С точки зрения термодинамики отапливать дома электрообогревателями – С точки зрения термодинамики, отапливать дома электрообогревателями крайне невыгодно, поскольку …

Содержание

С точки зрения термодинамики отапливать дома электрообогревателями — VashSlesar.ru

Здесь легко и интересно общаться. Присоединяйся!

я бы пятым пунктом ответил, но его нет.
Если выбирать из этих 4-х, то 4-й. Но термодинамика здесь вообще не причем)

Первый и четвёртый — самые значительные! Второй и третий — тоже имеют значение! А мой ответ — слишком большая себестоимость по сравнению с сооружением и транспортировкой по другим вариантам!

1.Энтропия системы может изменяться …

как в сторону увеличения, так и в сторону уменьшения, если система открытая

только в сторону уменьшения, если система изолированная

только в сторону увеличения, если система открытая

как в сторону увеличения, так и в сторону уменьшения, если система изолированная

Решение:

Второй закон термодинамики запрещает понижение энтропии изолированной системы. Все остальное не запрещено, то есть может происходить в реальности, в частности любое изменение энтропии системы открытой.

2. С точки зрения термодинамики, отапливать дома электрообогревателями крайне невыгодно, поскольку …

при этом высококачественная электрическая энергия целенаправленно превращается в низкокачественную тепловую

электрическую энергию трудно превратить в тепловую без больших потерь

это требует прокладки мощных линий электропередачи и строительства технически сложных и дорогих подстанций

электрообогреватели гораздо опаснее для здоровья населения, чем привычные батареи, по которым циркулирует горячая вода

Решение:

Современные электрообогреватели, например, масляные, не более вредны для здоровья, чем радиаторы центрального отопления. Превращение электроэнергии в теплоту не требует сложных устройств, и потому даже очень эффективные и мощные электрообогреватели стоят недорого. Строить линии электропередачи и подстанции тоже существенно дешевле, чем тянуть трубопроводы горячей воды, постоянно их ремонтировать, мириться с тем, что они обогревают не столько дома, сколько окружающую среду.

Однако с точки зрения термодинамики, электрообогреватели – чистое расточительство. Сначала на тепловой или атомной электростанции с большими трудностями превращают теплоту, получаемую от атомного реактора или сгорающего топлива, в электроэнергию, причем 60% и более этой теплоты бесполезно рассеивается в окружающей среде. Эти потери можно оправдать, если за счет полученной высококачественной электроэнергии делать что-нибудь сложное – например, питать компьютер, телевизор или прецизионный станок. Но если втыкать в розетку электрообогреватель и сразу перегонять высококачественную электроэнергию в теплоту …

Зачем, спрашивается, тогда нужны ЭЛЕКТРОстанции?

3. Не относится к числу известных в физике и вообще в естественных науках форм энергии …

положительная и отрицательная психоэнергия

потенциальная и кинетическая энергия

Решение:

В естествознании энергия – это физическая величина, то есть характеристика материальных объектов, которую возможно объективно измерить и выразить числом. В обыденной речи и в псевдонауках типа парапсихологии или экстрасенсорики понятие «энергия» часто используется в смысле, близком к понятию «жизненная сила», то есть как характеристика активности объекта или, чаще, субъекта. Естественно, «энергия» в этом смысле является лишь метафорой и не может быть измерена, тем более объективно, и выражена числом.

4. Обозначим:

– количество энтропии, которое Земля ежегодно получает с потоком солнечного света;

– количество энтропии, которое Земля ежегодно отправляет в космос с потоком собственного теплового излучения;

– количество энтропии, которое ежегодно производится на Земле во всех происходящих на ней процессах.

Тогда, учитывая, что на Земле с течением времени постоянно возникали все более сложные и упорядоченные структуры (например, биосфера и человеческое общество), должно иметь место неравенство …

Решение:

Возникновение структур означает рост упорядоченности. Поскольку энтропия есть мера беспорядка, возникновение структур на Земле должно было сопровождаться понижением энтропии планеты. А это возможно лишь в том случае, если отвод энтропии с Земли в космическое пространство перекрывает ее поступление на Землю с солнечным светом и собственное производство вместе взятые, или, по крайней мере, компенсирует эти две «приходные статьи»:

5. С точки зрения термодинамики, предприятия электроэнергетики …

превращают неудобные для использования формы энергии частично в электроэнергию, частично в низкокачественные формы энергии

превращают низкокачественные формы энергии полностью в высококачественную электрическую энергию

создают электрическую энергию из различных веществ

производят на выходе больше электрической энергии, чем потребляют тепловой, ядерной или другой энергии на входе

Решение:

Устройство, которое производит больше энергии, чем потребляет, – это вечный двигатель первого рода. Он запрещен первым законом термодинамики.

Устройство, полностью превращающее низкокачественную энергию в высококачественную, – это вечный двигатель второго рода. Он запрещен вторым законом термодинамики.

Утверждение о создании энергии из вещества с точки зрения термодинамики бессмысленно или, как минимум, неграмотно. Любое вещество обладает энергией, и задача термодинамики заключается в изучении превращений этой энергии в различных процессах.

Следовательно, электроэнергетика, с точки зрения термодинамики, – это превращение неудобных для использования форм энергии в удобную электрическую энергию за счет перевода части входной энергии в низкокачественные формы – в конечном счете, в теплоту.

6. Одинаковые количества чистого кремнезема (диоксида кремния SiO

2) при одном и том же давлении (атмосферном) находятся в разных состояниях (определяемых температурой и историей образца) – пара, расплава, горного хрусталя (кристалл), кварцевого стекла (аморфного). Из них самой низкой энтропией обладает …

Решение:

Энтропия есть мера молекулярного беспорядка. Поэтому при прочих равных условиях она тем ниже, чем упорядоченнее расположены и движутся молекулы. Очевидно, что этому условию соответствует кристаллическое состояние кремнезема (горный хрусталь), в котором все молекулы SiO2 расположены абсолютно упорядоченно, в узлах правильной кристаллической решетки, а их движение сводится к небольшим колебаниям относительно равновесных положений. В структуре стекла молекулы расположены неупорядоченно, хотя также практически не способны покинуть свои места. Молекулярная структура расплава похожа на структуру стекла, но молекулы обладают большей свободой неупорядоченного теплового движения и способны покидать свои места. Наибольшей разупорядоченностью как в отношении расположения, так и движения молекул, естественно, обладает пар.

7. В классической книге Ю. Одума «Основы экологии» говорится, что при протекании потока энергии по трофическим цепям качество энергии на каждом следующем трофическом уровне существенно выше, чем на предыдущем. Это не противоречит второму закону термодинамики, требующему, чтобы качество энергии во всех процессах в целом понижалось, поскольку …

с каждого трофического уровня на следующий переходит не более 10 % энергии (высококачественной), а остальные 90 % (низкокачественной) энергии рассеиваются в окружающей среде

законы термодинамики, в том числе второй закон, сформулированы в физике, которая занимается изучением неживой природы, а функционирование экосистем определяется живыми организмами

выводы Одума являются чисто умозрительными, философскими, и не могут сопоставляться с таким строгим количественным законом природы, как второй закон термодинамики

согласно четвертому закону экологии, сформулированному не менее известным экологом Б. Коммонером, «природа знает лучше»

Решение:

В целом качество энергии по мере ее протекания сквозь экосистему понижается, поскольку на каждом трофическом уровне не менее 90 % энергии переходит в низкокачественные формы (большей частью, по свидетельству того же Ю. Одума, в теплоту) и отдается в окружающую среду. Тот остаток энергии, который, согласно известному в экологии «правилу 10 %», переходит на более высокий трофический уровень и отличается высоким качеством, общей тенденции к понижению качества энергии изменить не может.

Дата добавления: 2015-05-16 ; просмотров: 1324 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Физический процесс передачи тепла от одного физического тела к другому называется теплопередачей. Передача тепла осуществляется от горячего физического тела к холодному либо при непосредственном контакте, либо через перегородку.

Тепловая энергия будет передаваться до тех пор, пока температуры физических тел не сравняются. В физике это состояние называется термодинамическим равновесием. Теплопередача, как правило, происходит от горячего тела к холодному, что полностью соответствует второму закону термодинамики. Согласно этому закону работают все системы отопления.

С точки зрения физики существуют три элементарных типа передачи тепла: теплопроводность, конвекция и тепловое излучение. Но в чистом виде, по отдельности, они практически не встречаются, в общем случае тепло передается сочетанием простых типов. В основном различают три типа теплопередачи: теплоотдача, теплопередача и конвективно-лучевой метод передачи тепла. [2]

Классификация видов отопления происходит по его видоизменяемому параметру комбинации способов теплопередачи. При этом, абсолютно все виды отопления можно разделить на автономные (со встроенным генератором тепловой энергии) и системные или магистральные (подключённые в отопительные системы и магистрали, и являющиеся частью их). [7]

1. Конвективное и лучистое виды отопления.

В зависимости от преобладающего способа теплоотдачи передачи, отопление помещений может быть конвективным и лучистым.

Конвективное отопление — это вид отопления, при котором тепло передается, преимущественно благодаря перемешиванию объемов горячего и холодного воздуха.

Лучистое отопление — это вид отопления, когда тепло передается, в основном инфракрасным излучением.

2. Огневоздушное, воздушное, инфракрасное виды отопления.

В комбинациях конвективного и лучистого видов передачи тепла можно определить три основные способы теплопередачи — огневоздушное, воздушное, а также инфракрасное виды отопления. Примеры огневоздущного отопления — очаги с открытым пламенем, камины, костры, жаровни с раскалёнными углями. Пример воздушного отопления — печки, отопительные радиаторы и конвекторы всех типов, тепловые воздушные установки. Пример инфракрасного отопления — тёплые полы, тепловые панели, газовые и электрические рефлекторы.

Традиционные системы отопления

К традиционным системам отопления относятся те системы, в которых используется какое-либо топливо. В настоящее время чаще всего используется газ, хотя в некоторых случаях применяется жидкое и твердое топливо. Но независимо от типа топлива принцип работы всех традиционных систем одинаков. Теплота от сгорания топлива нагревает теплоноситель, который поступает в радиаторы отопительной системы и нагревает воздух в помещении. В качестве теплоносителя в традиционных системах отопления используется вода, поэтому такие системы называют водяными.

По всем законам физики теплый воздух устремляется вверх, а холодный, естественно, перемещается вниз. Такое движение воздуха есть не что иное, как упомянутая выше конвекция. Этот холодный воздух как раз и создает холодные полы, что приходится устранять устройством «теплых полов». Если помещение достаточно высокое (производственный корпус, зрительный или спортивный зал и т.п.), то прогрев всего объема длится достаточно долго, создается расслоение воздуха.

Поднимающийся вверх теплый воздух создает сквозняк в помещении, кроме того увеличиваются потери тепла через крышу и стены, тепло попросту уходит из здания. В этом случае говорят, что мы отапливаем улицу. Люди, находящиеся внизу, оказываются в зоне холодного воздуха.

На рисунке 1 схематично показано распределение тепла при работе традиционной системы отопления.

Рисунок 1. Распределение тепла при работе традиционной системы отопления

Основным устройством системы водяного охлаждения является котел, чаще всего газовый. Нагретая в котле вода по трубам поступает в отопительные приборы — радиаторы. Для циркуляции воды в системе устанавливается насос, если циркуляция принудительная, хотя циркуляция может быть естественной. В этом случае можно обойтись и без насоса.

Кроме этих основных устройств и деталей в водяную систему отопления входит также множество «вспомогательных», но нужных деталей. Прежде всего, это расширительный бак для компенсации температурного расширения воды, фитинги для соединения труб, воздушные клапаны и многое другое, необходимое для нормальной работы всей системы в целом.

В индивидуальном доме для установки газового котла требуется дополнительное помещение, оборудованное системой вентиляции и дымоходом, не говоря уже о системе подведения газа. В случае централизованного отопления требуется строительство большой котельной и прокладка целой сети теплотрасс. Вся система получается дорогой и сложной. Но в некоторых случаях, например для небольшого загородного дома, и если поблизости нет газа, приходится делать электрическую систему отопления.

Наиболее распространенными в таких случаях являются электрические котлы для водяного отопления или различные электрические обогреватели. В первую очередь это масляные радиаторы, электрокамины и тепловентиляторы различных конструкций. Принцип работы этих приборов также конвекционный, как у водяных систем отопления: сначала греется воздух, а уже потом стены, мебель, люди. Такая система малоэффективна и малоэкономична. [2]

Инфракрасные отопительные приборы

В настоящее время выпускаются различные приборы инфракрасного отопления, которые обеспечивают рациональный и экономный обогрев помещений в самых различных условиях.

С точки зрения природы традиционные системы отопления действуют неправильно. Сначала нагревается воздух, а потом и все остальное. В природных условиях все происходит наоборот.

Естественным источником тепла на Земле является Солнце. Солнечные лучи обладают очень широким спектром, но именно его инфракрасная составляющая нагревает Землю, людей, растения и все предметы, а уже от них нагревается воздух и создаются комфортные условия для жизнедеятельности человека.

Именно по такому принципу работают инфракрасные обогреватели. Воздух для инфракрасного излучения абсолютно прозрачен, поэтому инфракрасные лучи беспрепятственно доходят до обогреваемых поверхностей и предметов.

На рисунке 2 схематично показано распределение тепла при использовании инфракрасного обогревателя.

Рисунок 2. Распределение тепла при использовании инфракрасного обогревателя

vashslesar.ru

с точки зрения термодинамики отапливать дома электрообогревателями

Прямой обогрев электричеством. Использование конвекторов и радиаторов

Любой из вариантов организации электрического отопления имеет как свои плюсы, так и недостатки. Наиболее популярными и распространенными обогревателями, работающими от сети, являются конвекторы и электрические радиаторы.

Масляный радиатор

Более широким спросом пользуются радиаторы масляного типа. Такие устройства более удачно подойдут для местного обогрев.

Масляный радиатор – это такой прибор, корпус которого состоит из соединенных между собой нескольких секций.

Внутри данной конструкции располагается теплоноситель минерального типа. В этом теплоносителе погружены обогревательные ТЭНЫ, которые необходимы для обогрева радиатора. Многие модели масляных радиаторов бытового типа имеют ТЭНЫ с мощностью от 2,5 до 3 кВт. Благодаря такой мощности масло нагревается за довольно короткий период времени. Минеральное масло способствует тому, что ТЭН нагревается до очень высокой температуры в 2000 градусов. Масляные радиаторы хорошо подойдут для обогрева любой комнаты в доме или квартире.

Масляные радиаторы не оправдают себя, если их использовать для общего обогрева квартиры или дома, так как их нельзя отнести к категории экономичных. Такие устройства оправданы только в том случае, если их использовать как дополнительный прибор для обогрева.

Альтернативой таким устройствам можно назвать конвекторы электрического типа. Их можно установить и в роли общего обогревателя.

Однако они будут оправданы только в том случае, если в здании невозможно организовать водяную отопительную систему. В корпусе конвектора располагается нагревательный компонент, который превращает электроэнергию в тепло. От этого нагревательного компонента горячий воздух поднимается и выходит через специальные отверстия, которые имеются в корпусе конвектора. Почти все современные электроконвекторы оснащены специальными решетками, благодаря которым возможна регулировка объема выходящего воздуха. Внизу конвекторного корпуса находятся отверстия, которые необходимы для того чтобы в устройство проникал холодный воздух. Этот воздух в дальнейшем нагревается и выходит через верхние отверстия.

Электрический настенный конвектор

Почти все конвекторы оснащены специальными термодатчиками автоматического типа, принцип работы которых схож с отопительным краном. Когда воздух, который проникает в конвектор через его нижние отверстия, будет достаточно теплым, датчики сработают и электроприбор отключится. Благодаря этим своим параметрам и характеристикам электроконвекторы более оправданы с точки зрения экономии электроэнергии, чем радиаторы масляного типа.

По своим конструкционным особенностям различают несколько типов конвекторов: настенные конвекторы и напольные конвекторы.

Такие приборы являются наиболее популярными, однако существуют и такие конвекторы, как внутрипольные. Если выбор пал на последний тип конвекторов, то лучше всего их устанавливать в области вдоль окна. В таком случае они не только буду обогревать помещение, но и станут дополнительной защитой от сквозняков и уличного холода который проникает через окно. Электро отопление конвектором будет более выгодным и экономичным по сравнению с масляными радиаторами, однако использование твердого или жидкого топлива или газа будет все равно дешевле.

Система теплый пол

Теплый пол нельзя считать основной отопительной системой, но в качестве дополнительного источника тепла он себя хорошо оправдает. Теплый пол представляет собой конструкцию, состоящую из нагревательной пленки и кабелей отопительного типа. Такая конструкция монтируется под напольное покрытие. На некоторые участки пола устанавливаются специальные температурные датчики, которые соединены с термостатом, установленным на одну из стен помещения.

Теплый кабельный пол

Такое отопление электричеством, как теплый пол, позволяет производить самостоятельную регулировку отопления в квартире, задавая определенный температурный режим. Монтаж такой обогревательной системы не представляет собой слишком сложный процесс, поэтому его можно произвести и своими руками, без того, чтобы обращаться за помощью к специалистам. У нас можно найти множество рекомендаций, а также видеороликов, которые помогут справиться с такой задачей. Такая система, как электрическое напольное отопление, не подойдет в качестве универсального источника тепла, поэтому она будет оправдана только как дополнительная системы для обогрева.

Водяной обогрев: котлы ТЭНового типа

Электрическое водяное отопление считается более эффективным, чем использование лишь простых нагревательных электроприборов. Данная система отопления использует в роли теплоносителя обычную воду. Чтобы вода нагревалась до необходимой температуры, система оснащена таким устройством как бойлер или электрический котел. Бойлеры бытового типа, которые используются для нагрева воды, не подойдут в качестве главного устройства водяной электрической отопительной системы. Бойлер, который необходим для эффективной работы отопительной системы, должен обладать куда более высокими показателями мощности. Для организации автономной электрической отопительной системы могут быть использованы самые разнообразные установки, такие как:

  • ТЭНовые установки;
  • Индукционные установки;
  • Электродные установки.

Самыми популярными являются ТЭНовые котлы, которые можно видеть на фото. Принцип работы таких котлов состоит в следующем: теплоноситель поступает во внутренний бак таких котлов. В баке размещен ТЭН, который начнет нагреваться, и его температура будет передаваться теплоносителю. Благодаря насосу циркуляционного типа теплоноситель будет поступать в отопительный контур и затем распространяться по конечным элементам потребления, то есть, к отопительным радиаторам.

Электрический котел

Необходимо помнить о том, что самым уязвимым местом у котла является как раз ТЭН. Необходимо выбирать такой котел, в котором ТЭН является заменимым компонентом. Тэн через несколько лет может выйти из строя, так как он покроется накипью, и тогда его потребуется заменить. Большинство котлов оснащено автоматикой, которая позволяет включить определенный рабочий режим. Это позволяет существенно сэкономить на электричестве, так как котел будет нагревать воду, только тогда в этом есть необходимость.

Еще одним преимуществом, которое дарит электро водяное отопление, считается тот факт, что электрические компоненты совсем не контактируют с водой. В случае аварии автоматика полностью отключит ТЭН.

Достоинства и недостатки электрического отопления

Любые электрические системы отопления обладают как своими преимуществами, так и недостатками.

Плюсы электронагрева:

  • Его можно установить самостоятельным образом;
  • Разрешение на установку таких устройств получить намного проще, чем, например, разрешение на установку газового котла;
  • Электрические обогреватели легче настраиваются и более просты в управлении;
  • За подачей топлива не нужен постоянный контроль, все, что необходимо – это задать определенный температурный режим;
  • Довольно быстрый обогрев;
  • Комфортный температурный режим в помещении установится всего лишь после 10-15 минут после того как система начнет работать.

Недостатки электрических нагревателей, которые чаще всего освещают отзывы:

  • Оборудование стоит довольно дорого, в частности, к высокой ценовой категории относятся такие устройства, которые оснащены различной автоматикой;
  • Сам обогрев помещения обходится довольно дорого;
  • Высокие нагрузки на электрическую проводку и кабели напряжения.

В случае если такие недостатки сильно не пугают, то такая система отопления будет считаться довольно эффективной. Электрическую отопительную систему намного проще организовать, чем любую другую.

Где как не в северных широтах нашей страны можно проверить надежность различных систем отопления? Несмотря на то, что многие жители городов до сих пор сильно зависят от центральной системы отопления, многие уже ищут пути нагреть свой дом посредством установки нового оборудования. Инфракрасное отопление позиционируется как совершенно новый принцип нагрева помещений.

Как работают инфракрасные обогреватели

В отличие от традиционного представления нагрева помещения, где главный принцип строится на том, что подогревается в первую очередь воздух, инфракрасные системы обогрева предлагают нагревать не воздух, а саму плоскость и предметы, находящиеся в комнате. Нагретые предметы отдают свое тепло, в результате чего воздух нагревается и в помещении поддерживается стабильная температура.

По сравнению с газовыми системами отопления, ИК нагрев более эффективен, и, как говорит реклама, такой способ отопления экономит достаточно много электроэнергии, но это лишь по сравнению с обычными радиаторами, которые потребляют очень много электроэнергии.

Новый, «революционный» принцип нагрева помещений инфракрасными «пластинами» на самом деле предполагает нагревание поверхности, иначе говоря, контактный нагрев, с которым обычный потребитель на самом деле был знаком и раньше. Взять, к примеру, полы с подогревом или нагревание стекол в машине – все это и есть раскрученный в наше время инфракрасный способ обогревания, пришедший на смену привычной конвекции.

Виды инфракрасного отопления

Существует несколько видов инфракрасного отопления дома:

  • потолочный;
  • настенный;
  • половой;
  • нагрев с помощью инфракрасных котлов.

У каждого из таких видов нагрева есть свои преимущества. Подвешенные под потолком инфракрасные лампы обеспечивают теплом всю комнату, но при этом более теплым воздух все же остается под потолком, а ногам может быть и холодно.

Инфракрасная панель может быть установлена и на стену, в этом случае теплыми будут стены и средняя полоса воздуха в комнате. Пол при этом рискует так же остаться холодным, что для зимы очень и очень неприятно. Стоит отметить, что инфракрасные пластины часто устанавливают в домах в качестве дизайнерского решения или дополнительного способа нагрева, а не в качестве основного источника тепла.

Самым эффективным способом ИК подогрева считается пол. Так называемые системы ПЛЭН – это, по сути своей, установленные под паркет пленочные маты, которые нагревают пол до комфортной температуры, что положительно сказывается на помещении в целом. Подогрев пола полезен в любое время года, особенно, если в доме есть дети или инвалиды, которые контактируют с этой поверхностью чаще взрослых.

Однако пленочного инфракрасного покрытия все еще недостаточно для хорошего отопления квартиры. Тем не менее подогрев полов эффективен и в случае, если помещение большое и тепло в нем распределяется неравномерно. То есть, при традиционной системе обогрева весь теплый воздух скапливается у потолка, а в нижней части комнаты воздух остается холодным, как и поверхность большинства предметов, что очень неудобно.

kabel-house.ru

Вопрос: С точки зрения термодинамики, отапливать дома электрообогревателями крайне невыгодно, поскольку …

Тема:

Принцип возрастания энтропии

Ответ на тест:

+ при этом высококачественная электрическая энергия целенаправленно превращается в низкокачественную тепловую


− электрическую энергию трудно превратить в тепловую без больших потерь


− это требует прокладки мощных линий электропередачи и строительства технически сложных и дорогих подстанций


− электрообогреватели гораздо опаснее для здоровья населения, чем привычные батареи, по которым циркулирует горячая вода

Источник ответа на тест

Современные электрообогреватели, например, масляные, не более вредны для здоровья, чем радиаторы центрального отопления. Превращение электроэнергии в теплоту не требует сложных устройств, и потому даже очень эффективные и мощные электрообогреватели стоят недорого. Строить линии электропередачи и подстанции тоже существенно дешевле, чем тянуть трубопроводы горячей воды, постоянно их ремонтировать, мириться с тем, что они обогревают не столько дома, сколько окружающую среду.
Однако с точки зрения термодинамики, электрообогреватели – чистое расточительство. Сначала на тепловой или атомной электростанции с большими трудностями превращают теплоту, получаемую от атомного реактора или сгорающего топлива, в электроэнергию, причем 60% и более этой теплоты бесполезно рассеивается в окружающей среде. Эти потери можно оправдать, если за счет полученной высококачественной электроэнергии делать что-нибудь сложное – например, питать компьютер, телевизор или прецизионный станок. Но если втыкать в розетку электрообогреватель и сразу перегонять высококачественную электроэнергию в теплоту …
Зачем, спрашивается, тогда нужны ЭЛЕКТРОстанции?

Ответ на тест i-exam по дисциплине «Концепции современного естествознания» по теме «Принцип возрастания энтропии».

test-exam.ru

5. Красный свет не засвечивает фотопленку и фотобумагу потому, что …

энергия его фотонов мала по сравнению с энергией фотонов синего или зеленого света, и ее не хватает, чтобы инициировать фотохимическую реакцию

энергия его фотонов велика по сравнению с энергией фотонов синего или зеленого света, и фоточувствительный центр в эмульсии не способен ее поглотить

длина его волны велика по сравнению с длиной волны синего или зеленого света, и вследствие этого его нельзя рассматривать как поток частиц-фотонов

длина его волны мала по сравнению с длиной волны синего или зеленого света, и вследствие этого он полностью отражается от поверхности фоточувствительного материала

Решение:

Красный свет обладает наибольшей длиной волны во всем видимом диапазоне электромагнитного излучения. Соответственно, согласно формуле Планка энергия его фотонов минимальна. Поэтому объяснения, апеллирующие к большой энергии фотона и малой длине волны красного цвета, отпадают. Из оставшихся двух следует отбросить то, которое утверждает, что длинноволновый свет в принципе не способен проявить корпускулярную сторону своей природы. В действительности корпускулярно-волновой дуализм – всеобщее свойство материи, в том числе и длинноволнового электромагнитного излучения.

6. Квантовая механика дает …

вероятностное описание для всех материальных объектов

вероятностное описание для объектов микромира и детерминистское описание для объектов макромира

детерминистское описание для объектов микромира и вероятностное описание для объектов макромира

детерминистское описание для всех материальных объектов

Решение:

Квантовомеханическое описание – вероятностное по своей сути для всех объектов. Как и для любой статистической теории, для квантовой механики возможны ситуации, когда случайные отклонения от среднего (флуктуации) оказываются несущественными. В таких ситуациях оказывается возможным делать однозначные, детерминистские предсказания. Чаще всего такие ситуации реализуются для макроскопических объектов. Однако и для объектов макромира (и даже мегамира) возможны ситуации, когда квантовая механика не позволяет дать однозначных детерминистских предсказаний, например «кошка Шредингера» или квантовые флуктуации, приведшие к рождению и первичной инфляции нашей Вселенной.

Тема 18: Принцип возрастания энтропии

1.Энтропия системы может изменяться …

как в сторону увеличения, так и в сторону уменьшения, если система открытая

только в сторону уменьшения, если система изолированная

только в сторону увеличения, если система открытая

как в сторону увеличения, так и в сторону уменьшения, если система изолированная

Решение:

Второй закон термодинамики запрещает понижение энтропии изолированной системы. Все остальное не запрещено, то есть может происходить в реальности, в частности любое изменение энтропии системы открытой.

2. С точки зрения термодинамики, отапливать дома электрообогревателями крайне невыгодно, поскольку …

при этом высококачественная электрическая энергия целенаправленно превращается в низкокачественную тепловую

электрическую энергию трудно превратить в тепловую без больших потерь

это требует прокладки мощных линий электропередачи и строительства технически сложных и дорогих подстанций

электрообогреватели гораздо опаснее для здоровья населения, чем привычные батареи, по которым циркулирует горячая вода

Решение:

Современные электрообогреватели, например, масляные, не более вредны для здоровья, чем радиаторы центрального отопления. Превращение электроэнергии в теплоту не требует сложных устройств, и потому даже очень эффективные и мощные электрообогреватели стоят недорого. Строить линии электропередачи и подстанции тоже существенно дешевле, чем тянуть трубопроводы горячей воды, постоянно их ремонтировать, мириться с тем, что они обогревают не столько дома, сколько окружающую среду.

Однако с точки зрения термодинамики, электрообогреватели – чистое расточительство. Сначала на тепловой или атомной электростанции с большими трудностями превращают теплоту, получаемую от атомного реактора или сгорающего топлива, в электроэнергию, причем 60% и более этой теплоты бесполезно рассеивается в окружающей среде. Эти потери можно оправдать, если за счет полученной высококачественной электроэнергии делать что-нибудь сложное – например, питать компьютер, телевизор или прецизионный станок. Но если втыкать в розетку электрообогреватель и сразу перегонять высококачественную электроэнергию в теплоту …

Зачем, спрашивается, тогда нужны ЭЛЕКТРОстанции?

studfiles.net

Тест КСЕ 3.2

Тест КСЕ 3.2

Принцип возрастания энтропии

  1. С точки зрения термодинамики, отапливать дома электрообогревателями крайне невыгодно, поскольку …

  1. Основное предназначение тормозных колодок автомобиля, с точки зрения термодинамики, заключается в …

  1. Одинаковые количества чистого кремнезема (диоксида кремния SiO2) при одном и том же давлении (атмосферном) находятся в разных состояниях (определяемых температурой и историей образца) – пара, расплава, горного хрусталя (кристалл), кварцевого стекла (аморфного). Из них самой низкой энтропией обладает …

  1. В ходе эмбрионального (зародышевого) развития симметрия живого организма …

  1. При нагревании физического тела энтропия…

  1. Второй закон термодинамики может быть сформулирован как ..

  1. Кинетическим условием состояния равновесия является:

  1. Процесс _________ сопровождается уменьшением энтропии в системе.

  1. Величина, являющаяся мерой рассеивания в термодинамической системе, называется…

  1. Смысл третьего закона Ньютона состоит в том, что он…

  1. В процессе испарения жидкости энтропия …

  1. С неравновестностью процессов связано понятие их …

  1. С точки зрения термодинамики, возможно устройство, которое …

  1. При образовании смесей энтропия…

  1. При увеличении сложности и упорядоченности системы и ее энтропия

  1. Процессы, протекающие в двух взаимно противоположных направлениях, называются…

  1. В процессе сублимации йода (переход из твёрдого состояния в газообразное) энтропия…

  1. При охлаждении тела его энтропия…

  1. Живые организмы способны длительное время поддерживать упорядоченное (низкоэнтропийное) состояние своей внутренней среды в процессе жизнедеятельности и даже уменьшать свою энтропию – например, в ходе индивидуального развития или выздоровления после ранения или болезни. Это не противоречит второму закону термодинамики, требующему увеличения энтропии в ходе любого процесса, поскольку …

  1. Согласно __________, всякий раз, когда энергия переходит из одной формы в другую, она утрачивает часть своей способности производить работу, превращается в бесполезное тепло.

  1. Одна из формулировок второго закона термодинамики гласит, что с течением времени… …

  1. Одно из основных свойств энтропии заключается в том, что

  1. Превращение тепловой энергии в механическую без остатка …

  1. Самопроизвольная передача тепла от холодного тела к горячему…

  1. Энтропия системы служит мерой…

  1. Энтропия живого организма поддерживается на низком уровне…

  1. В герметичном металлическом баллоне находится некоторое количество кислорода. Такая характеристика этой системы, как ________________, является лишь средним значением, вокруг которого происходят постоянные беспорядочные колебания (хотя и небольшой амплитуды).

  1. Одна из возможных формулировок закона термодинамики гласит, что

  • беспорядок в изолированной от внешнего мира системе неизбежно нарастает, а имеющиеся в ней структуры разрушаются

  1. С точки зрения термодинамики, предприятия электроэнергетики …

  • превращают неудобные для использования формы энергии частично в электроэнергию, частично в низкокачественные формы энергии

  1. Общий смысл ______________ закона термодинамики заключается в том, что в мировых процессах преобладает тенденция к деградации.

  1. Согласно второму закону термодинамики, энтропия изолированной системы…

  1. Энтропия является мерой…

  1. Общий смысл _________ закона термодинамики заключается в том, что энергию невозможно произвести и невозможно израсходовать.

  1. Энтропия системы может изменяться …

  • как в сторону увеличения, так и в сторону уменьшения, если система открытая

  1. В процессе плавления вещества его энтропия.

  1. Невозможен вечный двигатель первого рода. Это одна из формулировок

  1. В процессе развития и усложнения живого организма энтропия…

  1. Смысл третьего закона Ньютона состоит в том, что он…

  1. Одной из первых формулировок первого начала термодинамики является закон…

  1. Одна из формулировок второго закона термодинамики связана с понятием…

  1. В процессе кристаллизации вещества из расплава энтропия

  1. Укажите правильное утверждение относительно соотношения второго закона термодинамики (закона возрастания энтропии и эволюционных представление

  • закон роста энтропии сформулирован для замкнутых систем, и не приложим напрямую к открытым системам — например, биологическим. Поэтому он не противоречит возможностям развития эволюции

  1. Первое начало термодинамики является одной из формулировок закона …:

  1. Мерой рассеивания (деградации) энергии материи является…

studfile.net

Отопление дома, типовые схемы отопления

Человеку, решившему установить в своем доме автономное отопление, будет полезно ознакомиться с типовыми схемами и особенностями отопительных систем. Их довольно много и у каждой есть слабые и сильные стороны. Так, отопительные радиаторы можно подключить как однотрубной, так и двухтрубной разводкой, а циркуляцию теплоносителя организовать естественным (гравитационным) способом или при помощи насоса. Все это повлияет на специфику устанавливаемого оборудования, длину труб, количество арматуры и общую стоимость системы отопления. Ознакомившись с типовыми схемами, Вы более точно сможете сформулировать задание для проектировщиков компании «Термодинамика», что позволит максимально учесть все пожелания и нюансы.

→ Система отопления из пластиковых труб.

→ Радиаторы отопительные. Какой вид выбрать?

→ Термоголовки. Отличное решение за небольшие деньги!

Основное оборудование системы отопления

Типовая схема системы отопления

  1. Котел (газовый, дизельный или твердотопливный)
  2. Автоматический воздухоотводчик
  3. Вентиль с клапаном под термоголовку
  4. Радиатор панельный
  5. Вентиль запорный под шестигранник
  6. Расширительный бак
  7. Кран шаровой, байпасный
  8. Фильтр косой с магнитом
  9. Насос циркуляционный
  10. Манометр
  11. Группа безопасности котла

На схеме представлено основное отопительное оборудование, о правильном размещении которого стоит подумать заранее. Котел следует разместить в подвальном (если нет, то на первом) этаже дома, напольный котел устанавливают на бетонном подиуме рядом с дымоходом. В непосредственной близости от котла размещают водяной бойлер, гребенку отопления с циркуляционными насосами и расширительный бак. Между оборудованием должно остаться достаточное место для его технического обслуживания. Следующий этап — это расстановка радиаторов отопления, которые устанавливают под окном. Если в результате теплового расчета, необходимое количество радиаторов больше количества оконных проемах, то остальные отопительные приборы стараются установить на стенах граничащих с улицей, а не на внутренних перегородках. В заключении разрабатывают трассировку отопительных трасс и стояков, пытаясь сделать их как можно короче и с наименьшим количеством изгибов, в верхних точках стояков, где возможно завоздушивание, обязательно предусматривают автоматические воздухоотводчики с учетом возможности доступа к ним в дальнейшем.

Важно. Расстояние от отопительных радиаторов до пола и подоконника не должно быть менее 10 см., предусмотрите автоматические воздухоотводчики в местах возможного завоздушивания стояков, правильно выбирайте диаметры труб подвода теплоносителя.

Применяемые для отопления дома типы подключения радиаторов

Нижнее подключение радиатора

Нижнее подключение отопительных приборов. В этом случае трубы системы отопления подключают к нижним выходам радиатора, с одной стороны подающий трубопровод, с другой обратный. Часто, данный метод подключения является популярным у дизайнеров, поскольку основные тубы системы отопления размещают в стяжке под напольным покрытием, а зона подключения радиаторов с коротким участком трубопровода не бросается в глаза. Преимуществом нижнего подключения является меньший расход трубы и фитингов, несколько более простой и быстрый монтаж отопления дома в целом. Все остальное минусы. Поскольку нагретый теплоноситель проходит только через низ радиатора, то он нагревается не равномерно, низ горячий, а верх теплый.  Из-за этого батарей греют не на полную мощность, её потери могут быть более 15%, что может вызвать необходимость в установке дополнительного радиатора или радиаторов с заведомо большим количеством секций. Вследствие неравномерного нагрева отопительных приборов запрещено использовать нижнее подключение для чугунных радиаторов. Специалисты компании «Термодинамика» не советуют Вам использовать этот вид подключения отопительных приборов при устройстве отопления в доме.

Одностороннее подключение

Отопление дома с радиаторами, смонтированными по односторонней схеме. Подающий трубопровод, в этом случае, подключают к одному из верхних выходов радиатора, во второй устанавливают клапан Маевского, необходимый для удаления воздуха. С той же стороны, снизу радиатора монтируют обратный трубопровод, второй выход снизу глушат. Довольно распространенный способ подключения, позволяет использовать отопительный радиатор с максимальной эффективностью. В компании «Термодинамика» Вам предложат различные виды отопительных боковых подводок, изготовленных, в том числе, из нержавеющей стали, которые позволят подключить отопительные радиаторы по односторонней схеме, а трубы отопления разместить в стяжке пола. Следует помнить, данный способ подключения не подходит для слишком длинных батарей, с количеством секций 16 и более.

Диагональное подключение

Отопление радиаторами, подключенными по диагональной схеме. Также эта схема подключения называется перекрестной. Подающая отопительная труба, в данной схеме, подключается к одному из верхних выходов отопительного радиатора, а обратный трубопровод присоединен к нижнему выходу с противоположной стороны. Диагональная схема подключения позволяет эффективно использовать в отоплении дома длинные или многосекционные радиаторы с количеством секций более шестнадцати штук. Кроме того, данная схема подключения отопительных приборов красиво реализуется с точки зрения дизайна и красоты. В процессе монтажа отопления в доме, основной участок подводящего и обратного отопительных трубопроводов размещают в штробе стены, из которой, в местах подключения к радиатору, выходят только угловые фитинги с резьбой. Специалисты компании «Термодинамика» считают данный способ подключения оптимальным м рекомендуют его всем своим клиентам.

Установка отопления в коттедже с применением естественной (гравитационной) или принудительной схемы циркуляции теплоносителя

Система с естественной циркуляцией

Система с принудительной циркуляцией

Еще 20 лет назад, в частных домовладениях применялись системы отопления, в которых циркуляция теплоносителя в системе отопления дома осуществлялась без применения насосного оборудования, а исключительно за счет разности плотностей нагретого и охлажденного антифриза (воды), заправленного в систему отопления. Такое отопление дома осуществляется при помощи естественной (гравитационной) схемы циркуляции теплоносителя. Гравитационная система отопления очень проста и надежна, более того она энергонезависимая и не требует подключения к электрической сети. Поскольку данный принцип отопления в доме не подразумевает использования циркуляционных насосов с обратными клапанами и арматурой, гребенок и ряда другого вспомогательного отопительного оборудования, то и стоимость таких систем отопления ниже аналогичных, с принудительной циркуляцией. С другой стороны, системы отопления с естественной циркуляцией довольно громоздки и подразумевают использование труб с большим диаметром, которые монтируют с определенным уклоном и минимальным количеством поворотов, нельзя использовать многие современные отопительные радиаторы с заужением внутренних диаметров, все это накладывает ограничения в дизайне отапливаемого помещения. Гравитационные отопительные системы обладают большой тепловой инерционностью и не позволяют быстро и точно регулировать температуру в отапливаемом помещении. В настоящее время, системы отопления с естественной циркуляцией теплоносителя практически не применяют для устройства отопления в загородных домах Москвы и МО. Системы с принудительной циркуляцией лишены этих недостатков, но для их эффективного функционирования, требуется установка циркуляционных насосов с арматурой и расширительным баком, они энергозависимые. Вместе с тем, установив отопление с принудительной циркуляцией теплоносителя, Вы не ограничены в дизайне помещений своего жилища, поскольку используются трубы меньшего диаметра, без ограничений по конфигурации отопительных трасс. В целом, данный вид системы отопления, обеспечивает более быстрый и эффективный нагрев отапливаемых помещений, он более энергоэффективен и отлично поддаётся автоматизации с погодозависимым управлением. Все современное отопительное оборудование рассчитано на работу в системах с принудительной циркуляцией теплоносителя, которую специалисты компании «Термодинамика» советуют своим клиентам, которых интересует установка отопления в доме.

Отопление дома с однотрубной и двухтрубной схемой подключения радиаторов

Однотрубная схема

 В качестве примера однотрубного подключения отопительных приборов, рассмотрим организацию отопления в многоквартирных городских домах. В них, Вы наверняка видели стояк отопления, проходящий через все этажи, к которому подключен отопительный радиатор в каждой квартире. Причем отопительная батарея подключена последовательно, т.е. стояк подсоединен к одному из входов радиатора, а уже из его выхода, с противоположной стороны, стояк уходит на следующий этаж. Таким образом, в доставке нагретого теплоносителя к отопительным приборам используется всего одна труба, к которой последовательно (в разрыв) подключены все отопительные приборы, установленные в помещении. Очевидным преимуществом этой схемы является простота и быстрый монтаж отопления в доме «под ключ», низкий расход отопительных труб и арматуры, стоимость однотрубной системы более чем на 20% ниже двухтрубного подключения. Однако отопление дома с использованием однотрубной схемы имеет существенные недостатки, основной из них – это неравномерный нагрев отопительных батарей, так ближайший к источнику тепла радиатор будет самым горячим, а каждый последующий холоднее. Данная особенность может быть компенсирована правильным подбором отопительных приборов, каждый последующим выбирают с несколько большей тепловой мощностью. В однотрубной системе отопления исключена возможность отключения одного из радиаторов, без остановки всей системы, если при монтаже отопления в доме не были установлены перемычки между входом и выходом каждой батареи. Однотрубное подключение радиаторов является устаревшей схемой, специалисты компании «Термодинамика» не рекомендуют использовать её, когда Вам необходимо отопление в доме. Прекрасной альтернативой является двухтрубная схема подключения радиаторов, используется в отопление большинства современных загородных домов или коттеджей.

двухтрубная схема

 В этом варианте подача и отвод теплоносителя к радиатору осуществлен двумя разными трубами, к которым радиатор подключен параллельно. Таким образом, в каждый из установленных отопительных приборов подается нагретый теплоноситель с одинаковой температурой, благодаря чему все радиаторы нагреваются равномерно и работают с максимально возможной тепловой мощностью. Отопление дома с использованием двухтрубной системы несколько дороже в монтаже, но её работа прекрасно подается автоматическому управлению и обеспечивает максимальный комфорт в отапливаемом помещении. Двухтрубная схема подключения радиаторов является оптимальной для людей, желающих обустроить комфортное и качественное отопление в загородном доме.

tdm-group.ru

как с точки зрения экономии? |

Теплые полы имеют большую популярность. Их укладывают в любых помещениях, возможен монтаж как в жилых домах, так и в офисах. Работа теплого пола основана на нагревании поверхности пола от труб или от провода. Теплый пол может быть водяным или электрическим.

Тёплые полы: основная система отопления или дополнительный обогрев: как с точки зрения экономии?

1. Что такое тёплые полы?

Теплый пол – система отопления, обеспечивающая подогрев полов в помещении. Это современный и удобный способ отопления жилого помещения или дома в любое время года. Наиболее распространены электрические и водяные теплые полы.

Система электрического подогрева пола состоит из нагревательных матов и регуляторов. Нагревательные маты укладываются под полом. Их можно разместить между слоями бетона, залить самовыравнивающимся бетоном или уложить в клей под плитку. Конструкция обеспечивает прочность, долговечность и безопасность теплых полов.

Водяные системы подогрева пола состоят из устройства, которое греет воду и распространяет ее по системе, а также монтируемых в бетон трубок, по которым течет вода.

2. Тёплые полы: обогрев локальных зон или основная система отопления?

Чаще всего электрические нагревательные маты для пола применяются в определенных зонах. Очень удобны они в ванной комнате и в кухне. Однако стоит подчеркнуть, что электрические теплые полы можно использовать и для отопления всего жилого помещения. Более того, в отличие от обычных обогревателей, теплый пол не создает конвекции. Он прогревает воздух всей поверхностью пола и позволяют поддерживать постоянную температуру в жилом помещении на разной высоте: на уровне ног воздух теплее, чем на уровне головы. Это идеальное распределение температуры воздуха в комнате с точки зрения комфорта и самочувствия.

Электрические теплые полы

Полы с водяным подогревом являются лучшим решением, если вы хотите обогреть все жилое помещение. Система состоит из труб из сшитого полиэтилена PEX, подсоединенных к коллектору, в который поступает вода из системы центрального отопления. Обычно решение о применении данного типа отопления принимается на стадии проектирования дома. Необходимо при этом учитывать, как будет функционировать вся система отопления, а не как в случае с электрическим подогревом, только локальную установку подогрева.

Водяные теплые полы

Водяные теплые полы нормально функционируют, когда температура воды в системе не превышает 50 градусов.

Существуют также смешанные системы отопления: водяные теплые полы и радиаторы в определенных местах.

3. Обоснованы ли тёплые полы с точки зрения экономии?

С точки зрения экономии электрические теплые полы могут быть выгодны при определенных условиях. Прежде всего, необходимо подобрать нагревательный мат, соответствующий нагреваемой поверхности. Мат большой мощности впустую расходует больше электроэнергии.

Существенным моментом является также качество терморегулятора мощности, а также его правильная установка. Средняя комфортная температура в обогреваемом теплым полом помещении составляет 20°С, что на 2 градуса ниже, чем при отоплении традиционным способом.

Эта разница обусловлена тем, что традиционные средства отопления распределяет тепло неравномерно – воздух вблизи пола холоднее, а под потолком — теплее.

С точки зрения экономии электрические теплые полы могут быть выгодны при определенных условиях.

С большой долей вероятности можно утверждать, что на сегодняшний день стоимость отопления жилого помещения площадью 100 кв.м в хорошо изолированном доме с герметичными окнами в период отопительного сезона вполне сравнима с той суммой, которую необходимо будет заплатить за центральное отопление: котел + обогреватели. Обязательным условием при этом является правильная установка термостатов.

Водяные теплые полы являются более дешевым вариантом по сравнению с электрическим отоплением и все чаще применяются в домах в качестве основной системы отопления.

4. Плюсы и минусы тёплых полов

ПЛЮСЫ:

  1. Равномерное распределение температуры по высоте помещения;
  2. Отсутствие конвекционных потоков;
  3. Недорогая установка, простой монтаж и консервация;
  4. Не занимает полезную площадь в помещении;
  5. Комфорт и безопасность при использовании;
  6. Энергия, безопасная для окружающей среды;
  7. Отопление, не создающее проблем аллергикам и астматикам.

МИНУСЫ:

  1. Электроэнергия является более дорогой, чем иные виды топлива. Тем не менее, отопление при помощи нагревательных матов не должно быть более дорогим по сравнению с традиционной отопи тельной системой;
  2. Обязательным является умелое пользование терморегуляторами;
  3. При возможной аварии (очень редко) трудный доступ – необходимо сбивать плитку;
  4. Не рекомендуется для высоких производственных помещений большой площади (можно применять, но экономически не выгодно)
  1. Критерии выбора нагревательных матов
ТИП ПОМЕЩЕНИЯ, В КОТОРОМ ПЛАНИРУЕТСЯ ИХ ПРИМЕНЕНИЕ

В качестве дополнительного источника тепла лучше всего использовать теплый пол на кухне или в ванной комнате. В ванной комнате можно по-разному спланировать укладку нагревательных матов:

3 квадратных мата2 больших и 1 малый мат1 большой мат
ПОЛНОЦЕННАЯ ОТОПИТЕЛЬНАЯ СИСТЕМА ИЛИ ДОПОЛНИТЕЛЬНЫЙ ОБОГРЕВ?

Электрический теплый пол очень удобен как локальный обогреватель. Небольшой энергосберегающий мат в состоянии обеспечить комфорт при входе в жилое помещение, на том участке, где вы снимаете обувь, на кухне и в ванной комнате, в местах, где дети могут безопасно играть, не рискуя простудиться из-за холодных плиток.

Если вы решили использовать теплые полы как дополнительный обогрев помещения, маты могут иметь меньшую мощность, быть меньше по размерам, а соответствующая установка терморегулятора в этом случае не имеет большого значения.

Если вы выбрали теплые полы в качестве полноценной отопительной системы, отказавшись от центрального отопления, необходимо обратить внимание на соответствующий подбор мощности матов, управление регулятором и качество греющего кабеля.

Необходимо подобрать маты так, чтобы при наименьшей мощности они могли нагреть помещение до оптимальной температуры. В связи с этим рекомендуется сделать проект подогрева пола с учетом различных функций помещений.

КАКУЮ ВЫБРАТЬ МОЩНОСТЬ?

Мощность системы теплого пола подбирается в зависимости от задачи, которую нужно решить: комфортный подогрев поверхности пола или полноценное отопление помещения.

Мощность можно подобрать примерно так:

  1. 100 Вт на 1 м2 – этой мощности достаточно, чтобы использовать эту систему отопления для большинства помещений. Правда, достижение комфортной температуры при использовании таких матов займет некоторое время. Такие маты используются как дополнительный обогрев.
  2. 150 Вт на 1м2 – используется в качестве дополнительного источника тепла в комнате или полноценной системы отопления в коридоре.
  3. 200 Вт на 1м2 – для ванных комнат, а также других помещений с кафельным напольным покрытием рекомендуется выбрать маты большей мощности, так как в этих зонах требуется более высокая температура, а место для укладки матов ограничено.

Маты большей мощности используются в зданиях с высокими потолками, производственных помещениях, гаражах.

ВИД КАБЕЛЯ – КАЧЕСТВО
 Греющий кабель должен отвечать нормам безопасности PN-IEC. В этих нормах изложены спецификации на рекомендуемые виды и минимальную толщину кабелей.Греющий кабель спроектирован таким образом, чтобы не было необходимости в его консервации. Имеет смысл приобрести маты известных фирм, тогда не возникнет необходимости сбивать пол в случае возникновения неисправностей.

ВНИМАНИЕ! Не рекомендуется приобретать маты более высокой мощности, чем требуется для обогрева данного помещения.

Источник: https://leroymerlin.ru/

zagorodnaya-life.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *