Онлайн калькулятор трубы: Трубный калькулятор для расчета веса трубы

Содержание

Калькулятор металлопроката онлайн — Metsi.ru

Если Вам нужно узнать вес погонного метра трубы, арматуры или другого проката, то наиболее удобным и простым решением является наш калькулятор металла.

Сначала Вы выбираете номенклатуру, по которой хотите произвести расчет метров в тонны.

Далее Вы выбираете размер продукции.

Для удобства использования калькулятора мы разработали интерактивную строку поиска, которая облегчит выбор размера продукции

Если это круглый прокат, то в списке представлены диаметры (арматура 10,12 и т.д., круг).

В случае если Вы хотите узнать вес трубы, то обратите внимание на толщину стенки.

Чтобы узнать вес листа, нужно выбрать толщину, и далее расчет массы будет происходить на квадратные метры.

Затем в одно из полей вносятся данные в метрах или тоннах

Если Вы будете вводить значения в поле «метры» («кв. метры», чтобы узнать вес листа), тогда вы узнаете общую массу всей длины (например, вес арматуры).

В случае если Вас интересует расчет длины по массе, то ввод данных нужно производить в поле «тонны».

Вы можете записать и распечатать полученные результаты

Наш калькулятор позволяет записывать полученные расчеты в специальном поле, чтобы Вы легко могли видеть свои последние вычисления. Для этого Вам необходимо нажать на кнопку «Записать», и в специальном поле появится результат Ваших расчетов.

Также, после того как Вы рассчитали все необходимые данные, можно нажать на кнопку «Печать» и в удобной форме получить распечатку полученных результатов.

Расчет заявки онлайн

Вы можете сравнить цены на выбранные позиции у всех поставщиков.

Для этого нужно записать Ваши вычисления. Обратите внимание, чтобы в поле с записанными результатами были позиции, которые Вам интересны. Далее, нажимаете «Рассчитать всю заявку онлайн», и система переведет Вас на страницу, где будут показаны результаты обработки цен поставщиков.

Калькулятор онлайн расчета веса трубы

Любой стройпроект строения не представляется возможным воплотить в реальность без принятия во внимание массы, которая имеется у системы трубопровода.



Выяснять вес нержавеющих металлических труб во время приобретения нужно по некоторых причинам:
  1. этот товар реализуют не по погонному метру, а исходя из массы;
  2. данная характеристика дает возможность выяснить надежность строящихся сооружений;
  3. настоящие параметры довольно часто могут отличаться от обыкновенных даже, когда толщина стенки и диаметр идентичные;
  4. для погрузки в транспортное средство данный показатель нуждается в знании, чтобы не была перегруза.

Во время найма грузового транспортного средства необходимо владеть управлением, что вся купленная серия трубных товаров перевозится в течение одной поездки. Если во время подписания соглашения на грузоперевозку рассматривается тоннаж, то необходимо заблаговременно выяснить, какой объем внесет товар. По этой причине вы можете выполнить следующее: без умений, как подсчитать массу стальной трубы при их приобретении не обходиться.

Для чего нужен калькулятор веса трубы

Иметь вероятность подсчитать за короткий срок массу погонного метра круглой и квадратной алюминиевой трубы — это имеет важное значение, потому что дает возможность моментально выяснить примерную массу трубы либо заготовки, произведенные из нее. Выполнить подсчет массы трубы вы можете вручную благодаря трудной формуле, а можете воспользоваться автоматизированным онлайн калькулятором. Также можете посчитать вес прямоугольной чугунной или медной трубы.

Благодаря этому калькулятору можно просто и к тому же быстро рассчитать точное значение массы 1 погонного м бесшовного трубопровода, изготавливаемая из различных сортов металла, и обладает различными профилями (круглыми, квадратными и прямоугольными). К тому же можно выяснить теоретическую массу всего трубопровода, учитывая ее главные геометрические параметры и марку изделия, из которого он выполнен.

Инструкция использования трубного калькулятора

Рассмотрим инструкцию по использованию калькулятора для расчета веса стальной, профильной и оцинкованной трубы:

  1. В окошке выбираем вид металла: «Черный».
  2. В следующем окошке указываем предложенный сортамент: «Труба круглая».
  3.  Выбираем стальную марку: к примеру, «Ст 20».
  4. Вводим характеристики трубы стальной: внешние диаметры трубы, толщина стенки вместе с  длиной.
  5. Стоит нажать кнопку «Рассчитать», и этот калькулятор позволит верно подсчитать массу стальной трубы в кг.

Рассчитать на онлайн калькуляторе погонный вес трубы. Вычислить массу одного метра трубы и более.

Трубный калькулятор для расчета веса трубы онлайн :: ProTryby.ru

Трубный калькулятор для расчета веса трубы онлайн :: ProTryby.ru

кг

  • Плотность материала кг/м³
  • Расчёт производился по формуле:
Рассчитать вес трубы

Расчеты на трубном калькуляторе являются приблизительными. Наш эксперт вычислит точный вес. Задайте ему вопрос!

Формулы для расчета веса стальных труб

Расчет веса стальных труб в онлайн-калькуляторе производится по следующим формулам:

  1. Квадратные трубы
    m = ro / 7850 × 0.0157 × S × (A × 2 — 2.86 × S) × L
  2. Прямоугольные трубы
    m = ro / 7850 × 0.0157 × S × (A + B — 2.86 × S) × L
  3. Трубы круглого сечения
    m = Pi × ro × S × (D — S) × L

Масса вычисляется при плотности углеродистой стали — 7850 кг/м³. Для расчета m — удельного веса 1 метра трубы, укажите следующие размеры в трубном калькуляторе:

  • ширина сечения профильной трубы — A
  • высота сечения профильной трубы — B
  • диаметр круглой трубы — D
  • толщина стенки трубы — S
  • длина трубы — L

Вес квадратной стальной трубы

Основные размеры квадратной стальной трубы

Расчет теоретического веса квадратной трубы регулирует ГОСТ 8639-82. Масса и типоразмеры стальных квадратных труб приведены в таблице 1:

Таблица 1. Основные размеры и вес стальных квадратных труб по ГОСТ 8639-82
Сторона трубы А, мм Толщина стенки S, мм Вес 1 м, кг
10 0,8 0,222
0,9 0,246
1,0 0,269
1,2 0,312
1,4 0,352
15 0,8 0,348
0,9 0,388
1,0 0,426
1,2 0,501
1,4 0,571
1,5 0,605
20 0,8 0,474
0,9 0,529
1,0 0,593
1,2 0,689
1,4 0,791
1,5 0,841
1,5 1,075
25 0,8 0,599
0,9 0,670
1,0 0,740
1,2 0,878
1,4 1,01
1,5
1,07
2,0 1,39
2,5 1,68
3,0 1,95
30 0,8 0,725
0,9 0,811
1,0 0,897
1,2 1,07
1,3 1,15
1,4 1,237
1,5 1,31
2,0 1,70
2,5 2,07
3,0 2,42
3,5 2,75
4,0 3,04
32 4,0 3,30
35 0,8 0,85
0,9 0,953
1,4
1,45
1,5 1,55
2,0 2,02
2,5 2,46
3,0 2,89
3,5 3,30
4,0 3,67
5,0 4,37
36 4,0 3,80
40 1,4 1,67
1,5 1,78
2,0 2,33
2,5 2,85
3,0 3,36
3,5 3,85
4,0 4,30
5,0 5,16
6,0 5,92
42 3,0 3,55
3,5 4,07
4,0 4,56
5,0 5,47
6,0 6,30
45 2,0 2,65
3,0 3,83
3,5 4,40
4,0 4,93
5,0 5,94
6,0 6,86
7,0 7,69
8,0 8,43
50 2,0 2,96
2,5 3,64
3,0 4,31
3,5 4,94
4,0 5,56
4,5 6,16
5,0 6,73
6,0 7,80
7,0 8,79
8,0 9,69
55 3,0 4,78
60 2,0 3,59
2,5 4,43
3,0 5,25
3,5 6,04
4,0 6,82
5,0 8,30
6,0 9,69
7,0 11,0
8,0 12,20
65 6,0 10,63
70 3,0 6,19
3,5 7,14
4,0 8,07
5,0 9,87
6,0 11,57
7,0 13,19
8,0 14,71
80 3,0 7,13
3,5 8,24
4,0 9,33
5,0 11,44
6,0 13,46
7,0 15,38
8,0 17,22
9,0 18,97
10,0 20,63
11,0 22,20
90 3,0 8,07
4,0 10,59
5,0 13,00
6,0 15,34
7,0 17,58
8,0 19,73
100 3,0 9,02
4,0 11,84
5,0 14,58
6,0 17,22
7,0 19,78
8,0 22,25
9,0 24,62
110 6,0 19,11
7,0 21,98
8,0 24,76
9,0 27,45
120 6,0 20,99
7,0 24,18
8,0 27,27
9,0 30,28
140 6,0 24,76
7,0 28,57
8,0 32,29
9,0 35,93
150 7,0 30,77
8,0 34,81
9,0 38,75
10,0 42,61
180 8,0 42,34
9,0 47,23
10,0 52,03
12,0 61,36
14,0 70,33
Примечание
  1. Масса вычислена при плотности стали 7,85 г/см3
  2. Трубы следующих размеров производятся под заказ: 32, 36, 40, 55, 65 мм
  3. Допускается изготовление труб отличных типоразмеров при согласовании производителя и покупателя.

Вес профильной стальной трубы

Основные размеры профильной прямоугольной трубы

Расчет теоретического веса стальной профильной трубы регулирует ГОСТ 8645-68. Масса и типоразмеры прямоугольных труб приведены в таблице 2:

Таблица 2. Основные типоразмеры и вес стальных прямоугольных труб по ГОСТ 8645-68
Ширина профиля А, мм Высота профиля В, мм S, мм Масса 1 м, кг
15 10 1,0 0,348
1,5 0,488
2 0,605
20 10 1,0 0,426
1,5 0,605
2 0,762
15 1,0 0,505
1,5 0,723
2 0,919
2,5 1,09
25 10 1,0 0,505
1,5 0,723
2 0,919
2,5 1,09
15 1,0 0,583
1,5 0,841
2 1,08
2,5 1,29
28 25 1,5 1,15
2 1,49
2,5 1,80
30 10 1,0 0,583
1,5 0,841
2 1,08
2,5 1,29
3 1,48
15 1,0 0,661
1,5 0,959
2 1,23
2,5 1,48
3 1,71
20 1,0 0,740
1,5 1,08
2 1,39
2,5 1,68
3 1,95
35 15 1,5 1,08
2 1,39
2,5 1,68
3 1,95
3,5 2,20
20 1,5 1,19
2 1,55
2,5 1,88
3 2,19
3,5 2,47
25 1,5 1,31
2 1,70
2,5 2,07
3 2,42
3,5 2,75
40 15 2 1,55
2,5 1,88
3 2,19
3,5 2,47
4 2,73
20 2 1,70
2,5 2,07
3 2,42
3,5 2,75
4 3,05
25 1,5 1,43
2 1,86
2,5 2,27
3 2,66
3,5 3,02
4 3,36
28 1,5 1,50
2 1,95
2,5 2,39
30 2 2,02
2,5 2,47
3 2,89
3,5 3,30
4 3,68
(42) 20 2 1,77
2,5 2,15
3 2,52
3,5 2,86
4 3,17
30 2 2,08
2,5 2,54
3 2,99
3,5 3,41
4 3,80
45 20 2 1,86
2,5 2,27
3 2,66
3,5 3,02
4 3,36
30 2 2,17
2,5 2,66
3 3,13
3,5 3,57
4 3,99
50 25 2 2,17
2,5 2,66
3 3,13
3,5 3,57
4 3,99
30 2 2,32
2,5 2,86
3 3,36
3,5 3,857
4 4,30
35 2 2,49
2,5 3,09
3 3,60
3,5 4,12
4 4,62
40 2 2,65
2,5 3,25
3 3,83
3,5 4,39
4 4,93
60 25 2,5 3,05
3 3,60
3,5 4,12
4 4,62
5 5,55
30 2,5 3,25
3 3,83
3,5 4,39
4 4,93
5 5,94
40 3 4,30
3,5 4,94
4 5,56
5 6,73
70 30 3 4,30
3,5 4,94
4 5,56
5 6,73
6 7,80
40 3 4,78
3,5 5,49
4 6,19
5 7,51
6 8,75
50 3 5,25
3,5 6,04
4 6,82
5 8,30
6 9,69
7 10,99
80 40 3 5,25
3,5 6,04
4 6,82
5 8,30
6 9,69
7 10,99
50 3 5,72
3,5 6,59
4 7,44
60 3,5 7,14
4 8,07
5 9,87
6 11,57
7 13,19
90 40 3,5 6,59
4 7,44
5 9,08
6 10,63
7 12,09
50 3 6,19
60 4 8,70
5 10,65
6 12,51
7 14,29
100 40 4 8,07
5 9,87
6 11,57
7 13,19
50 4 6,19
5 10,65
6 12,51
7 14,29
70 4 9,96
5 12,22
6 14,40
7 16,48
110 40 4 8,70
5 10,65
6 12,51
7 14,29
50 4 9,33
5 11,44
6 13,46
7 15,38
60 4 9,96
5 12,22
6 14,40
7 16,48
120 40 5 11,44
6 13,46
7 15,38
8 17,22
60 5 13,00
6 15,34
7 17,58
8 19,73
80 5 14,58
6 17,22
7 19,78
8 22,25
140 60 3 9,02
5 14,58
6 17,22
7 19,78
8 22,25
80 5 16,15
6 19,11
7 21,98
8 24,76
120 6 22,88
7 26,37
8 29,78
9 33,10
150 60 7 20,88
80 6 20,05
7 23,08
8 26,01
9 28,86
10 31,62
100 6 21,93
7 25,28
8 28,53
9 31,69
10 34,76
160 130 8 33,55
180 80 7 26,37
8 29,78
9 33,10
10 36,33
12 42,52
100 8 32,29
9 35,93
10 39,47
12 46,29
145 20 84,10
150 8 38,57
9 42,99
10 47,32
12 55,71
190 120 12 51,94
196 170 18 88,99
200 120 8 37,32
230 100 8 38,57
Примечание
  1. Масса труб вычислена при плотности стали 7,85 г/см3
  2. Размеры труб, взятые в скобки — нерекомендуемые
  3. Трубы следующих размеров производятся под заказ: 28х25; 40х25; 40х28; 70х50; 90х50; 140х60; 150х60; 160х130; 180х145; 190х120; 196х170; 200х120; 230х100 мм

© 2021 ProTryby.ru Карта сайта

Калькулятор веса трубы стальной: рассчитать вес стальных труб

Раньше для того, чтобы определить вес трубы стальной, требовалось использовать формулу (Д — Т) * Т * 0,025, где:

  • Д – наружный диаметр изделия;
  • Т – толщина стенки выбранного образца;
  • 0,025 – коэффициент – постоянное значение, принятое для всех изделий с сечением круглой формы.

Сейчас задача существенно упростилась и были созданы простые и удобные программы для подсчёта. В частности, на нашем сайте есть онлайн-калькулятор массы трубы стальной, благодаря которому, вы можете легко выяснить сколько весит погонный метр для каждой конкретной позиции. Также можно уточнить кол-во метров в тонне и другие данные, необходимые потенциальному покупателю.

Таблица веса трубы стальной


Если вам нужно определить без подсчётов вес 1 метра трубы стальной, таблица поможет это сделать гораздо быстрее, чем при попытках быстро посчитать по формуле самостоятельно. В ней указаны все стандартные размеры, выпускаемые отечественной промышленностью.


Однако всегда следует учитывать, что масса, которую вы получите, теоретическая, а не точная. Формулы таблицы и онлайн-программы работают на неких константах, таких, как параметры стали ст20 по ГОСТ. Если марка стали, используемая при изготовлении изделия, отличается по параметрам, то рассчитать вес трубы стальной можно только приблизительно.

Таблица веса трубы профильной стальной


Для квадратных изделий действует формула (Ш — Т) * Т * 0,0316, где «Ш», это размер стороны в миллиметрах. Если вам требуется удельный вес трубы стальной, таблица позволит выполнить эту задачу быстро и эффективно. Разумеется, максимальной точность будет в том случае, если при изготовлении были точно соблюдены размеры. Они регламентируются требованиями ГОСТ 8639-82, а также технические требования по ГОСТ 13663-86.

Как определяется масса трубы стальной с прямоугольным сечением? Если под рукой нет ни таблиц, ни калькулятора, вам поможет простая и удобная формула (А1 + А2 – 2т) * т * 0,0158. А1, А2 – стороны трубы в мм., Т – толщина, цифры, на которые это всё множится – коэфф., принятый для профильных изделий такого типа.

Однако таблица весов труб стальных намного удобнее, т.к. позволяет получить усредненные значения быстро. В то же время, специалисты утверждают, что погрешность при любом подобном подсчёте может достигать 12% от реальной массы, как в большую, так и в меньшую сторону.

✅ Калькулятор разводки труб за 5 мин с материаллами

Установка Аквастоп (система от протечки) 3-точкиед.6000
Установка редуктора давленияед.900
Монтаж водопровода (наружная установка) металлопласт (от гребенок)1 точ.2500
Монтаж водопровода (наружная установка) полипропилен (от гребенок)1 точ.3000
Монтаж водопровода (наружная установка) Rehau1 точ.4000
Монтаж водопровода более 3 метров ( магистраль ) полипропиленп.м.200
Монтаж водопровода более 3 метров ( магистраль ) Rehauп.м.400
Монтаж водопровода тройниковая без грибенок (полипропилен)точка1600
Монтаж водопровода тройниковая без грибенок (металлопласт)точка2000
Монтаж водопровода тройниковая Rehauточка3000
Монтаж водопровода полотенцесушителя до 4 м (металлопласт)точка3000
Монтаж водопровода полотенцесушителя от 4 м (полипропилен)точка4500
Монтаж водопровода полотенцесушителя до 4 м Rehauточка4500
Монтаж водопровода полотенцесушителя от 4 м Rehauточка5500
Прокладка труб канализации наружная установка (диаметр 50)точка800
Прокладка труб канализации наружная установка (диаметр 100)точка1100
Установка байпаса на скрутках до диаметр 32 (без откл.стояка)ед.8000
Установка байпаса сварочные работы до диаметр 32 (без откл.стояка)ед.14000
Устройство штробы в бетоне D 50п.м.650
Устройство штробы в кирпиче D 50п.м.350
Устройство штробы в бетоне D100п.м.1300
Устройство штробы в кирпиче D 100п.м.950
Монтаж гребёнки с обвязкой до 6 выходов полипропиленед.1600
Монтаж гребёнки с обвязкой до 6 выходов (металлопласт)ед.2500
Монтаж гребёнки с обвязкой до 6 выходов Rehauед.3200
Монтаж гребёнки с обвязкой до 4 выход полипропиленед.1200
Монтаж гребёнки с обвязкой до 4 выход (металлопласт)ед.1600
Монтаж гребёнки с обвязкой до 4 выход Rehauед.2400
Предмонтаж гигиенического душа (со штрабой) не более 1-го метраточка2000
Монтаж шарового кранаед.500
Монтаж углового крана с отражателем для стиральной машиныед.160
Установка терморегулятораед.1800
Монтаж фильтров грубой очисткиед.200
Монтаж и подключение фильтров тонкой очисткиед.1300
Монтаж обратного клапана в систему водопроводаед.240
Монтаж редуктора давленияед.400
Монтаж счетчиков Itelma безимп.комп3800
Техническое обслуживание счетчиков 1 год1 / 2 сч480
Монтаж\демонтаж радиаторов отопления на готовую подводкуед.800
Монтаж тройника канализации ( для стиральной машины )ед.100
Монтаж тройника водоснабженияед.1000
Монтаж холодного водопровода к унитазу, стиральной или посуд-ой машины (металлопласт)1 точ.1500
Монтаж холодного водопровода к унитазу, стиральной или посуд-ой машины (полипропилен)1 точ.1800
Монтаж холодного водопровода к унитазу, стиральной или посуд-ой машины (Rehau)1 точ.2200
Монтаж водопровода более 3 метров ( магистраль ) (металлопласт)п.м.300
Монтаж счетчиков Valtec имп.комп4000
Пломбировка и документы для регистрацииед.2000

Расчет навеса из профильной трубы онлайн калькулятор. Конструкция арочной фермы для навеса – таблица расчета для чайников, онлайн-калькулятор, изготовление обрешетки, проект навеса 6 на 6 из профильной трубы, поликарбоната, металлических конструкций – эскиз, чертеж


Расчет навеса из профильной трубы, калькулятор онлайн

Независимо от того, находитесь вы в городе или в загородном доме, всегда существует множество мест, которые требуют защиты от солнечных лучей и атмосферных осадков.

Проще всего решить этот вопрос при помощи навеса. Они легки, практичны и быстро строятся. От правильности расчета элементов для навеса зависит их прочность, долговечность и безопасность. вернуться к содержанию

Разновидности навесов

Для укрытия людей и предметов от воздействий природы зачастую строят навес из поликарбоната. Он применяется для защиты:

автомобильной стоянки;

зоны отдыха барбекю и игровых площадок;

точек мелкой торговли;

открытых бассейнов и душевых площадок;

входов в подъезды, въездных ворот, калиток.

При входе в частный дом или подъезд дома вместо навеса оборудуется козырек, но он тоже требует расчета.

Форма крыши для навеса зависит от желания. Они могут иметь следующие формы:

ровную или наклонную прямую;

одно или двухскатную;

выгнутую или вогнутую;

купольную или арочную;

пирамидальную или многогранную.

Исходя их формы крыши проводится сборка пояса из профильной трубы. Каждый пояс имеет свой тип и может быть:

сегментный;

полигональный;

трапециевидный или двускатный;

параллельный;

односкатный;

консольный;

треугольный. вернуться к содержанию

Размеры конструкции

В зависимости от места расположения фермы, ее формы и погодных условий проводится укрытие определенным материалом: металлический профиль, поликарбонат, профильный настил, асбестовые листы и др.

Каждый из материалов имеет свои стандартные размеры. Эти размеры могут служить основой при расчете общей длины конструкции, размеров между опорами. Для этого ширину и длину фермы надо сделать кратной размеру плит. Если размеры фермы рассчитывать под размеры плит, которыми она будет накрываться, то это уменьшит строительные отходы. Размер панели при расчете необходимо учитывать с учетом нагрузки, которую будет нести вся конструкция.

Характерным отличием может быть то, что в случае, когда общая длина фермы превысит 36 метров, необходимо выполнить строительный подъем.

Расчет высоты конструкции проводится исходя из того, для каких целей она изготавливается. Готовая конструкция не должна быть меньше 1.8 метра, средней высоты человека. вернуться к содержанию

Форма крыши и материал

От угла наклона навеса зависит длина стропил под его монтаж и марка кровельного материала.

Угол наклона от 22 до 30 градусов. Такой угол устанавливается на фермах, которые монтируются в регионах с высокой уровнем выпадения снежных осадков. Предпочтение тут отдается поясу из профильной труби треугольной формы. Крышу такого навеса рекомендуется накрывать прямыми асбестовыми или волнистыми листами, разного рода металлическим профилем.

Угол наклона от 15 до 22 градусов. Крыши навесов с таким углом наклона монтируются при высоких показателях ветровых нагрузок и имеют двускатную форму. Они отличаются небольшой парусностью и укрываются зачастую металлическими кровельными покрытиями.

Угол наклона от 6 до 15 градусов. Самые простые односкатные навесы. Могут накрываться поликарбонатом или профильным настилом.

Для определения несущей способности крыши или допустимой нагрузки, которую она может выдержать, рекомендуется использовать онлайн калькулятор. вернуться к содержанию

Материал для каркаса и опор

Каркас навеса состоит из опор, прогонов и обрешетки. Размеры этих металлоконструкций напрямую зависят от общих размеров фермы. Установлены эти величины требованиями ГОСТ 23119-78 и 23118-99.

Опоры могут быть изготовлены из стальной трубы круглой, диаметром от 4 до 10 см или же сделаны из стальной трубы профилированной, размером 0.8х0.8 см. Рассчитывая шаг монтажа опор, надо учесть то, что расстояние между опорами не должно превышать 1.7 метра. Нарушение этого правила может привести к потере прочности и надежности всей фермы.

Обрешетка выполняется из стальной трубы профилированной, размером 0.4х0.4 см. Она может быть выполнена из дерева или металла. От материалов изготовления зависит шаг монтажа обрешетки. Продольная деревянная обрешетка устанавливается с шагом в 25-30 см, металлическая обрешетка монтируется с шагом 70-80 см.

Прогоны для навесов с длиной пролета до 4.5 метров выполняются из металлического профиля 0. вернуться к содержанию

Расчет онлайн калькулятор

Представленный выше вариант расчета является самым простым. Существует много формул и вариантов для расчета навесов в зависимости от их форм, размеров, назначения. Для человека с хорошими знаниями сопромата и механики просто воспользоваться формулами и провести расчет. Ведь от того, насколько точны вычисления и низка погрешность, будет зависеть длительность службы навеса.

Если самостоятельное решение вопроса затруднительно, то лучше решить вопрос со специалистами. Провести расчет фермы для профильной трубы с использованием онлайн калькулятора для них не составит труда. Это даст возможность качественно и правильно составить проект, рассчитать марку и количество материалов, с точностью до 90 % определить стоимость конструкции.

 

profnastil-s.ru

Конструкция арочной фермы для навеса – таблица расчета для чайников, онлайн-калькулятор, изготовление обрешетки, проект навеса 6 на 6 из профильной трубы, поликарбоната, металлических конструкций – эскиз, чертеж

Проекты металлического навеса из профильной трубы и поликарбоната, их эскизы и чертежи

Перед созданием навеса арочной формы своими руками делается чертеж и расчет всех элементов и узлов крепления.

Арочный навес из поликарбоната

Чертеж и проект помогут решить вопросы относительно номенклатуры и количества приобретаемых строительных материалов, интерьера и экстерьера металлической конструкции и дизайна всего участка.

Чертеж навеса из поликарбоната

Поэтому содержание проекта представляет собой:

• Расчет прочности опор и ферм;

• Расчет сопротивления крыши ветровой нагрузке;

• Расчет нагрузки на кровлю в виде снега;

• Эскизы и общие чертежи металлического навеса арочной формы;

• Чертежи основных элементов с их габаритами;

• Проектно-сметная документация с расчетом количества и стоимости стройматериалов.

Основа конструкции металлического навеса по чертежу — стропильная ферма. Расчет формы, толщины, сечения и расположение откосов фермы сложен. Главные элементы фермы — пояса верхнего и нижнего вида, образующие пространственный контур. Сборка арочной фермы для навеса производится по арочным балкам. Особенность арочной фермы — минимизация изгибающих моментов в конструктивных поперечных сечениях. При этом материал арочной конструкции сжимается. Поэтому производимые чертеж и расчеты осуществляются по упрощенной схеме, где кровельная нагрузка, нагрузка крепежной обрешетки и снежной массы равномерно распределяются всей площади.

Проект навеса из поликарбоната

Проект навеса и его чертеж включают в себя следующие расчеты:

• Реакция горизонтальных и вертикальных опор, напряжение в поперечных направлениях, что повлияет на подбор сечения несущего профиля;

• Кровельные снеговые и ветровые нагрузки;

Районирование территории РФ по расчетному значению веса снегового покрова

• Сечение внецентренно сжатой колонны.

Таблица расчета арочной фермы

Ферма – это основа всего покрытия. Для ее установки потребуются прямые стержни, соединяемые в шарнирных или жестких узлах.

Установка арочной фермы

Ферма включает в себя пояса верхнего и нижнего вида, стойки и раскосы. В зависимости от оказываемых нагрузок на все элементы арочной фермы выбирается материал для нее. Нагрузки на сооружение определяются в соответствии с требованиями СНиП. Для чего выбирается схема строения, где указываются контуры поясов фермы. Схема зависит от того функции навеса, его крыши и ее угла размещения.

Таблица расчета арочной фермы

После определяются размеры фермы. Ее высота фермы зависит от кровельного материала и вида фермы — стационарная или передвижная. Ее длина – по желанию. При пролетах между стойками от 36 м рассчитывается строительный подъем — обратный изгиб фермы от ощущаемых нагрузок. После рассчитываются размеры панелей, которые зависят от промежутка между элементами, распределяющими нагрузку на конструкцию фермы. От этого зависит расстояние между узлами. Совпадение обоих показателей обязательно.

Строительный подъем арочной фермы

У арочной фермы направляющим является нижний пояс, выполненный в виде дуги. Профили соединяются ребрами жесткости. Радиус арки может быть любым и зависит от природных условий расположения фермы и ее высоты. От несущей способности конструкции фермы зависит ее качество. Чем выше ферма, тем меньшее снега будет задерживаться. Количество ребер жесткости помогает противостоять нагрузкам. Все детали навеса лучше сварить.

Количество ребер жесткости арочной фермы

Для начала рассчитывается коэффициент μ для каждого пролета пояса верхнего вида — переходящая нагрузка снежной массы на земле на его нагрузку на конструкцию. Для чего нужно знать угол наклона касательных. С каждым пролетом радиус угла становится меньше. Для вычисления нагрузки используются показатели Q — нагрузка от снега на 1-вый узел фермы, и l — длина стержней из металла. Для этого вычисляется cos угла расположения перекрытия.

Таблица общей нагрузки арочной фермы на почву

Нагрузка вычисляется по формуле — произведение l и μ и 180. Соединив все показатели вместе, рассчитывается общая нагрузка арочной фермы на почву и подбираются материалы и их габариты.

Изготовление обрешетки из профильной трубы и покрытие фермы поликарбонатом

Фермы из профильной трубы долговечны, прочны и экономичны. Профильная труба — профиль из металла, прокатанный и обработанный с помощью станков.

Профильные трубы

По типу сечения они классифицируются на профили овального, прямоугольного и квадратного сечений. Фермы из профильной трубы арочного типа обладают высокой прочностью, длительным сроком их эксплуатации, возможностью сооружения сложных конструкций, доступной стоимостью, небольшим весом, устойчивостью к деформациям и повреждениям, влаге и ржавчине и возможностью их отделки полимерными красками.

Разновидность профильных труб

Для сборки или крепежа элементов используются спаренные уголки. Конструируя верхний пояс, используют 2 тавровых уголка различной длины.

Уголки стыкуются сторонами с меньшим размером. Нижний пояс соединяется уголками с равными сторонами. Соединяя большие и длинные фермы используют накладные пластины.

Стыкование тавровых уголков

Парные швеллеры распределяют нагрузку равномерно. Раскосы монтируются под углом 45, а стойки — под 90.

Схема монтирования раскосов и стоек

После сборки приступают к сварочным работам, после чего каждый шов зачищается. Завершающий этап — обработка антикоррозийными растворами и краской.

Зачистка сварного шва

На готовую ферму устанавливаются листы поликарбоната — полупрозрачного пластика, который способен защитить от погодных осадков. При этом учитывается толщина и форма используемого листа. При большом радиусе изгиба используются сотовый поликарбонат от 8 до 10 мм в толщину. При малом радиусе — монолитный волновой до 6 мм.

Сотовый поликарбонат

Монолитный волновой поликарбонат

Фермы из профильной трубы предназначены для придания всей конструкции навеса жесткости и соединения стоек воедино. Образованные арки — основа для крепления поликарбоната. Рекомендуется использовать такие же уголки, как и при изготовлении ферм. Должна быть предусмотрена резиновая подложка, чтобы материал не контактировал напрямую с элементами из стали, что сохранит от быстрого износа козырька.

Смонтированная ферма под поликарбонат

Для установки стоек навеса делается столбчатое основание, чьи габариты на 5-7 см превышают размеров опоры. Для защиты от воды и влаги основание покрывается рубероидом. В процессе заливки фундамента производится установка крепежных штырей.

После монтажа навеса из поликарбоната производится крепление фермы, которая соединяет все элементы навеса в общий каркас. Нарезая и устанавливая листы поликарбоната:

• Используют термошайбы, компенсирующие расширение пластика от высоких температур.

Монтаж поликарбоната с помощью термошайб

• Осуществляется обработка торцов сотового поликарбоната паропроницаемой лентой.

Обработка торцов сотового поликарбоната паропроницаемой лентой

• Наружная сторона должна остаться в заводской упаковке для ее защиты от выцветания.

• Расположение ребер жесткости по дуге. При использовании монолитного волнового поликарбоната направление изгибов совпадает с арками.

Установка поликарбоната по ребрам жесткости

Конструкция арочной фермы для навеса – таблица расчета для чайников, онлайн-калькулятор, изготовление обрешетки, проект навеса 6 на 6 из профильной трубы, поликарбоната, металлических конструкций – эскиз, чертеж

navesimoskva.ru

Калькулятор расчета навеса из поликарбоната онлайн

* ВАЖНО! Для калькулятора расчета навеса из поликарбоната, уровень нагрузки для Вашего региона необходимо определить самостоятельно, исходя из карт снеговой и ветровой нагрузок (указаны ниже), и таблиц, соответствующих данному региону нагрузок. На примере ниже, рассмотрим выбор нагрузки для Ростова-на-Дону и ближайших к нему городов. При расчете навеса, обязательно необходимо учитывать нагрузки, на которые будет рассчитана конструкция навеса. Согласно карте зон снегового покрова России, Ростов-на-Дону относится ко II категории снеговой нагрузки, а согласно карте зон ветровых нагрузок, наш город относится к III категории. III Категория ветровой нагрузке соответствует давлению в 38 кг/м2, согласно таблице. II Категория снеговой нагрузки соответствует давлению в 120 кг/м2, согласно таблице. При выборе нагрузки для расчета, следует ориентироваться на максимальное значение нагрузки, взятой из обеих таблиц.Поэтому для Ростова-на-Дону и городов, удаленных от него не более чем на 100 км, необходимо выбрать расчетное значение уровня нагрузки для навеса не менее 120 кг/м2.
Карта зон снегового покрова на территории РоссииКарта зон ветровых нагрузок на территории России
Таблица снеговых нагрузок, по регионам
Снеговой регионIIIIIIIVVVIVIIVIII
Снеговая нагрузка, кг/м280120180240320400480560
Таблица ветровых нагрузок, по регионам
Ветровой регионIaIIIIIIIVVVIVII
Ветровая нагрузка, кг/м21723303848607385

Не является публичной офертой. Расчет материала и обрешетки является приблизительным и не может быть использован для строительства.

polycarbonat-rostov.ru

Калькулятор расчета навеса из поликарбоната

Навес простой конструкцией не назовешь, поэтому, прежде чем закупить определенное количество материала, понадобится точная смета. Опорное каркасное сооружение должно будет «пережить» любые нагрузки. Любые осадки, сильный ветер завалят навес, если расчеты будут неверными.

Навес для машины

Поэтому для профессионального расчета понадобится помощь инженера – проектировщика, который подсчитает действие снеговой нагрузки, рассчитает фермы и предоставит вам чертежи навеса. Рассчитать навес еще сложнее, когда он представляет собой отдельную конструкцию, а не пристройку к дому.

Так как уличная упрощенная кровля состоит из столбов, лаг, ферм и покрытия, то считать придется именно эти материалы.

Столбы

При расчете этих опорных элементов учитывается высота нашего навеса и количество столбиков для опоры. Например, при планировании конструкции в 2-5 метров используется толстая труба от 60 до 80мм в сечении. Если размеры навеса получаются большими, то, как вариант, чтобы количество столбов не увеличивать применяют трубу 100х100мм

Схема

Обрешетка

Для установки конструкции важно рассчитать толщину и шаг обрешетки. Например, в том случае, если мы планируем сделать навес и шириной 8 метров и длиной 6 метров, то выбирать придется шаг в один метр, а пластик заказываем толщиной в 10 мм

Расстояние между профилями обрешеточного полотна рассчитывается из параметров нагрузки и подбора сечений.

Расчет нагрузки на фермы каркаса и опорную конструкцию поможет вам сделать ваш навес более устойчивым даже в зимний период, когда нагрузка от мокрого снега может достигать в 3, 5 тонн.

Ферма из профильной трубы

Если запланировали арочный навес, то без ферм вам не обойтись. Фермы — конструкции, связывающие лаги и столбы опоры, именно они определяют ширину и размеры навеса.

Навесы из металлических ферм строить посложнее, чем любой каркас. Зато, если вы правильно смонтируете эту конструкцию, все будет очень надежным. Правильный каркас распределяет нагрузку по столбам опоры и лагам, предупреждая разрушение навесной конструкции.

Фермы изготавливаются почти всегда из профилированной трубы, которая считается самой прочной и лучше всего подходит для установки поликарбоната на обрешетку. Форма конструкции ферм может быть различной, как и ее размеры.

Самый главный расчет ферм – это учет материала и уклона.

Например, для односкатного навеса с небольшим уклоном используется асимметричная форма фермы, если угол конструкции небольшой, то использовать можно фермы трапециевидной формы. Чем больше радиус арочной структуры, тем меньше вариантов, что на кровле снег будет задерживаться. Поэтому будет большая несущая способность фермы.

Для расчета иногда применяются специальные программы, не обойтись в этом случае и без калькулятора.

Задумываясь о том, как построить навес, полезно рассмотреть готовые схемы изготовления по фото; там же можно посмотреть примерные расчеты для любой формы навеса.

Примерный расчет для настила высотой до 4 метров

Если вы выбрали простую форму навеса домиком с шириной 6 на 8 метров, то вам расчеты будут следующим:

  1. Шаг между опорными столбами (стойками) с торца 3 метра, на боковой стороне 4 метра.
  2. Количество столбов из металлической трубы 8 штук.
  3. Высота ферм под стропами 0,6 метра.
  4. Обрешетка крыши: профильные трубы 12 штук с размерами 40х20х0,2.

Иногда можно сэкономить, уменьшая количество материала. Например, вместо шести стоек установить четыре. Можно и сократить количество ферм или уменьшить каркасную обрешетку. Только не желательно допускать потерю жесткости, так как это приведет к разрушению конструкции.

Автор:Антон Ермолов

propolikarbonat.ru

Расчет навеса из профильной трубы на основе примера

Содержание статьи:

При сооружении навесов важно правильно все рассчитать, так как это оказывает определенное влияние на надежность, прочность, безопасность конструкции. Проводится расчет навеса с соблюдением определенных правил. Следует обратить внимание на то, какую форму примет конструкция. Для расчета козырька применяются специальные формулы, позволяющие в точности определить все необходимые данные, учитывая характеристики профтрубы.

Что понадобится для проведения вычислений?

Чтобы рассчитать, какой должна быть профильная труба для навеса, придется учитывать многочисленные параметры. Нельзя забывать не только про снеговую нагрузку, но и про то, что металл подвергается нагрузкам от собственного веса, веса обшивки.

Выполняя расчет конструкции, необходимо использовать:

  • Калькулятор
  • Специальные программы для проектирования
  • СНиП П-23-81 (работы со стальными изделиями), справочники
  • СНиП 2.01.07-85 (нагрузки, воздействия), которые учитывают не только снеговую нагрузку, но и вес всех конструктивных элементов.
На этой картинке изображено проведение вычислений навеса с помощью калькулятора

Чтобы составить проект, необходимо выполнить следующие действия:

  • Выбрать тип ферм
  • Определиться с размерами навеса
  • Если общая длина будет больше 36 м, то необходимо учесть дополнительный строительный подъем.

Цифры требуются максимально точные, округления и приближения в данном случае не применяются. Если нет необходимого опыта работы, то лучше всего взять уже готовый проект, подставить собственные значения.

Пример расчета арочного навеса

Навесы из профтрубы могут принимать различные формы, но одной из наиболее популярных является арочная. Она привлекательная, отличается высокой прочностью. Арочную конструкцию из профильной трубы легко обшить сверху поликарбонатными листами. Для сборки навеса применяются балки, но расчет конструкции навеса должен быть тщательным, схема предполагает использование шарниров. Особенностью является и то, что вес равномерно распределяется по трубе. Для изготовления арки можно применять обычную профильную трубу либо две, сваренные вместе.

Расчет надо начинать с определения параметров будущий арки. Удобнее рассмотреть порядок вычислений на основе примера. Например, фермы будут располагаться с шагом в 1,05 м, а все нагрузки сосредоточатся только в узловых точках. Высота арки может быть любой, но не больше 3 м. Для фермы рекомендуется высота в 1,5 м, так как она наиболее выгодна и привлекательна, с эстетической точки зрения. Пролет между опорами равен L= 6 м. А стрела нижнего уровня арки такова: f=1,3 м. Радиус окружности нижнего пояса составляет r=4,1 м, а угол между отдельными радиусами — α=105.9776°.

Во время расчета конструкции надо учесть, что расстояние между узлами крайних точек составит l=6,5 м, а высота между нижним и верхним поясом h=0,55 м (при стреле в f=1,62 м). Исходя из данных, можно получить длину профильной трубы для нижнего пояса: mн = π*Ra/180, где:

  • mн — величина трубы нижнего пояса
  • Rа — радиус дуги
  • Π — число, равное 3,141.

mн = 3,141*4,115*93,7147/180.

mн = 6,73 м.

Соответствующим образом можно узнать длину для профильной трубы верхней арки: mн = πRa/180.

mн =3,141*4,115*105,9776/180.

mн = 7,61 м.

Определение длины под стержни нижней части арки: Lс.н. = 6,73/12.

Lс.н. = 0,5608 м.

Для участков нижнего пояса между узлами конструкции используется шаг в 55,1 см, крайние участки могут иметь другой шаг. Обычно его рекомендуется округлять до 55 см, но делать большим не следует, так как для обшивки будет использоваться поликарбонат. Количество пролетов расчет обычно не ограничивает.

Если необходим навес больших размеров, то общее число пролетов может составить 8-16.Если количество пролетов 8, то необходимо длину стержней принимать за 95,1 см, а шаг между поясами — 87-90 см. Если  пролетов 16, то шаг можно принимать за 40-45 см.

Как происходит проектирование навеса по расчетам с помощью программы вы сможете просмотреть в этом видео:

Вычисления для верхнего и нижнего поясов профильной трубы

Далее надо выполнить расчет для получения точного значения стрелы верхнего пояса конструкции:

  1. f = (L/2)*tg(α/4)
  2. f = R(1 — cos(α/2))
  3. f = 0.78979tg(α/4) + cos(α/2)
  4. f = 1, где:
    • f — значение длины стрелы
    • R — радиус дуги
    • α — угол верхнего пояса.

Теперь можно провести расчет для получения значения угла верхнего пояса, который будет равен αв = 104,34°. Отсюда можно получить точное значение для стрелы под верхнюю арку: fв = (6,5/2)*tg(104,34/4).

fв = 1,5911 м.

Расчет верхнего пояса длины профильной трубы: mв = πRa/180.

mв = 3,141*4,115*104,34/180.

mв = 7,494 м, где:

  • mв — длина трубы нижнего пояса
  • Rа — радиус дуги
  • Π — число, равное 3,141.

Отсюда можно легко получить необходимую длину для поликарбонатных листов, которая будет равна 7,6 м, учитывая свесы. Длина стержней для всего верхнего пояса: Lс.в. = 7,494/12.

Lс.в. = 0.6247 м.

После того как геометрические параметры стали известны, необходимо приступить к вычислению сечений профильной трубы. Перед этим надо учесть все нагрузки, которые будут оказываться на навес.

При пролете в 6 м сосредоточенная нагрузка конструкции равна Q = 19,72 кг. У крайних узлов навеса она примерно в 2 раза меньше. Величина равномерно распределенных нагрузок тогда равна: qк = 19,72*6*1*1,2/12.

qк = 11.8 кг/м.

В данном случае «L» — это коэффициент перехода, он учитывает количество балок, длину пролетов горизонтальной проекции.

Учет нагрузок на конструкцию

Когда выполняется расчет, важно не забывать о снеговых массах. Если они равны 189 м/кг, то расчетная суммарная нагрузка будет равна 200,8 кг/м.

Необходимые расчетные реакции для вертикальных опорных реакций:

  1. VA = VB
  2. VA = ql/2
  3. VA = 200.8*6/2 = 602.4 кгс, где:
    • VА — показатель для вертикальной реакции
    • Vв — значение, нормативное для нагрузки (табличные данные)
    • q — показатель суммарного веса
    • l — величина пролета.

∑МС = VAl/2 — ql2/8 — HAf.

∑МС = 0, где:

  • ∑МС — суммарная вертикальная реакция
  • VА — значение для вертикальной реакции
  • q — значение суммарного веса
  • l — величина пролета
  • HA — значение нагрузки конструкции
  • f — длина стрелы.

Отсюда следует:

  1. HA = (VAl/2 — ql2/8)*f
  2. HA = (602,4*6/2 — 200,8*62/8)/1,3
  3. HA = 695,1 кгс.

Таким образом, стрела для арки из профильной трубы равна 1,3 м.

Для конструкции действующие напряжения будут равны:

  1. Начальная крайняя точка А:
    • Q = VAcos(a/2) + HAsin(a/2)
    • Q = 602,4*0,6838 + 695,1*0,7296
    • Q = 919,1 кгс
    • При M = 0
    • N = VAsin(a/2) + HA cos(a/2)
    • N = 602,4*0,7296 + 695,1*0,6838
    • N = 914,82 кгс.
  2. Для конечной точки конструкции В:
    • Q = VA — ql/2
    • Q = 0
    • В данном случае М =0
    • N = HA
    • N = 695,1 кгс.

Для указанной точки D можно подсчитать угол наклона: β = arctg(0,6/1,5).

β = 21,8.

Для металлического арочного навеса важно вычислить сечение профильной трубы. В данном случае расчет производится при помощи такой формулы: σпр = (σ2 +4т2)0.5 ≤ R.

σпр = 2350 кгс/см².

σпр — это значение нормального напряжения, оно равно σ = N/F, причем F является площадью поперечного сечения, которое будет иметь профтруба. Т — это значение касательного напряжения, оно будет равно т = QSотс/bI.

Исходя из всех приведенных значений, арку из профильной трубы можно сооружать из профиля с сечением в 50*50*2 мм при поперечном сечении F = 3,74 см².

Как рассчитать фермы для навеса с помощью программы вы сможете узнать просмотрев это видео:

Если для сооружения навеса решено применять металлические профили, то придется выполнить довольно сложный расчет, учитывающий нагрузки, напряжение металла. Особенно важна точность вычислений, если конструкция будет иметь большие размеры. Прочность и надежность навеса целиком зависят от правильного выбора профтрубы.

vashibesedki.ru

Калькулятор навесов из поликарбоната для машин

Выберите поликарбонат

Цвет поликарбоната

Размер столбов

Окраска каркаса

Тип установки

м м м Площадь м2

Стоимость материалов

Стоимость доставки и установки

Заказать навес Распечатать смету
Смета

Таблица прокручивается

lidernaves.ru

Как рассчитать и построить навес из профильной трубы своими руками

Навес из труб и поликарбоната становится все более популярной архитектурной формой на приусадебном участке. Ничего удивительного, ведь это строение может выполнять множество функций, начиная от открытого гаража для автомобиля, дровяного склада, крытой игровой площадки и заканчивая зоной отдыха с мангалом и мягкими креслами.

Ключевым преимуществом является возможность изготовления такой конструкции своими руками. В представленной статье будут даны рекомендации по выбору материала, примеры расчетов опор и ферм и как сварить навес из профильной трубы.

Расчет оптимальной формы навеса

Длина стропила зависит от угла наклона фермы. Для различных величин углов оптимально использование разного кровельного материала:

  • 22-30 – оптимальный угол наклона для строений в областях со значительными снеговыми нагрузками. В качестве конструкция навеса из профильной трубы с таким углом предусматривает преимущественно треугольную форму. Она оптимальна для асбестовых прямых и волнистых листов, различного типа металлопрофиля и этернитового кровельного покрытия.
  • 15-22 – так же являются двухскатными с металлическими типами кровельных покрытий. Такой угол наклона характерен для регионов с увеличенными ветровыми нагрузками. Максимальная величина пролета треугольной фермы с таким углом 20 м.
  • 6-15 – преимущественно односкатные трапециевидные фермы с покрытием из поликарбоната и профнастила.

Односкатный навес из профильной трубы, фото строения с кровлей из профнастила

Расчет навеса из поликарбоната из профильной трубы производится в соответствии со СНиП П-23-81 «Стальные конструкции» и СНиП 2,01,07-85 «Нагрузки и воздействия».

Технологические требования к ферме и последовательность расчета следующая. В соответствие с техническим заданием определяется требуемая величина пролета. По представленной схеме подставляем габариты пролета и определяем высоту конструкции. Производится задание угла наклона фермы и оптимальной формы крыши навеса. Соответственно определяются контуры верхнего и нижнего пояса фермы, общие очертания и тип кровельного покрытия.

Важно! Максимальное расстояние, на котором размещаются фермы при изготовлении навеса из профильной трубы – 1,75 м. 

Схема зависимости длины стропил от угла крыши при расчете фермы из профильной трубы для навеса

Выбор профиля

В качестве материала для сборки стропильной фермы можно использовать швеллера, тавры, уголки и другой профилированный прокат который изготовлен из стали марки Ст3СП или 09Г2С (в соответствии с ГОСТ). Однако все эти материалы имеют существенный недостаток по сравнению с профилированной трубой – они намного тяжелее имеют большую толщину при сопоставимых прочностных характеристиках.

Рекомендуемые размеры сечения труб для навеса

Размеры элементов каркаса для навеса из профильной трубы зависят от габаритов строения. В соответствии с ГОСТ 23119-78 и ГОСТ 23118-99 для создания навеса из квадратной трубы собственными руками используют следующие материалы:

  • Для компактных строений с шириной пролета до 4,5 м – 40х20х2 мм;
  • Сооружения средних размеров с пролетом до 5,5 м изготавливаются из профтрубы 40х40х2мм;
  • Строения значительной величины с пролетами более 5,5 м монтируют из профильных труб различного сечения 40х40х3 мм или 60х30х2мм.
  • Размер стойки для навеса из профтрубы – 80 80 на 3 мм.

Чертежи, размеры и основные узлы соединений

Прежде чем приступить к сборке навеса из профильной трубы своими руками необходимо начертить детальный план всего сооружения с указаниями точных размеров всех элементов. Это поможет рассчитать точное количество материалов каждого вида и рассчитать стоимость строительства.

Чертеж навеса из профильной трубы с указанием основных габаритных размеров

Кроме того желательно сделать дополнительный чертеж наиболее сложных конструкций. В этом случае это односкатная ферма и узлы креплений ее основных элементов.

Схема для изготовления фермы из профильной трубы для навеса с основными крепежными узлами

Одним из основных достоинств профильной трубы является возможность безфасоночного соединения. Это проявляется в простоте конструкции и низкой стоимости фермы при длине стропильных пролетов до 30 м. при этом кровельный материал может опираться непосредственно на верхний пояс фермы, при условии его достаточной жесткости.

Узлы крепления для сборки навеса из профильной трубы своими руками, на фото а — треугольная решетка, б — опорная, в — раскосная решетка

Преимуществами безфасоночного сварного соединения является:

  • Существенное снижение массы фермы, по сравнению с клепанными или болтовыми конструкциями до 20% и 25 % соответственно.
  • Снижения трудозатрат и стоимости изготовления, как единичных изделий, так и при мелкосерийном производстве.
  • Невысокая стоимость сварки и возможность автоматизировать процесс путем использования аппаратов с устройством непрерывной подачи сварной проволоки.
  • Равнопрочность сварного шва и соединяемых изделий.

Из недостатков можно отметить:

  • Необходимость иметь довольно дорогостоящее оборудования;
  • Необходим опыт в сварочных работах.

Болтовые соединения при производстве  изделий из профильной трубы встречаются довольно часто. Обычно они используются в разборных навесах из профильной трубы или в изделиях, производимых для массового потребления.

Болтовые соединения наиболее простые для монтажа навеса из профильной трубы своими руками, фото присоединенного элемента каркаса

Основными достоинствами таких соединений являются:

  • Простота выполнения сборки;
  • Нет необходимости в дополнительном оборудовании;
  • Возможность полного демонтажа сооружения.

Недостатки:

  • Увеличивается вес конструкции;
  • Необходимы дополнительные детали крепежа;
  • Прочность и надежность болтовых соединений несколько ниже, чем сварных.

Подведя итоги

В статье была рассмотрена конструкция и методы изготовления самого простого односкатного навеса из профильной трубы своими руками, однако, профилированная труба довольно «гибкий» материал из которого можно сделать сложные и эстетически привлекательные конструкции.

Сложная конструкция для создания навеса из профтрубы своими руками, фото односкатного, купольного сооружения

freshremont.com

Калькулятор расчета характеристик кольцевого сечения (трубы)

Подробности

Калькулятор онлайн рассчитывает геометрические характеристики (площадь, моменты инерции, моменты сопротивления изгибу, радиусы инерции) плоского сечения в виде кольца (трубы) по известным линейным размерам и выводит подробное решение.

Исходные данные:
Наружный диаметр d, мм
Толщина стенки s, мм
Определение вспомогательных данных:
Внутренний диаметр d1, ммрасчет внутреннего диаметра кольца
Решение:
Площадь сечения, мм2расчет площади сечения кольца
Осевые моменты инерции относительно центральных осей, мм4

расчет момента инерции кольца относительно оси ОХ

расчет момента инерции кольца относительно оси ОY

Моменты сопротивления изгибу, мм3

расчет момента сопротивления изгибу кольца относительно оси ОХ

расчет момента сопротивления изгибу кольца относительно оси ОY

Радиусы инерции сечения, мм

расчет радиуса инерции кольца относительно оси ОХ

расчет радиуса инерции кольца относительно оси ОY

Помощь на развитие проекта premierdevelopment.ru

Send mail и мы будем знать, что движемся в правильном направлении.

Спасибо, что не прошели мимо!

I. Порядок действий при расчете характеристик кольцевого сечения (трубы):

  1. Для проведения расчета требуется ввести наружный диаметр сечения d и толщину стенки s.
  2. По введенным данным программа автоматически вычисляет внутренний диаметр сечения d1.
  3. Результаты расчета площади, моментов сопротивления изгибу, моментов и радиусов инерции кольцевого сечения выводятся автоматически.
  4. На рисунке справа приведены необходимые размеры элементов сечения.

II. Примечание:

  1. Блок исходных данных выделен желтым цветом, блок промежуточных вычислений выделен голубым цветом, блок решения выделен зеленым цветом.

Калькулятор диаметра трубы и расхода, онлайн

Когда применим этот калькулятор?

Расчет диаметра трубы с помощью калькулятора диаметра трубы очень прост. Вы можете использовать калькулятор диаметра трубы и расхода для быстрого расчета диаметра трубы. в замкнутых, круглых, прямоугольных (только версия онлайн-калькуляторов) и заполненных трубах с жидкостью или чистым газом.

Если система, которую вы анализируете, имеет более одной трубы, вы можете использовать калькулятор расчета трубопроводной сети

Для расчета диаметра трубы с помощью этого калькулятора вы должны знать и ввести скорость потока.Если скорость потока неизвестна, вы должны использовать падение давления калькулятор для расчета диаметра трубы. Вы можете использовать калькулятор падения давления, когда перепад давления между началом и концом трубопровода (потеря напора) доступна как известное значение.

С помощью калькулятора диаметра трубы внутренний диаметр трубы рассчитывается с использованием простое соотношение между расходом, скоростью и площадью поперечного сечения (Q = v · A).

Для расчета внутреннего диаметра трубы вам следует ввести только расход и скорость в соответствующие поля в калькуляторе и нажмите кнопку «Рассчитать», чтобы получить результаты.

Другие значения, помимо внутреннего диаметра трубы, также могут быть рассчитаны. Вы можете рассчитать скорость потока для данного расхода жидкости. и внутренний диаметр трубы. Поскольку скорость разная в разных местах трубы площади поперечного сечения, средняя скорость потока рассчитывается на основе уравнение неразрывности.

Расход, используемый в калькуляторе, может быть массовым или объемным.

Преобразование между массовым и объемным расходом доступно для данной плотности жидкости. Кроме того, для идеальных газов преобразование объемного расхода для различных условий потока. (давления и температуры), поэтому вы можете быстро рассчитать объемный расход от определенного давления или определенной температуры в трубе, например, после редукционных клапанов.

Если текущая жидкость является идеальным газом, вы можете рассчитать объемный расход этого газа при различное давление и температура. Например, если вам известен объемный расход некоторый идеальный газ при некотором заданном давлении и температуре (например, при нормальном условия p = 101325 Па и T = 273,15 K), можно рассчитать фактический объемный расход для давления и температуры, которые фактически находятся в трубе (например, реальное давление и температура в трубопроводе p = 30 psi и t = 70 F).Объемный расход идеального газа в этих двух условиях различен. Узнать больше о нормальные условия по давлению и температуре.

С помощью этого калькулятора вы можете преобразовать объемный расход из стандартного или другого предопределенные условия к фактическим условиям и наоборот. В калькуляторе используется закон сохранения массы. для расчета объемного расхода для этих двух условий, что означает постоянство массового расхода, несмотря на это, условия, например, давление и температура меняются.

Закон сохранения массы применим, только если поток в закрытой трубе, без добавленного или вычтенного потока, если поток не изменение во времени и ряд других условий. Узнать больше о массе сохранение массы.

Так когда это не применимо?

Этот калькулятор имеет практически безграничное применение, но некоторые функции зависят от нескольких условия.

Как упоминалось выше, расчет диаметра трубы с помощью этого калькулятора невозможен, если вы не уверен в скорости потока и объемном / массовом расходе. Если что-то из этих двух отсутствует, вам следует использовать Калькулятор падения давления.

Вы должны знать плотность жидкости, если доступен массовый расход вместо объемного расхода. Если плотность жидкости недоступна, и известен только массовый расход, то требуется объемный расход. расчет диаметра трубы невозможен.

Для идеальных газов плотность жидкости не является обязательной, если вы знаете давление, температуру и газовую постоянную для проточный газ. Калькулятор использует уравнение идеального газа для расчета плотности. Однако, если текущая текучая среда является газом, но не идеальным (идеальным) газом, то есть если это давление, температура и плотность не связаны в соответствии с закон идеального газа, этот калькулятор не применим, если вы пытаются вычислить эту плотность газа для известного давления и температуры.

Что нужно знать, чтобы рассчитать диаметр трубы?

Чтобы рассчитать диаметр трубы, вы должны знать скорость потока и расход. Если вам известен массовый расход, то должна быть известна плотность жидкости.

Если текущая жидкость представляет собой газ, то вместо плотности вы должны знать газовую постоянную, абсолютное давление и температуру. Плотность рассчитывается по уравнению для идеального газа.

Что нужно знать, чтобы рассчитать скорость потока?

Чтобы рассчитать скорость потока, вы должны знать скорость потока и внутренний диаметр трубы. Если вам известен массовый расход, то должна быть известна плотность жидкости.

Если текущая жидкость представляет собой газ, то вместо плотности вы должны знать газовую постоянную, абсолютное давление и температуру. Плотность рассчитывается по уравнению для идеального газа.

Как производится расчет?

При вычислении диаметра трубы и скорости потока используется уравнение неразрывности, которое дает соотношение между скоростью потока, скоростью потока и внутренним диаметром трубы.

Для потока газа уравнение идеального газа используется для расчета плотности на основе газовой постоянной, абсолютного давления и температуры.

КАЛЬКУЛЯТОР РАСХОДА

И Н С Т Р У К Т И О Н С

Этот калькулятор ultra отличается тем, что позволяет вам выбирать между большое разнообразие единиц (6 для диаметра и 24 каждого для скорости и расхода).В отличие от других калькуляторов, вы НЕ ограничивается вводом диаметра в дюймах, скорости в милях в час и т. д., что делает этот калькулятор довольно универсален.

1) Вода течет со скоростью 36 дюймов в секунду и со скоростью 1,0472 кубических футов в секунду. Какой диаметр трубы?
Самый важный шаг в использовании этого калькулятора:
Вначале ВЫБЕРИТЕ, ЧТО ВЫ РЕШАЕТЕ ДЛЯ
В этом случае мы решаем ДИАМЕТР ТРУБЫ, поэтому нажмите эту кнопку.
Введите 36 в поле скорости и выберите в соответствующем меню дюймы в секунду.
Введите 1,0472 в поле скорости потока и выберите в соответствующем меню кубические футы в секунду.
Нажмите кнопку РАССЧИТАТЬ, и вы увидите, что это равно 8 дюймам.
И вы увидите ответ в 5 других различных единицах !! 2) Вода течет по трубе диаметром 10 см со скоростью 9 литров в секунду. Какая скорость воды?
ПЕРВЫЙ НАЖМИТЕ НА ТО, ЧТО ВЫ РЕШАЕТЕ — СКОРОСТЬ
Введите 10 в поле диаметра трубы и выберите сантиметры в его меню.
Введите 9 в поле расхода и выберите в соответствующем меню литры в секунду.
Нажмите кнопку РАССЧИТАТЬ, и ответ будет 114,59 сантиметров в секунду И ответ будет в 23 других единицах измерения !!

3) Вода течет по трубе диаметром 2 фута со скоростью 20 дюймов в секунду. Какая скорость потока?
ПЕРВЫЙ НАЖМИТЕ НА ТО, ЧТО ВЫ РЕШАЕТЕ — СКОРОСТЬ ПОТОКА
Введите 2 в поле диаметра трубы и выберите футы в соответствующем меню.
Введите 20 в поле скорости и выберите в соответствующем меню дюймы в секунду.
Нажмите кнопку РАССЧИТАТЬ, и ответ будет 5.236 кубических футов в секунду И ответ в 23 других единицах !!


Для удобства чтения числа отображаются в формате «значащих цифр», поэтому вы , а не , см. Такие ответы, как 77.3333333333333333.
Числа больше более 1000 будет отображаться в экспоненциальном представлении и с таким же количеством указаны значащие цифры. Вы можете изменить значащие цифры, отображаемые изменив номер в поле выше.
Internet Explorer и большинство других браузеров будут отображать ответы правильно, но есть несколько браузеров, которые вообще не отображают без вывода .Если да, введите ноль в поле выше. Это устраняет все форматирование, но это лучше, чем не видеть вывод вообще.

Онлайн-калькулятор: Толщина стенки трубы

Толщина стенки трубы

Формула

Барлоу используется для расчета давления в трубе с учетом ее диаметра, толщины стенки и кольцевого напряжения (в материале трубы). Таким образом, его можно использовать для вычисления любого из этих параметров в зависимости от трех других.
В дополнение к некоторым другим упрощениям, важное теоретическое допущение, сделанное для использования формулы Барлоу, состоит в том, что стенка трубы ведет себя как мембрана (или тонкостенная труба), что означает, что кольцевое напряжение в стенке трубы распределяется равномерно по всей поверхности. его толщина. В стенке трубы нет моментов любого типа. Одним из параметров, обеспечивающих поведение мембраны в стенке трубы, является отношение диаметра к толщине (D / t), которое должно быть больше или равно 20 , хотя некоторые авторы считают 16 .
Однако решение о том, использовать или не использовать формулу, обычно основывается не на геометрии ее сечения (отношение D / t), а на обслуживании трубы, учитывая тип жидкости, промышленность и физические условия, такие как, например, , ASME (Американская ассоциация инженеров-механиков) делает.

  • P: Давление в трубе
  • S: Обруч
  • т: Толщина стенки трубы
  • D: Внешний диаметр
Расчеты по формуле Барлоу
Точность расчетов

Цифры после десятичной точки: 3

content_copy Ссылка сохранить Сохранить расширение Виджет

Следуя этим критериям обслуживания, стандарт ASME B31.Код 4 (Трубопроводные системы транспортировки жидкостей и шламов) применяет формулу следующим образом:

  • A: Допуск на резьбу, нарезание канавок, коррозию
Толщина стенки по формуле Барлоу в соответствии с ASME B31.4
Точность расчета

Цифры после десятичной точки: 3

Толщина стенки трубы, (дюймы)

content_copy Ссылка сохранить Сохранить расширение Виджет

ASME B31.Кодекс 8 (Системы газотранспортных и распределительных трубопроводов) применяет его следующим образом:

и для расчета минимальной толщины стенки с учетом припуска:

это должно быть выражено так:

  • F: Расчетный коэффициент
  • E: Коэффициент продольного шарнира
  • T: Температурный коэффициент снижения номинальных характеристик
  • A: Допуск на резьбу, нарезание канавок, коррозию
Давление в трубе по формуле Барлоу согласно ASME B31.8
Расчетный коэффициент, (безразмерный) 0,80 для Класса размещения 1, Раздела 10,72 для Класса местоположения 1, Раздела 20.60 для Класса местоположения 20,50 для Класса местоположения 30,40 для Класса размещения 4 Коэффициент продольного соединения (безразмерный) 1,00 для бесшовных труб ASTM A531. 00 для трубы, сваренной сопротивлением ASTM A53 0,60 для трубы ASTM A53, сваренной встык: труба непрерывного сварного шва 1,00 для трубы ASTM A106 бесшовная 0,80 для трубы электросварной сварки плавлением ASTM A134 1,00 для трубы электросварной сварки ASTM A135 0.60 для трубы API 5L, сваренной встык с печью, 0,80 для трубы, сваренной встык, ASTM A1390,80 для трубы ASTM A211, сваренной спиральной сваркой, 1,00 для бесшовной трубы ASTM A333 1,0 для трубы, сваренной сопротивлением ASTM A333 Дуговая сварная труба0,80 для электросварной сварки ASTM A671 классов 13,23,33,43,53 Труба 1,00 для электросварки плавлением ASTM A671 классов 12,22,32,42,52 Труба0,80 для электросварки плавлением ASTM A672 Труба классов 13,23,33,43,531.0 для трубы, сваренной плавлением согласно ASTM A672, классов 12,22,32,42,521.00 для бесшовных труб API 5L 1,00 для трубы API 5L электросварной сварки оплавлением 1,00 для трубы API 5L, сваренной оплавлением оплавлением 1,00 для трубы API 5L, сваренной дуговой сваркой под флюсом Температурный коэффициент, (безразмерный) 1,000 (для 250 ºF или меньше) 0,967 ( для 300 ° F) 0,933 (для 350 ° F) 0,900 (для 400 ° F) 0,867 (для 450 ° F) Точность вычисления

Цифры после десятичной точки: 3

content_copy Ссылка сохранить Сохранить расширение Виджет

Код

ASME B31.9 (Строительные трубопроводы) применяет его следующим образом:

  • E: Коэффициент продольного шарнира
  • A: Допуск на резьбу, нарезание канавок, коррозию
Толщина стенки трубы по формуле Барлоу согласно ASME B31.9
Коэффициент продольного шва, (безразмерный) 0,6 (для трубы под сварку встык или непрерывной сварки) 0,75 (для трубы со спиральным швом ASTM A211) 0,8 (для трубы с одинарным стыковым сварным швом) 0,85 (для трубы с контактным сварным швом) 0,9 (для трубы с двойным сварным швом) труба под сварку встык) 1,00 (для стыкового шва со 100% радиографическим исследованием трубы) Точность расчета

Цифры после десятичной точки: 3

Толщина стенки трубы, (дюймы)

content_copy Link сохранить Сохранить расширение Виджет

С другой стороны, в отличие от предположения о тонкой стенке или теории мембран, существуют формулы для изогнутой пластины или толстостенной трубы, полученные из теории Ламе, использование которых более сложно, иногда с итерациями, и требует осторожного подхода, например, например, в ASME B 31.1 (силовой трубопровод), код ASME B 31.3 (технологический трубопровод) и ASME B 31.5 (холодильный трубопровод и компоненты теплопередачи).

Калькулятор расхода

— Давление и диаметр Калькулятор расхода

— Давление и диаметр | Copely

Результаты

Пожалуйста, нажмите на вкладки ниже, чтобы просмотреть результаты.

Зависимость расхода жидкости от длины шланга Количество потока жидкости в зависимости от давления Зависимость расхода жидкости от диаметра ствола
Зависимость расхода жидкости от длины шланга
Длина 20.000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000
Количество Расход жидкости (литры в минуту) 95,273 68,458 56.202 48,807 43.727 39,961 37.026 34,656 32,689 31,023
Диаметр отверстия (мм) 25 25 25 25 25 25 25 25 25 25
Давление (бар) 7 7 7 7 7 7 7 7 7 7
Диаметр отверстия (дюймы) 0.984 0,984 0,984 0,984 0,984 0,984 0,984 0,984 0,984 0,984
Давление (фунт / кв. Дюйм) 102,900 102,900 102,900 102,900 102,900 102,900 102.900 102,900 102,900 102,900
Длина (фут) 65,667 131,333 197.000 262,667 328.333 394,000 459,667 525,333 591,000 656,667
Количество Расход жидкости (галлонов в минуту) 20.960 15.061 12,364 10,738 9,620 8,791 8,146 7,624 7,192 6,825
Коэффициент C 20,105 20,105 20,105 20,105 20,105 20,105 20.105 20,105 20,105 20,105
Скорость V (фут / сек) 10.602 7,618 6.254 5,431 4,866 4,447 4,120 3,856 3,638 3,452
Диаметр отверстия (фут) D 0.082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021
Эквивалентная напорная жидкость, ч (фут) 237,644 237,644 237,644 237,644 237.644 237,644 237,644 237,644 237,644 237,644
Данные о зависимости расхода жидкости от давления
Давление 1,400 2,800 4.200 5,600 7.000 8.400 9,800 11.200 12.600 14 000
Расход жидкости (л / мин) 19,555 27,655 33,871 39,110 43,727 47.900 51,738 55,310 58.666 61,839
Диаметр отверстия (мм) 25 25 25 25 25 25 25 25 25 25
Длина 100 100 100 100 100 100 100 100 100 100
Диаметр отверстия (дюйм) 0.984 0,984 0,984 0,984 0,984 0,984 0,984 0,984 0,984 0,984
Давление (фунт / кв. Дюйм) 20,580 41.160 61,740 82,320 102,900 123.480 144.060 164.640 185,220 205,800
Длина (фут) 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333
Кол-во расход жидкости (галлон / мин) 4.302 6.084 7,452 8,604 9,620 10,538 11,382 12,168 12,906 13,605
Коэффициент C 20,105 20,105 20,105 20,105 20,105 20,105 20.105 20,105 20,105 20,105
Скорость V (фут / сек) 2,176 3,077 3,769 4,352 4,866 5,330 5,757 6,155 6.528 6,881
Диаметр отверстия (фут) D 0.082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021
Эквивалентная напорная жидкость, ч (фут) 47,529 95.058 142,587 190.115 237.644 285,173 332,702 380,231 427,760 475,289
Количество потока жидкости в зависимости от диаметра отверстия
Диаметр отверстия 5.000 10.000 15 000 20,000 25.000 30,000 35,000 40,000 45,000 50,000
Расход жидкости (л / мин) 0,091 2,204 8,792 21,989 43,727 75,790 119,849 177,478 250,177 339.374
Давление (бар) 7 7 7 7 7 7 7 7 7 7
Длина 100 100 100 100 100 100 100 100 100 100
Диаметр отверстия (дюйм) 0.197 0,394 0,591 0,787 0,984 1,181 1,378 1,575 1.772 1,969
Давление (фунт / кв. Дюйм) 102,900 102,900 102,900 102,900 102,900 102,900 102.900 102,900 102,900 102,900
Длина (фут) 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333
Кол-во расход жидкости (галлон / мин) 0.020 0,485 1,934 4,838 9,620 16,674 26,367 39.045 55,039 74,662
Коэффициент C 2,314 9,976 14,458 17.638 20,105 22,120 23.824 25,300 26.602 27,767
Скорость V (фут / сек) 0,252 1,533 2,718 3,823 4,866 5,857 6.804 7,715 8,592 9,441
Диаметр отверстия (фут) D 0.016 0,033 0,049 0,066 0,082 0,098 0,115 0,131 0,148 0,164
Эквивалентная напорная жидкость, ч (фут) 237,644 237,644 237,644 237,644 237,644 237.644 237,644 237,644 237,644 237,644

Расход жидкости в трубах

Количество жидкости, которое будет выпущено через шланг, зависит от давления, приложенного на подающем конце, длины шланга и диаметра отверстия. Характер поверхности отверстия, количество и форма изгибов на участке шланга также влияют на скорость потока.

Давление иногда указывается как «напор». Если напор указан в метрах водяного столба, каждый 1-метровый напор (3,28 фута) создает давление 0,1 бар (1,47 фунт / кв. Дюйм).

Все формулы для определения количества жидкости, которая будет протекать через шланг в данный момент времени, являются приблизительными. Приведенные выше графики построены на основе расчетов, предполагающих, что шланг находится в хорошем состоянии и проложен по прямой линии. В этом случае они будут точными с точностью до 10% от реальных полученных результатов.

Если набор условий, введенных в модель, дает отрицательные ответы, то очевидно, что необходимо соответствующим образом скорректировать переменные, пока не будет получен реалистичный результат.

Необходимо рассчитать падение давления жидкости, движущейся по трубе или трубе? Воспользуйтесь нашим калькулятором падения давления.

Вставить этот инструмент на свой веб-сайт

Скопируйте приведенный ниже код, чтобы встроить калькулятор скорости потока на свой веб-сайт.

Не пропустите последние новости

Подпишитесь на нашу эксклюзивную рассылку по электронной почте, чтобы получать последние новости и предложения от Copely.

Copely Developments Ltd будет использовать информацию, которую вы предоставляете в этой форме, чтобы время от времени связываться с вами
, чтобы рассказывать интересные истории, новые продукты и предстоящие события. Вы можете отписаться в любое время.

© 2021 Copely Developments Ltd — Турмастон-лейн, Лестер, LE4 9HU. — Входит в группу компаний COBA.

Онлайн-калькулятор скорости потока сжатого воздуха

Наш онлайн-калькулятор скорости потока сжатого воздуха поможет вам быстро и легко определить скорость потока сжатого воздуха.

Онлайн-калькулятор скорости сжатого воздуха

Важно убедиться, что воздух проходит через ваши системы с надлежащей скоростью для размера труб, чтобы убедиться, что ваша система работает наиболее эффективно. Одна из самых недооцененных областей при компоновке и конструкции трубопровода — это скорость сжатого воздуха. Прочтите нашу запись в блоге о правильном определении размеров системы сжатого воздуха, чтобы узнать больше. Высокая скорость может быть значительной причиной противодавления, неустойчивых сигналов управления и турбулентности.Слишком низкая скорость может привести к накоплению влаги в трубах и элементах управления.

Чтобы рассчитать скорость в трубе, вам необходимо знать некоторые сведения о вашей системе. Во-первых, размер трубы в дюймах позволяет узнать, через какое пространство проходит воздух. Затем вам нужно будет узнать рабочее давление в фунтах на квадратный дюйм, при котором ваша система в настоящее время работает. PSIG — это фунты на квадрат в манометре или мера давления, но только мера манометрического давления.Вам также необходимо знать атмосферное давление и поток CFM, проходящий через трубу.

Не всегда легко узнать, сколько воздуха (измеряется в кубических футах в минуту) вы производите и сколько вам действительно нужно. Но если вы лучше справитесь с вашим истинным спросом и предложением CFM, это поможет вам оптимизировать вашу систему для повышения энергоэффективности и производительности.

Как рассчитывается скорость трубы?

Существует несколько способов расчета CFM, производимого воздушным компрессором.Самым распространенным является тест с накачкой. Для выполнения этого теста вам понадобится ресивер известного объема. Посчитав, сколько времени требуется воздушному компрессору для создания давления в резервуаре, вы можете определить фактическую (а не номинальную) CFM воздушного компрессора. Расчет:

CFM = объем резервуара (в кубических футах) x время (с) / 60 * (конечное давление — начальное давление) / 14,5

Наш онлайн-калькулятор CFM для воздушного компрессора упрощает выполнение этих расчетов.

Получив эту информацию, вы можете использовать следующую формулу для расчета скорости для вашей системы сжатого воздуха.

Скорость затем измеряется по следующему уравнению:
V = 4005 x √ΔP
V = Скорость потока в CFM
= квадратный корень из числа справа
ΔP = Скорость давления измеряется датчиком давления

Намного более быстрый и простой способ — использовать наш калькулятор скорости, указанный ниже.Это автоматически выполнит эти вычисления за вас и отправит вам результат.

Свяжитесь с нами сегодня, и наши эксперты по воздуху ответят на ваши вопросы по воздушному потоку.

Чикаго (847) 678-8788
Миннеаполис (612) 246-3432
Милуоки (414) 273-1994

Калькулятор футов в секунду

Эта формула используется для расчета футов в секунду сжатого воздуха через трубу определенного размера (система правильного размера не должна превышать 20 FPS)

Калькулятор расхода — Хорошие калькуляторы

В этом калькуляторе расхода используются данные о скорости потока и площади поперечного сечения потока для определения объемного расхода жидкости.

Вы можете рассчитать расход за пять простых шагов:

  1. Выберите форму поперечного сечения канала
  2. Введите все измерения, необходимые для вычисления площади поперечного сечения
  3. Введите среднюю скорость потока
  4. Выберите единицу измерения расхода
  5. Нажмите кнопку «Рассчитать», чтобы вычислить расход.

Что такое объемный расход?

Объемный расход, который также обычно называют скоростью потока жидкости или объемным расходом , представляет собой объем данной жидкости, который течет в течение единицы времени.Обычно обозначается символом Q .

Скорость, с которой течет жидкость, будет варьироваться в зависимости от площади трубы или канала, через которые она проходит, и скорости жидкости.

Единицы, которые обычно используются для измерения объемного расхода: м 3 / с (кубический метр в секунду), л / мин (литры в минуту), футы 3 / сек (кубический фут в секунду), фут 3 / мин (кубических футов в минуту или CFM) и галлонов в минуту (галлонов в минуту или GPM).

Объемный расход (Q) может быть вычислен как произведение площади поперечного сечения (A) потока и средней скорости потока (v) следующим образом:

Q = A * v

Пример:

Допустим, у нас есть круглый канал с внутренним диаметром 8 дюймов. Вода течет по каналу со средней скоростью 16 футов в секунду. Мы можем определить объемный расход следующим образом:

Расход будет варьироваться в зависимости от площади поперечного сечения канала:

Площадь = π * (Диаметр) 2 /4

Площадь = 3.1415926 * (8/12 футов) 2 /4

Площадь = 0,349 фута 2

Площадь трубы составляет 0,349 фута 2 . Используя эту информацию, мы можем определить расход (Q) следующим образом:

Q = Площадь * Скорость

Q = (0,349 фута 2 ) * (16 футов / с)

Q = 5,584 фута 3 / с

Ответ: В этом примере вода течет по круглому каналу со скоростью 5,584 фута 3 / с.

Формулы для расчета расхода

Канал или труба, по которой течет жидкость, обычно имеет круглую, прямоугольную или трапециевидную форму поперечного сечения.Формула, которая используется для определения расхода, будет варьироваться в зависимости от формы поперечного сечения. Общие подходы изложены ниже.

Расчет расхода в круглой / частично круглой трубе

Площадь поперечного сечения круглой трубы может быть определена следующим образом:
A = π * (Диаметр) 2 /4

Расход (Q) можно записать как:
Q = (Скорость) * π * (Диаметр) 2 /4

Площадь поперечного сечения частично полностью круглой трубы может быть определена следующим образом:
A = (Диаметр) 2 * (theta — sin (theta)) / 8

Где, theta [в радианах] — это центральный угол между линиями, проведенными от центра трубы до поверхности воды с каждой стороны.

Скорость потока (Q), таким образом, выглядит следующим образом:

Q = (Скорость) * (Диаметр) 2 * (theta — sin (theta)) / 8

Расчет скорости потока в прямоугольном канале

Площадь поперечного сечения прямоугольного канала может быть определена следующим образом:
A = (Ширина) * (Глубина)

Расход (Q), таким образом, выглядит следующим образом:
Q = (Скорость) * (Ширина) * (Глубина)

Расчет расхода трапецеидального канала

Площадь поперечного сечения трапециевидного канала может быть определена следующим образом:
A = (Глубина) * (Верхняя ширина + Нижняя ширина) / 2

расход (Q), таким образом, выглядит следующим образом:
Q = (Скорость) * (Глубина) * (Верхняя ширина + Нижняя ширина) / 2

Вас также может заинтересовать наш Калькулятор потерь на трение

Калькулятор расхода — БЕСПЛАТНО Онлайн расчеты

Название тэга

Тэг инструмента.Это идентификатор полевого устройства, который обычно присваивается местоположению и функциям прибора.

Если вы хотите узнать больше о функциональном именовании, посетите нашу страницу, посвященную этой теме, «Основы диаграммы P&ID — Часть 3 — Функциональная идентификация и соглашения об именах».

Завод, площадь и примечания

Информация Относится к физической установке прибора. Завод и производственный участок , где установлен прибор.Обычно, чтобы легко определить различные этапы производственного процесса, весь химический завод обычно делится на разные участки. Области могут иметь названия, относящиеся к этапу производственного процесса, например, пиролиз, или они могут быть связаны с типом услуг, которые они производят, например, сжатый воздух.

Примечания об инструменте. Вы можете использовать поле «Примечания» для добавления дополнительной информации, связанной с вашими расчетами, например, GARDEN HOSE или SOAKER HOSE.

Эти поля не требуются для калькулятора, но если вы решите загрузить свои результаты, это полезная информация для организации вашей информации.

Жидкость

Название или состав жидкости. Жидкостью называется сплошная среда, образованная каким-то веществом, молекулы которого обладают лишь слабой силой притяжения.

Жидкость — это набор частиц, которые удерживаются вместе слабыми силами сцепления и стенками контейнера; Этот термин включает жидкости и газы.Эта информация не имеет отношения к расчету, но вы можете использовать эту ячейку для определения жидкости, протекающей по трубе, как например поток сжатого воздуха.

государство

Состояние дела. Это может быть жидкость или газ.

Если вы выбрали Liquid , вам необходимо определить плотность жидкости. Эта информация требуется для расчета различных расходов.Если вам нужно использовать этот калькулятор как калькулятор расхода воды , вы можете оставить 1000 в ячейке плотности. Мы создали специальную страницу «Плотность обычных жидкостей», которая содержит таблицу нескольких плотностей с их собственной эталонной температурой.

Температура (T)

Рабочая температура жидкости в градусах Цельсия. Температура оказывает на объем двоякое влияние.Более высокая температура означает менее плотный газ и более высокие потоки, но когда этот более высокий поток корректируется до базовой температуры, основной поток становится меньше. Эта ячейка становится доступной только в том случае, если вы выбираете газ в качестве состояния вопроса. Если вы не знаете, какая рабочая температура, вы можете оставить ее на уровне 20 градусов Цельсия.

Давление (P)

Рабочее давление жидкости в барах. Давление влияет на объем двояко. Более высокое давление делает газ более плотным, поэтому через счетчик проходит меньший объем.Однако, когда объем увеличивается до базового давления, объем увеличивается.

Авогадро был тем, кто определил, что в стандартных условиях объем, который занимает моль любого газообразного вещества, всегда одинаков. Это значение составляет 22,4 литра. Объем моля любого газа известен как молярный объем. Например: 1 моль водорода, 1 моль азота или водяного пара, хлор, углекислый газ и т. Д. Они всегда будут занимать 22,4 литра в стандартных условиях.Если эти условия изменятся (они больше не равны 1 атмосфере или 273 К), изменится и объем.

Плотность (ро)

Плотность — это соотношение массы и объема. Плотность материала зависит от температуры и давления. Это изменение обычно невелико для твердых тел и жидкостей, но намного больше для газов.

Молекулярный вес (МВт)

Масса молекулы любого чистого вещества, величина которой равна сумме составляющих ее атомов.

Диаметр трубы (D)

Внутренний диаметр трубы. Все расчеты процесса основаны на объеме трубы, который является функцией внутреннего диаметра трубы. Согласно стандартам, любая труба определяется двумя безразмерными числами: номинальный диаметр (в дюймах согласно американским стандартам или мм согласно европейским стандартам) и график (40, 80, 160, …). Наружный диаметр трубы — это диаметр внешней поверхности трубы.

Скорость в трубе или скорость потока (vp)

Скорость — это мера скорости и направления объекта. В отношении жидкостей это скорость потока частиц жидкости в трубе. При расчетах расхода используется средний расход. Единицами измерения расхода обычно являются футы в секунду (fps), футы в минуту) fpm), метры в секунду (mps) и так далее. Этот калькулятор можно использовать для измерения скорости в паропроводе.

Объемный расход (qv)

Объемный расход часто определяют, зная площадь поперечного сечения жидкости. Большинство оборудования для измерения объемного потока измеряют скорость и рассчитывают объемный расход на основе постоянной поперечной площади. Объемный расход обычно обозначается буквой Q. Единицы измерения объемного расхода обычно м3 / ч или м3 / с. Ниже вы найдете формулу объемного расхода:

Преобразование объемного расхода: массовый расход можно преобразовать в объемный расход, используя приведенную выше формулу.Теперь разницу между объемным расходом и массовым расходом можно легко понять, наблюдая за уравнением, которое связывает оба потока.

Массовый расход (кв.м)

Масса вещества, проходящая за единицу времени. Массовый расход в кг / с, протекающий по трубе. Массовый расход обычно обозначается буквой W.

Нормальный расход (кв.м)

Стандартные или нормальные условия используются в качестве исходных значений в термодинамике газов.Для указания объема газа обычно используются нормальные или стандартные условия температуры и давления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *