определяет меньшее напряжение включения / выключения, которое может удерживать ИС. Это ограничивает меньшее напряжение o / p, а точность влияет на регулирование выходного напряжения.

Как правильно выбрать регулятор напряжения?

  • Ключевые параметры играют ключевую роль при выборе регулятора напряжения разработчиком, например Vin, Vout, Iout, системные приоритеты и т. Д.Некоторые дополнительные ключевые функции, такие как включение управления или индикация состояния питания.
  • Когда разработчик описал эти потребности, используйте таблицу параметрического поиска, чтобы найти лучшее устройство для удовлетворения предпочтительных потребностей.
  • Для дизайнеров эта таблица очень ценна, потому что она предоставляет несколько функций, а также пакеты, доступные для удовлетворения необходимых параметров для требований дизайнера.
  • Устройства MPS доступны со своими техническими описаниями, в которых подробно описаны необходимые внешние части, как измерить их значения, чтобы получить стабильную, эффективную конструкцию с высокой производительностью.
  • Эта таблица данных в основном помогает в измерении значений таких компонентов, как выходная емкость, сопротивление обратной связи, индуктивность выхода и т. Д.
  • Кроме того, вы можете использовать некоторые инструменты моделирования, такие как программное обеспечение MPSmart / DC / DC Designer и т. Д. MPS предоставляет различные регуляторы напряжения с компактными линейными, разнообразными эффективными и переключаемыми типами, такими как семейство MP171x, семейство HF500-x, MPQ4572-AEC1, MP28310, MP20056 и MPQ2013-AEC1.

Ограничения / недостатки

Ограничения регуляторов напряжения включают следующее.

  • Одним из основных ограничений регуляторов напряжения является их неэффективность из-за рассеивания большого тока в некоторых приложениях.
  • Падение напряжения на этой ИС похоже на падение напряжения на резисторе. Например, когда на входе регулятора напряжения 5 В, а на выходе получается 3 В, тогда падение напряжения между двумя клеммами составляет 2 В.
  • Эффективность регулятора может быть ограничена до 3 В или 5 В, что означает, что эти регуляторы применимы с меньшим количеством дифференциалов Vin / Vout.
  • В любом приложении очень важно учитывать ожидаемое рассеивание мощности для регулятора, потому что при высоком входном напряжении рассеиваемая мощность будет высокой, что может привести к повреждению различных компонентов из-за перегрева.
  • Еще одно ограничение заключается в том, что они просто способны к понижающему преобразованию по сравнению с типами переключения, поскольку эти регуляторы обеспечивают понижение и преобразование.
  • Регуляторы, подобные импульсным, очень эффективны, однако у них есть некоторые недостатки, такие как экономическая эффективность по сравнению с регуляторами линейного типа, более сложные, большие по размеру и могут создавать больше шума, если их внешние компоненты не выбраны осторожно.

Речь идет о различных типах регуляторов напряжения и принципах их работы. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять эту концепцию. Кроме того, по любым вопросам, касающимся этой статьи или любой помощи в реализации проектов в области электротехники и электроники, вы можете обратиться к нам, оставив комментарий в разделе комментариев ниже. Вот вам вопрос — где мы будем использовать регулятор напряжения генератора?

Как сделать 12-вольтный стабилизатор напряжения

Несмотря на то, что уже существуют предварительно упакованные устройства для регулирования низких фиксированных напряжений постоянного тока, можно создать собственное с нуля.Стабилитроны сами по себе являются хорошими низковольтными слаботочными стабилизаторами. В более мощных источниках питания они действуют как источник опорного напряжения, управляющий одним или несколькими транзисторами, которые могут выдерживать больший ток. Чтобы проиллюстрировать, как работает стабилитрон, вы можете сделать простой стабилизатор, используя стабилитрон на 12 вольт и 5 ватт, который будет обеспечивать ток до 300 миллиампер.

Обратите внимание на полосу на корпусе стабилитрона. Это отмечает катодную сторону диода. Поскольку стабилитроны регулируют обратную проводимость, вы подключаете катод к положительной мощности.

Выключите нерегулируемый источник питания. Подключите его плюс и землю к шине питания макета.

Вставьте стабилитрон в макетную плату. Вставьте резистор на 40 Ом в макетную плату так, чтобы он соединился с катодом стабилитрона. Подключите свободный (неиспользуемый) вывод резистора к положительному нерегулируемому источнику питания от шины питания макетной платы. Подключите заземление источника питания к аноду стабилитрона. Вставьте две более длинные перемычки так, чтобы конец одного соединялся с анодом стабилитрона, а другой провод — с его катодом.А пока оставьте свободные концы этих проводов неподключенными.

Установите мультиметр на измерение постоянного напряжения. Подключите положительный (красный) вывод мультиметра к длинной перемычке, идущей от катода стабилитрона, а отрицательный (черный) вывод мультиметра к проводу, идущему от анода. Включите блок питания. Вы должны показать устойчивые 12 вольт.

Вещи, которые вам понадобятся:

  • 1N5349 Стабилитрон 12 В, 5 Вт
  • Резистор 40 Ом, 1 Вт
  • Макетная плата для прототипа
  • Нерегулируемый источник питания 24 В постоянного тока
  • Мультиметр
  • Короткие кусочки перемычки 22-го калибра провод

Наконечник

Подключите держатель предохранителя последовательно с выходом регулятора и используйте предохранитель на 1/3 А.Это защитит стабилитрон в случае перегрузки или короткого замыкания регулятора. Резистор был рассчитан на работу с источником 24 В, выходом 12 В и током 300 мА. Вы можете рассчитать другие значения сопротивления по следующей формуле: R = (Vs — Vz) / Imax, где R — сопротивление в омах, Vs — напряжение нерегулируемого источника, Vz — напряжение стабилитрона, а Imax — максимальный ток, который вы хотите. Затем вам необходимо рассчитать минимальную номинальную мощность резистора по следующей формуле: P> (Vs — Vz) × Imax, где P — мощность резистора в ваттах, а Vs, Vz и Imax такие же, как и раньше.Всегда округляйте до следующего доступного значения мощности (или двух, для дополнительной безопасности). Например, если вы рассчитываете номинальную мощность 400 милливатт, резистор на ½ Вт будет безопасным, но резистор на 1 Вт будет лучше.

Регуляторы напряжения, схемы, типы, принцип работы, конструкция, применение

Регулятор напряжения предназначен для автоматического «регулирования» уровня напряжения. Он в основном понижает входное напряжение до желаемого уровня и поддерживает его на том же уровне во время подачи питания.Это гарантирует, что даже при приложении нагрузки напряжение не падает.

Таким образом, регулятор напряжения используется по двум причинам: —

  1. Для регулирования или изменения выходного напряжения цепи.
  2. Для поддержания постоянного выходного напряжения на желаемом уровне, несмотря на колебания напряжения питания или тока нагрузки.

Чтобы узнать больше об основах этого предмета, вы также можете обратиться к Регулируемый источник питания .

Регуляторы напряжения

находят свое применение в компьютерах, генераторах переменного тока, электростанциях, где схема используется для управления мощностью установки.Регуляторы напряжения можно разделить на электромеханические и электронные. Его также можно классифицировать как регуляторы переменного тока или регуляторы постоянного тока.

Мы уже рассказали о регуляторах напряжения IC .

Электронный регулятор напряжения

Все электронные регуляторы напряжения будут иметь стабильный источник опорного напряжения, который обеспечивается рабочим диодом обратного напряжения пробоя, называемым стабилитроном. Основная причина использования регулятора напряжения — поддержание постоянного выходного напряжения постоянного тока.Он также блокирует пульсации переменного напряжения, которые не могут быть заблокированы фильтром. Хороший регулятор напряжения может также включать дополнительные схемы защиты, такие как короткое замыкание, схему ограничения тока, тепловое отключение и защиту от перенапряжения.

Электронные регуляторы напряжения разработаны на основе любого из трех или комбинации любого из трех регуляторов, указанных ниже.

1. Транзисторный стабилизатор напряжения с стабилитроном

Стабилизатор напряжения, управляемый стабилитроном, используется, когда эффективность регулируемого источника питания становится очень низкой из-за высокого тока.Существует два типа транзисторных стабилизаторов напряжения, управляемых стабилитроном.

Стабилизатор напряжения серии управляемых транзисторов на стабилитронах

Такую схему еще называют регулятором напряжения с эмиттерным повторителем. Он назван так потому, что используемый транзистор подключен по схеме эмиттерного повторителя. Схема состоит из транзистора N-P-N и стабилитрона. Как показано на рисунке ниже, выводы коллектора и эмиттера транзистора включены последовательно с нагрузкой. Таким образом, этот регулятор имеет в себе именную серию.Используемый транзистор представляет собой транзистор с последовательным проходом.

Стабилизатор напряжения с последовательным транзисторным управлением на стабилитронах

Выходной сигнал выпрямителя, который отфильтрован, затем подается на входные клеммы, и на нагрузочном резисторе Rload получается регулируемое выходное напряжение Vload. Опорное напряжение обеспечивается стабилитроном, а транзистор действует как переменный резистор, сопротивление которого изменяется в зависимости от рабочих условий тока базы Ibase.

Основной принцип работы такого регулятора заключается в том, что большая часть изменения напряжения питания или входного напряжения возникает на транзисторе, и, таким образом, выходное напряжение имеет тенденцию оставаться постоянным.

Таким образом, выходное напряжение можно записать как

Ваут = Взенер — Вбе

Напряжение базы транзистора Vbase и напряжение стабилитрона Vzener равны, поэтому значение Vbase остается почти постоянным.

Эксплуатация

Когда входное напряжение питания Vin увеличивается, выходное напряжение Vload также увеличивается. Это увеличение Vload вызовет снижение напряжения Vbe эмиттера базы транзистора, поскольку напряжение стабилитрона Vzener является постоянным.Это уменьшение Vbe вызывает уменьшение уровня проводимости, что дополнительно увеличивает сопротивление коллектор-эмиттер транзистора и, таким образом, вызывает увеличение напряжения коллектор-эмиттер транзистора, и все это вызывает снижение выходного напряжения Vout. Таким образом, выходное напряжение остается постоянным. Работа аналогична при уменьшении входного напряжения питания.

Следующим условием будет влияние изменения выходной нагрузки на выходное напряжение. Рассмотрим случай, когда ток увеличивается за счет уменьшения сопротивления нагрузки Rload.Это вызывает уменьшение значения выходного напряжения и, таким образом, вызывает увеличение напряжения эмиттера базы транзистора. Это вызывает уменьшение сопротивления коллектора-эмиттера из-за увеличения уровня проводимости транзистора. Это приводит к небольшому увеличению входного тока и, таким образом, компенсирует уменьшение сопротивления нагрузки Rload.

Самым большим преимуществом этой схемы является то, что изменения тока стабилитрона уменьшаются в β раз, и, таким образом, эффект стабилитрона значительно снижается, и получается гораздо более стабильный выходной сигнал.

Выходное напряжение последовательного регулятора Vout = Vzener — Vbe. Ток нагрузки Iload схемы будет максимальным током эмиттера, который может пройти транзистор. Для обычного транзистора, такого как 2N3055, ток нагрузки может доходить до 15 А. Если ток нагрузки равен нулю или не имеет значения, то ток, потребляемый от источника питания, можно записать как Izener + Ic (min). Такой регулятор напряжения с эмиттерным повторителем более эффективен, чем обычный стабилизатор напряжения. Обычный стабилитрон, в котором есть только резистор и стабилитрон, должен обеспечивать ток базы транзистора.

Ограничения

Ограничения, перечисленные ниже, доказали, что использование этого последовательного регулятора напряжения подходит только для низких выходных напряжений.

  1. С повышением температуры в помещении значения Vbe и Vzener имеют тенденцию к уменьшению. Таким образом, выходное напряжение нельзя поддерживать постоянным. Это еще больше увеличит напряжение эмиттера базы транзистора и, следовательно, нагрузку.
  2. Нет возможности изменить выходное напряжение в цепи.
  3. Из-за небольшого процесса усиления, обеспечиваемого только одним транзистором, схема не может обеспечить хорошее регулирование при высоких токах.
  4. По сравнению с другими регуляторами, этот регулятор имеет плохую регулировку и подавление пульсаций в отношении изменений на входе.
  5. Рассеиваемая мощность проходного транзистора велика, потому что она равна Vcc Ic, и почти все изменения возникают при Vce, а ток нагрузки приблизительно равен току коллектора. Таким образом, при прохождении больших нагрузочных токов транзистор должен рассеивать много энергии и, следовательно, нагреваться.

Шунтирующий транзисторный стабилизатор напряжения с стабилитроном

На изображении ниже показана принципиальная схема шунтирующего регулятора напряжения.Схема состоит из NPN-транзистора и стабилитрона, а также последовательного резистора Rseries, подключенного последовательно с входным источником питания. Стабилитрон подключен к базе и коллектору транзистора, который подключен к выходу.

Транзисторный шунтирующий стабилизатор напряжения с стабилитроном

Operation

Поскольку в последовательном сопротивлении Rseries наблюдается падение напряжения, вместе с ним уменьшается и нерегулируемое напряжение. Величина падения напряжения зависит от тока, подаваемого на нагрузку Rload.Величина напряжения на нагрузке зависит от стабилитрона и напряжения эмиттера базы транзистора Vbe.

Таким образом, выходное напряжение можно записать как

Vout = Vzener + Vbe = Vin — I.Rseries

Выход остается почти постоянным, поскольку значения Vzener и Vbe почти постоянны. Это условие объясняется ниже.

Когда напряжение питания увеличивается, выходное напряжение и напряжение эмиттера базы транзистора увеличивается и, таким образом, увеличивается базовый ток Ibase и, следовательно, увеличивается ток коллектора Icoll (Icoll = β.Ibase).

Таким образом, напряжение питания увеличивается, вызывая увеличение тока питания, который, в свою очередь, вызывает падение напряжения на последовательном сопротивлении Rseries и тем самым снижает выходное напряжение. Этого уменьшения будет более чем достаточно, чтобы компенсировать первоначальное увеличение выходного напряжения. Таким образом, выпуск остается почти постоянным. Работа, описанная выше, происходит в обратном порядке, если напряжение питания снижается.

Когда сопротивление нагрузки Rload уменьшается, ток нагрузки Iload увеличивается из-за уменьшения токов через базу и коллектор Ibase и Icoll.Таким образом, на Rseries не будет падения напряжения, а входной ток останется постоянным. Таким образом, выходное напряжение останется постоянным и будет разницей между напряжением питания и падением напряжения на последовательном сопротивлении. Это происходит наоборот, если увеличивается сопротивление нагрузки.

Ограничения

Последовательный резистор вызывает огромные потери мощности.

1. Ток питания через транзистор будет больше, чем через нагрузку.

2. В цепи могут быть проблемы, связанные с перенапряжением.

2. Дискретный транзисторный регулятор напряжения

Дискретные транзисторные регуляторы напряжения можно разделить на два. Они объясняются ниже. Эти две схемы способны производить регулируемое выходное постоянное напряжение, которое регулируется или поддерживается на заданном уровне, даже если входное напряжение изменяется или нагрузка, подключенная к выходной клемме, изменяется.

Стабилизатор напряжения на дискретных транзисторах

Блок-схема дискретного стабилизатора напряжения транзисторного типа приведена ниже.Элемент управления размещен для сбора нерегулируемого входа, который контролирует величину входного напряжения и передает его на выход. Затем выходное напряжение возвращается в схему выборки, затем сравнивается с опорным напряжением и отправляется обратно на выход.

Стабилизатор напряжения

на дискретных транзисторах Таким образом, если выходное напряжение имеет тенденцию к увеличению, схема компаратора выдает управляющий сигнал, чтобы заставить элемент управления уменьшать величину выходного напряжения, пропуская его через схему выборки и сравнивая его, тем самым поддерживая постоянное значение. и стабильное выходное напряжение.

Предположим, что выходное напряжение имеет тенденцию к снижению, схема компаратора выдает управляющий сигнал, который заставляет последовательный элемент управления увеличивать величину выходного напряжения, таким образом поддерживая стабильность.

Шунтирующий стабилизатор напряжения на дискретных транзисторах

Блок-схема дискретного транзисторного шунтирующего стабилизатора напряжения приведена ниже. Как следует из названия, регулирование напряжения обеспечивается за счет отвода тока от нагрузки. Элемент управления шунтирует часть тока, возникающего в результате входного нерегулируемого напряжения, подаваемого на нагрузку.Таким образом, напряжение регулируется на нагрузке. Из-за изменения нагрузки, если есть изменение выходного напряжения, оно будет скорректировано путем подачи сигнала обратной связи в схему компаратора, которая сравнивается с опорным напряжением и передает выходной управляющий сигнал на элемент управления для корректировки величины. сигнала, необходимого для отвода тока от нагрузки.

Шунтирующий стабилизатор напряжения на дискретных транзисторах

Если выходное напряжение увеличивается, шунтирующий ток увеличивается и, таким образом, создается меньший ток нагрузки и поддерживается стабилизированное выходное напряжение.Если выходное напряжение уменьшается, ток шунта уменьшается и, таким образом, создается больший ток нагрузки и поддерживается постоянное регулируемое выходное напряжение. В обоих случаях важную роль играют схема выборки, схема компаратора и элемент управления.

Ограничения транзисторных регуляторов напряжения

Устойчивое и стабилизированное выходное напряжение, получаемое от регулятора, ограничено диапазоном напряжения (30-40) вольт. Это связано с малым значением максимального напряжения коллектор-эмиттер транзистора (50 Вольт).Это ограничивает использование транзисторных источников питания.

3. Электромеханический регулятор

Как следует из названия, это регулятор, сочетающий в себе электрические и механические характеристики. Процесс регулирования напряжения осуществляется спиральным измерительным проводом, который действует как электромагнит. Магнитное поле создается соленоидом в соответствии с протекающим через него током. Это магнитное поле притягивает движущийся материал сердечника из железа, который связан с натяжением пружины или гравитационным притяжением.Когда напряжение увеличивается, ток усиливает магнитное поле, поэтому сердечник притягивается к соленоиду. Магнит физически связан с механическим переключателем. Когда напряжение уменьшается, магнитное поле, создаваемое сердечником, уменьшается, поэтому натяжение пружины заставляет сердечник втягиваться. Это замыкает механический переключатель и позволяет току течь.

Если конструкция механического регулятора чувствительна к небольшим колебаниям напряжения, к соленоиду может быть добавлен селекторный переключатель в диапазоне сопротивлений или обмотки трансформатора для постепенного повышения и понижения выходного напряжения или для изменения положения подвижного элемента. катушка регулятора переменного тока.

Ранее автомобильные генераторы и генераторы переменного тока содержали механические регуляторы. В регуляторах такого типа процесс осуществляется одним, двумя или тремя реле и различными резисторами, чтобы установить выходную мощность генератора чуть выше 6 или 12 вольт, и этот процесс не зависит от частоты вращения двигателя или нагрузки, изменяющейся на транспортном средстве. электрическая система. Реле используются для выполнения широтно-импульсной модуляции для регулирования выходной мощности генератора и управления током возбуждения, проходящим через генератор.

Регулятор, используемый для генераторов постоянного тока, отключается от генератора, когда он не работает, чтобы предотвратить обратный поток электричества от батареи к генератору. В противном случае он будет работать как мотор.

4. Автоматический регулятор напряжения (АРН)

Этот активный системный регулятор в основном используется для регулирования выходного напряжения очень больших генераторов, которые обычно используются на кораблях, нефтяных вышках, больших зданиях и т. Д. Схема AVR сложна и состоит из всех активных и пассивных элементов, а также микроконтроллеров.Основной принцип работы AVR такой же, как и у обычного регулятора напряжения. Входное напряжение возбудителя генератора контролируется АРН, и когда напряжение генератора увеличивается или уменьшается, выходное напряжение генератора автоматически увеличивается или уменьшается. Будет предопределенная уставка, по которой АРН определяет величину напряжения, которое должно передаваться на возбудитель каждую миллисекунду. Таким образом регулируется выходное напряжение. Та же операция становится более сложной, когда только один АРН используется для регулирования нескольких генераторов, подключенных параллельно.

5. Трансформатор постоянного напряжения (CVT)

В некоторых случаях вариатор также используется в качестве регулятора напряжения. CVT состоит из резонансной обмотки высокого напряжения и конденсатора, который производит регулируемое выходное напряжение для любого типа входного переменного тока. Как и у обычного трансформатора, вариатор имеет первичную и вторичную обмотки. Первичная обмотка находится на стороне магнитного шунта, а вторичная обмотка — на противоположной стороне с настроенной цепью катушки. Регулирование поддерживается за счет магнитного насыщения вторичных обмоток.Чтобы узнать больше о вариаторах, ознакомьтесь с нашей статьей — Трансформатор постоянного напряжения .

Некоторые применения регуляторов напряжения

  • Используется во всех блоках питания электронных устройств для регулирования напряжения и защиты устройства от повреждений
  • Используется с генератором двигателей внутреннего сгорания для регулирования выходной мощности генератора.
  • Используется для электронных схем для подачи точного напряжения

Примечание. Стабилизаторы напряжения отличаются от стабилизаторов напряжения.Регуляторы используются для понижения напряжения до желаемого уровня, тогда как стабилизатор «стабилизирует» напряжение. Регуляторы в основном используются для постоянного тока, а стабилизаторы — для переменного тока. Стабилизаторы удерживают напряжение от слишком высокого или слишком низкого, чтобы не повредить подключенное к нему устройство, например телевизор или холодильник.

LM317 / LM338 / LM350 Калькулятор регулятора напряжения и схемы


Регуляторы напряжения LM317 / LM338 / LM350

Семейство регулируемых 3-контактных стабилизаторов положительного напряжения LM317 / LM338 / LM350 может принимать входное напряжение от 3 до 40 В постоянного тока и обеспечивать стабилизированное напряжение выше 1.Выходной диапазон от 2 В до 37 В. Стабилизаторы напряжения LM317 могут обеспечивать выходной ток до 1,5 А (А). Там, где требуется больший выходной ток, регуляторы серии LM350 подходят до 3 А, а регуляторы напряжения серии LM338 — до 5 А.

Стабилизаторы напряжения LM317 / LM338 / LM350 исключительно просты в использовании, им требуется всего два внешних резистора для установки регулируемого выходного напряжения. При использовании регулируемых регуляторов напряжения LM317 / LM338 / LM350 вы можете рассчитывать на производительность как линейного регулирования, так и регулирования нагрузки по сравнению со стандартным фиксированным стабилизатором напряжения.Стабилизаторы напряжения LM317 / LM338 / LM350 обеспечивают полную защиту от перегрузки. Обычно конденсаторы не требуются, если только устройство не расположено на расстоянии более 150 мм (6 дюймов) от конденсаторов входного фильтра, и в этом случае требуется входной байпасный конденсатор. Для улучшения переходной характеристики можно добавить дополнительный выходной конденсатор. Клемма регулировки регулятора может быть отключена для достижения очень высокого подавления пульсаций. Дополнительные сведения о регулируемых регуляторах напряжения LM317 / LM338 / LM350 см. В таблицах данных регулируемых регуляторов ниже.

Фотография 1: Регулятор напряжения LM317 (пластиковый корпус TO-220)


Калькулятор регулятора напряжения LM317 / LM338 / LM350

Вы можете использовать этот калькулятор регуляторов напряжения, чтобы изменить значение программного резистора (R 1 ) и выходного резистора (R 2 ) и рассчитать выходное напряжение для семейства LM317 / LM338 / LM350, состоящего из трех клеммных регулируемых регуляторов напряжения. . Этот калькулятор регуляторов напряжения будет работать со всеми регуляторами напряжения с опорным напряжением (V REF ), равным 1.25. Обычно программный резистор (R 1 ) устанавливается на 240 Ом для регуляторов LM117, LM317, LM138 и LM150. Для регуляторов LM338 и LM350 обычно используется 120 Ом для программного резистора R 1 . Однако другие значения, такие как 150 или 220 Ом, также могут использоваться для R 1 . Стабилизаторы напряжения серии LM317 / LM338 / LM350 также могут быть настроены для регулирования тока в цепи. Для получения информации о регулировании тока с помощью этих регуляторов на интегральных схемах (IC) см. Калькулятор регулятора тока LM317 / LM338 / LM350.

Рисунок 1: Схема калькулятора регулятора напряжения LM317 / LM338 / LM350

Калькулятор регулятора напряжения LM317 / LM338 / LM350

Для определения выходного напряжения введите значения для программы (R 1 ) и установите (R 2 ) резисторы и нажмите кнопку «Рассчитать».

ПРИМЕЧАНИЕ: для этого онлайн-калькулятора регулятора напряжения требуется, чтобы в вашем браузере был включен JavaScript.

Калькулятор регулятора напряжения LM317 / LM338 / LM350

ОБНОВЛЕНИЕ — Калькулятор регулятора тока LM317 / LM338 / LM350 перемещен на свою страницу, Калькулятор регулятора тока LM317 / LM338 / LM350.Пожалуйста, обновите свои закладки.


Листы данных — 3-контактный регулируемый регулятор LM317 / LM338 / LM350


Цепи регулятора напряжения LM317 / LM338 / LM350

На следующих схемах показаны типовые схемы применения регуляторов напряжения LM317 / LM338 / LM350. Примечание : Падение напряжения регулятора IC составляет от 1,5 до 2,5 В в зависимости от выходного тока (I OUT ). Следовательно, входное напряжение регулятора LM317 / LM338 / LM350 должно быть не менее 1.На 5–2,5 В больше желаемого выходного напряжения. Планируйте, что желаемое выходное напряжение будет примерно на 3 В. Вы не хотите использовать слишком высокое входное напряжение, так как избыток необходимо будет отводить в виде тепла через регулятор. Подробные сведения о падении напряжения и требованиях к радиатору см. В таблицах данных регуляторов напряжения выше.

Рисунок 2: Схема регулируемого стабилизатора напряжения от 1,2 до 25 В для LM317 / LM338 / LM350

Когда внешние конденсаторы используются с регулятором напряжения, может потребоваться использование защитных диодов, чтобы предотвратить разряд конденсаторов через точки с низким током в регулятор напряжения.Даже небольшие конденсаторы могут иметь достаточно низкое внутреннее последовательное сопротивление, чтобы обеспечивать выбросы 20 А при коротком замыкании. Хотя всплеск очень непродолжительный, энергии достаточно, чтобы повредить части регулятора IC. Для выходных напряжений менее 25 В или более 10 мкФ защитные диоды не требуются. На рисунке 3 показан LM317 / LM338 / LM350 с включенными защитными диодами для использования с выходным напряжением более 25 В и высокими значениями выходной емкости.

Рисунок 3: Схема регулятора напряжения LM317 / LM338 / LM350 с защитными диодами

На выходе напряжения можно использовать твердотельные танталовые конденсаторы, чтобы улучшить подавление пульсаций регулятора напряжения.

Рисунок 4: Схема регулируемого регулятора напряжения LM317 / LM338 / LM350 с улучшенным подавлением пульсаций

Рисунок 5: Схема зарядного устройства 12 В аккумулятора с регулятором LM317


Видеоурок — Регулируемый регулятор напряжения LM317

Учебное пособие по регулируемому регулятору напряжения LM317 — загружено Afrotechmods 17 апреля 2011 г. (YouTube) — 4 минуты 8 секунд.

LM317 Регулируемый регулятор напряжения Учебное пособие


Тяги регулятора напряжения и тока

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *