Онлайн калькулятор теплопроводности: SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.
Калькулятор теплопроводности в мобильном приложении
Основными источниками теплопотерь в помещении являются стены, крыша и окна. Для уменьшения теплопотерь через окна и создания в помещении комфортного микроклимата разработан Калькулятор теплопроводности. Подробнее о новинке в материале ОКНА МЕДИА.
Интересный маркетинговый ход предложила компания RollTech-ALUPROGROUP выпустив на оконный рынок программное обеспечение позволяющее в режиме онлайн рассчитать теплопроводность окна.
Калькулятор теплопроводности WinUw значительно облегчает задачу производителям пластиковых окон при выборе комплектующих, а также позволяет вычислить и устранить собственные недоработки производства. А покупателям, в свою очередь, получить качественные теплые пластиковые окна.
Калькулятор теплопроводности пластикового окна
Калькулятор мгновенно вычисляет показатели теплопроводности окна – Uw, сопротивления теплопроводности – Rw, линейного коэффициента теплопроводности краевой зоны окна – Psi. Для расчета необходимо задать параметры материала рамы, тип и геометрию оконной системы, толщину и тип стеклопакета, ее размеры, температурные показатели внутри и снаружи помещения, указать какой спейсер использован в стеклопакете.
Примечательно, что в списке предложенных спейсеров указаны только дистанционные рамки производства RollTech and ALUPRO и рамки из алюминия для наглядного сравнения показателей. Такой нюанс играет и своего рода рекламную функцию производителя спейсеров для стеклопакетов, предлагая оконным компаниям превосходную программу расчета при условии использования продукции RollTech and ALUPRO.То есть воспользоваться калькулятором теплопроводности могут только оконные компании, использующие продукцию разработчика калькулятора.
Фото: интерфейс WinUw в мобильном приложении Калькулятор доступен на сайте компании, а также для бесплатного скачивания в GooglePlay и AppleStore для смартфонов. Мобильность программы позволяет специалистам оконных компаний наглядно демонстрировать преимущества оконных систем в любое время и в любом месте. Использование и скачивание WinUw предлагается на бесплатной основе.
Вычислить энергосберегающие окна очень просто
Программное обеспечение нацелено на производителей пластиковых окон и стеклопакетов, технических специалистов строительных компаний. Благодаря программе, производители пластиковых окон смогут подобрать комплектующие для окон, обеспечивающие конструкции оптимальные коэффициенты теплопроводности, повысить энергоэффективность окон. Рядовому потребителю пластиковых окон сориентироваться в показателях будет достаточно сложно, учитывая ряд технических нюансов.
Минусом новинки является ограниченность доступных видов дистанционных рамок для расчета теплопроводности окна. Это может стать следующим шагом для развития программного обеспечения калькулятора.
ОКНА МЕДИА рекомендует прочесть: Приложение для смартфонов оценит уровень шума из окон
Конвертер удельной теплопроводности • Термодинамика — теплота • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Общие сведения
Теплопроводность — свойство тел перераспределять тепло от более нагретых частей к менее нагретым. Это свойство не зависит от размера тела, но зависит от температуры. Чем выше теплопроводность вещества, тем лучше через него передается тепло. Например, у шерсти более низкая теплопроводность, чем у металла, поэтому если ребенок потрогает языком зимой свою рукавичку, то с ним ничего не случится. Если же он решит попробовать на вкус металлическую дверную ручку, то влага на его языке заледенеет, и язык примерзнет.
У теплопроводности много применений в технике и повседневной жизни. Именно благодаря ей возможно регулировать температуру тела людей и животных, готовить пищу, и обеспечивать комфорт в доме, даже если на улице непогода.
Применение теплопроводности
Для жарки мяса, например котлет или мясных брикетов для гамбургеров, нужна высокая теплопроводность. Для этого их иногда жарят прямо на металлической решетке с небольшим добавлением масла, чтобы они не пригорели.
Теплопроводность на кухне
Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы, так их теплопроводность и прочность выше, чем у другимх материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается еде. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых еде передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Обычно в кастрюлю на огне наливают в воду, в которую ставят вторую кастрюлю с едой. Температура здесь регулируется благодаря более низкой теплопроводности воды и вследствие того, что температура нагревания внутренней кастрюли не превышает температуры кипения воды, то есть 100° C (212° F). Такой способ часто применяют с продуктами, которые легко пригорают или которые нельзя кипятить, например шоколад.
Посуда из меди
Металлы, которые очень хорошо проводят тепло — медь и алюминий. Медь более теплопроводна, но и стоит дороже. Из обоих металлов делают кастрюли, но некоторая еда, особенно кислая, реагирует с этими металлами, и у еды появляется металлический привкус. За такими кастрюлями, особенно за медными, необходим тщательный уход, поэтому на кухне чаще используют более дешевые и удобные в обращении и уходе кастрюли из нержавеющей стали.
Японское блюдо дория, запеченное в духовке в керамической посуде.
Потребности в теплопроводности зависят от способа приготовления пищи и от вкуса и консистенции, которой хочет добиться повар. Например, при варке обычно нужна более низкая теплопроводность, чем при жарке. Теплопроводность регулируют, выбирая разную посуду, а также используя продукты с большим или меньшим содержанием жидкости. Например, количество масла на дне кастрюли или сковородки влияет на теплопроводность, так же, как и общее количество жидкости в продукте.
Рагу из осьминога по-сицилийски, приготовленное в соусе. Для этого блюда теплопроводность посуды должна быть низкой, поэтому в его приготовлении используется много жидкости.
Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру.
Некоторые повара предпочитают готовить заварной крем на водяной бане, чтобы уменьшить теплопередачу от нагревателя к продуктам.
Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке.
Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.
Материалы с невысокой теплопроводностью также используют для поддержания температуры еды неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них еда остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, еде — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для еды навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.
Теплопроводность для тепла
Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. К тому же, температура тела во время сна падает, и нам нужна дополнительная теплоизоляция. Иногда одеяла бывает недостаточно, так как оно не прикреплено к простыням, и через щели, которые образуются, когда мы переворачиваемся во сне, может выйти тепло и просочиться холодный воздух.
Ледяной подсвечник
Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. Животные используют воздух, чтобы улучшить теплоизоляцию своего тела. Например, птицы сидят нахохлившись в холодную погоду, чтобы добавить слой воздуха внутри оперения. Этот воздух почти не движется, поэтому хорошо изолирует от холода. У нас тоже сохранился этот механизм — если нам холодно, то у нас возникает «гусиная кожа». Если бы в процессе эволюции мы не потеряли свою шерсть, то такое «нахохливание» помогало бы нам согреться.
У снега низкая теплопроводность, поэтому он обеспечивает хорошую изоляцию
У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках. Постояльцы рассказывают, что всю ночь им было очень тепло и уютно, хотя не рекомендуют вставать среди ночи в туалет. Благодаря низкой теплопроводности льда из него иногда делают подсвечники, и в Интернете можно найти множество мастер-классов по их изготовлению.
Поддержание температуры тела людей и животных
Нормальная температура белохвостового оленя — от 311,4K до 313,3K или от 38,2°C до 40,1°C, несмотря на то, что температура воздуха в их среде обитания варьирует от –38 до +34°С. Белохвостый олень, Миссиссога, Онтарио.
Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.
Другие применения
Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.
Эти макаки очень любят зимой купаться в Японских горячих источниках
Некоторые места для купания, например горячие источники онсэн в Японии — на улице. Тело человека хорошо изолировано жиром, у которого низкая теплопроводность, поэтому люди могут расслабиться и насладиться горячей ванной даже если на улице — мороз. Люди — не единственные существа, оценившие по достоинству эту особенность организма. Макаки тоже очень любят купаться в горячих источниках зимой.
Теплопроводность некоторых материалов
Материал | Коэффициент теплопроводности, Вт/м·К |
---|---|
Пенополиуретановые листы | 0,04 |
Пенополистирол | 0,04 |
Вата минеральная | 0,05 |
Войлок натуральный | 0,05 |
Древесина — доски | 0,15 |
Древесно-стружечная плита | 0,20 |
Гипс строительный | 0,35 |
Вода при 20° C | 0,60 |
Кирпич керамический | 0,67 |
Камень | 1,40 |
Бетон | 1,75 |
Сталь | 52 |
Латунь | 110 |
Алюминий | 230 |
Медь | 380 |
Серебро | 406 |
Алмаз | 1 000 |
Литература
Автор статьи: Kateryna Yuri
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Калькулятор толщины. Калькулятор теплоизоляции онлайн
С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен дома и других ограждений в соответствии с регионом вашего проживания, материала и толщины стен, используемой пароизоляции, материала для подшивки и других важных параметров при утеплении. Подбирая разные материалы, можно выбрать вариант для себя максимально теплый и дешевый.
Теплотехнический калькулятор для расчета точки росы
С помощью данного калькулятора вы сможете рассчитать оптимальную толщину утеплителя для дома и жилых помещений в соответствии с регионом проживания, материала и толщины стен. Вы сможете рассчитать толщину различных утеплительных материалов. И увидеть наглядно на графике место выпадения конденсата в стене. Удобный калькулятор теплопроводности стены онлайн для расчета толщины утепления.
Калькулятор KNAUF Расчет необходимой толщины теплоизоляции
Рассчитайте необходимую толщину теплоизоляционного материала в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий», для всех типов зданий. Бесплатный онлайн сервис расчета теплоизоляции KNAUF, удобный и понятный интерфейс.
Калькулятор Rockwool расчёта толщины теплоизоляции стен
Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек очень просто.
В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» – теплые стены обойдутся дороже застройщику.
Приведем пример. По расчетам выходит, что 50 мм пенопласта уменьшит теплопотери 50 см пенобетона лишь на 20%. Т.е. 80% тепла в доме будет сберегать пенобетон и лишь 20% пенопласт. Здесь действительно стоит подумать, а стоит ли утплять дом? Стоит ли овчинка выделки. С другой стороны, при утеплении 50 см кирпичной стены пенопласт уменьшит теплопотери в 1,5 раза. Кирпич будет беречь 40%, а пенопласт – 60% тепла. Разобраться с этим вопросом вам поможет расчет толщины утеплителя для стен онлайн.
Из этого делаем вывод, что в каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы.
Теплотехнический калькулятор точки росы онлайн
С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.
Калькулятор расчета толщины утеплителя стены
С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.
Калькулятор KNAUF расчета толщины утеплителя
Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.
Калькулятор Rockwool для расчета теплоизоляции
Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.
Калькулятор теплопроводности для расчета толщины стен
Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.
7 сентября, 2016Специализация: мастер по внутренней и наружной отделке (штукатурка, шпаклёвка, плитка, гипсокартон, вагонка, ламинат и так далее). Кроме того, сантехника, отопление, электрика, обычная облицовка и расширение балконов. То есть, ремонт в квартире или доме делался «под ключ» со всеми необходимыми видами работ.
Безусловно, расчет утеплителя для стен в собственном доме, это очень серьёзная работа, особенно, если это не было сделано изначально и в доме холодно. И вот здесь вам придётся столкнуться с рядом вопросов.
Например, каким должен быть утеплитель, какой из них лучше и какая нужна толщина материала? Давайте попробуем разобраться в этих вопросах, а ещё посмотрим видео в этой статье, наглядно демонстрирующее тему.
Утепление стен
Внутри или снаружи
Если вы решили использовать калькулятор расчета толщины утеплителя для стен, то точных данных вы не получите. Вручную можно получить более точную и достоверную информацию. Помимо этого имеет значение расположение изоляции, которую можно укладывать, как внутри, так и снаружи здания, что при расчетах нужно учитывать обязательно!
Особенности внутреннего и наружного утепления:
- представьте себе, что вы используете калькулятор расчета утеплителя для стен, но при этом изоляцию укладываете внутри помещения, будут ли результаты расчётов верными? Обратите внимание на схему вверху;
- какой бы толщины ни была изоляция в комнате, стена всё равно останется холодной и это приведёт к определённым последствиям;
- то есть, это означает, что точка росы или зона, где тёплый воздух при встрече с холодным превращается в конденсат, переносится ближе к помещению. И чем мощнее внутреннее утепление, тем ближе будет эта точка;
- в некоторых случаях эта зона доходит до поверхности стены, где влага способствует развитию грибковой плесени. Но если даже она остаётся внутри стены, то эксплуатационный ресурс от этого никак не увеличивается;
- следовательно, инструкция и здравый смысл указывают на то, что внутреннее утепление следует монтировать только в крайнем случае или же тогда, когда нужна звукоизоляция;
- при наружном утеплении точка росы будет приходиться на зону изоляции, а это означает, что вы сможете повысить срок годности вашей стены и избежать возникновения сырости.
Расчет – дело серьезное!
№п/п | Стеновой материал | Коэффициент теплопроводности | Необходимая толщина (мм) |
1 | Пенополистироп ПСБ-С-25 | 0,042 | 124 |
2 | Минеральная вата | 0,046 | 124 |
3 | Клееный деревянный брус или цельный массив ели и сосны поперёк волокон | 0,18 | 530 |
4 | Кладка керамоблоков на теплоизоляционный клей | 0,17 | 575* |
5 | Кладка газо- и пеноблоков 400кг/м3 | 0,18 | 610* |
6 | Кладка полистирольных блоков на клей 500кг/м3 | 0,18 | 643* |
7 | Кладка газо- и пеноблоков 600кг/м3 | 0,29 | 981* |
8 | Кладка на клей керамзитобетона 800кг/м3 | 0,31 | 1049* |
9 | Кладка из керамического пустотелого кирпича на ЦПР 1000кг/м3 | 0,52 | 1530 |
10 | Кладка из рядового кирпича на ЦПР | 0,76 | 2243 |
11 | Кладка из силикатного кирпича на ЦПР | 0,87 | 2560 |
12 | ЖБИ 2500кг/м3 | 2,04 | 6002 |
Теплотехнический расчет различных материалов
Примечание к таблице. Наличие знака * указывает на необходимость добавления коэффициента 1,15, если в здании сделаны перемычки и монолитные пояса из тяжёлых бетонов. Вверху для наглядности составлена диаграмма — цифры совпадают с таблицей.
Итак, расчет толщины утеплителя, это определение его теплового сопротивления, которое мы обозначим буквой R — постоянная величина, которая рассчитывается отдельно для каждого региона.
Давайте возьмём для наглядности среднюю цифру R=2,8 (м2*K/Вт). Согласно Государственным Строительным Нормам такая величина является минимально допустимой для жилых и общественных зданий .
В тех случаях, когда тепловая изоляция состоит из нескольких слоёв, например, кладка, пенопласт и евровагонка, то сумма всех показателей складывается воедино — R=R1+R2+R3 . А общую или отдельную толщину теплоизоляционного слоя рассчитывают по формуле R=p/k
Здесь p будет означать толщину слоя в метрах, а буква k , это коэффициент теплопроводности данного материала (Вт/м*к), значение которого вы можете взять из таблицы теплотехнических расчётов, которая приведена выше.
По сути, используя эти же формулы, вы можете произвести расчет энергоэффективности от утепления подоконников или узнать толщину изоляции для пола. Величину R используйте в соответствии со своим регионом.
Чтобы не быть голословным, приведу пример, возьмём кирпичную кладку в два кирпича (обычная стена), а в качестве изоляции будем использовать пенополистирольные плиты ПСБ-25 (двадцать пятый пенопласт), цена которых достаточно приемлема даже для бюджетного строительства.
Итак, тепловое сопротивление, которого нам нужно достичь, должно составлять 2,8 (м2*Л/Вт). Вначале узнаём теплосопротивление данной кирпичной кладки. От тычка до тычка кирпич имеет 250 мм и между ними раствор толщиной 10 мм.
Следовательно, p=0,25*2+0,01=0,51м . Коэффициент у силиката составляет 0,7 (Вт/м*к), тогда Rкирпича=p/k=0,51/0,7=0,73 (м2*K/Вт) — это мы получили теплопроводность кирпичной стены, рассчитав её своими руками.
Идём далее, теперь нам нужно достичь общего показателя для слоёной стены 2,8 (м2*K/Вт), то есть R=2,8 (м2*K/Вт и для этого нам нужно узнать необходимую толщину пенопласта. Значит, Rпенопласта=Rобщая-Rкирпича=2,8-0,73=2,07 (м2*K/Вт).
На фото — локальная защита пенопластом
Теперь для расчёта толщины пенополистирола берём за основу общую формулу и здесь Pпенопласта=Rпенопласта*kпенопласта= 2?07*0?035=0?072м . Конечно, 2 см мы никак не найдём у ПСБ-25, но если учесть внутреннюю отделку и воздушную прослойку между кирпичами, то нам будет достаточно 70 см, а это два слоя
В настоящее время в сети имеется немало бесплатных онлайн калькулятор и сервисов, позволяющих выполнить достаточно точные расчеты строительных конструкций.
В данном обзоре вы найдете подборку расчетных программ, используя которые вы сможете быстро выполнить расчеты по теплоизоляции, огнезащиты, звукоизоляции, технической изоляции, кровли, каменным конструкциям и сэндвич-панелям.
Содержание:
5. Калькулятор для расчета каменных конструкций
1. Калькуляторы для расчета теплоизоляции, звукоизоляции, огнезащитыРасчет толщины теплоизоляции является одним из важнейших факторов, необходимым при проектировании строительных объектов. Одним из главных параметров здесь считают теплосопротивление, которое высчитывается, исходя из климатической зоны того или иного региона, а так же вида ограждающих конструкций. Также необходимо учесть и другие важные детали, сделать это вам поможет специальная программа расчета теплоизоляции.
1.1. Онлайн-калькулятор теплоизоляции http://tutteplo.ru/138/ рассчитывает толщину слоя утеплителя для зданий и сооружений согласно требованиям СНИП 23-02-2003. Тепловая защита зданий. В создании калькулятора для расчета толщины теплоизоляции принимали участие сотрудники ОАО Институт «УралНИИАС». В качестве исходных данных требуется указать тип здания (жилое, общественное или производственное), район строительства, выбрать ограждающие конструкции, подлежащие термоизоляции, их характеристики. В качестве применяемого утеплителя доступен широкий выбор популярных марок, таких как Rockwool, Paroc, Isover, Термоплекс и множество других.
На основании теплотехнического расчета программа определяет толщину изоляции. При необходимости администрация сайта предоставляет бесплатные онлайн-консультации для проектировщиков и специалистов, а также на e-mail по запросу могут быть высланы детальные расчетные материалы.
1.2. Теплотехнический калькулятор http://www.smartcalc.ru/
Детальный теплотехнический расчет ограждающих конструкций онлайн можно выполнить в этой программе. Для начала работы сервис просит ввести данные о типе конструкций, районе строительства и температурном режиме помещения. Далее, калькулятор обрабатывает информацию и выдает решение о соответствии ограждающих конструкций требованиям нормативной документации.
В возможности программы входит построение схем тепловой защиты, влагонакопления и теплопотерь. Для удобства в меню есть примеры готовых решений, ознакомившись с которыми, выполнить расчет самостоятельно не составит труда.
1.4 Калькуляторы Технониколь
С помощью онлайн сервиса Технониколь http://www.tn.ru/about/o_tehnonikol/servisy/programmy_rascheta/ можно рассчитать:
- толщину звукоизоляции;
- расход материалов для огнезащиты металлоконструкций;
- тип и количество материалов для плоской кровли;
- техническую изоляцию трубопроводов.
Для примера рассмотрим калькулятор, который позволит выполнить расчет плоской кровли http://www.tn.ru/calc/flat/ . В начале расчета предлагается выбрать тип покрытия Технониколь (Классик, Смарт, Соло и т.д.) С подробным описанием всех видов можно ознакомиться на этом же сайте в соответствующем разделе.
Следующим этапом вводятся параметры кровельного пирога, географическое местоположение объекта и геометрические размеры конструкций крыши. Результаты расчета плоской кровли онлайн программа предоставляет в формате Adobe Acrobat или Microsoft Excel. Отчетный документ оформляется на фирменном бланке компании и содержит два вида показателей: по укрупненной и детализированной формам. Полученные спецификации могут использоваться непосредственно для закупки материала.
Еще Технониколь предлагает воспользоваться калькулятором расчета звукоизоляции http://www.tn.ru/calc/noise_insulation/ , в котором доступно два режима — для застройщика и проектировщика. Программа расчета звукоизоляциидает возможность выбора конструкции (стена, перекрытие), типа помещения, источника шума и других параметров. Далее, пользователь может выбрать одну из нескольких изоляционных систем, подходящих под его вводные данные.
Расчет огнезащиты металлоконструкцийтакже можно осуществить при помощи интернет-программы http://www.tn.ru/calc/fire_protection/ . Он позволяет выбрать геометрию конструкции (двутавр, швеллер, уголок, прямоугольная или круглая труба), ее параметры по ГОСТу или размеры для сварной конструкции, а потом указать способ обогрева и степень огнестойкости. После этого, система выполнит расчет толщины огнезащиты и предоставит результаты — необходимую толщину и объем плит, а также расходных материалов.
1.5 Теплотехнический калькулятор Paroc
Известный финский производитель теплоизоляционных материалов Paroc на своем российском сайте предлагает выполнить расчет всех видов утеплителей http://calculator.paroc.ru/ в соответствии с требованиями СП 50.13330.2015 «Тепловая защита зданий».
Для этого необходимо указать конструкцию стены, покрытия или перекрытия здания, уточнить температурные режимы и географию расположения объекта. В результате программа выполнит расчет сопротивления строительных конструкций теплопередаче и определит минимально допустимую толщину утеплителя. Отчет о проделанной работе можно распечатать или сохранить в файле формата PDF.
1.6. Теплоизоляция Baswool
Отечественная компания ООО «Агидель», выпускающая популярные теплоизоляционные материалы Baswool предлагает для своей продукции бесплатный калькулятор http://www.baswool.ru/calc.html . Интерфейс ресурса очень простой, а расчет предлагается выполнить в несколько шагов, поэтапно указав город строительства, категорию здания, утепляемую конструкцию. В результате программа предоставит на выбор несколько вариантов систем утепления Baswool с указанием толщины материала.
1.7. Расчетные программы Основит
Один из лидеров отечественных производителей отделочных материалов ТМ «Основит» предлагает на своем сайте бесплатно рассчитать объемы работ и стоимость их выполнения. С помощью калькулятора Основит http://osnovit.ru/system-calc/calc.php можно определить параметры фасадной теплоизоляции. Введя стандартный набор исходных данных, пользователь получает итоговую спецификацию предлагаемого набора материалов для устройства теплого фасада.
Дополнительно сервис Основит позволяет определить расход любого материала из своей производственной линейки . Преимуществом такого расчета является то, что результаты выдаются с привязкой к фасовочным единицам товара. Например, выбрав в меню категорий продукции «Смеси для пола» стяжку Стартлайн FC41 Н, указав толщину ее нанесения и общую площадь поверхности, пользователь узнает, сколько мешков сухой смеси ему потребуется.
2. Расчет технической изоляции2.1. Калькулятор расчета технической изоляции от Isotec
Isotec–торговая марка известной международной компании«Сен Гобен», под которой выпускается линейка технической изоляции. Эти материалы применяются для противопожарной обработки строительных конструкций, термической изоляции трубопроводов отопления и кондиционирования, а также промышленных емкостных сооружений.
Сайт компании предлагает выполнить расчет тепловых характеристик системы при помощи бесплатной онлайн-программы http://calculator.isotecti.ru/ . Калькулятор работает в соответствии с регламентом СП 61.13330.2012 (тепловая изоляция для оборудования и трубопроводов). Расчет выполняется на основании заданных критериев: температура поверхности трубопровода, транспортируемого потока, разница температурных характеристик по длине и так далее. Требуемые условия задаются пользователем в меню сайта.
После этого необходимо выбрать один из предлагаемых вариантов устройства теплоизоляции Isotec (например, цилиндры для трубопроводов). Программа автоматически определит толщину материала.
2. 2. Таким же образом можно произвести и расчет теплоизоляции трубопроводов с помощью уже знакомого сервиса Paroc http://calculator.paroc.ru/new/ . Все расчеты выполняются в соответствии с СП 61.13330.2012 Тепловая изоляция оборудования и трубопроводов (актуализированная редакция СНиП 41-03-2003). С его помощью можно подобрать оптимальные характеристики и тип технической изоляции. Система включает в себя различные методы расчета — по плотности теплового потока, его температуре, для предотвращения замерзания жидкости и т. д. Чтобы произвести расчет толщины теплоизоляции трубопроводов, нужно выбрать метод, ввести необходимые данные (диаметр, материал, толщина трубопровода и т.д.), после чего программа сразу же выдаст готовый результат. При этом, учитываются различные важные факторы — температура содержимого трубопровода, окружающей среды, величина механической нагрузки на трубопровод и другие. В результате, калькулятор расчета теплоизоляции трубопроводов определит толщину и объем утеплителя.
3. Расчет кровлиРасчет материалов кровли онлайн можно выполнить на специализированном ресурсе металлочерепицы http://www.metalloprof.ru/calc/ . Для этого необходимо выбрать форму крыши, указать ее основные размеры и определить тип кровельного материала. Программа выдаст расход металлочерепицы, количество коньков, карнизов и крепежных элементов. В результате будет высчитана стоимость материала в соответствии с актуальным прайс-листом поставщика.
4. Калькулятор для расчета сэндвич- панелей
Если вам необходимо рассчитать сэндвич панели, требуемые для строительства определенного здания, то сделать это также можно онлайн, при помощи бесплатных калькуляторов. Вполне удобным и эффективным считается сервис Теплант, который предлагает пользователю функцию онлайн-калькулятора для примерного расчета размеров сэндвич панелей http://teplant.ru/calculate/ и других параметров (количество панелей и прочих элементов, расходных материалов). Это универсальный сервис, при помощи которого вы легко сможете рассчитать как стеновые сэндвич панели , так и кровельные сэндвич панели . Для расчета необходимо указать тип кровли здания, его габариты, выбрать цвет панелей и их вид (стеновые, кровельные).
Программа определит количество материала, крепежных и фасонных элементов, а также рассчитает их стоимость.
5. Калькулятор расчета каменных конструкций5.1. Расчет газобетона
Что же касается такого популярного направления, как расчет газобетона онлайн, то для этой операции вы найдете немало подходящих сервисов в сети Интернет. К примеру, это онлайн-калькулятор газобетона http://stroy-calc.ru/raschet-gazoblokov , при помощи которого можно легко рассчитать количество газобетонных или газосиликатных блоков, необходимых для строительства объекта. При этом, учитываются все необходимые параметры — длина, ширина, плотность, высота и т. д, позволяя быстро вычислить расчет газобетона на дом. Аналогичный сервис можно найти и на многих других сайтах производителей стройматериалов. Например, калькулятор расчета газобетона от компании Bonolit предоставит вам целый перечень результатов — количество блоков в единицах и м3 и даже количество мешков клея.
Компания Bonolit, специализирующаяся на производстве автоклавного аэрированного бетона (газобетон) для удобства клиентов предоставляет бесплатный сервис по определению объема работ при кладке стен дома. Расчетная программа доступна по адресу : http://www.bonolit.ru/raschet-gazobetona/
В качестве исходных данных калькулятор запрашивает габариты дома, длину внутренних несущих стен, этажность, тип перекрытий, размеры и количество проемов. Результат вычислений предоставляется в виде спецификации материалов и их сметной стоимости. При этом имеется возможность тут же отправить заказ на закупку газобетона.
5.2. Расчет для стен из кирпича
Онлайн-сервис Stroy Calc http://stroy-calc.ru/raschet-kirpicha/ осуществляет расчет стройматериалов для кладки стен дома. Параметры могут определяться для стен из кирпича, строительных блоков, бруса и бревен. Например, при возведении кирпичной постройки в качестве исходных данных необходимо задать периметр, высоту и толщину стен, количество и размеры проемов, а также стоимость единицы материала. Программа определит расход кирпича в штуках и кубах, его стоимость, а также необходимый объем раствора. При этом будет указан вес стен для расчета фундамента. Сервис также позволяет подобрать тип и количество утеплителя. Для этого при определении параметров стен необходимо установить галочку в соответствующем месте.
5.3 Калькулятор теплых блоков Wienerberger
Всемирно известный бренд Wienerberger, лидер по производству теплой керамики, предлагает на своем сайте определить расход строительных блоков Porotherm http://www.wienerberger.ru/инструментарий/расчёт-расхода-блоков . Для расчета необходимо ввести размеры стен дома, указать габариты проемов, их количество.
Программа подберет возможные варианты кладки и выдаст расходы блоков различных параметров. Результат такого расчетабудет носить ориентировочный характер, но для составления предварительной сметы строительства этих данных будет вполне достаточно. Для уточнения объемов работ ресурс предлагает связаться со специалистом компании.
Итак, в данной статье мы рассмотрели наиболее удобные и популярные онлайн-сервисы, предназначенные для расчета строительных материалов. Стоит отметить, что каждый из них является бесплатным, а также имеет удобный современный интерфейс. Все эти ресурсы разработаны в виде подробных калькуляторов, размещенных прямо на страницах сайтов. Таким образом, вы сможете легко и быстро произвести требуемые вам вычисления.
В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» — теплые стены обойдутся дороже застройщику.
Для чего нужен калькулятор теплопроводности стен
В каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы. Мы подобрали наиболее удобные и понятные сервисы для расчета необходимой толщины теплоизоляционного материала.
Теплотехнический калькулятор. Расчет точки росы в стене
Калькулятор онлайн от smartcalc.ru позволит рассчитать оптимальную толщину утеплителя для стен дома и жилых помещений. Вы сможете рассчитать толщину теплоизоляции и рассчитать точку росы при утеплении дома различными материалами. Калькулятор smartcalc.ru позволяет наглядно увидеть место выпадения конденсата в стене. Это самый удобный теплотехнический калькулятор расчет утепления и точки росы.
Калькулятор толщины утеплителя для стен, потолка, пола
С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен, кровли, потолка дома и других строительных конструкций в соответствии с регионом вашего проживания, материала и толщины стен, а также других важных параметров при теплоизоляции. Подбирая разные теплоизоляционные материалы на калькуляторе, вы сможете найти оптимальную толщину утеплителя для стен своего дома.
Калькулятор KNAUF. Расчет толщины теплоизоляции
Данный калькулятор позволяет произвести расчет толщины теплоизоляции стен в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий». Бесплатный онлайн калькулятор расчета теплоизоляции KNAUF, сервис имеет удобный и понятный интерфейс.
Калькулятор Rockwool расчёта толщины теплоизоляции стен
Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек минваты очень просто.
Как убрать точку росы из стены при утеплении
Онлайн калькулятор теплоизоляции. Калькулятор толщины теплоизоляции онлайн. Существуют ли требования к тепловому сопротивлению
7 сентября, 2016Специализация: мастер по внутренней и наружной отделке (штукатурка, шпаклёвка, плитка, гипсокартон, вагонка, ламинат и так далее). Кроме того, сантехника, отопление, электрика, обычная облицовка и расширение балконов. То есть, ремонт в квартире или доме делался «под ключ» со всеми необходимыми видами работ.
Безусловно, расчет утеплителя для стен в собственном доме, это очень серьёзная работа, особенно, если это не было сделано изначально и в доме холодно. И вот здесь вам придётся столкнуться с рядом вопросов.
Например, каким должен быть утеплитель, какой из них лучше и какая нужна толщина материала? Давайте попробуем разобраться в этих вопросах, а ещё посмотрим видео в этой статье, наглядно демонстрирующее тему.
Утепление стен
Внутри или снаружи
Если вы решили использовать калькулятор расчета толщины утеплителя для стен, то точных данных вы не получите. Вручную можно получить более точную и достоверную информацию. Помимо этого имеет значение расположение изоляции, которую можно укладывать, как внутри, так и снаружи здания, что при расчетах нужно учитывать обязательно!
Особенности внутреннего и наружного утепления:
- представьте себе, что вы используете калькулятор расчета утеплителя для стен, но при этом изоляцию укладываете внутри помещения, будут ли результаты расчётов верными? Обратите внимание на схему вверху;
- какой бы толщины ни была изоляция в комнате, стена всё равно останется холодной и это приведёт к определённым последствиям;
- то есть, это означает, что точка росы или зона, где тёплый воздух при встрече с холодным превращается в конденсат, переносится ближе к помещению. И чем мощнее внутреннее утепление, тем ближе будет эта точка;
- в некоторых случаях эта зона доходит до поверхности стены, где влага способствует развитию грибковой плесени. Но если даже она остаётся внутри стены, то эксплуатационный ресурс от этого никак не увеличивается;
- следовательно, инструкция и здравый смысл указывают на то, что внутреннее утепление следует монтировать только в крайнем случае или же тогда, когда нужна звукоизоляция;
- при наружном утеплении точка росы будет приходиться на зону изоляции, а это означает, что вы сможете повысить срок годности вашей стены и избежать возникновения сырости.
Расчет – дело серьезное!
№п/п | Стеновой материал | Коэффициент теплопроводности | Необходимая толщина (мм) |
1 | Пенополистироп ПСБ-С-25 | 0,042 | 124 |
2 | Минеральная вата | 0,046 | 124 |
3 | Клееный деревянный брус или цельный массив ели и сосны поперёк волокон | 0,18 | 530 |
4 | Кладка керамоблоков на теплоизоляционный клей | 0,17 | 575* |
5 | Кладка газо- и пеноблоков 400кг/м3 | 0,18 | 610* |
6 | Кладка полистирольных блоков на клей 500кг/м3 | 0,18 | 643* |
7 | Кладка газо- и пеноблоков 600кг/м3 | 0,29 | 981* |
8 | Кладка на клей керамзитобетона 800кг/м3 | 0,31 | 1049* |
9 | Кладка из керамического пустотелого кирпича на ЦПР 1000кг/м3 | 0,52 | 1530 |
10 | Кладка из рядового кирпича на ЦПР | 0,76 | 2243 |
11 | Кладка из силикатного кирпича на ЦПР | 0,87 | 2560 |
12 | ЖБИ 2500кг/м3 | 2,04 | 6002 |
Теплотехнический расчет различных материалов
Примечание к таблице. Наличие знака * указывает на необходимость добавления коэффициента 1,15, если в здании сделаны перемычки и монолитные пояса из тяжёлых бетонов. Вверху для наглядности составлена диаграмма — цифры совпадают с таблицей.
Итак, расчет толщины утеплителя, это определение его теплового сопротивления, которое мы обозначим буквой R — постоянная величина, которая рассчитывается отдельно для каждого региона.
Давайте возьмём для наглядности среднюю цифру R=2,8 (м2*K/Вт). Согласно Государственным Строительным Нормам такая величина является минимально допустимой для жилых и общественных зданий .
В тех случаях, когда тепловая изоляция состоит из нескольких слоёв, например, кладка, пенопласт и евровагонка, то сумма всех показателей складывается воедино — R=R1+R2+R3 . А общую или отдельную толщину теплоизоляционного слоя рассчитывают по формуле R=p/k .
Здесь p будет означать толщину слоя в метрах, а буква k , это коэффициент теплопроводности данного материала (Вт/м*к), значение которого вы можете взять из таблицы теплотехнических расчётов, которая приведена выше.
По сути, используя эти же формулы, вы можете произвести расчет энергоэффективности от утепления подоконников или узнать толщину изоляции для пола. Величину R используйте в соответствии со своим регионом.
Чтобы не быть голословным, приведу пример, возьмём кирпичную кладку в два кирпича (обычная стена), а в качестве изоляции будем использовать пенополистирольные плиты ПСБ-25 (двадцать пятый пенопласт), цена которых достаточно приемлема даже для бюджетного строительства.
Итак, тепловое сопротивление, которого нам нужно достичь, должно составлять 2,8 (м2*Л/Вт). Вначале узнаём теплосопротивление данной кирпичной кладки. От тычка до тычка кирпич имеет 250 мм и между ними раствор толщиной 10 мм.
Следовательно, p=0,25*2+0,01=0,51м . Коэффициент у силиката составляет 0,7 (Вт/м*к), тогда Rкирпича=p/k=0,51/0,7=0,73 (м2*K/Вт) — это мы получили теплопроводность кирпичной стены, рассчитав её своими руками.
Идём далее, теперь нам нужно достичь общего показателя для слоёной стены 2,8 (м2*K/Вт), то есть R=2,8 (м2*K/Вт и для этого нам нужно узнать необходимую толщину пенопласта. Значит, Rпенопласта=Rобщая-Rкирпича=2,8-0,73=2,07 (м2*K/Вт).
На фото — локальная защита пенопластом
Теперь для расчёта толщины пенополистирола берём за основу общую формулу и здесь Pпенопласта=Rпенопласта*kпенопласта= 2?07*0?035=0?072м . Конечно, 2 см мы никак не найдём у ПСБ-25, но если учесть внутреннюю отделку и воздушную прослойку между кирпичами, то нам будет достаточно 70 см, а это два слоя
Калькулятор позволяет определить вид теплоизоляционных материалов для фундамента, посчитать объем необходимых материалов и получить итоговую стоимость, в том числе и крепежа для плит.
Калькулятор расчета и выбора изоляции под сайдинг.
С помощью данного сервиса, Вы сможете определить виды теплоизоляции и гидроизоляции которые подойдут для изоляции стен под сайдинг. Более того калькулятор позволит определить стоимость и рассчитать объем необходимых материалов.
Калькулятор расчета теплоизоляции под вентилируемый фасад
Для того что бы правильно подобрать материалы для утепления вентилируемого фасада, подобрать гидроизоляцию и крепеж, воспользуйтесь этим сервисом. Введя площадь стен, и толщину плит, Вы рассчитаете необходимый объем материалов и узнаете их стоимость.
Онлайн калькулятор расчета стоимости штукатурного фасада.
Сервис позволяет определить виды материалов, стоимость и объем. Исходя из площади фасада и толщины утеплителя, можно рассчитать примерную стоимость штукатурного фасада.
Расчет материалов для изоляции каркасных стен
Если перед Вами стоит задача, изоляции каркасных стен, то этот калькулятор для Вас. Зная площадь стен и толщину утеплителя, вы без труда рассчитаете необходимые материалы.
Онлайн расчет изоляции для пола под стяжку
Для пола, который планируется сделать с использованием цементной, либо любой другой, требуется особые, прочные изоляционные материалы.
Онлайн расчет изоляции для пола по лагам
Что бы правильно подобрать изоляционные материалы для пола, который уложен по деревянным лагам, воспользуйтесь данным калькулятором. Он определит необходимую плотность материалов, их количество и примерную стоимость.
Расчет теплоизоляции для межкомнатных перегородок
Подберите изоляцию для межкомнатных перегородок. Вы сможете расчитать количество и вид изоляции, ее стоимость, а так же, сразу сделать заявку.
Калькулятор для расчета изоляции потолка
Просто введите площадь потолка и толщину теплоизоляции, получите количество материалов и их стоимость.
Определить стоимость материалов для изоляции межэтажных перекрытий
Для решения таких задач, воспользуйтесь онлайн-расчетом цен и количества необходимых материалов.
Онлайн-расчет изоляции чердака
Для утепления чердака, следует подобрать материалы используя данный сервис.
Расчет изоляции для скатной кровли (мансарды)
Изоляция скатной кровли, требует помимо утеплителя, еще пароизоляционную и ветровлагозащитную мембрану, воспользовавшись этим онлайн-калькулятром, вы без труда определити нужные Вам материалы и их ориентировочную стоимость.
Расчет изоляции для плоской кровли
Для расчета материалов для плоской кровли, мы предлагаем воспользоваться этим калькулятром. В расчет включена так же гидроизоляционная мембрана и телескопический крепеж.
Калькулятор расчета водостоков
Калькулятор позволит сделать предварительный расчет необходимых материалов для монтажа водосточной системы. Определить предварительно стоимость/
Правильный расчет теплоизоляции повысит комфортность дома и уменьшит затраты на обогрев. При строительстве не обойтись без утеплителя, толщина которого определяется климатическими условиями региона и применяемыми материалами. Для утепления используют пенопласт, пеноплекс, минеральную вату или эковату, а также штукатурку и другие отделочные материалы.
Чтобы рассчитать, какая должна быть у утеплителя толщина, необходимо знать величину минимального термосопротивления . Она зависит от особенностей климата. При ее расчете учитывается продолжительность отопительного периода и разность внутренней и наружной (средней за это же время) температур . Так, для Москвы сопротивление передаче тепла для наружных стен жилого здания должно быть не меньше 3,28, в Сочи достаточно 1,79, а в Якутске требуется 5,28.
Термосопротивление стены определяется как сумма сопротивления всех слоев конструкции, несущих и утепляющих. Поэтому толщина теплоизоляции зависит от материала, из которого выполнена стена . Для кирпичных и бетонных стен требуется больше утеплителя, для деревянных и пеноблочных меньше. Обратите внимание, какой толщины бывает выбранный для несущих конструкций материал, и какая у него теплопроводность. Чем тоньше несущие конструкции, тем больше должна быть толщина утеплителя.
Если требуется утеплитель большой толщины, лучше утеплять дом снаружи. Это обеспечит экономию внутреннего пространства. Кроме того, наружное утепление позволяет избежать накопления влаги внутри помещения.
Теплопроводность
Способность материала пропускать тепло определяется его теплопроводностью. Дерево, кирпич, бетон, пеноблоки по-разному проводят тепло. Повышенная влажность воздуха увеличивает теплопроводность. Обратная к теплопроводности величина называется термосопротивлением. Для его расчета используется величина теплопроводности в сухом состоянии, которая указывается в паспорте используемого материала. Можно также найти ее в таблицах.
Приходится, однако, учитывать, что в углах, местах соединения несущих конструкций и других особенных элементах строения теплопроводность выше, чем на ровной поверхности стен. Могут возникнуть «мостики холода», через которые из дома будет уходить тепло. Стены в этих местах будут потеть. Для предотвращения этого величину термосопротивления в таких местах увеличивают примерно на четверть по сравнению с минимально допустимой.
Пример расчет
Нетрудно произвести с помощью простейшего калькулятора расчет толщины термоизоляции. Для этого вначале рассчитывают сопротивление передаче тепла для несущей конструкции. Толщина конструкции делится на теплопроводность используемого материала. Например, у пенобетона плотностью 300 коэффициент теплопроводности 0,29. При толщине блоков 0,3 метра величина термосопротивления:
Рассчитанное значение вычитается из минимально допустимого. Для условий Москвы утепляющие слои должны иметь сопротивление не меньше чем:
Затем, умножая коэффициент теплопроводности утеплителя на требуемое термосопротивление, получаем необходимую толщину слоя. Например, у минеральной ваты с коэффициентом теплопроводности 0,045 толщина должна быть не меньше чем:
0,045*2,25=0,1 м
Кроме термосопротивления учитывают расположение точки росы. Точкой росы называется место в стене, в котором температура может понизиться настолько, что выпадет конденсат — роса. Если это место оказывается на внутренней поверхности стены, она запотевает и может начаться гнилостный процесс. Чем холоднее на улице, тем ближе к помещению смещается точка росы. Чем теплее и влажнее помещение, тем выше температура в точке росы.
Толщина утеплителя в каркасном доме
В качестве утеплителя для каркасного дома чаще всего выбирают минеральную вату или эковату.
Необходимая толщина определяется по тем же формулам, что и при традиционном строительстве. Дополнительные слои многослойной стены дают примерно 10% от его величины. Толщина стены каркасного дома меньше, чем при традиционной технологии, и точка росы может оказаться ближе к внутренней поверхности. Поэтому излишне экономить на толщине утеплителя не стоит.
Как рассчитать толщину утепления крыши и чердака
Формулы расчета сопротивления для крыш используют те же, но минимальное термосопротивление в этом случае немного выше. Неотапливаемые чердаки укрывают насыпным утеплителем. Ограничений по толщине здесь нет, поэтому рекомендуется увеличивать ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления крыши используют материалы с низкой теплопроводностью.
Как рассчитать толщину утепления пола
Хотя наибольшие потери тепла происходят через стены и крышу, не менее важно правильно рассчитать утепление пола. Если цоколь и фундамент не утеплены, считается, что температура в подполе равна наружной, и толщина утеплителя рассчитывается также, как для наружных стен. Если же некоторое утепление цоколя сделано, его сопротивление вычитают из величины минимально необходимого термосопротивления для региона строительства.
Расчет толщины пенопласта
Популярность пенопласта определяется дешевизной, низкой теплопроводностью, малым весом и влагостойкостью. Пенопласт почти не пропускает пара, поэтому его нельзя использовать для внутреннего утепления . Он располагается снаружи или в середине стены.
Теплопроводность пенопласта, как и других материалов, зависит от плотности . Например, при плотности 20 кг/м3 коэффициент теплопроводности около 0,035. Поэтому толщина пенопласта 0,05 м обеспечит термосопротивление на уровне 1,5.
Даже популярные ныне коттеджи из бревна или профилированного бруса необходимо утеплять дополнительно или возводить их из практически несуществующего на рынке деревянного массива толщиной в 35-40 см. Что уж говорить о каменных строениях (блочных, кирпичных, монолитных).
Что значит «утеплиться правильно»
Итак, без теплоизоляционных слоёв обойтись нельзя, с этим согласится подавляющее большинства домовладельцев. Некоторым из них приходится изучать вопрос во время строительства собственного гнёздышка, другие озадачиваются утеплением, чтобы фасадными работами улучшить уже эксплуатируемый коттедж. В любом случае подходить к вопросу необходимо очень скрупулёзно.
Одно дело соблюдение технологии утепления, но ведь часто застройщики допускают ошибки на стадии закупки материала, в частности неправильно выбирают толщину утепляющего слоя. Если жилище окажется слишком холодным, то находиться в нём будет, мягко говоря, некомфортно. При благоприятном стечении обстоятельств (наличие запаса производительности теплогенератора) проблему получится решить увеличением мощности отопительной системы, что, однозначно, влечёт за собой существенный рост расходов на покупку энергоносителей.
Но обычно всё заканчивается куда печальнее: при малой толщине утепляющего слоя ограждающие конструкции промерзают. А это становится причиной перемещения точки росы вовнутрь помещений, из-за чего на внутренних поверхностях стен и перекрытий выпадает конденсат. Потом появляется плесень, разрушаются строительные конструкции и отделочные материалы… Что самое неприятное, так это тот факт, что невозможно устранить неприятности малой кровью. Например, на фасаде придётся демонтировать (или «похоронить») финишный слой, затем создать ещё один барьер из утеплителя, а потом снова отделать стены. Очень недёшево выходит, лучше сразу всё сделать как положено.
Важно! Технологичные современные утеплители мало стоить не будут, причём с увеличением толщины пропорционально будет расти и цена. Поэтому создавать слишком большой запас по теплоизоляции обычно смысла нет, это — пустая трата средств, особенно если случайному сверхутеплению подвергается только часть конструкций дома.
Принципы расчёта утепляющего слоя
Теплопроводность и термическое сопротивление
Прежде всего, нужно определиться с главной причиной охлаждения здания. Зимой у нас работает система отопления, которая греет воздух, но сгенерированное тепло проходит через ограждающие конструкции и рассеивается в атмосфере. То есть происходят теплопотери — «теплопередача». Она есть всегда, вопрос лишь в том, получается ли их восполнить посредством отопления, чтобы в доме оставалась стабильная положительная температура, желательно на уровне + 20-22 градусов.
Важно! Заметим, что очень немаловажную роль в динамике теплового баланса (в общих теплопотерях) играют различные неплотности в элементах здания — инфильтрация. Поэтому на герметичность и сквозняки тоже следует обращать внимание.
Кирпич, сталь, бетон, стекло, деревянный брус… — каждый материал, применяемый при строительстве зданий, в той или иной мере обладает способностью передавать тепловую энергию. И каждый из них обладает обратной способностью — сопротивляться теплопередаче. Теплопроводность является величиной неизменной, поэтому в системе СИ существует показатель «коэффициент теплопроводности» для каждого материала. Данные эти важны не только для понимания физических свойств конструкций, но и для последующих расчётов.
Приведём данные для некоторых основных материалов в виде таблицы.
Теперь о сопротивлении теплопередаче. Значение сопротивления теплопередаче обратно пропорционально теплопроводности. Этот показатель относится и к ограждающим конструкциям, и к материалам как таковым. Он используется для того, чтобы охарактеризовать теплоизоляционные характеристики стен, перекрытий, окон, дверей, кровли…
Для расчёта термического сопротивления используют следующую общедоступную формулу:
Показатель «d» здесь означает толщину слоя, а показатель «k» — теплопроводность материала. Получается, что сопротивление теплопередаче напрямую зависит от массивности материалов и ограждающих конструкций, что при использовании нескольких таблиц поможет нам рассчитать фактическое теплосопротивление существующей стены или правильный утеплитель по толщине.
Для примера: стена в половину кирпича (полнотелого) имеет толщину 120 мм, то есть показатель R получится 0,17 м²·K/Вт (толщина 0,12 метра, разделённая на 0,7 Вт/(м*К)). Аналогичная кладка в кирпич (250 мм) покажет 0,36 м²·K/Вт, а в два кирпича (510 мм) — 0,72 м²·K/Вт.
Допустим, по минеральной вате толщиной 50; 100; 150 мм показатели термического сопротивления будут следующие: 1,11; 2,22; 3,33 м²·K/Вт.
Важно! Большинство ограждающих конструкций в современных зданиях являются многослойными. Поэтому, чтобы рассчитать, например, термическое сопротивление такой стены, нужно отдельно рассматривать все её прослойки, а затем полученные показатели суммировать.
Существуют ли требования к тепловому сопротивлению
Возникает вопрос: а каким, собственно, должен быть показатель сопротивления теплопередачи для ограждающих конструкций в доме, чтобы в помещениях было тепло, и в отопительный период расходовалось минимум энергоносителей? К счастью для домовладельцев, не обязательно снова использовать сложные формулы. Вся необходимая информация есть в СНиП 23-02-2003 «Тепловая защита зданий». В данном нормативном документе рассматриваются строения различного назначения, эксплуатируемые в различных климатических зонах. Это вполне объяснимо, так как температура для жилых помещений и производственных помещений не нужна одинаковая. Кроме того, отдельные регионы характеризуются своими предельными минусовыми температурами и длительность отопительного периода, поэтому выделяют такую усреднённую характеристику, как градусо-сутки отопительного сезона.
Важно! Ещё один интересный момент заключается в том, что основная интересующая нас таблица содержит нормируемые показатели для различных ограждающих конструкций. Это в общем-то не удивительно, ведь тепло покидает дом неравномерно.
Попробуем немного упростить таблицу по необходимому тепловому сопротивлению, вот что получится для жилых зданий (м²·K/Вт):
Согласно данной таблице, становится понятно, что если в Москве (5800 градусо-суток при средней температуре в помещениях порядка 24 градусов) строить дом только из полнотелого кирпича, то стену придётся делать по толщине более 2,4 метра (3,5 Х 0,7). Реально ли это технически и по деньгам? Конечно — абсурд. Вот почему нужно применить утепляющий материал.
Очевидно, что для коттеджа в Москве, Краснодаре и Хабаровске будут предъявляться разные требования. Всё, что нам нужно, так это определить градусо-суточные показатели для нашего населённого пункта и выбрать подходящее число из таблицы. Потом применяя формулу сопротивления теплопередаче, работаем с уравнением и получаем оптимальную толщину утеплителя, который необходимо применить.
Город | Градусо-сутки Dd отопительного периода при температуре, + С | |||||
24 | 22 | 20 | 18 | 16 | 14 | |
Абакан | 7300 | 6800 | 6400 | 5900 | 5500 | 5000 |
Анадырь | 10700 | 10100 | 9500 | 8900 | 8200 | 7600 |
Арзанас | 6200 | 5800 | 5300 | 4900 | 4500 | 4000 |
Архангельск | 7200 | 6700 | 6200 | 5700 | 5200 | 4700 |
Астрахань | 4200 | 3900 | 3500 | 3200 | 2900 | 2500 |
Ачинск | 7500 | 7000 | 6500 | 6100 | 5600 | 5100 |
Белгород | 4900 | 4600 | 4200 | 3800 | 3400 | 3000 |
Березово (ХМАО) | 9000 | 8500 | 7900 | 7400 | 6900 | 6300 |
Бийск | 7100 | 6600 | 6200 | 5700 | 5300 | 4800 |
Биробиджан | 7500 | 7100 | 6700 | 6200 | 5800 | 5300 |
Благовещенск | 7500 | 7100 | 6700 | 6200 | 5800 | 5400 |
Братск | 8100 | 7600 | 7100 | 6600 | 6100 | 5600 |
Брянск | 5400 | 5000 | 4600 | 4200 | 3800 | 3300 |
Верхоянск | 13400 | 12900 | 12300 | 11700 | 11200 | 10600 |
Владивосток | 5500 | 5100 | 4700 | 4300 | 3900 | 3500 |
Владикавказ | 4100 | 3800 | 3400 | 3100 | 2700 | 2400 |
Владимир | 5900 | 5400 | 5000 | 4600 | 4200 | 3700 |
Комсомольск-на-Амуре | 7800 | 7300 | 6900 | 6400 | 6000 | 5500 |
Кострома | 6200 | 5800 | 5300 | 4900 | 4400 | 4000 |
Котлас | 6900 | 6500 | 6000 | 5500 | 5000 | 4600 |
Краснодар | 3300 | 3000 | 2700 | 2400 | 2100 | 1800 |
Красноярск | 7300 | 6800 | 6300 | 5900 | 5400 | 4900 |
Курган | 6800 | 6400 | 6000 | 5600 | 5100 | 4700 |
Курск | 5200 | 4800 | 4400 | 4000 | 3600 | 3200 |
Кызыл | 8800 | 8300 | 7900 | 7400 | 7000 | 6500 |
Липецк | 5500 | 5100 | 4700 | 4300 | 3900 | 3500 |
Санкт Петербург | 5700 | 5200 | 4800 | 4400 | 3900 | 3500 |
Смоленск | 5700 | 5200 | 4800 | 4400 | 4000 | 3500 |
Магадан | 9000 | 8400 | 7800 | 7200 | 6700 | 6100 |
Махачкала | 3200 | 2900 | 2600 | 2300 | 2000 | 1700 |
Минусинск | 4700 | 6900 | 6500 | 6000 | 5600 | 5100 |
Москва | 5800 | 5400 | 4900 | 4500 | 4100 | 3700 |
Мурманск | 7500 | 6900 | 6400 | 5800 | 5300 | 4700 |
Муром | 6000 | 5600 | 5100 | 4700 | 4300 | 3900 |
Нальчик | 3900 | 3600 | 3300 | 2900 | 2600 | 2300 |
Нижний Новгород | 6000 | 5300 | 5200 | 4800 | 4300 | 3900 |
Нарьян-Мар | 9000 | 8500 | 7900 | 7300 | 6700 | 6100 |
Великий Новгород | 5800 | 5400 | 4900 | 4500 | 4000 | 3600 |
Олонец | 6300 | 5900 | 5400 | 4900 | 4500 | 4000 |
Омск | 7200 | 6700 | 6300 | 5800 | 5400 | 5000 |
Орел | 5500 | 5100 | 4700 | 4200 | 3800 | 3400 |
Оренбург | 6100 | 5700 | 5300 | 4900 | 4500 | 4100 |
Новосибирск | 7500 | 7100 | 6600 | 6100 | 5700 | 5200 |
Партизанск | 5600 | 5200 | 4900 | 4500 | 4100 | 3700 |
Пенза | 5900 | 5500 | 5100 | 4700 | 4200 | 3800 |
Пермь | 6800 | 6400 | 5900 | 5500 | 5000 | 4600 |
Петрозаводск | 6500 | 6000 | 5500 | 5100 | 4600 | 4100 |
Петропавловск-Камчатский | 6600 | 6100 | 5600 | 5100 | 4600 | 4000 |
Псков | 5400 | 5000 | 4600 | 4200 | 3700 | 3300 |
Рязань | 5700 | 5300 | 4900 | 4500 | 4100 | 3600 |
Самара | 5900 | 5500 | 5100 | 4700 | 4300 | 3900 |
Саранск | 6000 | 5500 | 5100 | 5700 | 4300 | 3900 |
Саратов | 5600 | 5200 | 4800 | 4400 | 4000 | 3600 |
Сортавала | 6300 | 5800 | 5400 | 4900 | 4400 | 3900 |
Сочи | 1600 | 1400 | 1250 | 1100 | 900 | 700 |
Сургут | 8700 | 8200 | 7700 | 7200 | 6700 | 6100 |
Ставрополь | 3900 | 3500 | 3200 | 2900 | 2500 | 2200 |
Сыктывкар | 7300 | 6800 | 6300 | 5800 | 5300 | 4900 |
Тайшет | 7800 | 7300 | 6800 | 6300 | 5800 | 5400 |
Тамбов | 5600 | 5200 | 4800 | 4400 | 4000 | 3600 |
Тверь | 5900 | 5400 | 5000 | 4600 | 4100 | 3700 |
Тихвин | 6100 | 5600 | 2500 | 4700 | 4300 | 3800 |
Тобольск | 7500 | 7000 | 6500 | 6100 | 5600 | 5100 |
Томск | 7600 | 7200 | 6700 | 6200 | 5800 | 5300 |
Тотьна | 6700 | 6200 | 5800 | 5300 | 4800 | 4300 |
Тула | 5600 | 5200 | 4800 | 4400 | 3900 | 3500 |
Тюмень | 7000 | 6600 | 6100 | 5700 | 5200 | 4800 |
Улан-Удэ | 8200 | 7700 | 7200 | 6700 | 6300 | 5800 |
Ульяновск | 6200 | 5800 | 5400 | 5000 | 4500 | 4100 |
Уренгой | 10600 | 10000 | 9500 | 8900 | 8300 | 7800 |
Уфа | 6400 | 5900 | 5500 | 5100 | 4700 | 4200 |
Ухта | 7900 | 7400 | 6900 | 6400 | 5800 | 5300 |
Хабаровск | 7000 | 6600 | 6200 | 5800 | 5300 | 4900 |
Ханты-Мансийск | 8200 | 7700 | 7200 | 6700 | 6200 | 5700 |
Чебоксары | 6300 | 5800 | 5400 | 5000 | 4500 | 4100 |
Челябинск | 6600 | 6200 | 5800 | 5300 | 4900 | 4500 |
Черкесск | 4000 | 3600 | 3300 | 2900 | 2600 | 2300 |
Чита | 8600 | 8100 | 7600 | 7100 | 6600 | 6100 |
Элиста | 4400 | 4000 | 3700 | 3300 | 3000 | 2600 |
Южно-Курильск | 5400 | 5000 | 4500 | 4100 | 3600 | 3200 |
Южно-Сахалинск | 6500 | 600 | 5600 | 5100 | 4700 | 4200 |
Якутск | 11400 | 10900 | 10400 | 9900 | 9400 | 8900 |
Ярославль | 6200 | 5700 | 5300 | 4900 | 4400 | 4000 |
Примеры расчёта толщины утеплителя
Предлагаем на практике рассмотреть процесс расчётов утепляющего слоя стены и потолка жилой мансарды. Для примера возьмём дом в Вологде, построенный из блоков (пенобетон) толщиной 200 мм.
Итак, если температура в 22 градуса для обитателей будет нормальной, то актуальный в данном случае показатель градусо-суток равняется 6000. Находим в таблице нормативов по термическому сопротивлению соответствующий показатель, он составляет 3,5 м²·K/Вт — к нему будем стремиться.
Стена получится многослойная, поэтому сначала определим, сколько термического сопротивления даст голый пеноблок. Если средняя теплопроводность пенобетона составляет порядка 0,4 Вт/(м*К), то при 20-миллиметровой толщине эта наружная стена даст сопротивление теплопередаче на уровне 0,5 м²·K/Вт (0,2 метра делим на коэффициент теплопроводности 0,4).
То есть для качественного утепления нам не хватает порядка 3 м²·K/Вт. Их можно получить минеральной ватой или пенопластом, который будут установлены со стороны фасада в вентилируемой навесной конструкции или мокрым способом скреплённой теплоизоляции. Чуть трансформируем формулу термического сопротивления и получаем необходимую толщину — то есть умножаем необходимое (недостающее) сопротивление теплопередачи на теплопроводность (берём из таблицы).
В цифрах это будет выглядеть так: d толщина базальтовой минваты = 3 Х 0,035 = 0,105 метра. Получается, что мы может использовать материал в матах или рулонах толщиной 10 сантиметров. Заметим, что при использовании пенопласта плотностью 25 кг/м3 и выше — необходимая толщина получится аналогичной.
Кстати, можно рассмотреть другой пример. Допустим, хотим из полнотелого силикатного кирпича в этом же доме сделать ограждение тёплого остеклённого балкона, тогда недостающего термического сопротивления будет порядка 3,35 м²·K/Вт (0,12Х0,82). Если планируется применять для утепления пенопласт ПСБ-С-15, то его толщина должна быть 0,144 мм — то есть 15 см.
Для мансарды, крыши и перекрытий техника расчётов будет примерно такая же, только отсюда исключается теплопроводность и сопротивление теплопередачи несущих конструкций. А также несколько увеличиваются требования по сопротивлению — потребуется уже не 3,5 м²·K/Вт, а 4,6. В итоге, вата подойдёт толщиной до 20 см = 4,6 Х 0,04 (теплоизолятор для кровли).
Применение калькуляторов
Производители изоляционных материалов решили упростить задачу рядовым застройщикам. Для этого они разработали простые и понятные программки для расчёта толщины утеплителя.
Рассмотрим некоторые варианты:
В каждом из них в несколько шагов нужно заполнить поля, после чего, нажав на кнопку, можно мгновенно получить результат.
Вот некоторые особенности использования программ:
1. Везде предлагается из выпадающего списка выбрать город/район/регион строительства.
2. Все, кроме Технониколь, просят определить тип объекта: жилое/производственное, либо, как на сайте Пеноплекс — городская квартира/лоджия/малоэтажный дом/хозпостройка.
3. Потом указываем, какие конструкции нас интересуют: стены, полы, перекрытие чердака, крыша. Программа Пеноплекс рассчитывает также утепление фундамента, инженерных коммуникаций, уличных дорожек и площадок.
4. Некоторые калькуляторы имеют поле для указания желаемой температуры внутри помещения, на сайте Rockwool интересуются также габаритами здания и типом применяемого для отопления топлива, количеством проживающих людей. Кнауф ещё учитывает относительную влажность воздуха в помещениях.
5. На penoplex.ru нужно указать тип и толщину стен, а также материал, из которого они изготовлены.
6. В большинстве калькуляторов есть возможность задать характеристики отдельных или дополнительных слоёв конструкций, например, особенности несущих стен без теплоизоляции, тип облицовки…
7. Калькулятор пеноплекс для некоторых конструкций (допустим для утепления кровли методом «между стропил») может считать не только экструдированный пенополистирол, на котором фирма специализируется, но также минеральную вату.
Как вы понимаете, в том, чтобы рассчитать оптимальную толщину теплоизоляции — ничего сложного нет, следует только со всей тщательностью подойти к данному вопросу. Главное, чётко определиться с недостающим сопротивлением теплопередаче, а потом уже выбирать утеплитель, который будет лучше всего подходить для конкретных элементов здания и применяемых строительных технологий. Также не стоит забывать, что к теплоизоляцией частного дома необходимо заниматься комплексно, в должной степени должны быть утеплены все ограждающие конструкции.
Толщина напыления | мм | (При толщине напыления меньше 30 мм наценка 30%) | |||
Плотность напыляемого ППУ | кг/м3 | 10 | Коэф. теплопроводности 0,032 | ||
Плотность напыляемого ППУ | кг/м3 | 40 | Коэф. теплопроводности 0,025 | ||
Напыление на: | Ед. изм. | Кол-во | Категория | Цена, руб | Сумма, руб |
Пол, перекрытие (напыление сверху) | м2 | БЕЗ наценки | 286 | 286000 | |
Стены высотой до 4 метров | м2 | БЕЗ наценки | 286 | 0 | |
Стены высотой от 4 до 7 метров | м2 | наценка 10% | 314.6 | 0 | |
Стены высотой выше 7 метров | м2 | наценка 20% | 343.2 | 0 | |
Потолок, подпол (напыление снизу вверх) | м2 | наценка 20% | 343.2 | 0 | |
Общая площадь напыления: | м2 | 1000 | |||
Общий объем ППУ: | м3 | 20 | |||
Вес одного метра квадратного: | кг | 1 | |||
Общий вес напыляемого ППУ: | кг | 1000 | |||
Цена за один метр кубический: | рубль | 14300 | |||
Общая сумма за напыление ППУ: | рубль | 286000 | Доставка по краю: | 12 р./км |
Расчет утеплителя для перекрытия калькулятор. Определяем необходимую толщину утеплителя
Калькулятор позволяет определить вид теплоизоляционных материалов для фундамента, посчитать объем необходимых материалов и получить итоговую стоимость, в том числе и крепежа для плит.
Калькулятор расчета и выбора изоляции под сайдинг.
С помощью данного сервиса, Вы сможете определить виды теплоизоляции и гидроизоляции которые подойдут для изоляции стен под сайдинг. Более того калькулятор позволит определить стоимость и рассчитать объем необходимых материалов.
Калькулятор расчета теплоизоляции под вентилируемый фасад
Для того что бы правильно подобрать материалы для утепления вентилируемого фасада, подобрать гидроизоляцию и крепеж, воспользуйтесь этим сервисом. Введя площадь стен, и толщину плит, Вы рассчитаете необходимый объем материалов и узнаете их стоимость.
Онлайн калькулятор расчета стоимости штукатурного фасада.
Сервис позволяет определить виды материалов, стоимость и объем. Исходя из площади фасада и толщины утеплителя, можно рассчитать примерную стоимость штукатурного фасада.
Расчет материалов для изоляции каркасных стен
Если перед Вами стоит задача, изоляции каркасных стен, то этот калькулятор для Вас. Зная площадь стен и толщину утеплителя, вы без труда рассчитаете необходимые материалы.
Онлайн расчет изоляции для пола под стяжку
Для пола, который планируется сделать с использованием цементной, либо любой другой, требуется особые, прочные изоляционные материалы.
Онлайн расчет изоляции для пола по лагам
Что бы правильно подобрать изоляционные материалы для пола, который уложен по деревянным лагам, воспользуйтесь данным калькулятором. Он определит необходимую плотность материалов, их количество и примерную стоимость.
Расчет теплоизоляции для межкомнатных перегородок
Подберите изоляцию для межкомнатных перегородок. Вы сможете расчитать количество и вид изоляции, ее стоимость, а так же, сразу сделать заявку.
Калькулятор для расчета изоляции потолка
Просто введите площадь потолка и толщину теплоизоляции, получите количество материалов и их стоимость.
Определить стоимость материалов для изоляции межэтажных перекрытий
Для решения таких задач, воспользуйтесь онлайн-расчетом цен и количества необходимых материалов.
Онлайн-расчет изоляции чердака
Для утепления чердака, следует подобрать материалы используя данный сервис.
Расчет изоляции для скатной кровли (мансарды)
Изоляция скатной кровли, требует помимо утеплителя, еще пароизоляционную и ветровлагозащитную мембрану, воспользовавшись этим онлайн-калькулятром, вы без труда определити нужные Вам материалы и их ориентировочную стоимость.
Расчет изоляции для плоской кровли
Для расчета материалов для плоской кровли, мы предлагаем воспользоваться этим калькулятром. В расчет включена так же гидроизоляционная мембрана и телескопический крепеж.
Калькулятор расчета водостоков
Калькулятор позволит сделать предварительный расчет необходимых материалов для монтажа водосточной системы. Определить предварительно стоимость/
Теплотехнический калькулятор точки росы онлайн
С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.
Калькулятор расчета толщины утеплителя стены
С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.
Калькулятор KNAUF расчета толщины утеплителя
Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.
Калькулятор Rockwool для расчета теплоизоляции
Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.
Калькулятор теплопроводности для расчета толщины стен
Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.
Правильный расчет теплоизоляции повысит комфортность дома и уменьшит затраты на обогрев. При строительстве не обойтись без утеплителя, толщина которого определяется климатическими условиями региона и применяемыми материалами. Для утепления используют пенопласт, пеноплекс, минеральную вату или эковату, а также штукатурку и другие отделочные материалы.
Чтобы рассчитать, какая должна быть у утеплителя толщина, необходимо знать величину минимального термосопротивления . Она зависит от особенностей климата. При ее расчете учитывается продолжительность отопительного периода и разность внутренней и наружной (средней за это же время) температур . Так, для Москвы сопротивление передаче тепла для наружных стен жилого здания должно быть не меньше 3,28, в Сочи достаточно 1,79, а в Якутске требуется 5,28.
Термосопротивление стены определяется как сумма сопротивления всех слоев конструкции, несущих и утепляющих. Поэтому толщина теплоизоляции зависит от материала, из которого выполнена стена . Для кирпичных и бетонных стен требуется больше утеплителя, для деревянных и пеноблочных меньше. Обратите внимание, какой толщины бывает выбранный для несущих конструкций материал, и какая у него теплопроводность. Чем тоньше несущие конструкции, тем больше должна быть толщина утеплителя.
Если требуется утеплитель большой толщины, лучше утеплять дом снаружи. Это обеспечит экономию внутреннего пространства. Кроме того, наружное утепление позволяет избежать накопления влаги внутри помещения.
Теплопроводность
Способность материала пропускать тепло определяется его теплопроводностью. Дерево, кирпич, бетон, пеноблоки по-разному проводят тепло. Повышенная влажность воздуха увеличивает теплопроводность. Обратная к теплопроводности величина называется термосопротивлением. Для его расчета используется величина теплопроводности в сухом состоянии, которая указывается в паспорте используемого материала. Можно также найти ее в таблицах.
Приходится, однако, учитывать, что в углах, местах соединения несущих конструкций и других особенных элементах строения теплопроводность выше, чем на ровной поверхности стен. Могут возникнуть «мостики холода», через которые из дома будет уходить тепло. Стены в этих местах будут потеть. Для предотвращения этого величину термосопротивления в таких местах увеличивают примерно на четверть по сравнению с минимально допустимой.
Пример расчет
Нетрудно произвести с помощью простейшего калькулятора расчет толщины термоизоляции. Для этого вначале рассчитывают сопротивление передаче тепла для несущей конструкции. Толщина конструкции делится на теплопроводность используемого материала. Например, у пенобетона плотностью 300 коэффициент теплопроводности 0,29. При толщине блоков 0,3 метра величина термосопротивления:
Рассчитанное значение вычитается из минимально допустимого. Для условий Москвы утепляющие слои должны иметь сопротивление не меньше чем:
Затем, умножая коэффициент теплопроводности утеплителя на требуемое термосопротивление, получаем необходимую толщину слоя. Например, у минеральной ваты с коэффициентом теплопроводности 0,045 толщина должна быть не меньше чем:
0,045*2,25=0,1 м
Кроме термосопротивления учитывают расположение точки росы. Точкой росы называется место в стене, в котором температура может понизиться настолько, что выпадет конденсат — роса. Если это место оказывается на внутренней поверхности стены, она запотевает и может начаться гнилостный процесс. Чем холоднее на улице, тем ближе к помещению смещается точка росы. Чем теплее и влажнее помещение, тем выше температура в точке росы.
Толщина утеплителя в каркасном доме
В качестве утеплителя для каркасного дома чаще всего выбирают минеральную вату или эковату.
Необходимая толщина определяется по тем же формулам, что и при традиционном строительстве. Дополнительные слои многослойной стены дают примерно 10% от его величины. Толщина стены каркасного дома меньше, чем при традиционной технологии, и точка росы может оказаться ближе к внутренней поверхности. Поэтому излишне экономить на толщине утеплителя не стоит.
Как рассчитать толщину утепления крыши и чердака
Формулы расчета сопротивления для крыш используют те же, но минимальное термосопротивление в этом случае немного выше. Неотапливаемые чердаки укрывают насыпным утеплителем. Ограничений по толщине здесь нет, поэтому рекомендуется увеличивать ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления крыши используют материалы с низкой теплопроводностью.
Как рассчитать толщину утепления пола
Хотя наибольшие потери тепла происходят через стены и крышу, не менее важно правильно рассчитать утепление пола. Если цоколь и фундамент не утеплены, считается, что температура в подполе равна наружной, и толщина утеплителя рассчитывается также, как для наружных стен. Если же некоторое утепление цоколя сделано, его сопротивление вычитают из величины минимально необходимого термосопротивления для региона строительства.
Расчет толщины пенопласта
Популярность пенопласта определяется дешевизной, низкой теплопроводностью, малым весом и влагостойкостью. Пенопласт почти не пропускает пара, поэтому его нельзя использовать для внутреннего утепления . Он располагается снаружи или в середине стены.
Теплопроводность пенопласта, как и других материалов, зависит от плотности . Например, при плотности 20 кг/м3 коэффициент теплопроводности около 0,035. Поэтому толщина пенопласта 0,05 м обеспечит термосопротивление на уровне 1,5.
7 сентября, 2016Специализация: мастер по внутренней и наружной отделке (штукатурка, шпаклёвка, плитка, гипсокартон, вагонка, ламинат и так далее). Кроме того, сантехника, отопление, электрика, обычная облицовка и расширение балконов. То есть, ремонт в квартире или доме делался «под ключ» со всеми необходимыми видами работ.
Безусловно, расчет утеплителя для стен в собственном доме, это очень серьёзная работа, особенно, если это не было сделано изначально и в доме холодно. И вот здесь вам придётся столкнуться с рядом вопросов.
Например, каким должен быть утеплитель, какой из них лучше и какая нужна толщина материала? Давайте попробуем разобраться в этих вопросах, а ещё посмотрим видео в этой статье, наглядно демонстрирующее тему.
Утепление стен
Внутри или снаружи
Если вы решили использовать калькулятор расчета толщины утеплителя для стен, то точных данных вы не получите. Вручную можно получить более точную и достоверную информацию. Помимо этого имеет значение расположение изоляции, которую можно укладывать, как внутри, так и снаружи здания, что при расчетах нужно учитывать обязательно!
Особенности внутреннего и наружного утепления:
- представьте себе, что вы используете калькулятор расчета утеплителя для стен, но при этом изоляцию укладываете внутри помещения, будут ли результаты расчётов верными? Обратите внимание на схему вверху;
- какой бы толщины ни была изоляция в комнате, стена всё равно останется холодной и это приведёт к определённым последствиям;
- то есть, это означает, что точка росы или зона, где тёплый воздух при встрече с холодным превращается в конденсат, переносится ближе к помещению. И чем мощнее внутреннее утепление, тем ближе будет эта точка;
- в некоторых случаях эта зона доходит до поверхности стены, где влага способствует развитию грибковой плесени. Но если даже она остаётся внутри стены, то эксплуатационный ресурс от этого никак не увеличивается;
- следовательно, инструкция и здравый смысл указывают на то, что внутреннее утепление следует монтировать только в крайнем случае или же тогда, когда нужна звукоизоляция;
- при наружном утеплении точка росы будет приходиться на зону изоляции, а это означает, что вы сможете повысить срок годности вашей стены и избежать возникновения сырости.
Расчет – дело серьезное!
№п/п | Стеновой материал | Коэффициент теплопроводности | Необходимая толщина (мм) |
1 | Пенополистироп ПСБ-С-25 | 0,042 | 124 |
2 | Минеральная вата | 0,046 | 124 |
3 | Клееный деревянный брус или цельный массив ели и сосны поперёк волокон | 0,18 | 530 |
4 | Кладка керамоблоков на теплоизоляционный клей | 0,17 | 575* |
5 | Кладка газо- и пеноблоков 400кг/м3 | 0,18 | 610* |
6 | Кладка полистирольных блоков на клей 500кг/м3 | 0,18 | 643* |
7 | Кладка газо- и пеноблоков 600кг/м3 | 0,29 | 981* |
8 | Кладка на клей керамзитобетона 800кг/м3 | 0,31 | 1049* |
9 | Кладка из керамического пустотелого кирпича на ЦПР 1000кг/м3 | 0,52 | 1530 |
10 | Кладка из рядового кирпича на ЦПР | 0,76 | 2243 |
11 | Кладка из силикатного кирпича на ЦПР | 0,87 | 2560 |
12 | ЖБИ 2500кг/м3 | 2,04 | 6002 |
Теплотехнический расчет различных материалов
Примечание к таблице. Наличие знака * указывает на необходимость добавления коэффициента 1,15, если в здании сделаны перемычки и монолитные пояса из тяжёлых бетонов. Вверху для наглядности составлена диаграмма — цифры совпадают с таблицей.
Итак, расчет толщины утеплителя, это определение его теплового сопротивления, которое мы обозначим буквой R — постоянная величина, которая рассчитывается отдельно для каждого региона.
Давайте возьмём для наглядности среднюю цифру R=2,8 (м2*K/Вт). Согласно Государственным Строительным Нормам такая величина является минимально допустимой для жилых и общественных зданий .
В тех случаях, когда тепловая изоляция состоит из нескольких слоёв, например, кладка, пенопласт и евровагонка, то сумма всех показателей складывается воедино — R=R1+R2+R3 . А общую или отдельную толщину теплоизоляционного слоя рассчитывают по формуле R=p/k .
Здесь p будет означать толщину слоя в метрах, а буква k , это коэффициент теплопроводности данного материала (Вт/м*к), значение которого вы можете взять из таблицы теплотехнических расчётов, которая приведена выше.
По сути, используя эти же формулы, вы можете произвести расчет энергоэффективности от утепления подоконников или узнать толщину изоляции для пола. Величину R используйте в соответствии со своим регионом.
Чтобы не быть голословным, приведу пример, возьмём кирпичную кладку в два кирпича (обычная стена), а в качестве изоляции будем использовать пенополистирольные плиты ПСБ-25 (двадцать пятый пенопласт), цена которых достаточно приемлема даже для бюджетного строительства.
Итак, тепловое сопротивление, которого нам нужно достичь, должно составлять 2,8 (м2*Л/Вт). Вначале узнаём теплосопротивление данной кирпичной кладки. От тычка до тычка кирпич имеет 250 мм и между ними раствор толщиной 10 мм.
Следовательно, p=0,25*2+0,01=0,51м . Коэффициент у силиката составляет 0,7 (Вт/м*к), тогда Rкирпича=p/k=0,51/0,7=0,73 (м2*K/Вт) — это мы получили теплопроводность кирпичной стены, рассчитав её своими руками.
Идём далее, теперь нам нужно достичь общего показателя для слоёной стены 2,8 (м2*K/Вт), то есть R=2,8 (м2*K/Вт и для этого нам нужно узнать необходимую толщину пенопласта. Значит, Rпенопласта=Rобщая-Rкирпича=2,8-0,73=2,07 (м2*K/Вт).
На фото — локальная защита пенопластом
Теперь для расчёта толщины пенополистирола берём за основу общую формулу и здесь Pпенопласта=Rпенопласта*kпенопласта= 2?07*0?035=0?072м . Конечно, 2 см мы никак не найдём у ПСБ-25, но если учесть внутреннюю отделку и воздушную прослойку между кирпичами, то нам будет достаточно 70 см, а это два слоя
С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен дома и других ограждений в соответствии с регионом вашего проживания, материала и толщины стен, используемой пароизоляции, материала для подшивки и других важных параметров при утеплении. Подбирая разные материалы, можно выбрать вариант для себя максимально теплый и дешевый.
Теплотехнический калькулятор для расчета точки росы
С помощью данного калькулятора вы сможете рассчитать оптимальную толщину утеплителя для дома и жилых помещений в соответствии с регионом проживания, материала и толщины стен. Вы сможете рассчитать толщину различных утеплительных материалов. И увидеть наглядно на графике место выпадения конденсата в стене. Удобный калькулятор теплопроводности стены онлайн для расчета толщины утепления.
Калькулятор KNAUF Расчет необходимой толщины теплоизоляции
Рассчитайте необходимую толщину теплоизоляционного материала в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий», для всех типов зданий. Бесплатный онлайн сервис расчета теплоизоляции KNAUF, удобный и понятный интерфейс.
Калькулятор Rockwool расчёта толщины теплоизоляции стен
Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек очень просто.
В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» – теплые стены обойдутся дороже застройщику.
Приведем пример. По расчетам выходит, что 50 мм пенопласта уменьшит теплопотери 50 см пенобетона лишь на 20%. Т.е. 80% тепла в доме будет сберегать пенобетон и лишь 20% пенопласт. Здесь действительно стоит подумать, а стоит ли утплять дом? Стоит ли овчинка выделки. С другой стороны, при утеплении 50 см кирпичной стены пенопласт уменьшит теплопотери в 1,5 раза. Кирпич будет беречь 40%, а пенопласт – 60% тепла. Разобраться с этим вопросом вам поможет расчет толщины утеплителя для стен онлайн.
Из этого делаем вывод, что в каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы.
Расчет каменной ваты для утепления. Калькулятор расчета утепления стен деревянного дома. Расчетные программы Основит
В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» — теплые стены обойдутся дороже застройщику.
Для чего нужен калькулятор теплопроводности стен
В каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы. Мы подобрали наиболее удобные и понятные сервисы для расчета необходимой толщины теплоизоляционного материала.
Теплотехнический калькулятор. Расчет точки росы в стене
Калькулятор онлайн от smartcalc.ru позволит рассчитать оптимальную толщину утеплителя для стен дома и жилых помещений. Вы сможете рассчитать толщину теплоизоляции и рассчитать точку росы при утеплении дома различными материалами. Калькулятор smartcalc.ru позволяет наглядно увидеть место выпадения конденсата в стене. Это самый удобный теплотехнический калькулятор расчет утепления и точки росы.
Калькулятор толщины утеплителя для стен, потолка, пола
С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен, кровли, потолка дома и других строительных конструкций в соответствии с регионом вашего проживания, материала и толщины стен, а также других важных параметров при теплоизоляции. Подбирая разные теплоизоляционные материалы на калькуляторе, вы сможете найти оптимальную толщину утеплителя для стен своего дома.
Калькулятор KNAUF. Расчет толщины теплоизоляции
Данный калькулятор позволяет произвести расчет толщины теплоизоляции стен в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий». Бесплатный онлайн калькулятор расчета теплоизоляции KNAUF, сервис имеет удобный и понятный интерфейс.
Калькулятор Rockwool расчёта толщины теплоизоляции стен
Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек минваты очень просто.
Как убрать точку росы из стены при утеплении
Правильный расчет теплоизоляции повысит комфортность дома и уменьшит затраты на обогрев. При строительстве не обойтись без утеплителя, толщина которого определяется климатическими условиями региона и применяемыми материалами. Для утепления используют пенопласт, пеноплекс, минеральную вату или эковату, а также штукатурку и другие отделочные материалы.
Чтобы рассчитать, какая должна быть у утеплителя толщина, необходимо знать величину минимального термосопротивления . Она зависит от особенностей климата. При ее расчете учитывается продолжительность отопительного периода и разность внутренней и наружной (средней за это же время) температур . Так, для Москвы сопротивление передаче тепла для наружных стен жилого здания должно быть не меньше 3,28, в Сочи достаточно 1,79, а в Якутске требуется 5,28.
Термосопротивление стены определяется как сумма сопротивления всех слоев конструкции, несущих и утепляющих. Поэтому толщина теплоизоляции зависит от материала, из которого выполнена стена . Для кирпичных и бетонных стен требуется больше утеплителя, для деревянных и пеноблочных меньше. Обратите внимание, какой толщины бывает выбранный для несущих конструкций материал, и какая у него теплопроводность. Чем тоньше несущие конструкции, тем больше должна быть толщина утеплителя.
Если требуется утеплитель большой толщины, лучше утеплять дом снаружи. Это обеспечит экономию внутреннего пространства. Кроме того, наружное утепление позволяет избежать накопления влаги внутри помещения.
Теплопроводность
Способность материала пропускать тепло определяется его теплопроводностью. Дерево, кирпич, бетон, пеноблоки по-разному проводят тепло. Повышенная влажность воздуха увеличивает теплопроводность. Обратная к теплопроводности величина называется термосопротивлением. Для его расчета используется величина теплопроводности в сухом состоянии, которая указывается в паспорте используемого материала. Можно также найти ее в таблицах.
Приходится, однако, учитывать, что в углах, местах соединения несущих конструкций и других особенных элементах строения теплопроводность выше, чем на ровной поверхности стен. Могут возникнуть «мостики холода», через которые из дома будет уходить тепло. Стены в этих местах будут потеть. Для предотвращения этого величину термосопротивления в таких местах увеличивают примерно на четверть по сравнению с минимально допустимой.
Пример расчет
Нетрудно произвести с помощью простейшего калькулятора расчет толщины термоизоляции. Для этого вначале рассчитывают сопротивление передаче тепла для несущей конструкции. Толщина конструкции делится на теплопроводность используемого материала. Например, у пенобетона плотностью 300 коэффициент теплопроводности 0,29. При толщине блоков 0,3 метра величина термосопротивления:
Рассчитанное значение вычитается из минимально допустимого. Для условий Москвы утепляющие слои должны иметь сопротивление не меньше чем:
Затем, умножая коэффициент теплопроводности утеплителя на требуемое термосопротивление, получаем необходимую толщину слоя. Например, у минеральной ваты с коэффициентом теплопроводности 0,045 толщина должна быть не меньше чем:
0,045*2,25=0,1 м
Кроме термосопротивления учитывают расположение точки росы. Точкой росы называется место в стене, в котором температура может понизиться настолько, что выпадет конденсат — роса. Если это место оказывается на внутренней поверхности стены, она запотевает и может начаться гнилостный процесс. Чем холоднее на улице, тем ближе к помещению смещается точка росы. Чем теплее и влажнее помещение, тем выше температура в точке росы.
Толщина утеплителя в каркасном доме
В качестве утеплителя для каркасного дома чаще всего выбирают минеральную вату или эковату.
Необходимая толщина определяется по тем же формулам, что и при традиционном строительстве. Дополнительные слои многослойной стены дают примерно 10% от его величины. Толщина стены каркасного дома меньше, чем при традиционной технологии, и точка росы может оказаться ближе к внутренней поверхности. Поэтому излишне экономить на толщине утеплителя не стоит.
Как рассчитать толщину утепления крыши и чердака
Формулы расчета сопротивления для крыш используют те же, но минимальное термосопротивление в этом случае немного выше. Неотапливаемые чердаки укрывают насыпным утеплителем. Ограничений по толщине здесь нет, поэтому рекомендуется увеличивать ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления крыши используют материалы с низкой теплопроводностью.
Как рассчитать толщину утепления пола
Хотя наибольшие потери тепла происходят через стены и крышу, не менее важно правильно рассчитать утепление пола. Если цоколь и фундамент не утеплены, считается, что температура в подполе равна наружной, и толщина утеплителя рассчитывается также, как для наружных стен. Если же некоторое утепление цоколя сделано, его сопротивление вычитают из величины минимально необходимого термосопротивления для региона строительства.
Расчет толщины пенопласта
Популярность пенопласта определяется дешевизной, низкой теплопроводностью, малым весом и влагостойкостью. Пенопласт почти не пропускает пара, поэтому его нельзя использовать для внутреннего утепления . Он располагается снаружи или в середине стены.
Теплопроводность пенопласта, как и других материалов, зависит от плотности . Например, при плотности 20 кг/м3 коэффициент теплопроводности около 0,035. Поэтому толщина пенопласта 0,05 м обеспечит термосопротивление на уровне 1,5.
Теплотехнический калькулятор точки росы онлайн
С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.
Калькулятор расчета толщины утеплителя стены
С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.
Калькулятор KNAUF расчета толщины утеплителя
Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.
Калькулятор Rockwool для расчета теплоизоляции
Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.
Калькулятор теплопроводности для расчета толщины стен
Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.
Теплый дом — мечта каждого владельца, для достижения этой цели строятся толстые стены, проводится отопление, устраивается качественная теплоизоляция. Чтобы утепление было рациональным необходимо правильно подобрать материал и грамотно рассчитать его толщину.
Размер слоя изоляции зависит от теплового сопротивления материала. Этот показатель является величиной, обратной теплопроводности. Каждый материал — дерево, металл, кирпич, пенопласт или минвата обладают определенной способностью передавать тепловую энергию. Коэффициент теплопроводности высчитывается в ходе лабораторных испытаний, а для потребителей указывается на упаковке.
Если материал приобретается без маркировки, можно найти сводную таблицу показателей в интернете.
Теплосопротивление материала ® является постоянной величиной, его определяют как отношение разности температур на краях утеплителя к силе проходящего через материал теплового протока. Формула расчета коэффициента: R=d/k, где d — толщина материала, k — теплопроводность. Чем выше полученное значение, тем эффективней теплоизоляция.
Почему важно правильно рассчитать показатели утепления?
Теплоизоляция устанавливается для сокращения потерь энергии через стены, пол и крышу дома. Недостаточная толщина утеплителя приведет к перемещению точки росы внутрь здания. Это означает появление конденсата, сырости и грибка на стенах дома. Избыточный слой теплоизоляции не дает существенного изменения температурных показателей, но требует значительных финансовых затрат, поэтому является нерациональным. При этом нарушается циркуляция воздуха и естественная вентиляция между комнатами дома и атмосферой. Для экономии средств с одновременным обеспечением оптимальных условий проживания требуется точный расчет толщины утеплителя.
Расчет теплоизоляционного слоя: формулы и примеры
Чтобы иметь возможность точно рассчитать величину утепления, необходимо найти коэффициент сопротивления теплопередачи всех материалов стены или другого участка дома. Он зависит от климатических показателей местности, поэтому вычисляется индивидуально по формуле:
ГСОП=(tв-tот)xzот
tв — показатель температуры внутри помещения, обычно составляет 18-22ºC;
tот — значение средней температуры;
zот — длительность отопительного сезона, сутки.
Значения для подсчета можно найти в СНиП 23-01-99.
При вычислении теплового сопротивления конструкции, необходимо сложить показатели каждого слоя: R=R1+R2+R3 и т. д. Исходя из средних показателей для частных и многоэтажных домов определены примерные значения коэффициентов:
- стены — не менее 3,5;
- потолок — от 6.
Толщина утеплителя зависит от материала постройки и его величины, чем меньше теплосопротивление стены или кровли, тем больше должен быть слой изоляции.
Пример: стена из силикатного кирпича толщиной в 0,5 м, которая утепляется пенопластом.
Rст.=0,5/0,7=0,71 — тепловое сопротивление стены
R- Rст.=3,5-0,71=2,79 — величина для пенопласта
Для пенопласта теплопроводность k=0,038
d=2,79×0,038=0,10 м — потребуются плиты пенопласта толщиной в 10 см
По такому алгоритму легко подсчитать оптимальную величину теплоизоляции для всех участков дома, кроме пола. При вычислениях, касающихся утеплителя основания, необходимо обратиться к таблице температуры грунта в регионе проживания. Именно из нее берутся данные для вычисления ГСОП, а далее ведется подсчет сопротивления каждого слоя и искомая величина утеплителя.
Популярные способы утепления дома
Выполнить теплоизоляцию здания можно на этапе возведения или после его окончания. Среди популярных методов:
- Монолитная стена существенной толщины (не менее 40 см) из керамического кирпича или дерева.
- Возведение ограждающих конструкций путем колодезной кладки — создание полости для утеплителя между двумя частями стены.
- Монтаж наружной теплоизоляции в виде многослойной конструкции из утеплителя, обрешетки, влагозащитной пленки и декоративной отделки.
По готовым формулам произвести расчет оптимальной толщины утеплителя можно без помощи специалиста. При вычислении следует округлять число в большую сторону, небольшой запас величины слоя теплоизолятора будет полезен при временных падениях температуры ниже среднего показателя.
Калькулятор позволяет определить вид теплоизоляционных материалов для фундамента, посчитать объем необходимых материалов и получить итоговую стоимость, в том числе и крепежа для плит.
Калькулятор расчета и выбора изоляции под сайдинг.
С помощью данного сервиса, Вы сможете определить виды теплоизоляции и гидроизоляции которые подойдут для изоляции стен под сайдинг. Более того калькулятор позволит определить стоимость и рассчитать объем необходимых материалов.
Калькулятор расчета теплоизоляции под вентилируемый фасад
Для того что бы правильно подобрать материалы для утепления вентилируемого фасада, подобрать гидроизоляцию и крепеж, воспользуйтесь этим сервисом. Введя площадь стен, и толщину плит, Вы рассчитаете необходимый объем материалов и узнаете их стоимость.
Онлайн калькулятор расчета стоимости штукатурного фасада.
Сервис позволяет определить виды материалов, стоимость и объем. Исходя из площади фасада и толщины утеплителя, можно рассчитать примерную стоимость штукатурного фасада.
Расчет материалов для изоляции каркасных стен
Если перед Вами стоит задача, изоляции каркасных стен, то этот калькулятор для Вас. Зная площадь стен и толщину утеплителя, вы без труда рассчитаете необходимые материалы.
Онлайн расчет изоляции для пола под стяжку
Для пола, который планируется сделать с использованием цементной, либо любой другой, требуется особые, прочные изоляционные материалы.
Онлайн расчет изоляции для пола по лагам
Что бы правильно подобрать изоляционные материалы для пола, который уложен по деревянным лагам, воспользуйтесь данным калькулятором. Он определит необходимую плотность материалов, их количество и примерную стоимость.
Расчет теплоизоляции для межкомнатных перегородок
Подберите изоляцию для межкомнатных перегородок. Вы сможете расчитать количество и вид изоляции, ее стоимость, а так же, сразу сделать заявку.
Калькулятор для расчета изоляции потолка
Просто введите площадь потолка и толщину теплоизоляции, получите количество материалов и их стоимость.
Определить стоимость материалов для изоляции межэтажных перекрытий
Для решения таких задач, воспользуйтесь онлайн-расчетом цен и количества необходимых материалов.
Онлайн-расчет изоляции чердака
Для утепления чердака, следует подобрать материалы используя данный сервис.
Расчет изоляции для скатной кровли (мансарды)
Изоляция скатной кровли, требует помимо утеплителя, еще пароизоляционную и ветровлагозащитную мембрану, воспользовавшись этим онлайн-калькулятром, вы без труда определити нужные Вам материалы и их ориентировочную стоимость.
Расчет изоляции для плоской кровли
Для расчета материалов для плоской кровли, мы предлагаем воспользоваться этим калькулятром. В расчет включена так же гидроизоляционная мембрана и телескопический крепеж.
Калькулятор расчета водостоков
Калькулятор позволит сделать предварительный расчет необходимых материалов для монтажа водосточной системы. Определить предварительно стоимость/
Калькулятор эффективной теплопроводности | Рассчитать эффективную теплопроводность
Формула эффективной теплопроводности
Effective_thermal_conductiviity = (Теплопередача * (Радиус-Радиус)) / (4 * Пи * Радиус * Радиус * Разница температур)
кэф = (e * (r2-r1)) / (4 * pi * r1 * r2 * dT)
Что такое конвекция
Конвекция — это процесс передачи тепла за счет массового движения молекул в жидкостях, таких как газы и жидкости.Первоначальная передача тепла между объектом и жидкостью происходит за счет теплопроводности, но объемная передача тепла происходит за счет движения жидкости. Конвекция — это процесс передачи тепла в жидкостях за счет фактического движения вещества. Бывает в жидкостях и газах. Это может быть естественное или принудительное. Он включает в себя объемный перенос порций жидкости.
Как рассчитать эффективную теплопроводность?
В калькуляторе эффективной теплопроводности используется effective_thermal_conductiviity = (Теплопередача * (Радиус-Радиус)) / (4 * pi * Радиус * Радиус * Разница температур) для расчета теплопроводности. Формула эффективной теплопроводности определяется как перенос энергии. из-за случайного движения молекул через температурный градиент.Коэффициент теплопроводности и обозначается символом кэф и .
Как рассчитать эффективную теплопроводность с помощью этого онлайн-калькулятора? Чтобы использовать этот онлайн-калькулятор для расчета эффективной теплопроводности, введите теплопередачу (e) , радиус (r2) , радиус (r1) и разницу температур (dT) и нажмите кнопку расчета. Вот как можно объяснить расчет эффективной теплопроводности с заданными входными значениями -> 0.397887 = (2 * (0,02-0,01)) / (4 * пи * 0,01 * 0,02 * 20) .
Калькулятор теплопроводности| Найти тепловой поток материала
Теплопроводность — это способность материала проводить или передавать тепло. Оно прямо пропорционально расстоянию передачи тепла и передаваемой тепловой энергии и обратно пропорционально изменению температуры материала. Единица теплопроводности — ватт на метр кельвин.
Вы должны знать коэффициент теплопроводности, чтобы рассчитать количество передаваемой через него тепловой энергии.
Формула для расчета теплопроводности здесь
λ = (QL) / (AΔT)
Где,
λ — теплопроводность
А — площадь поверхности
L — расстояние между двумя изотермическими плоскостями
Q — количество переданного тепла
ΔT — изменение температуры
Тепловой поток
Количество тепловой энергии, передаваемой каждую секунду на единицу площади, называется тепловым потоком.Вы можете рассчитать тепловой поток, используя закон Фурье.
Закон Фурье гласит, что отрицательный градиент температуры и скорость теплопередачи во времени прямо пропорциональны площади под прямым углом градиента, через которую течет тепло.
Тепловой поток по закону Фурье равен
q = -λΔT / Δx
Где,
ΔT — разница температур материала
Δx — расстояние передачи тепла
q — тепловой поток
λ — коэффициент теплопроводности материала
Пример
Вопрос: Найдите коэффициент теплопроводности материала, если на одном конце 0.Металлический стержень длиной 22 м помещают в пар, а другой конец помещают в лед. Учитывая, что 15×10 -3 кг льда в минуту, более поздняя теплота льда составляет 80 кал / кг, а поперечное сечение металлического стержня составляет 7×10 -4 м²
Решение:
Учитывая, что
Длина L = 0,22 м
Площадь поперечного сечения A = 7×10 -4 м²
Количество передаваемого тепла Q = 15×10 -3 x 80 x 1000 = 1200 кал
Изменение температуры ΔT = 100 x 60
Формула теплопроводности λ = (QL) / (AΔT)
= (1200 х 0.22) / (7×10 -4 x 100 x 60)
= 264 / (4,2)
= 62,85
Следовательно, теплопроводность металла составляет 62,85 кал / мс ° C.
Изучите больше физических калькуляторов на Physicscalc.Com и легко выполняйте домашние задания или задания.
Конвертер теплопроводности• Термодинамика — Тепло • Полный калькулятор • Онлайн-конвертеры единиц Конвертер топливной экономичности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы валютЖенская одежда и размеры обувиМужская одежда и размеры обувиПреобразователь угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаПреобразователь энергии инерции Конвертер сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на объем) Конвертер температуры Inte Конвертер rvalКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиКонвертер плотности тепла, плотности пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаПреобразователь массового потока Конвертер плотности молярной концентрацииПреобразователь плотности и вязкости КонвертерПреобразователь проницаемости, проницаемости, паропроницаемости Конвертер влажности и скорости передачи паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркости ) в преобразователь увеличения (X) Конвертер зарядаЛинейный преобразователь плотности зарядаПоверхностный преобразователь плотности зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь удельной электрической проводимости в ваттахПреобразователь электрической проводимости в дБ Конвертер магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаКонвертер плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Типографские и цифровые единицы изображения Конвертер единиц измерения объема древесины Конвертер молярной массыПериодическая таблица
Обзор
Теплопроводность — это свойство объекта, позволяющее теплу проходить через него. Это свойство не зависит от размера объекта. Однако это зависит от температуры. Чем выше теплопроводность материала, тем больше теплопередача.Например, шерсть имеет гораздо более низкую теплопроводность, чем металл, поэтому, если ребенок будет лизать свою варежку на улице при минусовой температуре, с ней ничего не случится. Если она решит лизнуть металлическую дверную ручку, тепло от ее языка быстро перейдет к металлу, и жидкость на ее языке, скорее всего, замерзнет, а весь язык прилипнет к ручке.
Теплопроводность находит множество применений в технике и в повседневной жизни. Он используется, в том числе, для регулирования температуры тела, для приготовления пищи и для того, чтобы сделать жизнь людей комфортной.
Использование для теплопроводности
Высокая теплопроводность важна при жарке или приготовлении котлет для гамбургеров, и иногда их готовят прямо на металлическом гриле с небольшим количеством масла, чтобы они не прилипали к грилю. Воспроизведено с разрешения автора.
Теплопроводность на кухне
Теплопроводность очень важна при приготовлении пищи. Поскольку металлы хорошо проводят тепло, но могут выдерживать высокие температуры, их используют для изготовления кастрюль и сковородок.Когда металлический горшок ставится на источник тепла, он готовит пищу, передавая это тепло ей. Когда нужно контролировать общую проводимость, ее можно уменьшить, выбрав кастрюлю из разных материалов или изменив метод приготовления. Например, приготовление пищи на пароварке снижает общую проводимость, потому что металлическая кастрюля, которая имеет прямой контакт с теплом, имеет внутри менее проводящую воду, а затем в воде находится другая кастрюля с едой. Максимальная температура внутреннего контейнера не должна превышать 100 ° C (212 ° F), точку кипения воды.Это хорошо работает с продуктами, которые легко пригорают или которые не следует кипятить, например, с шоколадом.
Медная посуда
Медь и алюминий — это одни из металлов, которые обладают действительно хорошей теплопроводностью, причем медь лучше, но дороже. Оба они используются для приготовления пищи, но некоторые продукты вступают в реакцию с этими металлами, и это может оставлять металлический привкус в пище. Это особенно проблема кислых продуктов. Эти горшки также нуждаются в регулярном уходе, особенно медные. Из-за этого более распространены горшки из нержавеющей стали с меньшей проводимостью.
Дориа, приготовленная в духовке в керамической запеканке. Воспроизведено с разрешения автора.
Для разных типов приготовления требуется разная теплопроводность, в зависимости от желаемого эффекта. Например, кипячение предполагает меньшую проводимость, чем жарка. Этим можно управлять, выбирая посуду, но также помогает регулировка проводимости пищевых продуктов. Например, регулировка количества масла, используемого для жарки, влияет на теплопроводность.Также имеет значение количество другой жидкости в кастрюле.
Рагу из сицилийского осьминога, приготовленное в жидком соусе. Важно уменьшить теплопроводность посуды, в которой она была приготовлена, и для этого используется жидкость. Воспроизведено с разрешения автора.
Не все материалы, используемые для изготовления сковородок, обладают высокой теплопроводностью. Керамика, например, не проводит тепло так же хорошо, как металлы. Главное их достоинство — хорошая теплоотдача — иногда это важнее хорошей проводимости.
Некоторые повара предпочитают готовить заварной крем на пароварке, чтобы обеспечить низкую теплопроводность. Воспроизведено с разрешения автора.
Печь также является хорошим примером использования теплопроводности. Например, нагреватели электрической плиты сделаны из металлов с высокой проводимостью, чтобы обеспечить хорошую передачу тепла в кастрюлю.
Во избежание ожогов люди держат высокопроводящие металлические кастрюли и крышки за ручки, сделанные из пластика и других материалов с низкой теплопроводностью.По той же причине используются прихватки из духовки.
Материалы с низкой теплопроводностью используются для поддержания постоянной температуры пищи в течение длительного времени. Например, собираясь в поездку или обедая на работу или в школу, можно сохранить суп или кофе горячим. В этой ситуации очень пригодится изолированная переносная фляжка или чашка. Он сохраняет пищу горячей (или холодной), потому что пространство между ее стенками заполнено материалами с низкой теплопроводностью. Некоторые примеры изоляции включают наличие слоя воздуха, заключенного между внешней и внутренней стенами, или пенополистирола.Выносные кофейные чашки и контейнеры также изготавливаются из пенополистирола, чтобы предотвратить утечку тепла в окружающую среду и сохранить горячие напитки или пищу. Этот утеплитель также защищает руки от ожогов. В переносной термосе (известной под торговой маркой Thermos) очень мало воздуха между двумя стенками, что еще больше снижает теплопроводность.
Теплопроводность для тепла
Мы используем материалы с низкой теплопроводностью, чтобы тепло не уходило от нашего тела.Шерсть, синтетические материалы, похожие на шерсть, и перья — вот некоторые примеры. Животные и птицы обычно покрыты мехом и перьями с низкой проводимостью. Мы используем эти продукты животного происхождения или производим аналогичные синтетические материалы для изготовления одежды и обуви на зиму, а также делаем одеяла для сна, потому что температура нашего тела падает, когда мы спим, и нам нужно дополнительное тепло. Также удобнее использовать одеяло, чем термобелье, потому что оно менее ограничительно, но в некоторых экстремальных условиях необходима утепленная одежда, потому что одеяло обычно не прикреплено к простыням, поэтому, если мы двигаемся во время сна, может быть холодно. воздух через зазоры.
Вотивный подсвечник из льда
Проблема с холодным воздухом заключается в том, что, если он не ограничен, воздух может свободно перемещаться, а теплый воздух выходит из нашего тела и заменяется холодным. Когда движение воздуха ограничено, как в изолированных стаканах, он работает как хороший изолятор из-за своей низкой теплопроводности. Животные используют это свойство воздуха в дополнение к указанным выше изоляторам. Например, в холодную погоду можно увидеть птиц с распушенными перьями.Это позволяет им задерживать воздух внутри своих перьев и мешать ему двигаться. Такое дополнительное наслоение увеличивает их теплоизоляцию и сохраняет тепло даже в холодную погоду. У людей тоже есть этот механизм — у нас мурашки по коже, когда нам холодно, хотя он больше не эффективен, потому что мы потеряли мех в процессе эволюции.
Снег имеет относительно низкую теплопроводность и является естественным изолятором.
Снег и лед также имеют относительно низкую теплопроводность и являются естественными изоляторами.Внутри снега часто остается воздух, что обеспечивает еще лучшую изоляцию, поскольку теплопроводность воздуха ниже, чем у снега. И лед, и снег предохраняют растения в земле от замерзания. Иногда животные зимуют в снежных пещерах. Люди, которые ходят по снегу, иногда делают то же самое. Лед использовался для строительства убежищ с древних времен, изо льда построены развлекательные заведения и отели. Их часто топят огнем, а ночью люди надевают меха и синтетические спальные мешки.Посетители, которые остались там, сообщают, что им было комфортно и тепло во сне, хотя обычно они не рекомендуют вставать с постели на ночь, чтобы пойти в ванную. Из-за низкой теплопроводности льда из него также можно сделать вотивные подсвечники, и в Интернете есть много фото и видеоуроков, как это сделать.
Регламент внутренней температуры животных и человека
Типичная температура белохвостого оленя поддерживается на уровне от 311,4 К до 313.3K или от 38,2 ° C до 40,1 ° C, несмотря на температуру окружающей среды от –38 до + 34 ° С. Белохвостый олень в Миссиссаге, Онтарио
Организмам животных и людей необходимо поддерживать постоянную температуру в очень небольшом диапазоне, чтобы обеспечить бесперебойную работу их внутренних процессов. Кровь и другие внутренние жидкости, а также ткани имеют разную теплопроводность. В зависимости от температуры окружающей среды люди и животные могут увеличивать или уменьшать количество крови, циркулирующей по всему или частям тела, чтобы поддерживать эту постоянную температуру.Количество крови для циркуляции регулируется расширением или сужением кровеносных сосудов. Теплопроводность самой крови можно регулировать, изменяя ее толщину.
Другое применение
Людям часто нравится отдыхать в жарких местах, таких как парные или сауны, но когда они хотят сесть, они не могут сидеть на объектах с высокой теплопроводностью, таких как металлы, потому что материалы с высокой проводимостью не могут приспосабливаться к телу. температура достаточно быстро, и садиться на них больно.Дерево и другие материалы с низкой проводимостью быстрее адаптируются к температуре тела, поэтому их часто используют в саунах. Также люди часто защищают голову от жары, надевая в ванну шерстяные шапочки. Турецкие бани, известные как хамамы, поддерживают более низкую температуру внутри, поэтому в зонах отдыха используется более токопроводящий камень.
Эти обезьяны-макаки наслаждаются отдыхом в открытых горячих источниках в Японии зимой. Воспроизведено с разрешения автора.
Некоторые традиционные ванны, например, японские горячие источники или онсэн, находятся на улице.Поскольку человеческое тело хорошо изолировано жиром, который имеет относительно низкую теплопроводность, люди могут наслаждаться этими ваннами с горячей водой, даже если наружная температура ниже нуля. Не только люди открыли для себя это чудесное свойство тела: обезьяны-макаки также любят купаться в природных горячих источниках зимой.
Теплопроводность обычных материалов
Материал | Теплопроводность, Вт / м · К |
---|---|
Листы пенополиуретана | 0.04 |
Пенополистирол | 0,04 |
Минеральная вата | 0,05 |
Войлок | 0,05 |
Древесина | плита0,35 |
Вода при 20 ° C | 0,60 |
Керамический кирпич | 0,67 |
Камень | 1.40 |
Бетон | 1,75 |
Сталь | 52 |
Латунь | 110 |
Алюминий | 230 | Медь |
Diamond | 1,000 |
Список литературы
Эту статью написала Екатерина Юрий
Есть ли у вас трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.
теплопроводность — Calculator.org
Что такое теплопроводность?
Теплопроводность определяется как свойство материала, которое указывает на его способность проводить тепло через свое тело в условиях устойчивого состояния. Теплопроводность зависит от многих свойств материала, его структуры и температуры. Передача тепла в материале происходит за счет теплопроводности; в этом процессе материалы не движутся как единое целое, а энергия течет через тело материала за счет передачи молекулярной кинетической энергии.Теплопроводность можно определить как количество тепла, которое передается через единицу толщины в направлении, нормальном к поверхности единицы площади за единицу времени и на единицу разницы температур. Кристаллические вещества, которые являются чистыми по своей природе, демонстрируют различную теплопроводность по разным осям из-за изменения фононного взаимодействия по любой данной оси.
Карманы, заполненные газом, являются хорошими изоляторами и не проводят тепло при нормальных условиях. Натуральные или биологические изоляторы, такие как мех, перья, также действуют таким же образом и предотвращают теплопроводность кожи.
Легкие газы имеют более высокую теплопроводность, чем более тяжелые газы, такие как ксенон. Аргон — это плотный газ, который иногда используют вместо вакуума для заполнения пустоты в изолирующей колбе.
Изоляция и смежные области широко используют материалы, выбранные из-за их низкой теплопроводности. С другой стороны, системы охлаждения, например, внутри компьютеров, требуют материалов с высокой теплопроводностью, чтобы отводить тепло от таких компонентов, как ЦП (центральный процессор).
Измерение теплопроводности
Существует два метода измерения теплопроводности, а именно стационарный метод и нестационарный метод.
Стационарный метод
Метод разделенных стержней — наиболее распространенный способ измерения теплопроводности. Эти устройства можно настроить в соответствии с требованиями; настройка может быть выполнена в зависимости от необходимых температур и давления, а также могут быть приняты во внимание размеры образцов. Образец, для которого необходимо рассчитать проводимость, помещают между двумя образцами с известной проводимостью; обычно используются латунные пластины.Образец помещается наверху вертикальной установки, а латунные стержни с известной проводимостью удерживаются внизу. Чтобы остановить любую конвекцию в образце, тепло подается сверху и перемещается вниз. Примерно через 10 минут измерения проводятся после того, как весь образец становится одинаково горячим.
Переходный метод
Нестационарный метод не требует ожидания достижения устойчивого температурного режима и позволяет исследовать проводимость как функцию времени.Основное преимущество этого метода в том, что измерения можно проводить относительно быстро. Переходные методы обычно выполняются с помощью игольчатых зондов. Основным недостатком этого метода измерения теплопроводности является то, что математический анализ намного сложнее, поскольку он включает непостоянную температуру.
Добавьте эту страницу в закладки в своем браузере, используя Ctrl и d или используя одну из следующих служб: (открывается в новом окне)
| |||||||
Как использовать преобразователь теплопроводности | |||||||
Загрузить конвертер единиц теплопроводности наша мощная программная утилита, которая поможет вам легко преобразовать более 2100 различных единиц измерения в более чем 70 категорий.Откройте для себя универсального помощника для всех ваших потребностей в преобразовании единиц измерения — скачать бесплатную демо-версию прямо сейчас! Сделайте 78 764 преобразования с помощью простого в использовании, точного и мощного калькулятора единиц измерения. | |||||||
Мгновенно добавьте бесплатный виджет «Конвертер теплопроводности» на свой веб-сайт. Это займет меньше минуты, это так же просто, как вырезать и наклеить.Конвертер органично впишется в ваш веб-сайт, поскольку его можно полностью переименовать. Щелкните здесь, чтобы просмотреть пошаговое руководство по размещению этого конвертера единиц на своем веб-сайте. | |||||||
|
Преобразование теплопроводности — Онлайн-конвертер единиц
Преобразование теплопроводности
Преобразование теплопроводности
В физике теплопроводность — это свойство материала проводить тепло.Он оценивается в первую очередь с точки зрения закона Фурье для теплопроводности. Теплопередача происходит с большей скоростью через материалы с высокой теплопроводностью, чем через материалы с низкой теплопроводностью. Соответственно, материалы с высокой теплопроводностью широко используются в теплоотводах, а материалы с низкой теплопроводностью используются в качестве теплоизоляции. Теплопроводность материалов зависит от температуры. Величина, обратная теплопроводности, называется удельным тепловым сопротивлением.Единица измерения теплопроводности в системе СИ — ватты на метр по Кельвину (Вт • м⁻¹ • к).
Калькулятор преобразования теплопроводности
Конвертировать из:Вт / м ∙ К
Единицы измерения Калории на секунду-сантиметр- ° C (кал / с ∙ см ∙ ° C) Киловатт / метр-K (кВт / м ∙ K) Ватт / сантиметр- ° C (Вт / см ∙ ° C) Ватт / метр-K (Вт / м ∙ K) Общие единицы БТЕ-дюйм / час-квадратный фут- ° F (БТЕ ∙ дюйм / час ∙ фут² ∙ ° F) БТЕ / час-фут- ° F (БТЕ / час ∙ фут ∙ ° F) Преобразовать в :Вт / см ∙ ° C
Единицы измерения Калории на секунду-сантиметр- ° C (кал / с ∙ см ∙ ° C) Киловатт / метр-K (кВт / м ∙ K) Ватт / сантиметр- ° C (Вт / см ∙ ° C) Ватт / метр-K (Вт / м ∙ K) Общие единицы БТЕ-дюйм / час-квадратный фут- ° F (БТЕ ∙ дюйм / час ∙ фут² ∙ ° F) БТЕ / час-фут- ° F (БТЕ / час ∙ фут ∙ ° F) Результат :Самые популярные пары преобразования теплопроводности
- кал / с ∙ см ∙ ° C в кВт / м ∙ K
- кал / с ∙ см ∙ ° C до Вт / см ∙ ° C
- кал / с ∙ см ∙ ° C в Ватт на метр-K
- кВт / м ∙ K в кал / с ∙ см ∙ ° C
- кВт / м ∙ K в Вт / см ∙ ° C
- кВт / м ∙ K в Ватт / метр-K
- Вт / см ∙ ° C в кал / с ∙ см ∙ ° C
- Вт / см ∙ ° C в кВт / м ∙ K
- Вт / см ∙ ° C в Ватт на метр-K
- Ватт / метр-K в кал / с ∙ см ∙ ° C
- Ватт / метр-K в кВт / м ∙ K
- Вт / метр-K в Вт / см ∙ ° C
Оценка и понимание теплопроводности печатных плат
Захария Петерсон| & nbsp Создано: 22 марта 2021 г.
Подложка печатной платы и медные проводники являются основными факторами, определяющими, как тепло будет перемещаться по плате.Ваши компоненты будут выделять тепло во время работы, что свидетельствует о важности оценки теплопроводности печатной платы. Тепловые свойства подложки печатной платы являются одним из факторов, определяющих повышение температуры компонентов (особенно температуру перехода) и тепловой поток от критических компонентов.
Чтобы определить, следует ли включать в печатную плату активные или пассивные меры по регулированию температуры, вы можете использовать некоторые методы оценки теплопроводности печатной платы.Это может помочь вам оценить повышение температуры на вашей плате, используя значения рассеиваемой мощности для ваших компонентов. Некоторые простые варианты компоновки и наложения на вашей печатной плате могут помочь изменить разницу температур между различными областями вашей платы, что поможет обеспечить работу печатной платы при приемлемой температуре.
АЛЬТИУМ-КОНСТРУКТОР
Унифицированный пакет проектирования печатных плат, который объединяет расширенные возможности проектирования и компоновки печатных плат с обширной библиотекой материалов подложек и функциями планирования производства.
Термический анализ — это конструкция печатной платы, жизненно важная для обеспечения желаемой производительности и долговечности вашего следующего продукта. Ваша цель при проектировании печатной платы должна заключаться в разработке системы, которая обеспечивает желаемую функциональность в течение максимально длительного срока службы. Понимание того, как оценить теплопроводность печатной платы и выбор соответствующих компонентов, которые могут работать в этих условиях, обеспечит надежность вашей следующей печатной платы.
По мере того, как компоненты работают в вашей печатной плате и температура перехода повышается, тепловое сопротивление вашей подложки будет определять, как тепло переносится в более холодные области платы.Если вы знаете теплопроводность вашей подложки и меди, вы можете оценить эффективную теплопроводность всей печатной платы и рассчитать приблизительное тепловое сопротивление. В случае, если ваши компоненты выделяют слишком много тепла и повышение температуры слишком велико, вы можете определить, следует ли добавить к вашей плате радиатор или какие-либо активные меры по охлаждению, чтобы снизить температуру перехода в переключаемых компонентах.
Являясь фундаментальным свойством любого материала, теплопроводность определяет тепловой поток между горячими и холодными областями печатной платы.Теплопроводность материала подложки можно найти в спецификациях материалов. Однако, как только вы получите представление о штабеле и весе меди в макете, вам нужно будет рассчитать эффективную теплопроводность подложки. Формулы для прямого расчета различаются в зависимости от того, кого вы спрашиваете, хотя в литературе есть ряд сосредоточенных моделей. Самый простой метод — использовать средневзвешенное значение, основанное на объеме меди и материала подложки в вашей печатной плате:
Оценка эффективной теплопроводности на основе средневзвешенного значения параметров материала печатной платы
Приведенное выше уравнение показывает простое средневзвешенное значение для расчета эффективной теплопроводности, где «s» указывает на подложку, а «c» указывает на медь.Однако это всего лишь приблизительная оценка, и вы получите гораздо более точные результаты, если воспользуетесь специализированным трехмерным мультифизическим симулятором. После того, как вы определили эффективную теплопроводность вашей печатной платы, вы готовы рассчитать тепловое сопротивление вашей платы, что даст вам некоторое представление о том, как тепло будет передаваться через ваш стек.
От чего зависит термостойкость подложки печатной платы?
На термическое сопротивление влияют те же структуры, которые определяют эффективную теплопроводность вашей печатной платы.Следы, термопрокладки, переходные отверстия, плоские слои и материалы вашей штабелирования будут в совокупности определять эффективную теплопроводность. Определив это, вы можете рассчитать тепловое сопротивление в направлении толщины с помощью следующего уравнения:
Уравнение термического сопротивления
Точно так же вы можете рассчитать тепловое сопротивление вашей доски в направлении поверхности, используя площадь поперечного сечения доски. Наконец, вы можете рассчитать скорость теплового потока в вашей плате q, которая равна градиенту температуры, деленному на тепловое сопротивление.
Использование медных термостатов и термопрокладок на активных компонентах также помогает отводить тепло в медную плоскость или радиатор, соответственно. Как только тепло передается в радиатор, его можно удалить, используя воздушный поток, проходящий через поверхность радиатора. В сочетании с правильной конструкцией стека и выбором материала подложки вы можете уменьшить количество и / или размер активных мер по охлаждению, которые необходимо реализовать во время проектирования печатной платы.
Дизайн стека для платы HDI
Термическое сопротивление — это просто термодинамический аналог электрического сопротивления.Самый простой способ снизить термическое сопротивление — использовать подложку с высокой теплопроводностью. Некоторые распространенные альтернативные материалы подложки включают керамику, которая имеет очень высокую теплопроводность по сравнению с FR4. Другой вариант — печатные платы с металлическим сердечником, где центральный сердцевинный слой платы выполнен из металла с высокой проводимостью.
Использование более толстых медных дорожек дает два преимущества; Во-первых, более толстые медные дорожки могут пропускать больший ток при заданной рабочей температуре. Другими словами, они будут испытывать меньшее повышение температуры из-за рассеивания тепла.Во-вторых, как только медные следы действительно повышаются, тепло рассеивается от проводников с большей скоростью, поскольку медь обладает высокой теплопроводностью. Оба аспекта медных проводников помогают снизить повышение температуры на плате и сделать распределение температуры более равномерным.
Материалы подложки для печатных плат: сравнение теплопроводности
Керамические материалы несут более высокие производственные затраты из-за требуемых специализированных процессов, но они обеспечивают в 20-100 раз более высокую теплопроводность по сравнению с FR4.Подложки с металлическим сердечником обладают столь же высокой теплопроводностью. Любой из этих вариантов является отличным выбором для средне-высокочастотных приложений и обеспечивает низкое тепловое сопротивление. Ламинат из ПТФЭ с металлической сердцевиной может быть лучшим выбором с точки зрения баланса диэлектрических потерь и управления температурой в микроволновых и миллиметровых диапазонах.
Полигональная заливка и проектирование термопрокладки в Altium Designer
После того, как вы определите эффективную теплопроводность печатной платы и рассчитаете тепловое сопротивление, вы получите представление о методах управления теплом, которые следует использовать, чтобы гарантировать, что плата и компоненты не перегреваются.Функции компоновки и разводки в вашем программном обеспечении для проектирования печатных плат являются основными инструментами, которые вы будете использовать для размещения компонентов в соответствующих местах на плате.
Если вы планируете компенсировать низкую эффективную теплопроводность платы на стандартном FR4, вам нужно будет работать с пакетом дизайна, который включает длинный список стандартных материалов стека и активных компонентов охлаждения. Вы сможете выбрать подложку с достаточно высокой теплопроводностью и приступить к созданию макета.Лучшее программное обеспечение для проектирования печатных плат будет включать эти и многие другие функции в одной программе. Это именно та среда, которую вы найдете в Altium Designer, единственной полностью интегрированной программной платформе для проектирования печатных плат.
Разработайте свою стратегию управления температурным режимом в Altium Designer
Altium Designer включает стандартный для отрасли диспетчер наложения слоев, который позволяет настраивать электрические и тепловые свойства подложки в соответствии с материалами с высокой теплопроводностью.С помощью библиотеки материалов в Altium Designer вы можете легко выбрать из большого количества распространенных материалов для использования в качестве сердечника, препрега и ламинатов. Инструменты компоновки и трассировки позволяют спроектировать плату так, чтобы ее тепловое сопротивление было ближе к желаемому значению. Эти и многие другие инструменты доступны на единой платформе, что дает вам полный набор инструментов для проектирования и анализа печатных плат.
Сверхточные инструменты компоновки и наложенияAltium Designer идеально подходят для реализации стратегии управления температурой, необходимой вашей плате.Вы можете легко размещать компоненты, добавлять к компонентам термопрокладку и радиатор, определять области заливки меди и выполнять многие другие задачи, связанные с проектированием управления температурным режимом. С расширением PDNA вы получаете мощный инструмент анализа, помогающий регулировать температуру. Вы можете реализовать правильную стратегию борьбы с повышением температуры печатной платы и отвода тепла от критически важных компонентов на печатной плате.
Если вы никогда не работали в интегрированной среде проектирования, будьте уверены, что Altium предоставит ресурсы, необходимые для успеха.У вас будет доступ к форуму AltiumLive, подкастам и вебинарам с отраслевыми экспертами, обширной базе знаний с советами по дизайну и множеству руководств по дизайну.