Калькулятор расчета теплопроводности: SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.
Калькулятор теплопотерь стен дома. Расчет толщины стен для различных регионов.
Калькулятор расчета теплопроводности стен жилых домов разработан в строгом соответствии с СНиП П-03-79. Функционал позволяет рассчитать степень теплопроводности любой стены и сравнить его с требуемой СНИПом величиной. От Вас требуется указать предполагаемый регион строительства и выбрать материал и толщину стен.
Рассмотрим участвующие в вычислениях величины.
Статистические сведения для каждого региона определены в СНиП:
- Темп. наружного воздуха — типичная минимальная температура наружного воздуха в зимний период.
- Ср. темп. отопит. периода – среднесуточная температура наружного воздуха по отопительному периоду.
- Продолжительность отопит. периода – среднестатистическая продолжительность отопительного периода в днях.
- Условия эксплуатации в зонах влажности — зона влажности географического региона (A или B).
Используемые для расчетов константы из ГОСТ и СНиП, характеризующие внутренние жилые помещения (одинаковы для всех регионов):
Для расчетов также используются установленные характеристики для внутренних помещений.
Характеристики внутреннего помещения, используемые в вычислениях
- Темп. внутреннего воздуха — положенная СНиПом минимальная температура внутреннего воздуха для жилых помещений.
- Влажность внутреннего воздуха — предполагаемая влажность внутреннего воздуха помещения. При разной влажности материалы стен обладают различной теплопроводностью.
- Коэффициент теплоотдачи внутренней поверхности – как быстро материал передает тепло вовнутрь помещения.
- Коэффициент теплоотдачи наружной поверхности — как быстро материал передает тепло во внешнюю среду.
- Коэффициент теплотехнической однородности – коэффициент, позволяющий оценить теплотехническую однородность стенового материала.
- Коэффициент полож. наружной поверхности
- Нормируемый температурный перепад
Вышеуказанный СНиП также утверждает методики расчета теплопроводности стен, будь то стена из одного материала, или стеновой пирог из нескольких компонентов. Полученный по формулам коэффициент теплопроводности должен удовлетворять требованиям из этого же СНИП, т.е. быть выше двух коэффициентов, рассчитанным по разным формулам.
Приведем ряд рекомендаций, опубликованных специалистами НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО ИНСТИТУТА СТРОИТЕЛЬНОЙ ФИЗИКИ (НИИСФ) ГОССТРОЯ СССР.
Рекомендации разработчиков СНиП-II-3-79 по устройству стенового пирога
Рекомендации касаются проектирования ограждающих конструкций зданий и сооружений.
Преимущество при проектировании стеновых конструкций следует отдавать многослойным наружным стенам с использованием эффективного теплоизоляционного материала Однослойные наружные стены показывают некоторую эффективность при использовании легкого бетона плотностью не выше 1000 кг/м3, ячеистого бетона плотностью менее 800 кг/м3. Также хорошо показывает себя кладка из пустотелых керамических или силикатных камней и кирпичей. Пирог многослойных стен необходимо проектировать таким образом, чтобы с теплой стороны (изнутри) располагался материал с большим коэффициентом теплопроводности, что обеспечивает более высокую температуру угла;
Если утеплитель располагается внутри, скажем, кирпичной кладки, его рациональнее располагать ближе к внешней поверхности стены. При проектировании помещений для районов с расчетной скоростью ветра в июле не менее 2 м/с допускается использовать покрытия с вентилируемой воздушной прослойкой. Оптимальная толщина вентилируемой воздушной прослойки в наружных стенах находится в пределах 0,05-0,1 а оптимальная высота — 5-6 м.
Рациональнее организовать в ограждающей конструкции несколько воздушных прослоек малой толщины, чем одну большей толщины, при этом воздушные прослойки должны располагаться ближе к наружной стороне ограждения;
Поскольку переувлажненные материалы стеновых конструкций хуже справляются со своей задачей, слои материалов следует располагать изнутри наружу в порядке увеличения паропроницаемости.
Наружные и внутренние стены следует предохранять от грунтовой влаги путем устройства гидроизоляции. Основная обязательная во всех случаях горизонтальная гидроизоляция в нижней части наружной стены или по всему верху цоколя должна быть расположена выше тротуара или отмостки здания, но ниже отметки пола первого этажа. Дополнительную горизонтальную гидроизоляцию следует предусматривать в стенах зданий с подвалами и цокольными этажами ниже уровня их пола.
Калькулятор расчёта толщины утеплителя. Как рассчитать толщину утеплителя — методики и способы. Что значит «утеплиться правильно»
В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» — теплые стены обойдутся дороже застройщику.
Для чего нужен калькулятор теплопроводности стен
В каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы. Мы подобрали наиболее удобные и понятные сервисы для расчета необходимой толщины теплоизоляционного материала.
Теплотехнический калькулятор. Расчет точки росы в стене
Калькулятор онлайн от smartcalc.ru позволит рассчитать оптимальную толщину утеплителя для стен дома и жилых помещений. Вы сможете рассчитать толщину теплоизоляции и рассчитать точку росы при утеплении дома различными материалами. Калькулятор smartcalc.ru позволяет наглядно увидеть место выпадения конденсата в стене. Это самый удобный теплотехнический калькулятор расчет утепления и точки росы.
Калькулятор толщины утеплителя для стен, потолка, пола
С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен, кровли, потолка дома и других строительных конструкций в соответствии с регионом вашего проживания, материала и толщины стен, а также других важных параметров при теплоизоляции. Подбирая разные теплоизоляционные материалы на калькуляторе, вы сможете найти оптимальную толщину утеплителя для стен своего дома.
Калькулятор KNAUF. Расчет толщины теплоизоляции
Данный калькулятор позволяет произвести расчет толщины теплоизоляции стен в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий». Бесплатный онлайн калькулятор расчета теплоизоляции KNAUF, сервис имеет удобный и понятный интерфейс.
Калькулятор Rockwool расчёта толщины теплоизоляции стен
Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек минваты очень просто.
Как убрать точку росы из стены при утеплении
Теплый дом — мечта каждого владельца, для достижения этой цели строятся толстые стены, проводится отопление, устраивается качественная теплоизоляция. Чтобы утепление было рациональным необходимо правильно подобрать материал и грамотно рассчитать его толщину.
Размер слоя изоляции зависит от теплового сопротивления материала. Этот показатель является величиной, обратной теплопроводности. Каждый материал — дерево, металл, кирпич, пенопласт или минвата обладают определенной способностью передавать тепловую энергию. Коэффициент теплопроводности высчитывается в ходе лабораторных испытаний, а для потребителей указывается на упаковке.
Если материал приобретается без маркировки, можно найти сводную таблицу показателей в интернете.
Теплосопротивление материала ® является постоянной величиной, его определяют как отношение разности температур на краях утеплителя к силе проходящего через материал теплового протока. Формула расчета коэффициента: R=d/k, где d — толщина материала, k — теплопроводность. Чем выше полученное значение, тем эффективней теплоизоляция.
Почему важно правильно рассчитать показатели утепления?
Теплоизоляция устанавливается для сокращения потерь энергии через стены, пол и крышу дома. Недостаточная толщина утеплителя приведет к перемещению точки росы внутрь здания. Это означает появление конденсата, сырости и грибка на стенах дома. Избыточный слой теплоизоляции не дает существенного изменения температурных показателей, но требует значительных финансовых затрат, поэтому является нерациональным. При этом нарушается циркуляция воздуха и естественная вентиляция между комнатами дома и атмосферой. Для экономии средств с одновременным обеспечением оптимальных условий проживания требуется точный расчет толщины утеплителя.
Расчет теплоизоляционного слоя: формулы и примеры
Чтобы иметь возможность точно рассчитать величину утепления, необходимо найти коэффициент сопротивления теплопередачи всех материалов стены или другого участка дома. Он зависит от климатических показателей местности, поэтому вычисляется индивидуально по формуле:
ГСОП=(tв-tот)xzот
tв — показатель температуры внутри помещения, обычно составляет 18-22ºC;
tот — значение средней температуры;
zот — длительность отопительного сезона, сутки.
Значения для подсчета можно найти в СНиП 23-01-99.
При вычислении теплового сопротивления конструкции, необходимо сложить показатели каждого слоя: R=R1+R2+R3 и т. д. Исходя из средних показателей для частных и многоэтажных домов определены примерные значения коэффициентов:
- стены — не менее 3,5;
- потолок — от 6.
Толщина утеплителя зависит от материала постройки и его величины, чем меньше теплосопротивление стены или кровли, тем больше должен быть слой изоляции.
Пример: стена из силикатного кирпича толщиной в 0,5 м, которая утепляется пенопластом.
Rст.=0,5/0,7=0,71 — тепловое сопротивление стены
R- Rст.=3,5-0,71=2,79 — величина для пенопласта
Для пенопласта теплопроводность k=0,038
d=2,79×0,038=0,10 м — потребуются плиты пенопласта толщиной в 10 см
По такому алгоритму легко подсчитать оптимальную величину теплоизоляции для всех участков дома, кроме пола. При вычислениях, касающихся утеплителя основания, необходимо обратиться к таблице температуры грунта в регионе проживания. Именно из нее берутся данные для вычисления ГСОП, а далее ведется подсчет сопротивления каждого слоя и искомая величина утеплителя.
Популярные способы утепления дома
Выполнить теплоизоляцию здания можно на этапе возведения или после его окончания. Среди популярных методов:
- Монолитная стена существенной толщины (не менее 40 см) из керамического кирпича или дерева.
- Возведение ограждающих конструкций путем колодезной кладки — создание полости для утеплителя между двумя частями стены.
- Монтаж наружной теплоизоляции в виде многослойной конструкции из утеплителя, обрешетки, влагозащитной пленки и декоративной отделки.
По готовым формулам произвести расчет оптимальной толщины утеплителя можно без помощи специалиста. При вычислении следует округлять число в большую сторону, небольшой запас величины слоя теплоизолятора будет полезен при временных падениях температуры ниже среднего показателя.
Теплотехнический калькулятор точки росы онлайн
С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.
Калькулятор расчета толщины утеплителя стены
С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.
Калькулятор KNAUF расчета толщины утеплителя
Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.
Калькулятор Rockwool для расчета теплоизоляции
Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.
Калькулятор теплопроводности для расчета толщины стен
Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.
С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен дома и других ограждений в соответствии с регионом вашего проживания, материала и толщины стен, используемой пароизоляции, материала для подшивки и других важных параметров при утеплении. Подбирая разные материалы, можно выбрать вариант для себя максимально теплый и дешевый.
Теплотехнический калькулятор для расчета точки росы
С помощью данного калькулятора вы сможете рассчитать оптимальную толщину утеплителя для дома и жилых помещений в соответствии с регионом проживания, материала и толщины стен. Вы сможете рассчитать толщину различных утеплительных материалов. И увидеть наглядно на графике место выпадения конденсата в стене. Удобный калькулятор теплопроводности стены онлайн для расчета толщины утепления.
Калькулятор KNAUF Расчет необходимой толщины теплоизоляции
Рассчитайте необходимую толщину теплоизоляционного материала в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий», для всех типов зданий. Бесплатный онлайн сервис расчета теплоизоляции KNAUF, удобный и понятный интерфейс.
Калькулятор Rockwool расчёта толщины теплоизоляции стен
Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек очень просто.
В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» – теплые стены обойдутся дороже застройщику.
Приведем пример. По расчетам выходит, что 50 мм пенопласта уменьшит теплопотери 50 см пенобетона лишь на 20%. Т.е. 80% тепла в доме будет сберегать пенобетон и лишь 20% пенопласт. Здесь действительно стоит подумать, а стоит ли утплять дом? Стоит ли овчинка выделки. С другой стороны, при утеплении 50 см кирпичной стены пенопласт уменьшит теплопотери в 1,5 раза. Кирпич будет беречь 40%, а пенопласт – 60% тепла. Разобраться с этим вопросом вам поможет расчет толщины утеплителя для стен онлайн.
Из этого делаем вывод, что в каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы.
Расчет утеплителя стен — калькулятор для теплоизоляции стены
Если стены в доме выполняются небольшой толщины, то появляется необходимость в их утеплении, потому что с наступлением холодов в помещениях будет не очень комфортно, а также в комнатах появится излишняя сырость.
Точный расчет утеплителя стен, калькулятор
Обеспечение теплосбережения позволяет существенно экономить на электрической энергии и затратах на отопление дома. При этом следует правильно рассчитать материалы, которые должны использоваться в теплоизоляции, а также их количество.
Только эффективные утеплители способны справиться с обеспечением оптимального температурного режима в помещениях и значительно снизить потери тепла.
Утеплители могут быть установлены:
- С наружной стороны дома,
- Внутри стены,
- Во внутренней части.
Дополнительно используется отделка, чтобы под ней спрятать установленный утеплитель. Теплоизоляционные материалы создают тепловую защиту перегородок и стен, поэтому потребитель снижает потери электроэнергии, и для строительства нужно применять меньше строительных материалов.
Если воспользоваться теплоизоляционными материалами в необходимых объемах, строительство получится менее затратным и трудоемким.
Но предварительно нужно провести расчет утеплителя стен, калькулятор поможет, и тогда будут определены объемы теплоизоляционных материалов для каждого конкретного случая и для определенных эксплуатационных условий.
Снижается уровень нагрузки на стены и на фундамент, поэтому при формировании основания потребуется меньшая глубина и меньшее количество бетона.
Как применяется расчет утеплителя стен, калькулятор
Главным показателем теплоизоляционных материалов и строительных конструкций является сопротивление тепловой передачи, и оно обозначается R0. И если возникает необходимость вычислять толщину теплоизоляционного материала, нужного для утепления наружных стен, то используется:
- αут=(R0тр/r-0,16-δ/λ)·λут
- символы в данном выражении обозначают следующее:
- αут — ширину утеплителя, в метрах
- R0тр — сопротивление теплопередаче наружных стен, м2· °С/Вт, данное значение можно найти в таблице,
- δ — ширина несущей части стены, в метрах,
- λ — коэффициент теплопроводности несущей части стены, Вт/(м · °С), также определяется по специальной таблице,
- λут — коэффициент теплопроводности материала, который служит теплоизолятором, Вт/(м · °С), табличное значение,
- r — коэффициент теплотехнической однородности, обладает определённым значением, зависящим от способа отделки или кладки.
Если используется строительная конструкция в несколько слоев, то значение δ/λ должно быть заменено на итоговую сумму каждого слоя.
Теплотехнические расчеты, направленные на получение оптимального результата, имеют большое значение, и рекомендуется их проводить перед началом строительства сооружений.
Но еще есть возможность для обеспечения теплоизоляции после того, как возведен дом, и тогда придется проводить дополнительные отделочные работы.
Для чего нужен расчет теплоизоляции стены, калькулятор
Следует воспользоваться калькулятором онлайн, который быстро подведет итоги заложенных данных, чтобы вы имели возможность приобрести теплоизоляционные материалы с определенными качествами.
В процессе проведения расчета обязательно учитываются климатические особенности региона, в котором будет производиться строительство объекта.
Кроме того, каждая стена направлена на определенную сторону света и одна из них может прогреваться больше, а другая меньше, и этот фактор также должен обязательно учитываться при расчете.
Нужно производить расчет теплоизоляции стены, калькулятор здесь изрядно поможет, чтобы провести подробный и обстоятельный анализ возможностей и свойств различных теплоизоляционных материалов. Также вам будет проще узнать параметры по теплопроводности различных строительных материалов, из которых делаются:
- Потолки,
- Пол,
- Стены,
- Перегородки,
- Перекрытия.
Вы точно вычислите толщину пластиковых расширителей, которые используются при монтажных работах на лоджиях и балконах. Когда боковые стены граничат с комнатой, которая отапливается, есть вариант с использованием утепления наружных углов. Причем угол утепляется специальным утеплителем, который должен быть шире площади промерзания наружной стены.
Также следует добавить еще 5 сантиметров к этому значению, чтобы добиться оптимального теплоизоляционного слоя, иначе будут наблюдаться потери тепла.
Онлайн калькулятор расчета утеплителя | Топ Констракшн
Настоящая Политика конфиденциальности регулирует порядок обработки и использования персональных и иных данных администратором сайтов (далее — Оператор).
Передавая Оператору персональные и иные данные посредством Сайта, Пользователь подтверждает свое согласие на использование указанных данных на условиях, изложенных в настоящей Политике конфиденциальности.
Если Пользователь не согласен с условиями настоящей Политики конфиденциальности, он обязан прекратить использование Сайта.
Безусловным акцептом настоящей Политики конфиденциальности является начало использования Сайта Пользователем.
1. ТЕРМИНЫ
1.1. Сайт — сайты, расположенные в сети Интерне. Все исключительные права на Сайт и его отдельные элементы (включая программное обеспечение, дизайн) принадлежат Оператору в полном объеме. Передача исключительных прав Пользователю не является предметом настоящей Политики конфиденциальности.
1.2. Пользователь — лицо использующее Сайт.
1.3. Законодательство — действующее законодательство Российской Федерации.
1.4. Персональные данные — персональные данные Пользователя, которые Пользователь предоставляет о себе самостоятельно при Регистрации или в процессе использования функционала Сайта.
1.5. Данные — иные данные о Пользователе (не входящие в понятие Персональных данных).
1.6. Регистрация — заполнение Пользователем Регистрационной формы, расположенной на Сайте, путем указания необходимых сведений и выбора Логина и пароля.
1.7. Регистрационная форма — форма, расположенная на Сайте, которую Пользователь должен за полнить для прохождения Регистрации на Сайте.
1.8. Услуга(и) — услуги, предоставляемые Оператором.
2. СБОР И ОБРАБОТКА ПЕРСОНАЛЬНЫХ ДАННЫХ
2.1. Оператор собирает и хранит только те Персональные данные, которые необходимы для оказания Услуг Оператором и взаимодействия с Пользователем.
2.2. Персональные данные могут использоваться в следующих целях:
2.2.1 оказание Услуг Пользователю;
2.2.2 идентификация Пользователя;
2.2.3 взаимодействие с Пользователем;
2.2.4 направление Пользователю рекламных материалов, информации и запросов;
2.2.5 проведение статистических и иных исследований;
2.2.6 обработка платежей Пользователя;
2.2.7 мониторинг операций Пользователя в целях предотвращения мошенничества, противоправных ставок, отмывания денег.
2.3. Оператор в том числе обрабатывает следующие данные:
2.3.1 фамилия, имя и отчество;
2.3.2 адрес электронной почты;
2.3.3 номер мобильного телефон;
2.3.4 адрес сайта.
2.4. Пользователю запрещается указывать на Сайте персональные данные третьих лиц.
3. ПОРЯДОК ОБРАБОТКИ ПЕРСОНАЛЬНЫХ И ИНЫХ ДАННЫХ
3.1. Оператор обязуется использовать Персональные данные в соответствии с Федеральным Законом «О персональных данных» No 152-ФЗ от 27 июля 2006 г. и внутренними документами Оператора.
3.2. В отношении Персональных данных и иных Данных Пользователя сохраняется их конфиденциальность, кроме случаев, когда указанные данные являются общедоступными.
3.3. Оператор имеет право сохранять архивную копию Персональных данных и Данных, в том числе после удаления аккаунта Пользователя.
3.4. Оператор имеет право передавать Персональные данные и Данные Пользователя без согласия Пользователя следующим лицам:
3.4.1 государственным органам, в том числе органам дознания и следствия, и органам местного самоуправления по их мотивированному запросу;
3.4.2 партнерам Оператора;
3.4.3 в иных случаях, прямо предусмотренных действующим законодательством РФ.
3.5. Оператор имеет право передавать Персональные данные и Данные третьим лицам, не указанным в п. 3.4. настоящей Политики конфиденциальности, в следующих случаях:
3.5.1 Пользователь выразил свое согласие на такие действия;
3.5.2 передача необходима в рамках использования Пользователем Сайта или оказания Услуг Пользователю;
3.5.3 передача происходит в рамках продажи или иной передачи бизнеса (полностью или в части), при этом к приобретателю переходят все обязательства по соблюдению условий настоящей Политики.
3.6. Оператор осуществляет автоматизированную обработку Персональных данных и Данных.
4. ИЗМЕНЕНИЕ ПЕРСОНАЛЬНЫХ ДАННЫХ
4.1. Пользователь может в любой момент изменить (обновить, дополнить) Персональные данные посредством Личного кабинета либо путем направления письменного заявления Оператору на почту.
4.2. Пользователь в любой момент имеет право удалить Персональные данные.
4.3. Пользователь гарантирует, что все Персональные данные являются актуальными и не относятся к третьим лицам.
5. ЗАЩИТА ПЕРСОНАЛЬНЫХ ДАННЫХ
5.1. Оператор осуществляет надлежащую защиту Персональных и иных данных в соответствии с Законодательством и принимает необходимые и достаточные организационные и технические меры для защиты Персональных данных.
5.2. Применяемые меры защиты в том числе позволяют защитить Персональные данные от неправомерного или случайного доступа, уничтожения, изменения, блокирования, копирования, распространения, а также от иных неправомерных действий с ними третьих лиц.
6. ПЕРСОНАЛЬНЫЕ ДАННЫЕ ТРЕТЬИХ ЛИЦ ИСПОЛЬЗУЕМЫЕ ПОЛЬЗОВАТЕЛЯМИ
6.1. Используя Сайт Пользователь имеет право заносить данные третьих лиц для последующего использования.
6.2. Пользователь обязуется получить согласие субъекта персональных данных на использование посредством Сайта.
6.3. Оператор не использует персональные данные третьих лиц занесенные Пользователем.
6.4. Оператор обязуется предпринять необходимые меры для обеспечения сохранности персональных данных третьих лиц, занесенных Пользователем.
7. ИНЫЕ ПОЛОЖЕНИЯ
7.1. К настоящей Политике конфиденциальности и отношениям между Пользователем и Оператором, возникающим в связи с применением Политики конфиденциальности, подлежит применению право Российской Федерации.
7.2. Все возможные споры, вытекающие из настоящего Соглашения, подлежат разрешению в соответствии с действующим законодательством по месту регистрации Оператора. Перед обращением в суд Пользователь должен соблюсти обязательный досудебный порядок и направить Оператору соответствующую претензию в письменном виде. Срок ответа на претензию составляет 30 (тридцать) рабочих дней.
7.3. Если по тем или иным причинам одно или несколько положений Политики конфиденциальности будут признаны недействительными или не имеющими юридической силы, это не оказывает влияния на действительность или применимость остальных положений Политики конфиденциальности.
7.4. Оператор имеет право в любой момент изменять Политику конфиденциальности (полностью или в части) в одностороннем порядке без предварительного согласования с Пользователем. Все изменения вступают в силу на следующий день после размещения на Сайте.
7.5. Пользователь обязуется самостоятельно следить за изменениями Политики конфиденциальности путем ознакомления с актуальной редакцией.
сравнительная таблица теплопроводности строительных материалов
Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.
Чем ниже теплопроводность строительных материалов, тем теплее в домеСодержание статьи
Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности
Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.
Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.
ИСТ-1 – прибор для определения теплопроводностиВнимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.
Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.
Основные параметры, от которых зависит величина теплопроводности
Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:
- Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.
Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
- Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.
Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью
- Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.
Коэффициент теплопроводности строительных материалов – таблицы
Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.
Таблица коэффициентов теплоотдачи материалов. Часть 1Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных половНо эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.
Таблица теплопроводности кирпича
Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.
Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.
Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.
Теплопроводность разных видов кирпичейТаблица теплопроводности металлов
Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.
Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3Таблица теплопроводности дерева
Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.
Проводимость тепла дереваПрочность разных пород древесиныТаблица проводимости тепла бетонов
Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят ответственные узлы зданий с последующим утеплением, когда же из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.
Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материаловНаиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.
Какой коэффициент теплопроводности у воздушной прослойки
В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.
Таблица проводимости тепла воздушных прослоекКалькулятор расчёта толщины стены по теплопроводности
На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.
Окно расчёта калькулятораВ нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.
Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном раствореСуществуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.
Расчёт проводимости тепла всех прослоек стенКонечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.
Комментарии для сайта CackleКалькулятор теплоизоляции онлайн. Определяем необходимую толщину утеплителя Онлайн калькулятор расчета утепления дома ппу
Теплый дом — мечта каждого владельца, для достижения этой цели строятся толстые стены, проводится отопление, устраивается качественная теплоизоляция. Чтобы утепление было рациональным необходимо правильно подобрать материал и грамотно рассчитать его толщину.
Размер слоя изоляции зависит от теплового сопротивления материала. Этот показатель является величиной, обратной теплопроводности. Каждый материал — дерево, металл, кирпич, пенопласт или минвата обладают определенной способностью передавать тепловую энергию. Коэффициент теплопроводности высчитывается в ходе лабораторных испытаний, а для потребителей указывается на упаковке.
Если материал приобретается без маркировки, можно найти сводную таблицу показателей в интернете.
Теплосопротивление материала ® является постоянной величиной, его определяют как отношение разности температур на краях утеплителя к силе проходящего через материал теплового протока. Формула расчета коэффициента: R=d/k, где d — толщина материала, k — теплопроводность. Чем выше полученное значение, тем эффективней теплоизоляция.
Почему важно правильно рассчитать показатели утепления?
Теплоизоляция устанавливается для сокращения потерь энергии через стены, пол и крышу дома. Недостаточная толщина утеплителя приведет к перемещению точки росы внутрь здания. Это означает появление конденсата, сырости и грибка на стенах дома. Избыточный слой теплоизоляции не дает существенного изменения температурных показателей, но требует значительных финансовых затрат, поэтому является нерациональным. При этом нарушается циркуляция воздуха и естественная вентиляция между комнатами дома и атмосферой. Для экономии средств с одновременным обеспечением оптимальных условий проживания требуется точный расчет толщины утеплителя.
Расчет теплоизоляционного слоя: формулы и примеры
Чтобы иметь возможность точно рассчитать величину утепления, необходимо найти коэффициент сопротивления теплопередачи всех материалов стены или другого участка дома. Он зависит от климатических показателей местности, поэтому вычисляется индивидуально по формуле:
ГСОП=(tв-tот)xzот
tв — показатель температуры внутри помещения, обычно составляет 18-22ºC;
tот — значение средней температуры;
zот — длительность отопительного сезона, сутки.
Значения для подсчета можно найти в СНиП 23-01-99.
При вычислении теплового сопротивления конструкции, необходимо сложить показатели каждого слоя: R=R1+R2+R3 и т. д. Исходя из средних показателей для частных и многоэтажных домов определены примерные значения коэффициентов:
- стены — не менее 3,5;
- потолок — от 6.
Толщина утеплителя зависит от материала постройки и его величины, чем меньше теплосопротивление стены или кровли, тем больше должен быть слой изоляции.
Пример: стена из силикатного кирпича толщиной в 0,5 м, которая утепляется пенопластом.
Rст.=0,5/0,7=0,71 — тепловое сопротивление стены
R- Rст.=3,5-0,71=2,79 — величина для пенопласта
Для пенопласта теплопроводность k=0,038
d=2,79×0,038=0,10 м — потребуются плиты пенопласта толщиной в 10 см
По такому алгоритму легко подсчитать оптимальную величину теплоизоляции для всех участков дома, кроме пола. При вычислениях, касающихся утеплителя основания, необходимо обратиться к таблице температуры грунта в регионе проживания. Именно из нее берутся данные для вычисления ГСОП, а далее ведется подсчет сопротивления каждого слоя и искомая величина утеплителя.
Популярные способы утепления дома
Выполнить теплоизоляцию здания можно на этапе возведения или после его окончания. Среди популярных методов:
- Монолитная стена существенной толщины (не менее 40 см) из керамического кирпича или дерева.
- Возведение ограждающих конструкций путем колодезной кладки — создание полости для утеплителя между двумя частями стены.
- Монтаж наружной теплоизоляции в виде многослойной конструкции из утеплителя, обрешетки, влагозащитной пленки и декоративной отделки.
По готовым формулам произвести расчет оптимальной толщины утеплителя можно без помощи специалиста. При вычислении следует округлять число в большую сторону, небольшой запас величины слоя теплоизолятора будет полезен при временных падениях температуры ниже среднего показателя.
7 сентября, 2016Специализация: мастер по внутренней и наружной отделке (штукатурка, шпаклёвка, плитка, гипсокартон, вагонка, ламинат и так далее). Кроме того, сантехника, отопление, электрика, обычная облицовка и расширение балконов. То есть, ремонт в квартире или доме делался «под ключ» со всеми необходимыми видами работ.
Безусловно, расчет утеплителя для стен в собственном доме, это очень серьёзная работа, особенно, если это не было сделано изначально и в доме холодно. И вот здесь вам придётся столкнуться с рядом вопросов.
Например, каким должен быть утеплитель, какой из них лучше и какая нужна толщина материала? Давайте попробуем разобраться в этих вопросах, а ещё посмотрим видео в этой статье, наглядно демонстрирующее тему.
Утепление стен
Внутри или снаружи
Если вы решили использовать калькулятор расчета толщины утеплителя для стен, то точных данных вы не получите. Вручную можно получить более точную и достоверную информацию. Помимо этого имеет значение расположение изоляции, которую можно укладывать, как внутри, так и снаружи здания, что при расчетах нужно учитывать обязательно!
Особенности внутреннего и наружного утепления:
- представьте себе, что вы используете калькулятор расчета утеплителя для стен, но при этом изоляцию укладываете внутри помещения, будут ли результаты расчётов верными? Обратите внимание на схему вверху;
- какой бы толщины ни была изоляция в комнате, стена всё равно останется холодной и это приведёт к определённым последствиям;
- то есть, это означает, что точка росы или зона, где тёплый воздух при встрече с холодным превращается в конденсат, переносится ближе к помещению. И чем мощнее внутреннее утепление, тем ближе будет эта точка;
- в некоторых случаях эта зона доходит до поверхности стены, где влага способствует развитию грибковой плесени. Но если даже она остаётся внутри стены, то эксплуатационный ресурс от этого никак не увеличивается;
- следовательно, инструкция и здравый смысл указывают на то, что внутреннее утепление следует монтировать только в крайнем случае или же тогда, когда нужна звукоизоляция;
- при наружном утеплении точка росы будет приходиться на зону изоляции, а это означает, что вы сможете повысить срок годности вашей стены и избежать возникновения сырости.
Расчет – дело серьезное!
№п/п | Стеновой материал | Коэффициент теплопроводности | Необходимая толщина (мм) |
1 | Пенополистироп ПСБ-С-25 | 0,042 | 124 |
2 | Минеральная вата | 0,046 | 124 |
3 | Клееный деревянный брус или цельный массив ели и сосны поперёк волокон | 0,18 | 530 |
4 | Кладка керамоблоков на теплоизоляционный клей | 0,17 | 575* |
5 | Кладка газо- и пеноблоков 400кг/м3 | 0,18 | 610* |
6 | Кладка полистирольных блоков на клей 500кг/м3 | 0,18 | 643* |
7 | Кладка газо- и пеноблоков 600кг/м3 | 0,29 | 981* |
8 | Кладка на клей керамзитобетона 800кг/м3 | 0,31 | 1049* |
9 | Кладка из керамического пустотелого кирпича на ЦПР 1000кг/м3 | 0,52 | 1530 |
10 | Кладка из рядового кирпича на ЦПР | 0,76 | 2243 |
11 | Кладка из силикатного кирпича на ЦПР | 0,87 | 2560 |
12 | ЖБИ 2500кг/м3 | 2,04 | 6002 |
Теплотехнический расчет различных материалов
Примечание к таблице. Наличие знака * указывает на необходимость добавления коэффициента 1,15, если в здании сделаны перемычки и монолитные пояса из тяжёлых бетонов. Вверху для наглядности составлена диаграмма — цифры совпадают с таблицей.
Итак, расчет толщины утеплителя, это определение его теплового сопротивления, которое мы обозначим буквой R — постоянная величина, которая рассчитывается отдельно для каждого региона.
Давайте возьмём для наглядности среднюю цифру R=2,8 (м2*K/Вт). Согласно Государственным Строительным Нормам такая величина является минимально допустимой для жилых и общественных зданий .
В тех случаях, когда тепловая изоляция состоит из нескольких слоёв, например, кладка, пенопласт и евровагонка, то сумма всех показателей складывается воедино — R=R1+R2+R3 . А общую или отдельную толщину теплоизоляционного слоя рассчитывают по формуле R=p/k .
Здесь p будет означать толщину слоя в метрах, а буква k , это коэффициент теплопроводности данного материала (Вт/м*к), значение которого вы можете взять из таблицы теплотехнических расчётов, которая приведена выше.
По сути, используя эти же формулы, вы можете произвести расчет энергоэффективности от утепления подоконников или узнать толщину изоляции для пола. Величину R используйте в соответствии со своим регионом.
Чтобы не быть голословным, приведу пример, возьмём кирпичную кладку в два кирпича (обычная стена), а в качестве изоляции будем использовать пенополистирольные плиты ПСБ-25 (двадцать пятый пенопласт), цена которых достаточно приемлема даже для бюджетного строительства.
Итак, тепловое сопротивление, которого нам нужно достичь, должно составлять 2,8 (м2*Л/Вт). Вначале узнаём теплосопротивление данной кирпичной кладки. От тычка до тычка кирпич имеет 250 мм и между ними раствор толщиной 10 мм.
Следовательно, p=0,25*2+0,01=0,51м . Коэффициент у силиката составляет 0,7 (Вт/м*к), тогда Rкирпича=p/k=0,51/0,7=0,73 (м2*K/Вт) — это мы получили теплопроводность кирпичной стены, рассчитав её своими руками.
Идём далее, теперь нам нужно достичь общего показателя для слоёной стены 2,8 (м2*K/Вт), то есть R=2,8 (м2*K/Вт и для этого нам нужно узнать необходимую толщину пенопласта. Значит, Rпенопласта=Rобщая-Rкирпича=2,8-0,73=2,07 (м2*K/Вт).
На фото — локальная защита пенопластом
Теперь для расчёта толщины пенополистирола берём за основу общую формулу и здесь Pпенопласта=Rпенопласта*kпенопласта= 2?07*0?035=0?072м . Конечно, 2 см мы никак не найдём у ПСБ-25, но если учесть внутреннюю отделку и воздушную прослойку между кирпичами, то нам будет достаточно 70 см, а это два слоя
В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» — теплые стены обойдутся дороже застройщику.
Для чего нужен калькулятор теплопроводности стен
В каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы. Мы подобрали наиболее удобные и понятные сервисы для расчета необходимой толщины теплоизоляционного материала.
Теплотехнический калькулятор. Расчет точки росы в стене
Калькулятор онлайн от smartcalc.ru позволит рассчитать оптимальную толщину утеплителя для стен дома и жилых помещений. Вы сможете рассчитать толщину теплоизоляции и рассчитать точку росы при утеплении дома различными материалами. Калькулятор smartcalc.ru позволяет наглядно увидеть место выпадения конденсата в стене. Это самый удобный теплотехнический калькулятор расчет утепления и точки росы.
Калькулятор толщины утеплителя для стен, потолка, пола
С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен, кровли, потолка дома и других строительных конструкций в соответствии с регионом вашего проживания, материала и толщины стен, а также других важных параметров при теплоизоляции. Подбирая разные теплоизоляционные материалы на калькуляторе, вы сможете найти оптимальную толщину утеплителя для стен своего дома.
Калькулятор KNAUF. Расчет толщины теплоизоляции
Данный калькулятор позволяет произвести расчет толщины теплоизоляции стен в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий». Бесплатный онлайн калькулятор расчета теплоизоляции KNAUF, сервис имеет удобный и понятный интерфейс.
Калькулятор Rockwool расчёта толщины теплоизоляции стен
Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек минваты очень просто.
Как убрать точку росы из стены при утеплении
Теплотехнический калькулятор точки росы онлайн
С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.
Калькулятор расчета толщины утеплителя стены
С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.
Калькулятор KNAUF расчета толщины утеплителя
Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.
Калькулятор Rockwool для расчета теплоизоляции
Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.
Калькулятор теплопроводности для расчета толщины стен
Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.
Расчет теплопроводности стекла
Расчет теплопроводности стеклаРасчет термической (фононной) проводимости стекла
Обширная модель для расчета теплопроводности (фононной) проводимости стекол при комнатной температуре была опубликована Чоудхари и Поттером [1]. По данным этих авторов теплопроводность к в Вт / (м · К) получается по формуле k = Σ ( b i × c i ), где значения b i перечислены ниже, а c i — стеклянный компонент концентрации в процентах по массе.Сообщается, что ошибка предсказания составляет около 10% от результата предсказания. Расчет может быть выполнен с помощью небольшой программы Excel, представленной здесь (скачать, 25 kB).
Стеклянный компонент | b i значение |
SiO 2 | 0.0133 |
TiO 2 | -0,0327 |
Al 2 O 3 | 0,0139 |
MgO | 0,0137 |
CaO | 0.0123 |
SrO | 0,0084 |
BaO | 0,0024 |
MnO | -0,0223 |
CoO | 0.0312 |
NiO | 0,0166 |
CuO | 0,0333 |
ZnO | 0,0078 |
PbO | 0.0035 |
Li 2 O | -0,0088 |
Na 2 O | -0,0047 |
К 2 О | 0,0027 |
CS 2 O | -0.0006 |
В 2 О 3 | 0,0082 |
Fe 2 O 3 | 0,0085 |
Сб 2 О 3 | -0,0108 |
Bi 2 O 3 | 0.0053 |
Ф. 2 | -0,0508 |
[1] М. К. Чоудхари, Р. М. Поттер: «Теплообмен в стеклоформующих расплавах»; Глава 9 в: «Характеристики расплавов стеклообразования «под редакцией Д. Л. Пая, А. Монтенаро, И. Джозефа; CRC Press, Бока-Ратон, Флорида, май 2005 г., ISBN: 1-57444-662-2
При температурах плавления стекла тепловая (фононная) проводимость была оценена van der Temperl et al.[2, 3].
[2] Л. ван дер Темпель, Г. П. Мелис, Т. К. Брандсма: «Тепловой Электропроводность стекла: I. Измерение методом контакта стекло-металл »; Физика и химия стекла. 26, вып. 6, 2000, стр. 606-611
[3] Л. ван дер Темпель: «Тепловой Электропроводность стекла: II. Эмпирическая модель »; Физика стекла и Химия, т. 28, вып. 3, 2002, стр. 147-152
4.3: Теплопроводность — Physics LibreTexts
Диаграмма IV.1 показано тепловое течение со скоростью dQ / dt вдоль полосы материала с площадью поперечного сечения A, . По длине планки наблюдается перепад температур (поэтому по ней течет тепло). На расстоянии x от конца стержня температура составляет T ; на расстоянии x + δ x это T + δ T . Обратите внимание, что если тепло течет в положительном направлении, как показано, δ T должно быть отрицательным. То есть, ближе к правому концу планки холоднее.Температурный градиент dT / dx отрицательный. Тепло течет в направлении, противоположном градиенту температуры.
Отношение скорости теплового потока на единицу площади к отрицательному градиенту температуры называется теплопроводностью материала:
\ [\ frac {dQ} {dt} = -KA \ frac {dT} {dx}. \]
Я использую символ K для обозначения теплопроводности. Другие часто встречающиеся символы — это k или λ. Его единица СИ — Вт · м −1 K −1 .
Я определил это в одномерной ситуации и для изотропной среды, и в этом случае тепловой поток противоположен градиенту температуры.Можно представить, что в анизотропной среде скорость теплового потока и градиент температуры могут быть разными параллельно разным кристаллографическим осям. В этом случае тепловой поток и температурный градиент не могут быть строго антипараллельными, а теплопроводность является тензорной величиной. Такая ситуация не будет касаться нас в этой главе.
Если в нашем одномерном примере нет утечки тепла по сторонам стержня, то скорость потока тепла вдоль стержня должна быть одинаковой по всей длине стержня, что означает, что градиент температуры является однородным. по длине проволоки.Возможно, проще представить отсутствие потерь тепла с боков, чем добиться этого на практике. Если бы стержень был расположен в вакууме, не было бы потерь на теплопроводность или конвекцию, а если бы стержень был очень блестящим, потери на излучение были бы незначительными.
Значения по порядку величины теплопроводности обычных веществ
Воздух 0,03 Вт м −1 K −1
Вода 0,6
Стекло 0,8
Fe 80
Al 240
Cu 400
Легко представить, как тепло может проводиться по твердому телу, когда колебания атомов на одном конце твердого тела передаются следующим атомам, когда один атом подталкивает следующий, и так далее.Однако из таблицы видно, и во всяком случае общеизвестно, что одни вещества (металлы) проводят тепло намного лучше, чем другие. Действительно, среди металлов существует тесная корреляция между теплопроводностью и электропроводностью (при данной температуре). Это говорит о том, что механизм теплопроводности в металлах такой же, как и для электропроводности. Тепло в металле проводится в основном электронами.
Было бы интересно найти в Интернете или других источниках данные о теплопроводности и электропроводности ряда металлов.Можно обнаружить, что теплопроводность, K , иногда указывается в незнакомых «практических» единицах, таких как БТЕ в час на квадратный фут для температурного градиента 1 F ° на дюйм, и переводят их в единицы СИ, Вт · м. −1 K −1 может быть немного сложной задачей. Электропроводность σ несколько уменьшается с повышением температуры (как и теплопроводность, но в меньшей степени), поэтому было бы важно найти их все при одинаковой температуре. Тогда вы сможете увидеть, действительно ли отношение K / σ одинаково для всех металлов при данной температуре.{-1}. \]
Здесь k — постоянная Больцмана, а e — заряд электрона. Было обнаружено, что это предсказание хорошо выполняется при комнатной температуре и выше, но при низких температурах электропроводность быстро увеличивается с понижением температуры, и отношение начинает падать значительно ниже значения, предсказанного уравнением 4.2.2, приближаясь к нулю при 0 К.
Читатель может быть знаком со следующими терминами в области электричества
Электропроводность σ
Электропроводность G
Удельное сопротивление ρ
Сопротивление R
Они связаны соотношением G = 1/ R , σ = 1 / ρ, R = ρ l / A , G = σ A / l ,
, где l и A — длина и площадь поперечного сечения проводника.Читатель, вероятно, также знает, что сопротивления складываются последовательно, а проводимости складываются параллельно. Мы можем определить некоторые аналогичные величины, относящиеся к тепловому потоку. Таким образом, удельное сопротивление обратно пропорционально проводимости, сопротивление составляет л / А, в раз больше удельного сопротивления, проводимость составляет А / л, в раз больше проводимости, и так далее. Эти концепции могут пригодиться в следующем жанре задач, любимых экзаменаторами.
Помещение имеет стены площадью A 1 , толщина d 1 , теплопроводность K 1 , дверь площадью A 2 , толщина d 2 , теплопроводность K 2 , и окно площадью A 3 , толщина d 3 , теплопроводность K 3 , температура внутри T 1 и температура на улице T 2 .Какова скорость потери тепла из помещения?
У нас есть три параллельных проводимости: \ (\ frac {K_1 A_1} {d_1}, ~ \ frac {K_2 A_2} {d_2}, \) и \ (\ frac {K_3 A_3} {d_3} \), и так что у нас
\ [\ frac {dQ} {dt} = \ left (\ frac {K_1 A_1} {d_1} + \ frac {K_2 A_2} {d_2} + \ frac {K_3 A_3} {d_3} \ right) (T_2 — Т_1). \]
Конечно, проблема не должна быть именно такой. Возможно, вам задали показатель теплопотерь и попросили найти площадь окна. Но вы поняли общую идею и, вероятно, сможете сами придумать несколько примеров.Скорость теплового потока аналогична току, а разница температур подобна ЭДС батареи.
Калькулятор теплоизоляции и проводимости (тепловой поток)
Теплоизоляция — это уменьшение потерь тепла с одной стороны барьера на другую. Свойства материала, используемого для изоляционного слоя (слоев), будут определять скорость потери внутреннего тепла. Все четыре свойства, которые описывают тепловые характеристики барьера, описаны ниже.
Теплопроводность (k)
Теплопроводность одинаково хорошо применима к газу, жидкости и твердому телу, каждый из которых имеет собственное характеристическое значение (например, теплопроводность воды составляет 0,591 Вт / м / К (0,341 БТЕ / ч / фут / об).
В частности, это количество тепла (британские тепловые единицы или калории), которое проходит через барьер единичной толщины (1,0 фут или метр), разделяющий единичную разницу температур (1,0 Ренкина или Кельвина) за единичный период времени (1.0 секунд, минут или часов). Единицы, используемые для описания этого свойства, могут быть в различных формах, смешивая различные единицы длины, но обычно выражаются в британских единицах измерения как «БТЕ / ч / фут / R», а в метрических единицах — как «Вт / м / К».
См. «Применимость» ниже
Скорость теплопередачи (q)
Скорость теплопередачи одинаково хорошо применима к газу, жидкости и твердому телу и относится к скорости, с которой его объем будет терять тепло в окружающую среду.
В частности, это количество тепла (британские тепловые единицы или калории), которое проходит от материала или вещества за единицу времени (1.0 секунд, минут или часов). Единицы, используемые для описания этого свойства, могут быть в различных формах, но обычно выражаются в британских единицах измерения как «БТЕ / ч» и в метрических единицах как «Вт».
См. «Применимость» ниже
Коэффициент теплопередачи (U & h)
Рис. 1. Потери тепла из воды
Коэффициент теплопередачи одинаково хорошо применим к газу, жидкости и твердому телу, но обычно используется в качестве спецификации тепловых свойств для коммерческих продуктов, таких как изоляционные плиты или материалы заданной толщины.Таким образом, если вы умножите это значение на толщину барьерного материала, вы получите теплопроводность материала, из которого барьер изготовлен.
В частности, это количество тепла (британские тепловые единицы или калории), которое проходит через барьер, разделяющий разницу температур (1,0 по Рэнкину или Кельвину) за единичный период времени (1,0 секунда, минута или час). Единицы, используемые для описания этого свойства, обычно выражаются в британской системе мер как «Btu / h / ft² / R» или в метрической форме как «W / m² / K».
См. «Применимость» ниже
Термостойкость (R)
Термическое сопротивление одинаково хорошо применимо к газу, жидкости и твердому телу и описывает способность материала предотвращать потерю тепла.
В частности, это разница температур (по шкале Ренкина или Кельвина) через барьер, когда через него проходит единичная скорость тепла (британские тепловые единицы в час или ватт) в течение единичного периода времени (1,0 секунда, минута или час). Единицы, используемые для описания этого свойства, обычно выражаются в британской системе мер как «R.ft² / Btu / h / «или в метрической форме как» K.m² / W «.
См. «Применимость» ниже
Тепловые потери
Это то, что вы делаете, чтобы узнать, как быстро выравниваются разные температуры через барьер:
1) Умножьте объем (м³) высокотемпературного вещества на его плотность (кг / м³)
2) Умножьте результат на его удельный теплоемкость (Втч / кг / K)
3) Разделите результат на площадь поверхности барьера (м²)
4) Разделите результат на его коэффициент теплопередачи или теплопроводность (Вт / м² / K)
Единицы аннулируются следующим образом: ( м³ . кг . W .h. м² . K ) / ( кг . м³ . K . м² . W ), оставляя вам «h» (часы)
Если вы хотите попробовать это с водой (cp = 1,163 Втч / кг / K, ρ = 1000 кг / м³) в трубе длиной один метр; Определите среднюю площадь поверхности вашей трубы и объем воды внутри нее:
(Площадь = l.π.Øm = 0,52 м² и объем = l.π.ز / 4 = 0,012668 м³)
примечание: Øm — это диаметр середины толщины стенки трубы (включая изоляцию)
и с помощью ThermIns рассчитайте коэффициент теплопередачи (рис. 1):
1) 1000 x 0.012668 = 12,668 кг
2) 1,163 x 12,668 = 14,73252 Втч / К
3) 14,73252 ÷ 0,52 = 28,33539 Втч / К / м²
4) 28,33539 ÷ 0,918082 = 30,86 часов
ThermIns не включает вышеуказанное средство расчета, поскольку это усложняет использование программы и предполагает неверную точность. Например, такой расчет должен предполагать, что….
1) окружающая среда не нагревается в результате теплопередачи
2) емкость изготовлена идеально
3) материалы на 100% однородны
4) все стороны сделаны из одинаковых материалов
5) емкость не соприкасается с любой другой поверхностью
6) источник тепла не пополняется
и т.п.
Немногие, если таковые вообще имеются, были бы точными.
В то время как CalQlata планирует выпустить в будущем более полный калькулятор теплопроводности, Thermins может предоставить вам достаточную информацию для проектирования трубы, барьера или контейнера с достаточной уверенностью и точностью.
Калькулятор теплопроводности — Техническая помощь
Рис. 2. Расчет контейнера
Вы можете ввести отрицательные или положительные отклонения температуры в калькуляторе теплопроводности, и оба будут давать вам аналогичные результаты в примере расчета плоского барьера, но вы заметите значительные различия в результатах, которые вы получите при переключении полярности в параметре расчета трубчатого барьера.Это связано с тем, что площади поверхности внутри и снаружи различаются, и, поскольку температура всегда меняется от горячей к холодной, скорость потока в трубу и из нее будет разной.
Контейнеры
Если вы хотите рассчитать тепловые свойства шестигранного контейнера, просто откройте его и обращайтесь с ним как с плоским барьером (см. Рис. 2). В большинстве случаев результаты будут очень близки к реальным.
Разумеется, возможны отклонения площади из-за толщины углов, но если толщина стенок не велика по сравнению с размером коробки, ошибка будет минимальной.
Применяемость
Все формулы в калькуляторе теплопроводности основаны на линейных скоростях передачи через все материалы, и все слои изоляции на 100% контактируют со своими соседними слоями. Любые отклонения от приведенного выше не будут отражать реальных ситуаций, однако, если отклонения не значительны, эти ошибки будут минимальными.
Дополнительная литература
Дополнительную информацию по этому вопросу можно найти в справочных публикациях (2, 3 и 12)
Калькулятор теплопроводности— (Обновлено для 2021-2022 гг.) | CoolGyan.Org
Калькулятор теплопроводности — это бесплатный онлайн-инструмент, который отображает теплопроводность данного материала. Онлайн-калькулятор теплопроводности CoolGyan выполняет вычисления быстрее и отображает теплопроводность за доли секунды.
Как пользоваться калькулятором теплопроводности?
Процедура использования калькулятора теплопроводности следующая:
Шаг 1: Введите площадь, скорость теплопередачи, разницу температур, расстояние и x для неизвестного значения в поле ввода
Шаг 2 : Теперь нажмите кнопку «Рассчитать x», чтобы получить теплопроводность.
Шаг 3: Наконец, теплопроводность материала будет отображаться в поле вывода
Что означает теплопроводность?
Теплопроводность определяется как собственная способность материала передавать или проводить тепло.Обозначается символом «λ» или «k». Есть три различных метода теплопередачи. Теплопроводность — одна из них. Два других метода — это излучение и конвекция. Как правило, процесс теплопередачи можно количественно оценить с помощью скоростных уравнений. Скоростное уравнение теплопроводности основано на законе теплопроводности Фурье. В радиаторах используется материал с хорошей теплопроводностью. Обратная величина теплопроводности — это удельное тепловое сопротивление. Каждый материал обладает своей способностью проводить или передавать тепло.Формула для расчета теплопроводности материала имеет следующий вид:
Теплопроводность, λ = (QL) / (AΔT)
Здесь
λ = теплопроводность
A = Площадь поверхности
Q = количество переданного тепла
L = расстояние между двумя изотермическими плоскостями
ΔT = изменение температуры
Пример:
Определите теплопроводность металла, если на одном конце 0.Металлический стержень длиной 25 м помещают в пар, а другой конец погружают в лед. Учитывая, что 15 × 10 -3 кг льда тает в минуту, скрытая теплота льда составляет 80 кал / кг, а поперечное сечение металлического стержня составляет 7 × 10 -4 м 2 .
Решение:
Дано:
Длина, L = 0,25 м
Площадь поперечного сечения, A = 7 × 10 -4 м 2 (или) 0,0007 м 2
Количество передаваемое тепло, Q = 15 × 10 -3 x 80 x 1000 = 1200 кал
ΔT = 100 x 60
Теперь подставим значения в формулу теплопроводности, получим
λ = (QL ) / (AΔT)
λ = (1200 x 0.25) / (0,0007 x 100x 60)
λ = 71,4 кал. М -1 с -1 ° C -1 .
дюймов. — это аббревиатура для дюймов (ов), а футов — для футов (или футов). ккал — килокалории. Значения БТЕ и калорий являются значениями Международной таблицы. Очень большие и очень маленькие числа отображаются в электронном формате без интервала. Незначительные нули во всех числах были удалены.
Расчеты материалов термоинтерфейсаНи для кого из читателей данной публикации не новость, что повышенное рассеивание мощности интегральных схем привело к постоянному совершенствованию конструкций корпусов и материалов компонентов. Эта тенденция повысила важность материалов термоинтерфейса (TIM) как ключевого фактора в определении тепловых характеристик корпусов, предназначенных для приложений с высокой мощностью. Это повышенное значение TIM требует использования более точных методов для определения их влияния на тепловое сопротивление корпуса. Физическое изображениеНа рисунке 1 показан типичный метод упаковки мощной ИС-микросхемы. В этом примере устройство представляет собой перекидную микросхему с массивом паяных выступов, обеспечивающих электрическое соединение с подложкой корпуса. Схема тепловыделения находится на нижней поверхности микросхемы. Тепло отводится от задней части микросхемы — сначала к крышке корпуса, а затем к радиатору, установленному в верхней части корпуса. В этом примере есть два TIM: 1) соединение микросхемы с крышкой и 2) соединение крышки с радиатором. Рисунок 1. Приложение TIM. Влияние объемных и межфазных термических свойств ТИМ на тепловые характеристики. TIM могут быть либо материалами с низким модулем упругости, такими как смазки, гели или материалы с фазовым переходом, либо клеями с более высоким модулем упругости. Ключевой функцией TIM является обеспечение эффективного, стабильного и равномерного теплового соединения между двумя поверхностями, несмотря на любую коробление или шероховатость поверхности. На вставке к рисунку 1 показана микроскопическая шероховатость поверхностей типичных компонентов упаковки.ТИМы разработаны таким образом, чтобы соответствовать контурам контактирующих с ними поверхностей. Однако с материалами, которые сегодня используются в коммерческих целях, всегда будет избыточное тепловое сопротивление в области границы раздела. Это происходит из-за таких факторов, как неполное смачивание поверхности ТИМ или исключение материалов наполнителя в виде частиц из межфазной области. График на Рисунке 1 иллюстрирует температурные градиенты как в объеме материала, так и на границе раздела, предполагая одномерную ситуацию теплового потока.Температура внутри сыпучих материалов линейно уменьшается с увеличением расстояния от источника тепла. Градиент просто связан с тепловым потоком и объемной теплопроводностью каждого из материалов. Однако в пограничных областях, ограничивающих ТИМ, наблюдается резкое изменение температуры. Этот избыточный температурный градиент на границе раздела зависит от химического состава поверхности материалов, прилегающих к TIM, и от метода нанесения TIM, среди других факторов. Следовательно, это не внутреннее свойство TIM, а, скорее, зависит от деталей приложения. Математическое представлениеПредполагая одномерный тепловой поток, тепловое сопротивление TIM, включая две межфазные области, рассчитывается из где A — площадь поперечного сечения TIM, t — его толщина (обычно называемая толщиной линии соединения или BLT), — его объемная теплопроводность, INT1 и INT2 — значения межфазное термическое сопротивление на единицу площади на каждом из интерфейсов [1]. INT объединяет оба межфазных тепловых сопротивления в одно значение. INT выражается в метрических единицах: см 2 ° C / Вт. Уравнение 1 указывает, что TIM является линейной функцией BLT с наклоном, равным 1 / (A), и точкой пересечения по оси y, равной INT / A. На рис. 2 показано использование уравнения 1. Когда TIM измеряется с использованием серии тестовых купонов с различной толщиной TIM, полученным данным можно сопоставить линию.и INT затем могут быть определены непосредственно из наклона и точки пересечения. Рис. 2. Зависимость термического сопротивления ТИМ от толщины линии соединения. ПредупрежденияПримечание 1. Выполнение серии измерений для извлечения наклона и пересечения TIM в сравнении с BLT может потребовать значительных усилий. Иногда целесообразно проводить измерения только при одном значении BLT. Уравнение TIM = t / A EFF решается, чтобы получить значение EFF (эффективное значение теплопроводности). EFF можно использовать для расчета разницы температур на TIM с полной точностью только на той толщине, на которой он был измерен. Если EFF используется в вычислениях для того же TIM, но с другим значением BLT, может возникнуть значительная ошибка. Примечание 2. Производители TIM, которые следуют установленной процедуре ASTM, будут сообщать только о конкретном материале, а не INT [2]. Их объяснение состоит в том, что, в отличие от INT, может варьироваться от приложения к приложению, и, следовательно, они имеют ограниченный контроль над ним.Их политика заключается в том, чтобы сообщать о свойствах, которые они полностью контролируют и которые могут быть включены в спецификации для TIM. Процедура ASTM, используемая для экстракции, в основном аналогична той, что проиллюстрирована на рисунке 2. По сути, она строгая, в отличие от метода EFF . К сожалению, если соответствующее значение INT не может быть включено в тепловые расчеты TIM, это может привести к значительной ошибке, особенно при малых значениях BLT. ВыводыЭто простая процедура для расчета тепловых характеристик TIM при условии, что INT правильно учтен.Самой большой проблемой часто может быть получение правильных значений и INT . Список литературы
% PDF-1.4 % 65 0 объект > эндобдж xref 65 66 0000000016 00000 н. 0000001685 00000 н. 0000001778 00000 н. 0000002454 00000 н. 0000002667 00000 н. 0000002909 00000 н. 0000003156 00000 п. 0000003658 00000 п. 0000004042 00000 н. 0000007492 00000 н. 0000008053 00000 п. 0000008451 00000 п. 0000008795 00000 н. 0000009435 00000 н. 0000009811 00000 н. 0000010201 00000 п. 0000010485 00000 п. 0000014384 00000 п. 0000014813 00000 п. 0000020634 00000 п. 0000021218 00000 п. 0000021240 00000 п. 0000021497 00000 п. 0000021842 00000 п. 0000021958 00000 п. 0000022962 00000 п. 0000023298 00000 п. 0000024597 00000 п. 0000024619 00000 п. 0000025873 00000 п. 0000025895 00000 п. 0000026500 00000 п. 0000026765 00000 п. 0000027070 00000 п. 0000027173 00000 п. 0000027464 00000 н. 0000027720 00000 н. 0000027831 00000 н. 0000028944 00000 п. 0000029248 00000 п. 0000029589 00000 н. 0000030846 00000 п. 0000030869 00000 п. 0000031257 00000 п. |