Какой генератор использовать для самодельной гэс: Бесплатная энергия из ручья. Мини ГЭС своими руками

Содержание

Как сделать мини-ГЭС своими руками / GEF Small Grants Programme, Программа малых грантов в Узбекистане

Главная > Новости > Как сделать мини-ГЭС своими руками

Если недалеко от вашего дома есть небольшая речка, вы можете использовать такой генератор для получения чистой энергии. Это схему разработал один американский рационализатор и собрал мини-ГЭС всего за три дня.


 

Читайте также:

Blue Freedom — самая маленькая гидроэлектростанция
Как сделать солнечный водонагреватель из пластиковых бутылок за 6 шагов
Самодельный трактор на солнечных батареях


Он использовал неработающий генератор от фирмы Cummins Onan, с которого взял диски для колеса турбины, а электрический генератор он изготовил из двух тормозных роторов размером по 28 см. Также использовал ступицу колеса от старого Доджа. Лопасти турбины выполнены из 10-ти сантиметровых стальных труб, разрезанных на четыре части.

Далее конструктор изготовил шаблон двенадцати дюймовых колес, на которые были нанесены метки необходимых отверстий, а также места для лопастей в количестве 16 штук.


Сверление должно быть выполнено очень точно — от этого зависит эффективность всей установки.

После сверления отверстий, диски были соединены металлическими прутьями, длиной 25 см.

В полученном изделии было сделано отверстие на 10 см для того, чтобы облегчить монтаж электрического генератора и для того, чтобы была возможность лучшего доступа.

Для усиления приливного водяного потока к турбине была присоединена специальная насадка в трубу, выполнена из согнутого металлического листа.

В результате получена своя электростанция — труба с оригинальной насадкой была закреплена под углом 45 градусов, а саму турбину предварительно установили на втулку. Такой подход позволил конструктору производить регулировку. Установленая труба может осуществлять движение во всех четырех направлениях, а турбина и генератор могут отклоняться только взад-вперед.

Для генератора американский конструктор использует следующий подход: из проволоки был изготовлен статер, который имеет 9 одинаковых колец, на каждое из которых было плотно намотана 125 витков.

Также от статера было отведено 6 жил, а сам статер залит эпоксидным компаундом.

Ротор имеет 12 магнитов, расположенных по краях.


Соединение ротора и статера было выполнено с помощью смеси полиэстера и стекловолокна.

Созданный генератор закрепили с одной стороны турбины.

Со свободной стороны электрического генератора прикрепили преобразователь, который помещен в специальный кожух из алюминия. Он превращает трехфазный переменный ток в постоянный. Мощность установки составила 12,5 Вт при 38 оборотах в минуту.


Для работы установки использовали ручей, который протекал у дома конструктора.

С этого ручья вода набирается и подается к турбине.

После выбора правильного угла наклона средняя скорость вращения турбины 110 оборотов в минуту.

В результате этого турбина обеспечивает ток в 2 ампера (при напряжении 12 В).
Плотина Смита

 

 

Метки: мини, гидро, станция, возобновляемая, энергия

Комментарии

Поделитесь статьей

Мини- и микро-гэс — популярные конструкции и применение

04.12.2017 2689

Мы побеседовали с Зульфией Мамадалиевой — исследователем Наманганского инженерно-технологического института, которая сегодня устанавливает первую экспериментальную микрогидроэлектростанцию на малом водотоке в городе Касансае Наманганской области. Именно она, маленькая и хрупкая женщина, первой заинтересовалась, как получить бесплатную энергию для жителей родного города.

— Как вы решили заняться такой еще малоизученной в Узбекистане темой ?

— В ходе научных исследований и работы с предпринимателями и фермерами Наманганской области я часто сталкивалась с недостаточной информированностью жителей нашего города об альтернативных источниках энергии.

Все связывали их только лишь с солнечными установками, но ведь существует много других интересных способов. Так и началось мое исследование микрогидроэлектростанций.

Сначала я сделала заметки, потом начала исследовать наш район с целью найти наиболее перспективные места для постройки микро-ГЭС, которые смогли бы компенсировать нужды фермерских хозяйств и частично заменять энергоснабжение.

— В чем преимущества микрогидроэлектростанций?

— Во-первых, они обладают главным плюсом для всех предпринимателей – привлекательной ценой. Конструкция, которую мы установили в качестве экспериментальной, не такая дорогая.

Возможно, она выглядит немного громоздкой, но на самом деле ее очень легко установить, снять, перенести – она мобильна. Если изменится поток воды, вы можете спокойно переместить ее в другое место и настроить там самостоятельно.

Таким образом, вы не затрачиваете ни огромных средств, ни трудовых ресурсов.

Второе преимущество нашей установки — она рассчитана именно на малые потоки воды, которые как раз протекают в нашем районе и многих других областях Узбекистана. Это арыки, саи, которые текут со скоростью от 3 до 5 метров в секунду.

То есть если предпринимателю, к примеру, на постройку крупной ГЭС требуется достаточно много финансов и сил, то наши установки можно прикрепить на обычном арыке.

Мы надеемся, что благодаря этому наши гидроэлектростанции будут популярны среди жителей областей и районов.

  • Схема микро-ГЭС
  • В комплект поставки входят:
  • водозаборное устройство (1), водовод (2), энергоблок (турбина — 3, генератор — 5), выпускной коллектор (4) и устройство автоматического регулирования.
  • — Какую пользу несут микрогидроэлектростанции для экологии?

– Прежде всего, это — чистая энергия. При работе микро-ГЭС не наносится никакого вреда экологии и воде. К примеру, чтобы выработать 1 кВт энергии, требуется много ископаемого топлива, а в случае с микро-ГЭС мы имеем возобновляемый источник энергии, который не кончается. Самое главное в этом деле – наладить работу с оборудованием и вовремя обслуживать его.

По какому принципу работает ваша установка?

– Наша микрогидроэлектростанция – легкого типа. В чем это выражается? По сути, микро-ГЭС – это модернизированный чигирь (чархпалак) — водоподъемное устройство, широко используемое в странах Центральной Азии для полива садов, виноградников и бахчей, который был изобретен еще в III веке предками хорезмийцев.

Еще в древности дешевизна, практичность и безотказность в работе этого древнего механизма сделало его популярным не только среди фермеров, но и ученых, которые предлагают различные усовершенствованные конструкции для использования энергии потока в современных условиях.

Мы решили немного усложнить тот же чигирь, сделать его мобильнее и попробовать использовать для выработки энергии.

Как установить микро-ГЭС? Для начала нужно найти место с небольшим спуском, либо соорудить этот спуск самим. При этом повторюсь, что никаких трудоемких и затратных работ не потребуется, конструкцию спокойно можно установить на любом арыке.

Конструкция с лопастями, установленная перпендикулярно поверхности воды, погружена в нее наполовину. В процессе работы вода давит на лопасти и заставляет вращаться колесо.

Всё очень просто: с точки зрения простоты изготовления и получения максимального КПД с минимальными затратами эта конструкция хорошо работает. Поэтому часто применяется и на практике.

Преимущества микро-ГЭС

— Какова польза, к примеру, от одной такой установки?

Наша установка рассчитана на 10-15 кВт, то есть она может спокойно обеспечить электроэнергией два или три фермерских хозяйства. Обходится в целом эта конструкция от 20 до 25 млн сумов ($2500-$3125), вместе с установкой.

Если, к примеру, ее приобретают три семьи, то в течение 2—2,5 лет ее можно окупить. Обычно данной конструкцией пользуется не один человек, ведь производящую энергию можно использовать не только для своих нужд, но и для целого хозяйства.

В основном это цеха, фермерские хозяйства.

Кроме того, я хотела бы отметить, что в областях нашей страны очень много старых микрогидроэлектростанций, действующих ранее, старых потоков. Наши конструкции можно спокойно устанавливать и на этих сооружениях, в этом случае установка обойдется еще дешевле.

— А сколько таких установок, на ваш взгляд, потребуется, чтобы обеспечить энергией население нашей страны?

— Это зависит от нужд населения, численности и многих других факторов. Наманганская область считается густонаселенной, поэтому, чтобы обеспечить жителей энергией, понадобится, конечно, не одна конструкция. Плюс микро-ГЭС в том, что можно поставить несколько таких установок в одном кишлаке – они не будут мешать работе друг друга.

— Наверняка, среди всех плюсов данной установки, есть и недостатки?

Первый и самый главный недостаток — отсутствие комплектующих. В Узбекистане нет действующих генераторов – все они закупаются за рубежом. А самое дорогое в этой конструкции и есть этот генератор.

Если бы их делали отечественные производители, установка обходилась бы в два раза дешевле.

Мы надеемся, что такие производители у нас обязательно появятся, более того – было бы практичнее организовать целое производство, которое занималось бы разработкой микрогидроэлектростанций исходя из потребностей заказчиков.

Гидроэнергетика Узбекистана в цифрах

Большое будущее малых ГЭС

Анна Марченко

Одно из наиболее перспективных направлений в развитии нетрадиционной энергетики в России — освоение энергии небольших водотоков с помощью микро- и мини-ГЭС. Это связано, прежде всего, со сравнительной простотой их строительства и эксплуатации, а также с большим энергетическим потенциалом малых рек.

Свободный ресурс

К малой гидроэнергетике принято относить гидроэнергетические объекты разного типа с установленной мощностью менее 25 МВт, в том числе совсем небольшие — микроГЭС мощностью от 3 до 100 кВт.

Использование гидроэлектростанций таких мощностей для нашей страны — далеко не новое явление: в 1950-1960-х гг. в СССР действовало более шести тысяч подобных станции.

Сегодня же в России их насчитывается всего несколько сотен, что явно меньше наших возможностей и потребностей.

Принципиально важно отметить, что в малой гидроэнергетике нет необходимости строить крупные гидротехнические сооружения и затапливать большие территории водохранилищами.

Маленькая станция может быть установлена практически на любой реке или даже ручье, что особенно актуально для России, где зоны децентрализованного энергоснабжения охватывают более 70% территории страны, на которой проживают около 20 млн человек.

Мини-ГЭС может применяться для энергоснабжения дачных посёлков, фермерских хозяйств, хуторов, а также небольших производств в труднодоступных районах — там, где строить и содержать электрические сети невыгодно.

Серийная ковшовая микротурбина на основе колеса Пелтона

Основные ресурсы малой гидроэнергетики России сосредоточены в горных районах республик Северного Кавказа, в Ставропольском и Краснодарском краях, на Среднем Урале, в Южной Сибири, Прибайкалье и на Дальнем Востоке.

Виды станций

Конструкция типовой малой ГЭС базируется на гидроагрегате, который включает в себя турбину, водозаборное устройство и элементы управления. В зависимости от того, какие гидроресурсы задействованы малыми гидростанциями, их делят на несколько категорий:

  • русловые или приплотинные с небольшими искусственными водохранилищами;
  • основанные на существующих перепадах уровней воды;
  • использующие энергию свободного течения рек.

По величине напора выделяют низконапорные (Н 75 м) малые гидроэлектростанции.

Спецтурбины

Как и на крупных станциях, на малых ГЭС, используются пропеллерные, радиально-осевые и ковшовые турбины (более подробно о них см. «Энерговектор» № 5/2014 г.) соответствующих размеров и модификаций. Чаще применяются пропеллерные турбины и турбины Френсиса.

Мини-ГЭС устраивают непосредственно в потоке воды или на небольших водохранилищах, которые не могут обеспечить достаточного регулирования стока. Отсюда одна из основных проблем эксплуатации малых ГЭС — непостоянный расход воды.

В период зимней и летней межени сток реки минимален, тогда как во время весеннего половодья объём воды может быть достаточно большим.

По этой причине турбины, используемые на мини-ГЭС, должны быть способны работать как при минимальном, так и при максимальном стоке с наибольшей производительностью.

Такая микроГЭС способна полностью обеспечивать электричеством небольшой частный дом

Таким свойством обладают, например, радиальные двухкамерные проточные турбины системы Ossberger производства одноимённой немецкой компании. Стандартное соотношение размеров камер — 1:2.

Малая камера предназначена для низких расходов, большая камера открывается при средних расходах (при этом малая камера закрывается). Обе камеры работают при полном расходе.

В результате поток воды величиной 12-100% от расчётного максимума используется с наибольшей эффективностью (КПД более 80%), причём турбина запускается при расходе всего 6%.

Существует множество типов конструкций малых ГЭС, проектируемых с учётом различных условий применения. Конечно, охватить их все в этой статье не удастся, поэтому остановимся на некоторых оригинальных разработках.

Гирлянды и рукава

Советский инженер Б. С. Блинов изобрёл и в 1950-1960-х годах впервые применил гирляндные ГЭС для малых рек и рукавные ГЭС для малых рек и ручьёв с дебитом воды более 50 л/с. Гирляндная мини-ГЭС состоит из лёгких турбин — гидровингроторов, нанизанных в виде гирлянды на трос, который переброшен через реку.

Один конец троса закреплён за ось в опорном подшипнике, второй — за ротор генератора. Трос в этом случае играет роль своеобразного вала, вращение которого передаётся к генератору. Одна гирлянда турбин (энергоблок) обеспечивает мощность от нескольких десятков ватт до 5-15 кВт.

Такие энергоблоки можно объединять, заставляя их работать на общую нагрузку и повышая тем самым мощность гидростанции.

Труба рукавной микроГЭС укладывается по склону вдоль водотока

Для устройства рукавной микроГЭС на реке или ручье строится небольшая плотина, к отверстию в которой прикрепляется труба-шланг, уложенная вниз по склону вдоль водотока до электрогенератора. Перепад высот от плотины до генератора должен быть не менее 4-5 м.

Вход в «рукав» располагают так, чтобы захватить среднюю, самую быструю, часть течения реки, и воду по сужающемуся каналу подводят к турбинам. Установленная мощность такой станции может варьироваться от 1 до 100 кВт.

В 70-х годах прошлого века гидроагрегаты для рукавных микроГЭС выпускались серийно на предприятиях сельхозмашиностроения.

Водоворот энергии

Интересную конструкцию для малых ГЭС в 2003 г. запатентовал изобретатель из Австрии Франц Цотлётерер. Он назвал свой проект «Технический водоворот», а мини-ГЭС — «Водоворотно-гравитационной станцией».

Водоворотно-гравитационная мини-ГЭС не повредит рыбе

При строительстве станции Цотлётерера часть воды из водотока отводится в бетонный канал, проложенный вдоль береговой линии. Канал завершается бетонным цилиндром, внизу которого выполнено выпускное отверстие с жёлобом-отводом.

Вода поступает в цилиндр по касательной и, подчиняясь силе гравитации, стремится вниз, закручиваясь по спирали. В центре находится турбина, её то и раскручивает водоворот (средняя скорость вращения турбины — 30 об./мин.).

На водоворотной мини-ГЭС, построенной на ручье с перепадом высоты в 1,3 м и работающей при расходе воды 0,9 м3/с, мощность достигает 9,5 кВт, выработка за год — порядка 35000 кВт/ч. В такой мини-ГЭС КПД доходит до 74%.

Водоворотно-гравитационная ГЭС отличается от станций других видов особенно бережным отношением к биоресурсам реки: скорость вращения турбины всегда остаётся достаточно низкой, и для рыбы лопасти рабочего колеса турбины не представляют опасности.

К тому же лопасти воду не рассекают, а поворачиваются вместе с потоком. Ещё один экологический плюс этого проекта — хорошая аэрация воды и перемешивание в водовороте разного рода загрязнителей.

Всё это способствует более интенсивной жизнедеятельности микроорганизмов, которые естественным образом очищают воду.

Речные звёзды

В 2008 г. компания Bourne Energy (Калифорния) разработала генераторные установки RiverStar («Речная звезда») для устройства мини-ГЭС на небольших реках. RiverStar представляет собой капсулу с поплавком для фиксации ротора на требуемой глубине, ориентируемым глубинным стабилизатором, крыльчаткой, генератором с блоком преобразователя напряжения.

Модули RiverStar удерживаются на месте стальными тросами

Модули RiverStar удерживаются на месте стальными тросами, натянутыми под водой поперёк течения реки, поэтому они не нуждаются в установке плотин, якорей и проведении каких-либо дополнительных работ на речном дне.

Параллельно тросам на берег выходят кабели, по которым, собственно, и идёт электроэнергия. Мощность одного модуля при скорости течения реки 7,4 км/ч составляет 50 кВт.

Генераторные установки RiverStar можно устанавливать блоками по несколько штук для увеличения мощности.

Мини-ГАЭС

В середине прошлого века британский изобретатель Элвин Смит предложил оригинальную конструкцию волновой малой гидроаккумулирующей электростанции. В основе установки — два поплавка, способных двигаться друг относительно друга.

Верхний раскачивается волнами, нижний соединён с морским дном с помощью цепи и якоря.

Предусмотрена автоматическая подстройка высоты положения верхнего поплавка в зависимости от уровня моря, который постоянно меняется из-за приливов и отливов, с помощью телескопической трубы, раздвигающейся и складывающейся под действием сил Архимеда и тяжести.

Между поплавками находится «насосная станция» (цилиндр с поршнем двойного действия, который качает воду при движении вниз и вверх). Она подаёт воду на сушу, в горы. В горах устраивают бассейн, в котором вода накапливается и в часы пиковых нагрузок выпускается обратно в море, по пути вращая водяную турбину.

Установка способна поднимать морскую воду на высоту до 200 м и вырабатывать мощность 0,25 МВт.

* * *

Природные условия в России весьма благоприятны для развития малой гидроэнергетики, а при современном уровне доступности информации и всевозможных материалов умельцы могут сделать мини-ГЭС даже своими руками, была бы подходящая река или ручей. Поэтому у малых ГЭС как альтернативных источников энергии, есть все шансы вновь широко распространиться в нашей стране.

Источник: Энерговектор

Мини- и микро-ГЭС — популярные конструкции и применение

  • Если взглянуть на промышленную энергетику сегодняшнего дня, если обратить внимание на динамику разработок в сфере альтернативной энергетики, то можно легко заметить, что здесь давно сформировался такой стереотип: равнинная река в принципе не пригодна для получения мощности на гидроэлектростанции.
  • Крупные ГЭС возводятся с применением оборудования, изначально разработанного для получения больших электрических мощностей на крутых перепадах или на горных реках, там где скорость потока воды доходит хотя бы до 2 м/с.
  • Генераторные установки для таких ГЭС не приспособлены для работы на относительно слабом течении равнинной реки. Для этих целей (для любых рек) продаются разве что походные игрушки для зарядки сотовых телефонов на пару ватт…

Конечно, возводить плотину для последующего строительства на ней промышленной ГЭС — мероприятие дорогое, окупаться будет долго, и вообще нет смысла налаживать традиционную ГЭС на равнинной реке. Если даже на равнинную реку установить обычный движитель, то его эффективность не позволит на малых оборотах получить нормальной мощности, тем более с учетом потерь на редукторе.

Наконец, те формулы, которые говорят что скорость воды менее 2 м/с не подходит для гидроэнергетики, просто не предназначены для применения к малым течениям. Здесь нужны иные формулы и иные подходы к генерации, чем на крупных промышленных ГЭС.

Представьте себе, как гидроустановки малой мощности могли бы обеспечивать электричеством труднодоступные районы нашей страны, и небольшие затраты на их возведение довольно быстро бы окупались. На небольших водотоках можно уже сейчас возводить мини- и микро-ГЭС. Как бы это повлияло на развитие альтернативной энергетики, потенциал которой в России реализован всего на долю процента?

Мини-ГЭС хватит для электроснабжения дачного поселка, усадьбы, хутора, фермерского хозяйства, расположенного недалеко от любой реки, куда однако невозможно проложить нормальную электрическую сеть.

Даже на объектах водоснабжения и водоотведения можно в принципе устраивать микро-ГЭС. Мало того, конструкции небольших ГЭС уже давно зреют и созревают в умах неравнодушных, творчески настроенных людей.

Давайте рассмотрим наиболее популярные конструкции самодельных мини-ГЭС. Итак, небольшие малогабаритные ГЭС — это всегда проточные ГЭС мощностью от нескольких сотен Вт до нескольких десятков кВт, использующие энергию свободного течения реки, роторы которых могут быть устроены по разному. Есть три основных типа роторов для мини ГЭС: водяное колесо, гирлянда и пропеллер.

Водяное колесо устанавливают перпендикулярно реке, погружая его менее чем на половину лопатками в воду. Течение вращает колесо, врезаясь в лопатки, а колесо вращает ротор генератора (через карданную, зубчатую или иную передачу). Это наиболее простой и универсальный вид турбины для мини-ГЭС: они наименее громоздки, занимают наименьшую площадь, и обладают наибольшим КПД.

Такие колеса могут быть установлены на реке или даже на небольшом горном ручье. В самодельных моделях часто можно встретить в качестве генератора переделанный на постоянные магниты автомобильный генератор. Мощность колесных моделей достигает единиц киловатт.

Гирляндная ГЭС — это набор длинных тросов с закрепленными на них, один за другим, цилиндрическими роторами, которые переброшены с одного берега реки — на другой. Погруженные в воду роторы вращаются течением реки, приводя во вращение тросы, а тросы вращают ротор генератора через зубчатые передачи.

Такая конструкция достаточно материалоемка и в некотором роде опасна, поскольку перегораживает собой русло реки подобно плотине.

Разновидность данной идеи — роторы с лопатками на вращающейся оси, которая через кардан передает вращение на синхронный генератор. Генераторы такого рода изготавливают на единицы киловатт.

Пропеллер — похож на опрокинутый под воду, установленный в трубу, ветряк с тоненькими лопастями. Толщина лопастей и диаметр трубы зависят от скорости течения в месте монтажа ротора. Вращение здесь передается через редуктор на ротор генератора.

Этот тип турбины оказывается наиболее специализированным, поскольку турбина изготавливается строго под условия течения в месте монтажа, чтобы скорость воды в трубе увеличивалась.

Генераторы данного типа не только изготавливают самостоятельно любители, выпускаются они и промышленностью: одна японская фирма производит такие генераторы мощностью по 250 ватт.

Немаловажно энергетическое оборудование, устанавливаемое на мини-ГЭС. Оно должно работать согласованно с напором и скоростью течения, иметь стабилизацию и электронику с возможностью перехода на ручное управление, оснащенную всеми типами защит, в том числе от аварийных ситуаций.

Мини ГЭС

Мини ГЭС – это малая гидроэлектростанция, которая вырабатывает не большое количество электрической энергии.

Принцип работы мини ГЭС

Принцип работы малых гидроэлектростанций ничем не отличается от принципа работы станций большой мощности.

Вода водного образования, реки, озера, водохранилища, под действием напора, создаваемого своей массой, перемещается в заданном направлении и поступает на лопасти гидравлической турбины.

Турбина передает свое вращательное движение на вращательное движение генератора, который вырабатывает электрический ток.

Напор воды создается путем строительства плотины или естественным течением воды, либо обоими способами одновременно.

Классификация устройств

Малыми считаются гидроэлектростанции вырабатывающие мощность до 5,0 МВт.
Существующие малые гидроэлектростанции классифицируются по:

1. Принципу действия

  • Использование «водяного колеса» – в этом случае приемное колесо помещается в водную среду параллельно поверхности воды, при этом погружается лишь частично. Водные массы осуществляя давление на лопасти колеса, приводят его во вращательное движение, которое передается на вращательное движение генератора.
  • Гирляндная конструкция – в данной варианте устройства с противоположных берегов прокладывается трос, на который жестко крепятся роторы. Массы воды поступательно перемещаясь вращают роторы. Вращательное движение роторов передается на трос, который, в свою очередь, вращаясь передает свое вращательное движение на вращательное движение генератора. Генератор устанавливается на берегу.
  • С ротором Дарье – основой работы устройств данного типа является разность давлений на лопастях ротора. Разность давлений создается путем обтекания водой сложных поверхностей ротора.
  • С пропеллером – принцип действия аналогичен работе ветрового генератора, с разницей в том, что в случае мини ГЭС лопасти помещены в водную среду.

2. Возможности применения

  • Промышленное использование (180 кВт и выше) — используются для электроснабжения предприятий или реализации потребителям.
  • Коммерческое использование (до 180 кВт) — используют для электроснабжения мало энергоемких предприятий и группы домов.
  • Бытовое использование (до 15 кВт) — используются для электроснабжения индивидуальных домов и малых объектов.

3. По конструкции турбины

  • Осевые – в агрегатах этой конструкции вода движется вдоль оси турбины и попадет на лопасти, которые приходят во вращение.
  • Радиально-осевые – в этой конструкции вода изначально движется радиально по отношению оси турбины, а затем в соответствии с осью ее вращения.
  • Ковшовые — вода поступает на поверхность ковша (лопатки) через сопла, благодаря которым скорость воды увеличивается, она ударяется о лопатку турбины, турбина вращается, в работу вступает следующая лопатка и процесс продолжается
  • Поворотно-лопастные — лопасти поворачиваются вокруг своей оси одновременно с вращением турбины.

4. По условиям монтажа

  • Высоконапорные, при перепаде более 60 метров;
  • Средненапорные, с перепадом от 25 до 60 метров;
  • Низконапорные, с перепадом до 25 метров.

Плюсы и минусы устройства

К преимуществам использования можно отнести:

  • Экологическую безопасность установок для окружающей среды;
  • Неисчерпаемый источник энергии;
  • Низкая стоимость вырабатываемой энергии;
  • Автономность работы установок;
  • Надежность установок;
  • Продолжительный срок эксплуатации.

К минусам использования относятся:

  • Потенциальная опасность для обитателей водных объектов;
  • Ограниченная возможность условий монтажа установки.

Производители установок и оборудования

Производством оборудования для мини ГЭС занимается ограниченное количество предприятий как в нашей стране, так и за рубежом. Объясняется это ограниченностью применения малых гидроэлектростанций обусловленную малым наличием необходимых водных объектов, а также тенденциями развития энергетики в разных странах.

Из зарубежных фирм успешно работающих в этой области бизнеса это

  • «CINK Hydro-Energy» Республика Чехия – выполняет весь комплекс работ от проектирования и поставки оборудования, до монтажа и запуска установок в работу.
  • «Micro hydro power» Китай – производит и реализует комплекты оборудования для небольших установок бытового применения.
  • Инженерно-техническая фирма ОсОО «Гидропоника» г. Бишкек, Кыргызстан. Компания производит и реализует гидрогенераторы для малых ГЭС.

В России на этом рынке работают

  • ООО «АЭнерджи» г. Москва. Компания занимается поддержкой развития альтернативных источников энергии. В области малой гидроэнергетики компания предлагает весь спектр услуг от проектирования до сервисного обслуживания сданных установок.
  • Межотраслевое научно-техническое объединение «МНТО ИНСЭТ» г. Санкт-Петербург. Фирма занимается проектированием и разработкой оборудования для мини ГЭС, изготовлением и монтажом своей продукции. В линейке выпускаемой продукции имеется:
    • Мини ГЭС с пропеллерным рабочим колесом мощность от 5,0 до 100 кВт;
    • Мини ГЭС с диагональным рабочим колесом, мощностью 20,0 кВт;
    • Мини ГЭС с ковшовым рабочим колесом мощностью до 180 кВт;
    • Гидроагрегаты для малых ГЭС.
  • Компания «НПО Инверсия» г. Екатеринбург. Фирма производит оборудование и комплекты мини ГЭС мощностью до 10 кВт.

Мини ГЭС своими руками

Для того чтобы изготовить своими руками необходима смекалка, умение работать руками и водный объект,да кое-что по мелочам, как то автомобильный генератор, колесо от любого средства передвижения и передаточный механизм (шкивы, шестерни, зубчатая передача).

В начале необходимо изготовить водяное колесо. Для этого берется колесо от велосипеда, мотоцикла или автомобиля.

По диаметру колеса крепятся лопасти, для это можно использовать любой материал, лишь бы он был прочным и не гнулся – железо, фанера, твердый пластик, эбонит и т.д.

Крепить лучше всего болтовым соединением, чтобы была возможность заменить поврежденные в процесс работы лопасти. Лопасти располагаются на равном расстоянии друг от друга.

Изготавливается каркас, на котором закрепляется колесо. В местах крепления к каркасу необходимо предусмотреть установку подшипников в которые вставляется ось вращения колеса. На один конец оси монтируется большой шкив или большая по размеру звездочка. На ось генератора насаживается малый шкив или меньшая звездочка.

Вариант самодельной мини ГЭС с вертикальной установкой колеса

Колесо помещается в воду, это может быть вертикальная установка в плоскости перпендикулярной поверхности воды, либо горизонтальная – когда колесо погружается в воду целиком. Во втором случае необходимо учесть, что колесо должно быть погружено в воду не более чем на 2/3 толщины диска.
Шкивы между собой соединяются посредством ремня, а звездочки посредством цепи.

Система готова к работе.

Мини-ГЭС. Малые гидроэлектростанции (МГЭС). Классификация, типы, достоинства и недостатки мини ГЭС



Классификация, типы, достоинства и недостатки мини ГЭС

В последнее время, из-за роста тарифов на электроэнергию, все более актуальными становятся возобновляемые источники практически бесплатной энергии.

Малая гидроэлектростанция или малая ГЭС (МГЭС) — гидроэлектростанция, вырабатывающая сравнительно малое количество электроэнергии и основано на гидроэнергетических установках мощностью от 1 до 3000 кВт. Общепринятого для всех стран понятия малой гидроэлектростанции нет, в качестве основной характеристики таких ГЭС принята их установленная мощность.

Установки для малой гидроэнергетики классифицируют по мощности на:

  • оборудование для мини гидроэлектростанции мощностью до 100 кВт;
  • оборудование для микро гидроэлектростанций мощностью до 1000 кВт.

Из известной классической триады: солнечные батареи, ветрогенераторы, гидрогенераторы (ГЭС), последние наиболее сложные. Они, во-первых, работают в агрессивных условиях, а во-вторых, имеют максимальную наработку за равный промежуток времени.

Наиболее просто делать бесплотинные ГЭС, т.к. сооружение плотины достаточно сложное и дорогое дело и часто требует согласования с местными властями или, по крайней мере, с соседями. Бесплотинные мини ГЭС называют проточными. Существует четыре основных варианта таких устройств.

Типы мини ГЭС

Водяное колесо — это колесо с лопастями, установленное перпендикулярно поверхности воды. Колесо погружено в поток меньше чем наполовину. Вода давит на лопасти и вращает колесо. Существуют также колеса-турбины со специальными лопатками, оптимизированными под струю жидкости. Но это достаточно сложные конструкции скорее заводского, чем самодельного изготовления.

Гирляндная мини-ГЭС — представляет собой трос, с жестко закрепленными на нем роторами. Трос перекинут с одного берега реки на другой. Роторы как бусы нанизаны на трос и полностью погружены в воду. Поток воды вращает роторы, роторы вращают трос. Один конец троса соединен с подшипником, второй с валом генератора.

Ротор Дарье — это вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета.

Пропеллер — это подводный «ветряк» с вертикальным ротором. В отличие от воздушного, подводный пропеллер имеет лопасти минимальной ширины. Для воды достаточно ширины лопасти всего в 2 см.

При такой ширине будет минимальное сопротивление и максимальная скорость вращения. Такая ширина лопастей выбиралась для скорости потока 0.8-2 метра в секунду.

При больших скоростях, возможно, оптимальны другие размеры.

Достоинства и недостатки различных систем миниГЭС

Недостатки гирляндной МГЭС очевидны: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД. Гирляндная ГЭС – это небольшая плотина.

Ротор Дарье сложен в изготовлении, в начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач.

Такой ротор будет вращаться при любом изменении направления потока.

Таким образом, с точки зрения простоты изготовления и получения максимального КПД с минимальными затратами, необходимо выбрать конструкцию типа водяное колесо или пропеллер.

Конструкция малой гидростанции

  • Конструкция малой ГЭС базируется на гидроагрегате, который включает в себя энергоблок, водозаборное устройство и элементы управления. В зависимости от того, какие гидроресурсы используются малыми гидростанциями, их делят на несколько категорий:
  • — русловые или приплотинные станции с небольшими водохранилищами;
  • — стационарные мини ГЭС, использующие энергию свободного течения рек;
  • — МГЭС, использующие существующие перепады уровней воды на различных объектах водного хозяйства;
  • — мобильные мини ГЭС в контейнерах, с применением в качестве напорной деривации пластиковых труб или гибких армированных рукавов.

Разновидности гидроагрегатов для малых гидроэлектростанций

  1. Основой для малой гидростанции является гидроагрегат, который, в свою очередь, базируется на турбине того или иного вида. Существуют гидроагрегаты с:
  2. — Осевыми турбинами;
  3. — Радиально-осевыми турбинами;
  4. — Ковшовыми турбинами;
  5. — Поворотно-лопастными турбинами.
  6. МГЭС классифицируются и в зависимости максимального использования напора воды на:
  7. — высоконапорные — более 60 м;
  8. — средненапорные — от 25 м;
  9. — низконапорные — от 3 до 25 м.

От того, какой напор воды использует микрогидроэлектростанция, различаются и виды применяемых в оборудовании турбин. Ковшовые и радиально-осевые турбины разработаны для высоконапорных ГЭС. Поворотно-лопастные и радиально-осевые турбины применяются на средненапорных станциях.

На низконапорных малых гидростанциях(МГЭС) устанавливают в основном поворотно-лопастные турбины в железобетонных камерах.

Что касается принципа работы турбины мини ГЭС, то он во всех конструкциях практически идентичен: вода под напором поступает на лопасти турбины, которые начинают вращаться.

Энергия вращения передается на гидрогенератор, который отвечает за выработку электроэнергии. Турбины для объектов подбираются в соответствии с некоторыми техническими характеристиками, среди которых главной остается напор воды.

Кроме того, турбины выбираются в зависимости от вида камеры которая идет в комплекте — стальной или железобетонной.

Мощность миниГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы.

  • При выборе мини ГЭС стоит ориентироваться на такое энергетическое оборудование, которое было бы адаптировано под конкретные нужды объекта и отвечало таким критериям, как:
  • — наличие надежных и удобных в эксплуатации средств управления и контроля над работой оборудования;
  • — управление оборудованием в автоматическом режиме с возможностью перехода при необходимости на ручное управление;
  • — генератор и турбина гидроагрегата должны иметь надежную защиту от вероятных аварийных ситуаций;
  • — площади и объемы строительных работ для установки малых ГЭС должны быть минимальными.

Выгоды использования мини-ГЭС:

Гидроэлектростанции малой мощности обладают целым рядом преимуществ, которые делают это оборудование все более популярным. Прежде всего, стоит отметить экологическую безопасность мини ГЭС – критерий, который становится все более важным в свете проблем защиты окружающей среды.

Малые гидроэлектростанции не возникает вредного влияния ни на свойства, ни на качество воды. Акватории, где устанавливается гидроэлектростанция малой мощности, можно использовать как для рыбохозяйственной деятельности, так и в качестве источника водоснабжения населенных пунктов. Кроме того, для работы малых ГЭС нет необходимости в наличии больших водоемов.

Они могут функционировать, используя энергию течения небольших рек и даже ручьев.

Что касается экономической эффективности, то и здесь у микро и мини гидроэлектростанций есть немало преимуществ. Станции, разработанные с учетом современных технологий, отличаются простой в управлении, они полностью автоматизированы.

Таким образом, оборудование не требуют присутствия человека. Специалисты отмечают, что и качество тока, вырабатываемого малыми ГЭС, соответствует требованиям ГОСТа как по напряжению, так и по частоте.

При этом, мини ГЭС могут действовать как автономно, так и в составе электросети.

Говоря о малых гидроэлектростанциях, стоит отметить и такое их преимущество, как полный ресурс их работы, который составляет не менее 40 лет. Ну а главное — объекты малой энергетики не требуют организации больших водохранилищ с соответствующим затоплением территории и колоссальным материальным ущербом.

Одним из важнейших экономических факторов является вечная возобновляемость гидротехнических ресурсов.

Если подсчитать буквальную выгоду от применения малых ГЭС, то выяснится, что электроэнергия вырабатываемая ими практически в 4 раза дешевле электроэнергии, которую потребитель получает от теплоэлектростанций.

Именно по этой причине сегодня ГЭС все чаще находят применение для электроснабжения электроёмких производств.

Не забудем и о том, что малые ГЭС не требуют приобретения какого-либо топлива. К тому же они отличаются сравнительно простой технологией выработки электроэнергии, в результате чего затраты труда на единицу мощности на ГЭС почти в 10 раз меньше, чем на ТЭЦ.



Мини/микро ГЭС

Мини/микро ГЭС – это один из перспективных путей развития альтернативной энергетики. В основу его заложено использование небольших природных водных потоков.

Это отличная альтернатива централизованному водо- и энергоснабжению в тех районах, где оно отсутствует совсем или испытывает постоянную нехватку.

Определение понятия мини/микро ГЭС зависит от показателя мощности:
— оборудование мощностью до 100 кВт;
— оборудование мощностью до 1000 кВт.

Гидрогенераторы имеют более технически сложную конструкции по сравнению с ветрогенераторами и гелиогенераторами. Работа их проходит в довольно агрессивной среде и наработка значительно больше за одинаковый временной интервал.

Существует четыре вида проточных Мини/микро ГЭС:
1.  Водяное колесо – представляет собой конструкцию, наполовину погруженную в воду и имеющую строение колеса с лопастями. Приводится оно в движение, когда вода попадает на лопасти и начинает его вращать. Есть более дорогие устройства этого вида, оснащенные турбиной.
2.

  Гирляндная мини/микро ГЭС – это конструкция, которая состоит из троса, который крепится на разных берегах водоема. Один конец троса соединен с подшипником, а второй – с валом генератора. На самом тросе установлены роторы. Вся конструкция напоминает гирлянду.

Роторы на тросе погружены в воду, а потоки воды вращают их, а те потом вращают трос, передавая вращение валу генератора. Вся эта конструкция является небольшой плотиной. Однако имеет не очень высокое КПД и скрывает некую опасность для окружающих наличием скрытых под водой составных частей конструкции.
3.

  Ротор Дарье – это сложное вертикальное устройство, использование его также трудоемко, как и в ветроэнергетике. В принцип его работы заложена разность давления, которая создается на лопастях. С этой целью лопасти ротора в выполнены сложной форме.

Одним из главных недостатков его есть то, что он довольно сложной конструкции и для начало его работы, ротор нужно принудительно запустить. Но использование привлекательно тем, что благодаря вертикальной оси сбор мощности не требует дополнительных передач и можно проводить напрямую. Также работа этой конструкции не зависит от направления потока воды.
4.

  Пропеллер – это своеобразный подводный вертикальный ротор с маленькими лопастями. Маленький размер лопастей оптимальный вариант чтобы значительно снизить сопротивление, и на порядок возросла скорость вращения.
У всех видов мини ГЭС электроэнергия производится по одному и тому же принципу.

Генератор начинает вырабатывать электроэнергию после того как приводится в действие передачей энергии вращения от турбины. А она приходит в движение когда лопасти начинают активизироваться под действием напора воды. Сама же мощность мини электростанции зависит от напора воды, которая воздействует на лопасти и расхода все той же воды, а также зависит напрямую от производительности непосредственно самих турбин и генераторов.

Мини/микро электростанции имеют много достоинств:
— они не безопасны для экологии;
— мини электростанции экономично выгодные, потому что просты в исполнении и практически полностью автоматизированы;
— для установки и эффективной работы электростанции не требуется наличие больших водоемов;
— их работа не нуждается в каком-либо топливе;

— и это самовозобновляемый источник энергии.

Попередня статтяПленка EVA

Архитектурная мастерская «Квадарт» — Index

Нетрадиционной энергетике последнее время уделяется пристальное внимание во всем мире.

Заинтересованность в использовании возобновляемых источников энергии — ветра, солнца, морского прилива и речной воды, — легко объяснима: нет нужды закупать дорогостоящее топливо, имеется возможность использовать небольшие станции для обеспечения электроэнергией труднодоступных районов. Последнее обстоятельство особенно важно для стран, в которых имеются малонаселенные районы или горные массивы, где прокладка электросетей экономически нецелесообразна.

Две трети территории России не подключено к энергосистеме. В России зоны децентрализованного энергоснабжения составляют более 70% территории страны.

До сих пор у нас можно встретить населенные пункты, в которых электричества не было никогда. Электрификация отдаленных и труднодоступных населенных селений — дело не такое уж и сложное.

Так, в любом уголке России найдется речка или ручей, где можно установить микроГЭС.

Малые и микроГЭС — объекты малой гидроэнергетики. Эта часть энергопроизводства занимается использованием энергии водных ресурсов и гидравлических систем с помощью гидроэнергетических установок малой мощности (от 1 до 3000 кВт).

Малая энергетика получила развитие в мире в последние десятилетия, в основном из-за стремления избежать экологического ущерба, наносимого водохранилищами крупных ГЭС, из-за возможности обеспечить энергоснабжение в труднодоступных и изолированных районах, а также, из-за небольших капитальных затрат при строительстве станций и быстрого возврата вложенных средств (в пределах 5 лет).

Конструкция малой ГЭС базируется на гидроагрегате, который включает в себя энергоблок, водозаборное устройство и элементы управления. В зависимости от того, какие гидроресурсы используются малыми гидростанциями, их делят на несколько категорий:

  • русловые или приплотинные станции с небольшими водохранилищами;
  • стационарные мини ГЭС, использующие энергию свободного течения рек;
  • ГЭС, использующие существующие перепады уровней воды на различных объектах водного хозяйства;
  • мобильные мини ГЭС в контейнерах, с применением в качестве напорной деривации пластиковых труб или гибких армированных рукавов.

Водяное колесо — это колесо с лопастями, установленное перпендикулярно поверхности воды. Колесо погружено в поток меньше чем наполовину. Вода давит на лопасти и вращает колесо. Существуют также колеса-турбины со специальными лопатками, оптимизированными под струю жидкости. Но это достаточно сложные конструкции скорее заводского, чем самодельного изготовления.

Гирляндная мини-ГЭС — представляет собой трос, с жестко закрепленными на нем роторами. Трос перекинут с одного берега реки на другой. Роторы как бусы нанизаны на трос и полностью погружены в воду. Поток воды вращает роторы, роторы вращают трос. Один конец троса соединен с подшипником, второй с валом генератора.

Ротор Дарье — это вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета.

Пропеллер — это подводный «ветряк» с вертикальным ротором. В отличие от воздушного, подводный пропеллер имеет лопасти минимальной ширины. Для воды достаточно ширины лопасти всего в 2 см.

При такой ширине будет минимальное сопротивление и максимальная скорость вращения. Такая ширина лопастей выбиралась для скорости потока 0.8-2 метра в секунду.

При больших скоростях, возможно, оптимальны другие размеры.

Недостатки гирляндной МГЭС очевидны: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД. Гирляндная ГЭС – это небольшая плотина.

Ротор Дарье сложен в изготовлении, в начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач.

Такой ротор будет вращаться при любом изменении направления потока.

Таким образом, с точки зрения простоты изготовления и получения максимального КПД с минимальными затратами, необходимо выбрать конструкцию типа водяное колесо или пропеллер.

Разновидности гидроагрегатов для малых гидроэлектростанций

Основой для малой гидростанции является гидроагрегат, который, в свою очередь, базируется на турбине того или иного вида. Существуют гидроагрегаты с:

  • Осевыми турбинами;
  • Радиально-осевыми турбинами;
  • Ковшовыми турбинами;
  • Поворотно-лопастными турбинами.

ГЭС классифицируются и в зависимости максимального использования напора воды на:

  • высоконапорные — более 60 м;
  • средненапорные — от 25 м;
  • низконапорные — от 3 до 25 м.

От того, какой напор воды использует микрогидроэлектростанция, различаются и виды применяемых в оборудовании турбин. Ковшовые и радиально-осевые турбины разработаны для высоконапорных ГЭС. Поворотно-лопастные и радиально-осевые турбины применяются на средненапорных станциях. На низконапорных ГЭС устанавливают в основном поворотно-лопастные турбины в железобетонных камерах.

Что касается принципа работы турбины, то он во всех конструкциях практически идентичен: вода под напором поступает на лопасти турбины, которые начинают вращаться.

Энергия вращения передается на гидрогенератор, который отвечает за выработку электроэнергии. Турбины для объектов подбираются в соответствии с некоторыми техническими характеристиками, среди которых главной остается напор воды.

Кроме того, турбины выбираются в зависимости от вида камеры которая идет в комплекте — стальной или железобетонной.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов.

Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность.

К примеру, различают годичный, месячный, недельный или суточный циклы работы. При выборе мини ГЭС стоит ориентироваться на такое энергетическое оборудование, которое было бы адаптировано под конкретные нужды объекта и отвечало таким критериям, как:

  • наличие надежных и удобных в эксплуатации средств управления и контроля над работой оборудования;
  • управление оборудованием в автоматическом режиме с возможностью перехода при необходимости на ручное управление;
  • генератор и турбина гидроагрегата должны иметь надежную защиту от вероятных аварийных ситуаций;
  • площади и объемы строительных работ для установки малых ГЭС должны быть минимальными.

Описание работы гидроэлектростанций

Источником гидроэнергии является преобразованная энергия Солнца в виде запасенной потенциальной энергии воды, которая затем преобразуется в механическую работу и электроэнергию.

Действительно под воздействием солнечного излучения вода испаряется с поверхности озер, рек, морей и океанов. Пар поднимается в верхние слои атмосферы, образуя облака; затем он, конденсируясь, выпадает в виде дождя, пополняя запасы воды в водоемах.

Преобразование потенциальной энергии воды в электрическую происходит на гидроэлектростанции. Поддержание постоянного напора осуществляется с помощью платины, которая образует водохранилище, Служащее аккумулятором гидроэнергии.

В связи с этим при строительстве ГЭС предъявляются определенные требования к рельефу местности, который должен позволить организовать водохранилище и создать требуемый напор за счет плотины. Все это связано со значительными затратами, и стоимость строительных работ может превышать стоимость оборудования ГЭС.

Вместе с тем удельная стоимость электроэнергии, генерируемой ГЭС, является самой низкой по сравнению с себестоимостью энергии, производимой другими источниками. Как правило, срок окупаемости малых ГЭС не превышает 10 лет.

Рис. 1. Машинная станция с гидротурбиной

Для преобразования энергии воды в механическую работу используются гидротурбины (рис.1). Различают активные и реактивные турбины.

В активной турбине кинетическая энергия потока преобразуется в механическую. Дополнительные устройства, обеспечивающие работу турбины, — водовод и сопло.

Из сопла выходит струя, обладающая кинетической энергией, которая направляется на лопасти турбины, находящейся в воздухе.

Сила, действующая со стороны струи на лопасти, приводит во вращение колесо турбины, с валом которого непосредственно или через привод сопряжен электрогенератор. КПД реальных турбин колеблется от 50 до 90 %. В гидротурбинах малой мощности КПД ниже.

Максимальное значение КПД, равно 100% . Оно может быть достигнуто, если струя после взаимодействия с лопатками будет двигаться вертикально вниз только под действием силы тяжести.

КПД активной гидротурбины может быть повышен за счет ограниченного увеличения числа сопел, так как при большом их количестве будет сказываться взаимное влияние струй.

В реактивной гидротурбине рабочее колесо полностью погружено в поток, который постоянно воздействует на лопасти турбины.

В наиболее распространенной турбине Френсиса вращение колеса осуществляется за счет разности давления потока на входе и на выходе вода поступает в рабочее колесо радиально. Зазор между рабочим колесом и камерой – переменный.

После взаимодействия потока с колесом он разворачивается на 90°. Переменный зазор и поворот потока повышает эффективность турбины.

Выгоды использования мини-ГЭС

Гидроэлектростанции малой мощности обладают целым рядом преимуществ, которые делают это оборудование все более популярным. Прежде всего, стоит отметить экологическую безопасность мини ГЭС – критерий, который становится все более важным в свете проблем защиты окружающей среды.

Малые гидроэлектростанции не возникает вредного влияния ни на свойства, ни на качество воды. Акватории, где устанавливается гидроэлектростанция малой мощности, можно использовать как для рыбохозяйственной деятельности, так и в качестве источника водоснабжения населенных пунктов. Кроме того, для работы малых ГЭС нет необходимости в наличии больших водоемов.

Они могут функционировать, используя энергию течения небольших рек и даже ручьев.

Что касается экономической эффективности, то и здесь у микро и мини гидроэлектростанций есть немало преимуществ. Станции, разработанные с учетом современных технологий, отличаются простой в управлении, они полностью автоматизированы.

Таким образом, оборудование не требуют присутствия человека. Специалисты отмечают, что и качество тока, вырабатываемого малыми ГЭС, соответствует требованиям ГОСТа как по напряжению, так и по частоте.

При этом, мини ГЭС могут действовать как автономно, так и в составе электросети.

Говоря о малых гидроэлектростанциях, стоит отметить и такое их преимущество, как полный ресурс их работы, который составляет не менее 40 лет. Ну а главное — объекты малой энергетики не требуют организации больших водохранилищ с соответствующим затоплением территории и колоссальным материальным ущербом.

Одним из важнейших экономических факторов является вечная возобновляемость гидротехнических ресурсов.

Если подсчитать буквальную выгоду от применения малых ГЭС, то выяснится, что электроэнергия вырабатываемая ими практически в 4 раза дешевле электроэнергии, которую потребитель получает от теплоэлектростанций.

Именно по этой причине сегодня ГЭС все чаще находят применение для электроснабжения электроёмких производств.

Не забудем и о том, что малые ГЭС не требуют приобретения какого-либо топлива. К тому же они отличаются сравнительно простой технологией выработки электроэнергии, в результате чего затраты труда на единицу мощности на ГЭС почти в 10 раз меньше, чем на ТЭЦ.

Выводы о целесообразности применения малых ГЭС

Развитие малой гидроэнергетики в регионах может обеспечить:

  • создание собственных региональных генерирующих мощностей и снижение дефицита электроэнергии в регионе;
  • надежное электроснабжение качественной электроэнергией населенных пунктов в удаленных районах и на концевых участках магистральных линий электропередачи;
  • достижение экономической и социальной стабильности в населенных пунктах, которые до настоящего времени не подключены к единой энергетической системе;
  • снижение дотационности регионов, связанной с закупкой и завозом топлива в труднодоступные районы.

Природа дает нам самый неприхотливый способ добычи энергии, но мы им почти не пользуемся. Несмотря на все преимущества развития в России малой гидроэнергетики в настоящее время нет. Главной проблемой для развития малых ГЭС являются бюрократические и юридические преграды.

Так как для надежного обеспечения какого-либо населенного пункта электроэнергией необходимо подключение ГЭС в общую электрическую систему, т.е.

в ночное время когда разбор электрической энергии минимален малая ГЭС должна отдавать электроэнергию в сеть, а в дневное время, когда нагрузка возрастает многократно недостаток электроэнергии должен компенсироваться из общей сети. Если построить ГЭС на полную максимальную нагрузку, то большую часть суток она будет работать с минимальной загрузкой, т.е.

вложения в постройку ГЭС будут не эффективны и окупаться они будут в разы дольше. Решить вопрос подключения малой ГЭС в общую сеть практически не реально, т.к. имея свою ГЭС вы становитесь поставщиком электроэнергии в сбытовую компанию со всеми вытекающими из этого техническими и юридическими проблемами.

Второй основной проблемой при строительстве малой ГЭС является использование водоемов, т.е. необходимо получить согласования в различных инстанциях связанные с природоохранной, что для частных лиц или небольших организаций не обладающих административным ресурсом задача длительная и крайне сложная.

Солнечная электростанция на дом площадью 200 м² своими руками — Техника на vc.ru

Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не два-три часа в сутки, пока работает генератор, а постоянно.

84 046 просмотров

Но это всё как-то далеко от нашей жизни, поэтому я решил на своём примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома.

Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв, может посмотреть ролик. Там я постарался рассказать то же самое, но будет видно, как я всё это сам собираю.

Исходные данные: частный дом площадью около 200 м² подключён к электросетям. Трёхфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее.

Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение шесть дней подряд на период от двух до восьми часов.

Что хочется получить: забыть о перебоях электроэнергии и пользоваться электричеством, невзирая ни на что.

Какие могут быть бонусы: максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети. Как бонус — после принятия закона о продаже частными лицами электроэнергии в сеть начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.

С чего начать

Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому. Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку.

Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги.

Я решил совместить эти два способа. Отчасти потому, что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор.

На фото пример «освоения» денег на строительстве солнечной электростанции. Обратите внимание, солнечные панели установлены за деревом — так свет на них не попадает, и они просто не работают.

Типы солнечных электростанций

Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности.

То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моём доме все приборы постоянно работали, без оглядки на электросети.

Теперь расскажу про типы солнечных электростанций для частного дома. По большому счёту, их всего три, но бывают вариации. Расположу по росту стоимости каждой системы.

Сетевая солнечная электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора. Электричество от солнечных панелей напрямую преобразуется в 220 В или 380 В в доме и потребляется домашними энергосистемами.

Но есть существенный недостаток: для работы ССЭ необходима опорная сеть. В случае отключения внешней электросети солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества.

Кроме того, со сложившейся инфраструктурой электросети работа сетевого инвертора не очень выгодна. Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счётчики считают энергию «по модулю», то есть отданную в сеть энергию счётчик посчитает как потреблённую, и за неё ещё придётся заплатить.

Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.

Гибридная солнечная электростанция — этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанций. Состоит из четырёх элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор.

Основа всего — гибридный инвертор, который способен в потребляемую от внешней сети энергию подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритизации потребляемой энергии.

В идеале дом должен потреблять сначала энергию от солнечных панелей и только при её недостатке — добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасённой в аккумуляторах.

Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.

Автономная солнечная электростанция — этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше четырёх стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.

Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена гидроэлектростанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен — в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ.

Такая электростанция легко трансформируется в гибридную при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного — это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети.

При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.

Что такое солнечный контроллер

Во всех типах солнечных электростанций присутствует солнечный контроллер. Даже в сетевой солнечной электростанции он есть, просто входит в состав сетевого инвертора. Да и многие гибридные инверторы выпускаются с солнечными контроллерами на борту.

Что же это такое и для чего он нужен? Буду говорить о гибридной и автономной солнечных электростанциях, поскольку это как раз мой случай, а с устройством сетевого инвертора могу ознакомить детальнее в комментариях, если будут вопросы.

Солнечный контроллер — это устройство, которое полученную от солнечных панелей энергию преобразует в перевариваемую инвертором энергию. Например, солнечные панели изготавливаются с напряжением кратно 12 В. И АКБ изготавливаются кратно 12 В, так уж повелось.

Простые системы на 1–2 кВт мощности работают от 12 В. Производительные системы на 2–3 кВт уже функционируют от 24 В, а мощные системы на 4–5 кВт и более работают на 48 В. Сейчас я буду рассматривать только «домашние» системы, потому что знаю, что есть инверторы, работающие на напряжениях в несколько сотен вольт, но для дома это уже опасно.

Итак, допустим, у нас есть система на 48 В и солнечные панели на 36 В (панель собрана кратно 3 х 12 В). Как получить искомые 48 В для работы инвертора? Конечно, к инвертору подключаются АКБ на 48 В, а к этим аккумуляторам подключается солнечный контроллер с одной стороны и солнечные панели с другой.

Солнечные панели собираются на заведомо большее напряжение, чтобы суметь зарядить АКБ. Солнечный контроллер, получая заведомо большее напряжение с солнечных панелей, трансформирует это напряжение до нужной величины и передаёт в АКБ. Это упрощённо.

Есть контроллеры, которые могут со 150–200 В от солнечных панелей понижать до 12 В аккумуляторов, но тут протекают очень большие токи, и контроллер работает с худшим КПД. Идеальный случай, когда напряжение с солнечных панелей вдвое больше напряжения на АКБ.

Солнечных контроллеров существует два типа: PWM (ШИМ — широтно-импульсная модуляция) и MPPT (Maximum Power Point Tracking — отслеживание точки максимальной мощности).

Принципиальная разница между ними в том, что ШИМ-контроллер может работать только со сборками панелей, не превышающими напряжения АКБ. MPPT-контроллер может работать с заметным превышением напряжения относительно АКБ. Кроме того, MPPT-контроллеры обладают заметно большим КПД, но и стоят дороже.

Как выбрать солнечные панели

На первый взгляд, все солнечные панели одинаковы: ячейки солнечных элементов соединены между собой шинками, а на задней стороне есть два провода: плюс и минус.

Но есть в этом деле масса нюансов. Солнечные панели бывают из разных элементов: аморфных, поликристаллических, монокристаллических. Я не буду агитировать за тот или иной тип элементов. Скажу просто, что сам предпочитаю монокристаллические солнечные панели.

Но и это не всё. Каждая солнечная батарея — это четырёхслойный пирог: стекло, прозрачная EVA-плёнка, солнечный элемент, герметизирующая плёнка. И вот тут каждый этап крайне важен.

Стекло подходит не любое, а со специальной фактурой, которое снижает отражение света и преломляет падающий под углом свет таким образом, чтобы элементы были максимально освещены, ведь от количества света зависит количество выработанной энергии.

От прозрачности EVA-плёнки зависит, сколько энергии попадёт на элемент и сколько энергии выработает панель. Если плёнка окажется бракованной и со временем помутнеет, то и выработка заметно упадёт.

Далее идут сами элементы, и они распределяются по типам в зависимости от качества: Grade A, B, C, D и далее. Конечно, лучше иметь элементы качества А и хорошую пайку, ведь при плохом контакте элемент будет греться и быстрее выйдет из строя.

Ну и финишная плёнка должна также быть качественной и обеспечивать хорошую герметизацию. В случае разгерметизации панелей очень быстро на элементы попадёт влага, начнётся коррозия, и панель выйдет из строя.

Как правильно выбрать солнечную панель? Основной производитель для нашей страны — это Китай, хотя на рынке присутствуют и Российские производители. Есть масса OEM-заводов, которые наклеят любой заказанный шильдик и отправят панели заказчику.

А есть заводы, которые обеспечивают полный цикл производства и способны проконтролировать качество продукции на всех этапах производства. Как узнать о таких заводах и брендах? Есть пара авторитетных лабораторий, которые проводят независимые испытания солнечных панелей и открыто публикуют результаты этих испытаний.

Перед покупкой вы можете вбить название и модель солнечной панели и узнать, насколько солнечная панель соответствует заявленным характеристикам. Первая лаборатория — это Калифорнийская энергетическая комиссия, а вторая лаборатория европейская — TUV.

Если производителя панелей в этих списках нет, то стоит задуматься о качестве. Это не значит, что панель плохая. Просто бренд может быть OEM, а завод-производитель выпускает и другие панели. В любом случае присутствие в списках этих лабораторий уже свидетельствует о том, что вы покупаете солнечные батареи не у производителя-однодневки.

Мой выбор солнечной электростанции

Перед покупкой стоит очертить круг задач, которые ставятся перед солнечной электростанцией, чтобы не заплатить за ненужное и не переплатить за неиспользуемое. Тут я перейду к практике, как и что делал я сам.

Цель и исходные: в деревне периодически отключают электроэнергию на период от получаса до восьми часов. Возможны отключения как раз в месяц, так и подряд несколько дней. Задача: обеспечить дом электроснабжением в круглосуточном режиме с некоторым ограничением потребления на период отключения внешней сети.

При этом основные системы безопасности и жизнеобеспечения должны функционировать, то есть: должны работать насосная станция, система видеонаблюдения и сигнализации, роутер, сервер и вся сетевая инфраструктура, освещение и компьютеры, холодильник.

Вторично: телевизоры, развлекательные системы, электроинструмент (газонокосилка, триммер, насос для полива огорода). Можно отключить: бойлер, электрочайник, утюг и прочие греющие и много потребляющие устройства, работа которых сиюминутно не важна. Чайник можно вскипятить на газовой плите, а погладить позже.

Как правило, солнечную электростанцию можно купить в одном месте. Продавцы солнечных панелей продают всё сопутствующее оборудование, поэтому я начал поиск, отталкиваясь от солнечных батарей.

Один из солидных брендов — TopRay Solar. О нём есть хорошие отзывы и реальный опыт эксплуатации в России, в частности, в Краснодарском крае, где знают толк в солнце. В РФ есть официальный дистрибьютор и дилеры по регионам, на вышеозначенных сайтах с лабораториями для проверки солнечных панелей этот бренд присутствует, и далеко не на последних местах, то есть можно брать.

Кроме того, фирма-продавец солнечных панелей TopRay также занимается собственным производством контроллеров и электроники для дорожной инфраструктуры: системы управления трафиком, светодиодные светофоры, мигающие знаки, солнечные контроллеры и прочее. Ради любопытства даже напросился на их производство — вполне технологично и даже есть девушки, которые знают, с какой стороны подходить к паяльнику. Бывает же!

Со своим списком хотелок я обратился к ним и попросил собрать мне пару комплектаций: подороже и подешевле для моего дома. Мне задали ряд уточняющих вопросов насчёт резервируемой мощности, наличия потребителей, максимальной и постоянной потребляемой мощности.

Последнее вообще оказалось для меня неожиданным: дом в режиме энергосбережения, когда работают только системы видеонаблюдения, охраны, связь с инетом и сетевая инфраструктура, потребляет 300–350 Вт. То есть даже если дома никто не пользуется электричеством, на внутренние нужды уходит до 215 кВт⋅ч в месяц.

Вот тут и задумаешься над проведением энергетического аудита. И начнёшь выключать из розеток зарядки, телевизоры и приставки, которые в режиме ожидания потребляют по чуть-чуть, а набегает прилично.

Не буду томить, остановился я на более дешёвой системе, так как зачастую до половины суммы за электростанцию может занимать стоимость аккумуляторов. Список оборудования получился следующим:

Дополнительно мне предложили купить профессиональную систему крепления солнечных панелей на крышу, но я, посмотрев фотографии, решил обойтись самодельными креплениями и тоже сэкономить.

Но я решил собирать систему сам и не жалел сил и времени, а монтажники работают с этими системами постоянно и гарантируют быстрый и качественный результат. Так что решайте сами: с заводскими креплениями работать гораздо приятнее и проще, а моё решение просто дешевле.

Что даёт солнечная электростанция

Этот комплект может выдать до 5 кВт мощности в автономном режиме — именно такой мощности я выбрал однофазный инвертор. Если докупить такой же инвертор и модуль сопряжения к нему, то можно нарастить мощность до 5 кВт + 5 кВт = 10 кВт на фазу. Или можно сделать трёхфазную систему, но я пока довольствуюсь и этим.

Инвертор высокочастотный, а потому достаточно лёгкий (около 15 кг) и занимает немного места — легко монтируется на стену. В него уже встроено 2 MPPT-контроллера мощностью 2,5 кВт каждый, то есть я могу добавить ещё столько же панелей без покупки дополнительного оборудования.

Солнечных панелей у меня на 2520 Вт по шильдику, но из-за неоптимального угла установки они выдают меньше — максимум я видел 2400 Вт. Оптимальный угол — это перпендикулярно солнцу, что в наших широтах составляет примерно 45 градусов к горизонту. У меня панели установлены под 30 градусов.

Сборка АКБ составляет 100 А⋅ч 48 В, то есть запасено 4,8 кВт⋅ч, но забирать энергию полностью крайне нежелательно, поскольку тогда их ресурс заметно сокращается. Желательно разряжать такие АКБ не более чем на 50%. Это литий-железофосфатные или литий-титанатные можно заряжать и разряжать глубоко и большими токами, а свинцово-кислотные, будь то жидкостные, гелевые или AGM, лучше не насиловать.

Итак, у меня есть половина ёмкости, а это 2,4 кВт⋅ч, то есть около восьми часов в полностью автономном режиме без солнца. Этого хватит на ночь работы всех систем, и ещё останется половина ёмкости АКБ на аварийный режим.

Утром уже встанет солнце и начнёт заряжать АКБ, параллельно обеспечивая дом энергией. То есть дом может функционировать и автономно в таком режиме, если снизить энергопотребление и погода будет хорошей. Для полной автономии можно было бы добавить ещё аккумуляторов и генератор. Ведь зимой солнца совсем мало, и без генератора будет не обойтись.

Начинаю собирать

Перед покупкой и сборкой необходимо просчитать всю систему, чтобы не ошибиться с расположением всех систем и прокладкой кабелей. От солнечных панелей до инвертора у меня около 25–30 метров, и я заранее проложил два гибких провода сечением 6 мм², так как по ним будет передаваться напряжение до 100 В и ток 25–30 А.

Такой запас по сечению был выбран, чтобы минимизировать потери на проводе и максимально доставить энергию до приборов. Сами солнечные панели я монтировал на самодельные направляющие из алюминиевых уголков и притягивал их самодельными же креплениями.

Чтобы панель не сползала вниз, на алюминиевом уголке напротив каждой панели смотрит вверх пара 30 мм болтов, они — своеобразный «крючок» для панелей. После монтажа их не видно, но они продолжают нести нагрузку.

Солнечные панели были собраны в три блока по три панели в каждом. В блоках панели подключаются последовательно — так напряжение удалось поднять до 115 В без нагрузки и снизить ток, а значит, можно выбрать провода меньшего сечения.

Блоки между собой подключены параллельно специальными коннекторами, обеспечивающими хороший контакт и герметичность соединения — называются MC4. Их же я использовал для подключения проводов к солнечному контроллеру, так как они обеспечивают надёжный контакт и быстрое замыкание и размыкание цепи для обслуживания.

Далее переходим к монтажу в доме. АКБ предварительно заряжены «умной» автомобильной зарядкой, чтобы выровнять напряжение, и подключены последовательно для обеспечения напряжения 48В. Далее они подключены к инвертору кабелем с сечением 25 мм².

Кстати, во время первого подключения АКБ к инвертору будет заметная искра на контактах. Если вы не спутали полярность, то всё нормально — в инверторе установлены довольно ёмкие конденсаторы, и они начинают заряжаться в момент подключения к аккумуляторам.

Максимальная мощность инвертора — 5000 Вт, а значит, ток, который может проходить по проводу от АКБ, будет составлять 100–110 А. Выбранного кабеля хватает для безопасной эксплуатации. После подключения АКБ можно подключать внешнюю сеть и нагрузку дома. К клеммным колодкам цепляются провода: фаза, ноль, заземление. Тут всё просто и наглядно, но если для вас починить розетку небезопасно, то подключение этой системы лучше доверить опытным электромонтажникам.

Ну и последним элементом подключаю солнечные панели: тут тоже надо быть внимательным и не перепутать полярность. При мощности в 2,5 кВт и неправильном подключении солнечный контроллер сгорит моментально. Да что там говорить: при такой мощности от солнечных панелей можно заниматься сваркой напрямую, без сварочного инвертора.

Здоровья это солнечным панелям не добавит, но мощь солнца действительно велика. Так как я дополнительно использую разъемы MC4, перепутать полярность просто невозможно при первоначальном правильном монтаже.

Всё подключено, один щелчок выключателя — и инвертор переходит в режим настройки: тут надо выставить тип АКБ, режим работы, зарядные токи и прочее. Для этого есть вполне понятная инструкция, и если вы можете справиться с настройкой роутера, то настройка инвертора тоже не будет очень сложной. Надо только знать параметры АКБ и правильно их настроить, чтобы они прослужили как можно дольше. После этого, хм. После этого наступает самое интересное.

Эксплуатация гибридной солнечной электростанции

После запуска солнечной электростанции я и моя семья пересмотрели многие привычки. Например, если раньше стирка или посудомоечная машина запускались после 23 часов, когда работал ночной тариф в электросетях, то теперь эти энергозатратные работы перенесены на день, потому что стиралка потребляет 500–2100 Вт во время работы, посудомоечная машина потребляет 400–2100 Вт.

Почему такой разброс? Потому что насосы и моторы потребляют немного, а вот нагреватели воды крайне прожорливы. Гладить оказалось тоже «выгоднее» и приятнее днём: в комнате гораздо светлее, а энергия солнца полностью покрывает потребление утюга.

На скриншоте продемонстрирован график выработки энергии солнечной электростанцией. Хорошо виден утренний пик, когда работала стиральная машинка и потребляла много энергии — эта энергия была выработана солнечными панелями.

Первые дни я по несколько раз подходил к инвертору, чтобы взглянуть на экран выработки и потребления. После поставил утилиту на домашний сервер, который в реальном времени отображает режим работы инвертора и все параметры электросети. К примеру, на скриншоте видно, что дом потребляет больше 2 кВт энергии (пункт AC output active power) и вся эта энергия заимствуется от солнечных батарей (пункт PV1 input power).

То есть инвертор, работая в гибридном режиме с приоритетом питания от солнца, полностью покрывает энергопотребление приборов за счёт солнца. Это ли не счастье? Каждый день в таблице появлялся новый столбик выработки энергии, и это не могло не радовать. А когда во всей деревне отключили электричество, я узнал об этом только по писку инвертора, который оповещал о работе в автономном режиме. Для всего дома это означало только одно: живём, как прежде, пока соседи ходят за водой с вёдрами.

Но есть в наличии дома солнечной электростанции и нюансы:

1. Я начал замечать, что птицы любят солнечные панели и, пролетая над ними, не могут сдержаться от счастья наличия технологичного оборудования в деревне. То есть иногда всё же солнечные панели надо мыть от следов и пыли. Думаю, что при установке под 45 градусов все следы просто смывались бы дождями.

Выработка от нескольких птичьих следов вообще не падает, но если затенена часть панели, то падение выработки становится ощутимым. Это я заметил, когда солнце пошло к закату и тень от крыши начала накрывать панели одну за другой. То есть лучше располагать панели вдали от всех конструкций, способных их затенить. Но даже вечером, при рассеянном свете, панели выдавали несколько сотен ватт.

2. При большой мощности солнечных панелей и подкачке от 700 Ватт и более инвертор включает вентиляторы активнее, и их становится слышно, если дверь в техническое помещение открыта. Тут либо закрывать дверь, либо крепить инвертор на стену через демпфирующие прокладки. В принципе ничего неожиданного: любая электроника греется при работе. Просто надо учитывать, что инвертор не стоит вешать там, где он может мешать звуком своей работы.

3. Фирменное приложение умеет отправлять оповещения по электронной почте или в SMS, если произошло какое-либо событие: включение и отключение внешней сети, разряд АКБ и подобное. Вот только приложение работает по незащищённому 25 порту SMTP, а все современные почтовые сервисы вроде Gmail или Mail.ru работают по защищённому порту 465. То есть сейчас фактически оповещения по почте не приходят, а хотелось бы.

Не сказать, что эти пункты как-то огорчают, ведь всегда надо стремиться к совершенству, но имеющаяся энергонезависимость того стоит.

Заключение

Полагаю, что это не последний мой рассказ о собственной солнечной электростанции. Опыт эксплуатации в различных режимах и в разное время года однозначно будет отличаться, но я точно знаю, что даже если в Новый год отключат электричество, в моём доме будет светло. По результатам эксплуатации установленной солнечной электростанции могу отметить, что оно того стоило.

Несколько отключений внешней сети прошли незаметно. О нескольких я узнал только по звонкам соседей с вопросом «У тебя тоже нет света?». Бегущие числа выработки электричества безмерно радуют, а возможность убрать от компа UPS, зная, что даже при отключении электроэнергии всё продолжит работать, — это приятно.

А когда у нас наконец-то примут закон о возможности продажи электроэнергии частными лицами в сеть, я первый подам заявку на эту функцию, ведь в инверторе достаточно изменить один пункт и всю выработанную, но не потребленную домом энергию, я буду продавать в сеть и получать за это деньги.

В общем, это оказалось довольно просто, эффективно и удобно. Готов ответить на ваши вопросы и выдержать натиск критиков, убеждающих всех, что в наших широтах солнечная электростанция — это игрушка.

Мини ГЭС и ее принцип работы, классификация, производители

Мини ГЭС – это малая гидроэлектростанция, которая вырабатывает не большое количество электрической энергии.

Принцип работы мини ГЭС

Содержание статьи

Принцип работы малых гидроэлектростанций ничем не отличается от принципа работы станций большой мощности. Вода водного образования, реки, озера, водохранилища, под действием напора, создаваемого своей массой, перемещается в заданном направлении и поступает на лопасти гидравлической турбины. Турбина передает свое вращательное движение на вращательное движение генератора, который вырабатывает электрический ток.

Напор воды создается путем строительства плотины или естественным течением воды, либо обоими способами одновременно.

Классификация устройств

Малыми считаются гидроэлектростанции вырабатывающие мощность до 5,0 МВт.
Существующие малые гидроэлектростанции классифицируются по:

1. Принципу действия

  • Использование «водяного колеса» – в этом случае приемное колесо помещается в водную среду параллельно поверхности воды, при этом погружается лишь частично. Водные массы осуществляя давление на лопасти колеса, приводят его во вращательное движение, которое передается на вращательное движение генератора.
  • Гирляндная конструкция – в данной варианте устройства с противоположных берегов прокладывается трос, на который жестко крепятся роторы. Массы воды поступательно перемещаясь вращают роторы. Вращательное движение роторов передается на трос, который, в свою очередь, вращаясь передает свое вращательное движение на вращательное движение генератора. Генератор устанавливается на берегу.
  • С ротором Дарье – основой работы устройств данного типа является разность давлений на лопастях ротора. Разность давлений создается путем обтекания водой сложных поверхностей ротора.
  • С пропеллером – принцип действия аналогичен работе ветрового генератора, с разницей в том, что в случае мини ГЭС лопасти помещены в водную среду.

2. Возможности применения

  • Промышленное использование (180 кВт и выше) — используются для электроснабжения предприятий или реализации потребителям.
  • Коммерческое использование (до 180 кВт) — используют для электроснабжения мало энергоемких предприятий и группы домов.
  • Бытовое использование (до 15 кВт) — используются для электроснабжения индивидуальных домов и малых объектов.

3. По конструкции турбины

  • Осевые – в агрегатах этой конструкции вода движется вдоль оси турбины и попадет на лопасти, которые приходят во вращение.
  • Радиально-осевые – в этой конструкции вода изначально движется радиально по отношению оси турбины, а затем в соответствии с осью ее вращения.
  • Ковшовые — вода поступает на поверхность ковша (лопатки) через сопла, благодаря которым скорость воды увеличивается, она ударяется о лопатку турбины, турбина вращается, в работу вступает следующая лопатка и процесс продолжается
  • Поворотно-лопастные — лопасти поворачиваются вокруг своей оси одновременно с вращением турбины.

4. По условиям монтажа

  • Высоконапорные, при перепаде более 60 метров;
  • Средненапорные, с перепадом от 25 до 60 метров;
  • Низконапорные, с перепадом до 25 метров.

Плюсы и минусы устройства

К преимуществам использования можно отнести:

  • Экологическую безопасность установок для окружающей среды;
  • Неисчерпаемый источник энергии;
  • Низкая стоимость вырабатываемой энергии;
  • Автономность работы установок;
  • Надежность установок;
  • Продолжительный срок эксплуатации.

К минусам использования относятся:

  • Потенциальная опасность для обитателей водных объектов;
  • Ограниченная возможность условий монтажа установки.

Производители установок и оборудования

Производством оборудования для мини ГЭС занимается ограниченное количество предприятий как в нашей стране, так и за рубежом. Объясняется это ограниченностью применения малых гидроэлектростанций обусловленную малым наличием необходимых водных объектов, а также тенденциями развития энергетики в разных странах.

Из зарубежных фирм успешно работающих в этой области бизнеса это

  • «CINK Hydro-Energy» Республика Чехия – выполняет весь комплекс работ от проектирования и поставки оборудования, до монтажа и запуска установок в работу.
  • «Micro hydro power» Китай – производит и реализует комплекты оборудования для небольших установок бытового применения.
  • Инженерно-техническая фирма ОсОО «Гидропоника» г. Бишкек, Кыргызстан. Компания производит и реализует гидрогенераторы для малых ГЭС.

В России на этом рынке работают

  • ООО «АЭнерджи» г. Москва. Компания занимается поддержкой развития альтернативных источников энергии. В области малой гидроэнергетики компания предлагает весь спектр услуг от проектирования до сервисного обслуживания сданных установок.
  • Межотраслевое научно-техническое объединение «МНТО ИНСЭТ» г. Санкт-Петербург. Фирма занимается проектированием и разработкой оборудования для мини ГЭС, изготовлением и монтажом своей продукции. В линейке выпускаемой продукции имеется:
    • Мини ГЭС с пропеллерным рабочим колесом мощность от 5,0 до 100 кВт;
    • Мини ГЭС с диагональным рабочим колесом, мощностью 20,0 кВт;
    • Мини ГЭС с ковшовым рабочим колесом мощностью до 180 кВт;
    • Гидроагрегаты для малых ГЭС.
  • Компания «НПО Инверсия» г. Екатеринбург. Фирма производит оборудование и комплекты мини ГЭС мощностью до 10 кВт.

Мини ГЭС своими руками

Для того чтобы изготовить своими руками необходима смекалка, умение работать руками и водный объект,да кое-что по мелочам, как то автомобильный генератор, колесо от любого средства передвижения и передаточный механизм (шкивы, шестерни, зубчатая передача).

В начале необходимо изготовить водяное колесо. Для этого берется колесо от велосипеда, мотоцикла или автомобиля. По диаметру колеса крепятся лопасти, для это можно использовать любой материал, лишь бы он был прочным и не гнулся – железо, фанера, твердый пластик, эбонит и т.д. Крепить лучше всего болтовым соединением, чтобы была возможность заменить поврежденные в процесс работы лопасти. Лопасти располагаются на равном расстоянии друг от друга.

Изготавливается каркас, на котором закрепляется колесо. В местах крепления к каркасу необходимо предусмотреть установку подшипников в которые вставляется ось вращения колеса. На один конец оси монтируется большой шкив или большая по размеру звездочка. На ось генератора насаживается малый шкив или меньшая звездочка.

Вариант самодельной мини ГЭС с вертикальной установкой колеса

Колесо помещается в воду, это может быть вертикальная установка в плоскости перпендикулярной поверхности воды, либо горизонтальная – когда колесо погружается в воду целиком. Во втором случае необходимо учесть, что колесо должно быть погружено в воду не более чем на 2/3 толщины диска.
Шкивы между собой соединяются посредством ремня, а звездочки посредством цепи.

Система готова к работе.

Самодельные генераторы на физических принципах

Очень давно умные головы изобрели паровые машины, котлы которых частенько приносили неприятности окружающим, они взрывались. К тому же эти двигатели имеют сложную конструкцию и требуют особого

Читать далее

Кто из вас, уважаемые читатели не мечтал о халяве? Чтобы в доме было электричество, им можно было пользоваться, а квитанции не приходили. Для этого некоторые наши товарищи, идут в ногу со временем,

Читать далее

Приветствую, радиолюбители-самоделкины! Необходимость в небольших автономных источниках электричества сейчас кажется неактуальной — ведь полная электрификация страны закончилась ещё давно, розетки

Читать далее

Привет всем! Сегодня в статье я попытаюсь вам подробнейшим способом описать изготовление полезной самоделки. А именно сегодня мы подробно рассмотрим, как сделать компактную динамо-машину для зарядки

Читать далее

В СССР для питания велофары устанавливали динамо. Для того чтобы, при движении велосипеда, лампочка в фаре светилась, нужно было металлическое колесо, установленное на динамо, прижать к шине

Читать далее

Приветствую, Самоделкины! Наступила зима, похолодало и этому старенькому аккумулятору уже не под силу завести двигатель автомобиля. Скорее всего аккумулятор потерял значительную часть своей емкости,

Читать далее

Здравствуйте, уважаемые читатели! Из ниже приведенной статьи вы узнаете, как построить своими руками велогенератор. На базе велосипеда можно создать генератор, с помощью которого можно запитывать

Читать далее

Здравствуйте, уважаемые посетители сайта «В гостях у Самоделкина». В этой статье представлен вариант изготовления генератора для лодочного мотора Tohatsu M5 (5 л.с.). В спецификации к мотору (среди

Читать далее

Приветствую любителей помастерить, предлагаю к рассмотрению автономный источник питания, от которого можно зарядить мобильный телефон, ноутбук и прочую технику, а также можно организовать систему

Читать далее

А нужно, для переделки бензинового автомобиля в электрический, всего то немного, заменить двигатель ДВС на электро. Как справился с этой задачей мастер-самодельщик, мы и узнаем из этой статьи. Раньше

Читать далее

Приветствую любителей помастерить, сегодня мы рассмотрим, как изготовить бензиновый электрогенератор. Такую самоделку можно использовать на даче, в селе, на природе и других подобных местах.

Читать далее

Если у вас есть загородный дом или вы часто выбираетесь за пределы города отдыхать, вам просто необходима такая вещица, как бензиновый генератор. С помощью него можно легко зарядить ноутбук,

Читать далее

Вы знали что во время езды на велосипеде можно заряжать свой телефон? Сейчас The Wrench покажет нам, как сделать простой электрогенератор, который сможет вырабатывать достаточно энергии для

Читать далее

Доброго времени суток, уважаемые самоделкины! В этой статье Alpha Mods покажет, как собрать ручной генератор, который сможет выдавать весьма хороший ток и напряжение, достаточные для зарядки

Читать далее

Как сделать электрогенератор своими руками, разбираем подробно

Постоянное и бесперебойное обеспечение электричества в доме – залог приятного и комфортного времяпровождения в любую пору года. Чтобы организовать автономное питание загородного участка, нам придется прибегнуть к мобильным установкам – электрогенераторам, которые в последние годы особенно популярны ввиду большого ассортимента самых разных мощностей.

Сфера применения

Многие интересуются, как сделать электрогенератор для дачного участка? Об этом мы и расскажем ниже. Применим в большинстве случаев асинхронный генератор переменного тока, который будет производить энергию для работы электроприборов. В асинхронном генераторе скорость вращения роторов, чем в синхронном и КПД будет выше.

Впрочем, силовые установки нашли свое применение в более широком кругу, как отличное средство для добычи энергии, а именно:

  • Их применяют на ветровых электростанциях.
  • Используются как сварочные агрегаты.
  • Обеспечивают автономную поддержку электричества в доме наравне с миниатюрной ГЭС.

Включается агрегат с помощью входящего напряжения. Зачастую для запуска устройство подключают к питанию, но это не совсем логическое и рациональное решение для мини-станции, которая сама должна вырабатывать электричество, а не потреблять его для запуска. Поэтому в последние годы активно производятся генераторы с самовозбуждением или последовательным переключением конденсаторов.

Как работает электрогенератор

Асинхронный генератор электроэнергии производит ресурс, если скорость вращения мотора быстрее синхронного. Самый обычный генератор работает на параметрах от 1500 оборотов.

Он производит энергию, если ротор при старте быстрее работает, нежели синхронная скорость. Разница между этими показателями называется скольжение и высчитывается в процентном соотношении относительно синхронной скорости. Однако, скорость статора еще выше, чем частота вращения ротора. За счет этого образуется поток заряженных частиц, меняющих полярности.

Смотрим видео, принцип работы:

При возбуждении подключенное устройство электрогенератора берет контроль над синхронной скоростью, самостоятельно управляя скольжением. Выходящая из статора энергия проходит по ротору, однако, активное питание уже переместилось в катушки статора.

 Основной принцип работы электрогенератора сводится к преобразованию механической энергии в электрическую. Чтобы запустить ротор для выработки энергии, необходим сильный крутящий момент. Самым адекватным вариантом, по словам электриков, является «вечный ход вхолостую», который поддерживает одну скорость вращения в течение времени работы генератора.

Почему используется асинхронный генератор

В отличие от синхронного генератора, асинхронный имеет огромное количество достоинств и преимуществ. Основным фактором выбора асинхронного варианта стал низкий клирфактор. Высокий показатель клирфактора характеризует количественное наличие высших гармоник в выходном напряжении. Они вызывают бесполезный нагрев мотора и неравномерность вращения. Синхронные генераторы имеют величину клирфактора на уровне 5-15%, в асинхронных он не превышает 2%. Их этого следует, что асинхронный генератор энергии вырабатывает только полезную энергию.

Немного о асинхронном генераторе и его подключении:

Не менее весомым преимуществом данного вида электрогенератора является полное отсутствие вращающихся обмоток и электронных деталей, чувствительных к повреждениям и внешним факторам. Следовательно, данный вид аппаратов не подвержен активному износу и прослужит дольше.

Как сделать генератор своими руками

Устройство асинхронный генератор переменного тока

Приобретение асинхронного электрогенератора – достаточно недешёвое удовольствие для среднестатистического жителя нашей страны. Поэтому многие умельцы прибегают к решению вопроса о самостоятельной сборке аппарата. Принцип работы, как и конструкции – достаточно прост. При наличии всех инструментов сборка не займет более 1-2 часов.

Согласно вышеопределенному принципу действия электрогенератора, следует настроить все оборудование так, чтобы вращения были быстрее, нежели обороты двигателя. Чтобы это сделать, следует подключить двигатель в сеть и завести его. Для вычисления количества оборотов в минуту используйте тахометр или тахогенератор.

Определив значение скорости вращения двигателя, прибавьте к нему 10%. Если скорость вращения 1500 оборотов в минуту, тогда генератор должен работать на 1650 оборотах.

Теперь нужно переделать асинхронный генератор «под себя», используя конденсаторы необходимых емкостей. Для определения типа и емкости используйте следующую табличку:

Таблица емкости ДЛ

Надеемся, как собрать электрогенератор своими руками уже понятно, но обратите внимание: емкость конденсаторов не должна быть очень завышенной, в противном случае генератор, работающий на дизельном топливе, будет сильно греться.

Установите конденсаторы согласно расчету. Установка требует достаточного количества внимания. Убедитесь в хорошей изоляции, при необходимости используйте специальные покрытия.

На базе двигателя процесс сборки генератора завершен. Теперь его уже можно использовать как необходимый источник энергии. Помните, что в случае, когда устройство имеет короткозамкнутый ротор и производит достаточно серьезное напряжение, которое превышает 220 вольт, необходимо установить понижающий трансформатор, который стабилизирует напряжение на требуемом уровне. Помните, чтобы все приборы в доме работали, должен быть строгий контроль самодельного электрогенератора на 220 вольт по напряжению.

Смотрим видео, этапы работ:

Для генератора, который будет работать на малых мощностях, в целях экономии можно использовать асинхронные двигатели с одной фазой от старых или ненужных бытовых электроприборов, например, стиральных машин, насосов для дренажа, газонокосилок, бензопил и т.д. Моторы от таких бытовых приборов следует подключать параллельно обмотке. Как вариант, можно использовать конденсаторы, сдвигающие фазы. Они достаточно редко разнятся по необходимой мощности, так что потребуется ее увеличение до требуемых показателей.

Подобные генераторы очень хорошо показывают себя при необходимости питания лампочек, модемов и прочих мелких приборов со стабильным активным напряжением. При определенных знаниях можно подключить электрогенератор к электропечке или обогревателю.

Готовый к эксплуатации генератор следует установить так, чтобы на него не влияли осадки и окружающая среда. Позаботьтесь о дополнительном кожухе, который защитит установку от неблагоприятных условий.

Советы по эксплуатации

Практически каждый асинхронный генератор, будь это бесщеточный, электрический, бензиновый или дизельный генератор, он считается прибором с достаточно высоким уровнем опасности. Обращайтесь с таким оборудованием очень аккуратно и держите всегда защищённым от внешнего погодного и механического воздействия или изготовьте для него кожух.

Смотрим видео, дельные советы специалиста:

Любой автономный агрегат следует оснащать специальными измерительными приборами, которые будут фиксировать и отображать данные об эффективности работы. Для этого можно использовать тахометр, вольтметр и частотомер.

  • Оборудуйте генератор кнопкой включения и выключения по возможности. Для запуска можно использовать ручной старт.
  • Некоторые электрогенераторы требуется заземлять перед использованием, внимательно оцените территорию и выберите место для установки.
  • При преобразовании механической энергии в электроэнергию, иногда коэффициент полезного действия может падать до 30%.
  • Если не уверены в силах или боитесь сделать что-либо не так, советуем приобрести генератор в соответствующем магазине. Порой риски могут обернуться крайне плачевно…
  • Следите за температурой асинхронного генератора и его тепловым режимом.

Итоги

Несмотря на свою простоту реализации, самодельные электрогенераторы – это очень кропотливая работа, требующая полной сосредоточенности на конструкции и правильному подключению. Целесообразна сборка с финансовой точки зрения только, если у вас уже имеется работоспособный и ненужный двигатель. В ином случае вы отдадите за основной элемент установки больше половины ее стоимости, и общие траты могут существенно превысить рыночную стоимость генератора.

Теперь вы знаете, как сделать электрогенератор и если твердо решили создать его, надеемся, вы получили ответы на все интересующие вопросы перед началом сборки и теперь с полным багажом знаний можете приступать к работе.

В заключение хотелось предложить вам сборку замечательного изобретения одного студента-инженера. Это слабенький, генератор, который может вас спасти в трудную минуту без траты денежных средств даже на топливо.

Гидроэлектростанция своими руками | Самоделки своими руками

Самодельная мини гидроэлектростанция сделанная своими руками: фото и описание.

Если возле вашего приусадебного участка протекает ручей, то его можно использовать для получения бесплатной электроэнергии, таким образом и поступил один умелец из Америки, построив мини гидроэлектростанцию своими руками у себя на участке.

Процесс постройки мини ГЭС представлен на фото.

Лопасти турбины, автор изготовил из металлической трубы, распилив трубу вдоль на куски.

Затем из стального листа изготовил пару дисков диаметром по 12 дюймов, на которые были нанесены метки необходимых отверстий, а также места для 16 лопастей.

Вот так выглядит турбина для мини ГЭС.

Для регулировки угла подачи воды на турбину, сделал специальную насадку из согнутого металлического листа.

Изготовлено основание для крепления турбины и генератора.

Автор изготовил генератор аксиального типа: статор сделан из 9 катушек,  каждая катушка состоит из 125 витков медной проволоки, катушки залиты эпоксидной смолой.

Изготовление ротора генератора.

Ротор состоит из двух частей, изготовленных из ступиц колеса автомобиля, на каждую часть ротора установлены по 12 неодимовых магнитов, всего понадобилось 24 магнита.

Турбину закрепили на роторе генератора.

Сбоку от генератора установлена коробка с выпрямителями, для преобразования трёхфазного переменного тока в постоянный.

Подача воды на турбину идёт по трубе.

После настройки угла подачи воды на турбину, средняя скорость вращения турбины под нагрузкой составила примерно 110 оборотов в минуту, а в холостую 160 об/мин, при этом мини ГЭС выдает напряжение 12 V и 2 А.

Под мини ГЭС сделана небольшая дамба.

Мини ГЭС позволяет получать умельцу дополнительную электроэнергию для зарядки аккумуляторов и питания бытовых электроприборов.

Гидроэлектроэнергия: как это работает

• Школа водных наук ГЛАВНАЯ • Темы водопользования •

Падающая вода производит гидроэлектроэнергию.

Кредит: Управление долины Теннесси

Так как же нам получить электричество из воды? Фактически, гидроэлектростанции и угольные электростанции производят электроэнергию одинаковым образом. В обоих случаях источник энергии используется для вращения пропеллероподобной детали, называемой турбиной, которая затем вращает металлический вал в электрическом генераторе, который является двигателем, вырабатывающим электричество.На угольной электростанции пар вращает лопасти турбины; тогда как гидроэлектростанция использует падающую воду для вращения турбины. Результаты такие же.

Взгляните на эту схему (любезно предоставленную Управлением долины Теннесси) гидроэлектростанции, чтобы увидеть подробности:

Теория состоит в том, чтобы построить плотину на большой реке , которая имеет большой перепад высот (в Канзасе или Флориде не так много гидроэлектростанций). Плотина хранит много воды за собой в резервуаре .У подножия стены дамбы находится водозабор. Гравитация заставляет его проваливаться через напорный водовод внутри дамбы. В конце напорного водовода находится пропеллер турбины, который вращается движущейся водой. Вал турбины идет вверх в генератор, который производит мощность. К генератору подключены линии электропередач, по которым электричество доставляется в ваш дом и в мой. Вода проходит мимо гребного винта через отводной канал в реку мимо плотины. Кстати, играть в воде прямо под плотиной, когда выходит вода, — не лучшая идея!

Турбина и генератор вырабатывают электроэнергию

Схема гидроэлектрической турбины и генератора.

Источник: Инженерный корпус армии США

Что касается того, как работает этот генератор, Инженерный корпус объясняет это следующим образом:
«Гидравлическая турбина преобразует энергию проточной воды в механическую энергию. Гидроэлектрический генератор преобразует эту механическую энергию в электричество. Принцип работы генератора основан на На принципах, открытых Фарадеем, он обнаружил, что, когда магнит проходит мимо проводника, он заставляет течь электричество.В большом генераторе электромагниты создаются путем циркуляции постоянного тока через петли из проволоки, намотанные на стопки пластин из магнитной стали. Они называются полевыми полюсами и устанавливаются по периметру ротора. Ротор прикреплен к валу турбины и вращается с фиксированной скоростью. Когда ротор вращается, полюса поля (электромагниты) проходят мимо проводников, установленных в статоре. Это, в свою очередь, вызывает прохождение электричества и повышение напряжения на выходных клеммах генератора.»

Гидроаккумулятор: повторное использование воды для пикового спроса на электроэнергию

Спрос на электроэнергию не «плоский», а постоянный. Спрос повышается и понижается в течение дня, и в ночное время потребность в электричестве в домах, на предприятиях и других объектах снижается. Например, здесь, в Атланте, штат Джорджия, в 17:00 в жаркий августовский выходной день можно поспорить, что существует огромный спрос на электроэнергию для работы миллионов кондиционеров! Но 12 часов спустя, в 5:00 … не так уж и много.Гидроэлектростанции более эффективны в обеспечении пиковой потребности в энергии в течение коротких периодов времени, чем электростанции, работающие на ископаемом топливе и атомные электростанции, и один из способов сделать это — использовать «гидроаккумулирующие станции», которые повторно используют одну и ту же воду более одного раза.

Насосный накопитель — это метод сохранения воды в резерве на период пиковой нагрузки за счет перекачки воды, которая уже прошла через турбины, в резервный бассейн над электростанцией в то время, когда потребность потребителей в энергии низка, например, во время полночь.Затем воде позволяют течь обратно через турбогенераторы в периоды, когда потребность высока и на систему ложится большая нагрузка.

Гидроаккумулятор: повторное использование воды для пикового спроса на электроэнергию

Резервуар действует как батарея, накапливая энергию в виде воды, когда потребности в ней низкие, и вырабатывая максимальную мощность в дневные и сезонные пиковые периоды. Преимущество гидроаккумулирующего оборудования заключается в том, что гидроагрегаты могут быстро запускаться и быстро регулировать производительность.Они работают эффективно при использовании в течение одного или нескольких часов. Поскольку гидроаккумуляторы относительно малы, затраты на строительство обычно невысоки по сравнению с обычными гидроэнергетическими сооружениями.

Как работает гидроэнергетика | Компания Wisconsin Valley Improvement Company

Гидроэлектростанции улавливают энергию падающей воды для производства электроэнергии. Турбина преобразует кинетическую энергию падающей воды в механическую. Затем генератор преобразует механическую энергию турбины в электрическую.

Гидравлические установки различаются по размеру от «микрогидро», питающих лишь несколько домов, до гигантских плотин, таких как плотина Гувера, которые обеспечивают электричеством миллионы людей.

На фотографии справа показана Александровская гидроэлектростанция на реке Висконсин, электростанция среднего размера, которая производит достаточно электроэнергии, чтобы обслуживать около 8000 человек.

Части гидроэлектростанции

Большинство традиционных гидроэлектростанций состоит из четырех основных компонентов (см. Рисунок ниже):

  1. Плотина. Повышает уровень воды в реке для создания падающей воды. Также контролирует поток воды. Образующийся резервуар — это, по сути, запасенная энергия.
  2. Турбина. Сила падающей воды, давящей на лопасти турбины, заставляет турбину вращаться. Водяная турбина очень похожа на ветряную мельницу, за исключением того, что энергия вырабатывается падающей водой, а не ветром. Турбина преобразует кинетическую энергию падающей воды в механическую.
  3. Генератор. Соединен с турбиной валами и, возможно, шестернями, поэтому, когда турбина вращается, она заставляет вращаться и генератор. Преобразует механическую энергию турбины в электрическую. Генераторы на гидроэлектростанциях работают так же, как генераторы на других типах электростанций.
  4. Линии передачи . Проведите электричество от гидроэлектростанции до домов и предприятий.
Сколько электроэнергии может производить гидроэлектростанция?

Количество электроэнергии, производимой гидроэлектростанцией, зависит от двух факторов:

  1. Как далеко падает вода. Чем дальше падает вода, тем больше у нее силы. Как правило, расстояние, на которое падает вода, зависит от размера плотины. Чем выше плотина, тем дальше падает вода и тем больше у нее мощности. Ученые сказали бы, что сила падающей воды «прямо пропорциональна» расстоянию, на которое она падает. Другими словами, вода, падающая вдвое дальше, имеет в два раза больше энергии.
  2. Количество падающей воды. Чем больше воды проходит через турбину, тем больше мощность.Количество доступной воды зависит от количества воды, текущей по реке. В больших реках больше проточной воды, и они могут производить больше энергии. Мощность также «прямо пропорциональна» расходу реки. Река с вдвое большим объемом проточной воды, чем другая река, может производить вдвое больше энергии.
Могу ли я определить, сколько энергии может производить плотина в моем районе?

Конечно. Это не так уж и сложно.

Допустим, в вашем районе есть небольшая плотина, которая не используется для производства электроэнергии.Возможно, плотина используется для обеспечения водой для орошения сельскохозяйственных угодий, а может быть, она была построена для создания озера для отдыха. Как мы объясняли выше, вам нужно знать две вещи:

  1. Как далеко падает вода. Из разговора с человеком, который управляет плотиной, мы узнаем, что высота плотины 10 футов, поэтому вода падает на 10 футов.
  2. Количество воды, протекающей в реке. Мы связываемся с Геологической службой США, агентством в США, которое измеряет речной сток, и узнаем, что средний объем воды, протекающей в нашей реке, составляет 500 кубических футов в секунду.

Теперь все, что нам нужно сделать, это немного математики. Инженеры выяснили, что мощность плотины можно рассчитать по следующей формуле:

Мощность = (Высота плотины) x (Сток реки) x (Эффективность) / 11,8

Мощность Электрическая мощность в киловаттах (один киловатт равен 1000 ватт).
Высота плотины Расстояние, на которое падает вода, измеряется в футах.
Речной сток Количество воды, текущей в реке, измеряется в кубических футах в секунду.
КПД Насколько хорошо турбина и генератор преобразуют энергию падающей воды в электроэнергию. Для старых, плохо обслуживаемых гидростанций этот показатель может составлять 60% (0,60), в то время как для более новых, хорошо эксплуатируемых заводов этот показатель может достигать 90% (0,90).
11.8 Преобразует футы и секунды в киловатты.

Допустим, для плотины в нашем районе мы покупаем турбину и генератор с КПД 80%.

Тогда мощность для нашей плотины будет:

Мощность = (10 футов) x (500 кубических футов в секунду) x (0,80) / 11,8 = 339 киловатт

Чтобы понять, что такое 339 киловатт, давайте посмотрим, сколько электроэнергии мы можем произвести за год.

Поскольку электрическая энергия обычно измеряется в киловатт-часах, мы умножаем мощность нашей плотины на количество часов в году.

Электроэнергия = (339 киловатт) x (24 часа в сутки) x (365 дней в году) = 2 969 000 киловатт-часов.

Среднее годовое потребление энергии в жилищах в США составляет около 3000 киловатт-часов на каждого человека. Таким образом, мы можем вычислить, сколько людей могла бы обслуживать наша плотина, разделив годовое производство энергии на 3000.

Обслужено человек = 2 969 000 киловатт-часов / 3 000 киловатт-часов на человека) = 990 человек.

Таким образом, наша местная ирригационная или рекреационная плотина могла бы обеспечить достаточно возобновляемой энергии для удовлетворения жилищных потребностей 990 человек, если бы мы добавили турбину и генератор.

Примечание. Прежде чем вы решите добавить гидроэнергетику к плотине, попросите инженера-гидроэнергетика проверить ваши расчеты и проконсультироваться с местными агентствами ресурсов, чтобы убедиться, что вы можете получить любые необходимые разрешения.

Как построить небольшую гидроэлектростанцию?

Когда дело доходит до природных ресурсов Земли, мы можем рассчитывать практически на что угодно, чтобы дать нам энергию, если мы знаем, как ее использовать.

Есть солнечная энергия от солнца, энергия ветра от турбин и гидроэнергетика, использующая природную силу воды для выработки электроэнергии, каждая из которых имеет свои преимущества для обычного домовладельца.

Что же такое гидроэлектростанция и можно ли построить ее для себя?

Эти небольшие системы работают в миниатюрном масштабе крупных гидроэлектростанций, которые используют силу проточной или падающей воды для выработки энергии, и при наличии необходимых материалов и технических знаний можно построить такую ​​для себя.

Однако с уже собранными мини-заводами, доступными для покупки, может оказаться дешевле и эффективнее купить уже изготовленные .

Установив у себя дома мини-гидроэлектростанцию, вы сможете значительно сэкономить на текущих расходах на электроэнергию и быть уверены, что вносите свой вклад на благо планеты.

Мы собираемся изучить, что такое гидроэнергетика и как вы могли бы построить свою собственную мини-электростанцию, используя нужные ноу-хау.

Что такое гидроэлектростанция?

Гидроэлектростанция — это особый тип электростанции, производящий электричество, просто используя энергию воды.

Давление падающей или текущей воды используется для вращения пропеллеров турбины, которая затем вращает металлический вал, расположенный внутри генератора.

Этот генератор имеет двигатель, который вырабатывает электричество , которое затем может быть отправлено в блок питания или сеть, и к нему могут получить доступ дома и предприятия.

Гидроэлектростанции бывают всех размеров: от микростанций, обеспечивающих до 100 киловатт энергии для домов и ферм, до крупных гидроэлектростанций, которые могут производить более 30 мегаватт энергии.

В зависимости от потребностей дома или предприятия в электроэнергии вы можете установить один, который будет обеспечивать вас всей или частью электроэнергии, поэтому вам не придется полагаться на альтернативы, производящие углерод.

Каковы преимущества мини-гидроэлектростанции?

Каждый раз, когда мы меняем обычное потребление электроэнергии на природную энергию, получаемую с Земли, мы приносим столько пользы себе и планете.

Вот некоторые из преимуществ наличия собственной мини-гидроэлектростанции или строительства ее для себя.

  • Экономия денег на счетах за электричество и снижение зависимости от источников электроэнергии с выбросами углерода.
  • Использование чистого источника топлива, такого как вода, снижает количество загрязнений, которые он создает для получения энергии.
  • Гидроэлектроэнергия считается внутренним источником энергии, что означает, что каждое государство может управлять своими собственными электростанциями, не нуждаясь в других международных источниках топлива, таких как уголь.
  • Гидроэнергетика — это возобновляемый и надежный источник энергии, который никогда не истощится, если вода будет продолжать течь.
  • В зависимости от настройки, некоторые гидроэлектростанции могут вырабатывать полную мощность за минимальное время и быть ценными для обеспечения широкого резервного питания во время перебоев в подаче электроэнергии.
  • Зная, что у вас есть собственный источник чистой, естественной энергии, на который можно положиться, и самодостаточный дом, для работы которого не требуются какие-либо источники топлива.

Можно ли построить гидроэлектростанцию?

Можно построить любые типы возобновляемых источников энергии, такие как солнечные панели, ветряные турбины и даже гидроэлектростанции.

Хотя для того, чтобы все заработало, необходимы некоторые базовые знания в области гидроэнергетики и правильного водоснабжения дома. На реализацию подобных проектов могут уйти годы, поэтому, если вы ищете быстрое решение, оно, вероятно, не будет идеальным.

Создание собственной гидроэлектростанции требует различных этапов, включая земляные работы для поиска подземных вод, установку трубопроводов и турбин, а также строительство двигателей для выработки электроэнергии.

На создание всего процесса может уйти лет, и для этого требуются юридические разрешения и другие нормативные требования, поэтому рассчитывайте потратить на проект некоторое время и усилия.

В большинстве случаев строительство собственной гидроэлектростанции — это подробный проект, который нужно выполнить, если у вас есть необходимые навыки, но этого может быть недостаточно для обеспечения вашего дома энергией в то время, которое вам нужно.

Есть готовые мини-электростанции, доступные для покупки, которые могут быть более эффективными, чем изготовление ваших собственных, поэтому вам придется взвесить, что является лучшим выбором.

Законность строительства собственного завода

Каждый раз, когда вы решаете вырабатывать собственное электричество дома, вам придется учесть юридические последствия.

Независимо от того, хотите ли вы установить солнечную батарею или генератор, существуют правила, которых необходимо придерживаться, и это особенно верно даже для самой маленькой гидроэлектростанции.

Право на производство собственной энергии разрешено общим правом, поскольку это способ продуктивного использования их собственности и дома.

Тем не менее, необходимо учитывать такие вещи, как выбросы в атмосферу, шум и проблемы с землей, поэтому, прежде чем вы попытаетесь построить гидроэлектростанцию ​​на собственном заднем дворе, вам нужно будет провести юридическое обследование.

Помня об этих более мелких деталях, рекомендуется поговорить со специалистом о гидроэнергетике и о том, что разрешено в вашем штате и регионе.

Они смогут посоветовать вам такие вещи, как полномочия, экономические стимулы и меры защиты, которые могут помешать вам использовать гидроэлектростанцию, поэтому все это следует учесть перед тем, как вы приступите к работе.

Стоимость и трудозатраты малых гидроэлектростанций

По рентабельности гидроэлектростанции считаются лучшими из всех возобновляемых источников энергии.

Этот чистый вид электричества является надежным и последовательным, что делает его отличным выбором для дома, а поскольку его можно структурировать для удовлетворения различных нагрузок и пиковых нагрузок, он может удовлетворить потребности любого человека.

Чтобы установить мини-гидроэлектростанцию, различных затрат зависят от источника воды и выбранной вами конфигурации .

Стандартная 10-киловаттная микрогидроэнергетическая система обеспечивает достаточно энергии для стандартного дома и может стоить от нескольких тысяч долларов до 10000 долларов.

Лучший способ оценить, подойдет ли это для вашего дома, — это посмотреть на потребление и затраты на электроэнергию и сравнить счета за последние несколько лет.

Если покупка и установка гидроэнергетической системы дома в конечном итоге сэкономит вам деньги и поможет внести свой вклад в защиту окружающей среды, рекомендуется использовать ее как лучший природный источник энергии.

Природная сила воды

Сегодня существует так много вариантов природных источников энергии, из которых гидроэнергетика является одной из самых популярных.

Учитывая, что 20 процентов электроэнергии в мире вырабатывается за счет гидроэнергетики, почему бы не использовать ее для дома с одной из этих микросистем.

Как и другие природные источники энергии, вы можете выбрать тот, который подходит конкретно для вашего дома, и убедиться, что он является наиболее энергоэффективным.

Хотя это может быть забавный проект, чтобы заняться его созданием для себя, часто лучше приобрести готовую систему и установить ее правильно, чтобы убедиться, что она работает наилучшим образом.

Какой бы вариант вы ни выбрали, вы сделаете удивительные вещи для своего дома и планеты, переключившись на гидроэнергетику.

Этот природный источник энергии является мощным, стабильным и экономичным, поэтому он отвечает всем критериям того, что мы должны искать в устойчивом и возобновляемом источнике энергии.

Связанные вопросы

Гидроэлектростанции могут показаться сложными системами, но в основном они используют энергию воды для выработки энергии.

Если у вас есть дополнительные вопросы о гидроэнергетике и этих станциях, мы ответили на некоторые из наиболее распространенных, которые могли бы дать вам более полное представление о том, как они работают.

В чем преимущество гидроэнергетики?

Наличие гидроэлектростанции означает, что вы полагаетесь на возобновляемый и безуглеродный источник энергии.

Вода — это бесплатный ресурс, доступ к которому есть у большинства людей, и помимо стоимости земли и системы, он будет работать годами, обеспечивая вас бесплатным электричеством.

Как долго прослужит гидроэлектростанция?

В зависимости от качества и производителя силовой установки можно ожидать, что это оборудование прослужит до 25 лет.

Некоторые даже создают турбины, которые работают 50 лет без необходимости замены, но это полностью зависит от качества их конструкции и материалов, из которых она изготовлена.

У нас когда-нибудь закончится гидроэнергетика?

Одно из преимуществ гидроэлектростанций и гидроэлектростанций заключается в том, что они никогда не исчерпают энергию, пока идет дождь с неба.

Это возобновляемый источник энергии, который не требует каких-либо других ресурсов или материалов для его производства и будет существовать при условии, что будет использоваться вода.

Suneco Hydro Руководство по гидроэнергетике, гидротурбина 1 кВт, гидротурбина 2 кВт, гидрогенератор 100 Вт

Гидроэнергетика обычно ассоциируется с большими реками, более крупными плотинами и огромными водохранилищами — это не то, о чем обычно думают самозастроители. Но это не обязательно.

Реалистично ли гидроэнергетика для индивидуальных домов?

Тим Пуллен исследует гидротурбинный генератор для домашнего использования, связанный с гидротурбинным генератором мощностью 2 кВт. Имея данные о напоре и расходе воды, мы можем точно знать, как рассчитать мощность гидротурбинного генератора.

Доступна микрогидравлическая технология, позволяющая отдельному домовладельцу (с ручьем) вырабатывать свою собственную энергию. Подумайте об этом: гидротурбина мощностью всего 500 Вт будет производить достаточно электроэнергии в течение года, чтобы удовлетворить годовое потребление энергоэффективного дома. Турбину такого размера можно было взять и перенести одной рукой.

Ключевой вопрос: какого размера должен быть поток? И здесь речь идет о «напоре воды» — вертикальном расстоянии между самой высокой и самой низкой точками потока — и «потоке воды» — количестве воды, проходящей через точку, измеряемом в литрах в секунду.

Как измерить напор гидросистемы?
Как измерить расход воды на водном участке?

Расчет: напор x расход x сила тяжести x 0,75 (что учитывает неэффективность системы).

Например, напор 5 м с расходом 14 литров в секунду даст:
5 м x 14 л / с x 9,81 x 0,75 = 515 Вт мощности.

Гидротурбина мощностью 500 Вт может показаться не очень большой, но она работает 24 часа в сутки, 365 дней в году. Он будет производить около 4000 кВтч в год, а разумно энергоэффективный дом будет потреблять около 5000 кВтч в год.Гидрогенератор мощностью 1 кВт (гидротурбина мощностью 1000 Вт) произведет столько, сколько потребуется самому расточительному пользователю. Мы исследуем проблемы ниже.

Стоимость гидроэнергетической турбинной установки

Стоимость гидроэнергетической турбинной установки сильно варьируется от объекта к объекту. Наибольшее влияние на цену оказывает рельеф местности — размер ручья, его крутизна, ландшафт, деревья, глубина почвы и так далее. Если говорить примерно, «типовая» гидротурбинная система мощностью 1 кВт будет стоить от 10 000 до 20 000 фунтов стерлингов, но на самом деле «типовой» площадки не существует.Размер гидрогенератора (гидротурбинный генератор мощностью 1 кВт, гидротурбина мощностью 2 кВт и т. Д.) Окажет лишь небольшое влияние на стоимость.

Установщик также будет проблемой, и в этом, возможно, заключается самая большая проблема. Короче говоря, дефицит предложения. Более крупные компании не заинтересованы в проектах мощностью менее 5 кВт — они не могут взимать достаточную плату — а у небольших компаний так много работы, что некоторые заказывают проекты на два года вперед.

Проблема начинает решаться с появлением учебных курсов для потенциальных монтажников.Похоже, что наконец стало известно, что такие районы, как Уэльс, Шотландия и районы Пик и Лейк, имеют отличный потенциал для небольших недорогих гидросистем.

Подключение к сети или хранение батареи?

Хотя гидротурбина мощностью 1 кВт будет производить почти вдвое больше электроэнергии, чем будет использовано в течение года, она не будет производить достаточно энергии даже для кипячения чайника. Максимальная мощность составляет 1 кВт, а мощность чайника может быть 3 кВт. Обычно ответ заключается в том, чтобы либо продать излишнюю электроэнергию в сеть и выкупить то, что вам нужно, либо хранить ее в батареях.

Аккумуляторная батарея увеличивает капитальные затраты: аккумуляторные батареи требуют места для хранения, технического обслуживания, имеют более короткий срок службы, чем гидротурбина, и представляют собой проблему утилизации. Таким образом, обычно используется подключение к сети. Использование сети также дает рентабельность, которую планируется усовершенствовать в соответствии с законодательством на 2009 год. В настоящее время местная энергетическая компания стремится покупать электроэнергию из нулевых источников углерода. Например, Scottish & Southern в настоящее время предлагает 18 пенсов за киловатт-час за электроэнергию, вырабатываемую гидроэлектростанциями, в то время как они продают его обратно по цене около 14 пенсов за киловатт-час.Турбина мощностью 1 кВт будет производить около 8 000 кВт / ч в год (средний дом будет использовать около 5 000 кВт / ч в год). Электроэнергия, проданная в сеть, стоит 1440 фунтов стерлингов, а купленная электроэнергия стоит 700 фунтов стерлингов. Законодательство следующего года может означать, что все генерирующие компании должны будут предложить одинаковую цену.

Использование ручьев

Поток любого размера представляет собой экосистему для себя, и было бы вредно, если не сказать незаконно, отвести всю воду в гидротурбину. Доля воды, которую можно использовать, будет зависеть от типа и состояния ручья.Во всех случаях необходимо проконсультироваться с Агентством по окружающей среде, так как оно скажет, что можно, а что нельзя делать. Гидротурбины не выделяют никаких загрязняющих веществ, но может оказаться, что ваш ручей поддерживает особо чувствительную фауну, и вы не можете брать много или вообще воды.

Ключевые преимущества гидротурбины

Очень высокий КПД (70-90%) — лучшая из всех возобновляемых технологий
Высокий уровень предсказуемости, зависящий от годового режима осадков
Гидравлические системы служат около 50 лет — много дольше, чем у сопоставимых технологий

Так почему же он не более популярен?

Так почему же мы не все это делаем? Скорее всего, потому что не у всех есть стрим.Менее очевидно, потому что большинство людей с ручьем думают, что: а) он недостаточно большой или б) гидроэнергетика будет слишком дорогой. Достаточно ли большой поток или нет, можно установить только с помощью обзора сайта. Это может стоить 300 или 400 фунтов стерлингов, но может быть очень выгодным вложением.

Это слишком дорого? Один из способов взглянуть на это заключается в том, что инвестиции в размере 20 000 фунтов стерлингов в турбинную установку мощностью 1 кВт зафиксируют цену на вашу электроэнергию на уровне около 8 пенсов за кВт · ч в течение следующих 30 лет. Кроме того, вы повысите ценность своей собственности, будете невосприимчивы к колебаниям цен на энергию и сэкономите 103 тонны CO2.

Фактическая цена гидротурбины 1 кВт, микрогидротурбины 2 кВт?

Некоторые также спрашивают: сколько стоит водяная турбина? Стоимость гидротурбины мощностью 1 кВт и микрогидроэлектростанции на 2 кВт не так высока, как мы думаем. Вам нужно заплатить за гидротурбинный генератор и установку. На самом деле стоимость гидроэлектростанции не так высока, как вы думаете, вы можете приехать на водоем, чтобы измерить напор и расход воды. Когда у вас есть данные измерения водяного напора и расхода воды.Мы рассчитали подходящие размеры гидротурбин. Общая стоимость составляет от 3 000 до 5 000 долларов США.

В течение следующих 20-30 лет у вас будет электричество около 8 фунтов / кВтч. Таким образом, стоимость микрогидроэнергетической системы не так велика, как вы экономите деньги в долгосрочной перспективе.

Проектирование и изготовление ГЭС и водоснабжения

Автор: Бела Калтенеккер

Строительство:

Чтобы начать строительство, первое, что необходимо сделать, это определить характеристики доступной воды.Необходимо определить высоту источника воды и доступный расход воды. Как только это будет сделано, можно будет выбрать правильное оборудование.

Доступно огромное количество производителей и дистрибьюторов оборудования. Поисковые системы в Интернете делают процесс выбора простым, но отнимающим много времени. После того, как оборудование будет поставлено на склад, можно спроектировать электростанцию ​​и электрическую систему. В оборудовании и местоположении существует множество переменных, поэтому у каждого объекта будет свой уникальный набор параметров, которые необходимо учитывать.

В несельских районах могут существовать правила, запрещающие использование объектов собственного производства.

Выбор оборудования:

Электроэнергетика требует постоянного источника воды. Выходная мощность даже небольшой электростанции зависит как от давления, так и от объемного расхода воды. Чем выше давление, тем меньше требуется потока воды, и наоборот, чем ниже давление, тем больше требуется потока воды.

Гидроэнергетическое оборудование обычно делится на три группы: высокого давления, среднего давления и расхода: низкого, среднего и высокого.Система высокого давления включает в себя трубопровод (заглушку) и обычно колесо типа «Пелтон». Колесо Пелтона — это устройство с ударным приводом. Колесо Пелтона имеет ковши, на которые струя воды под высоким давлением ударяет, заставляя его вращаться, что заставляет подключенный генератор вырабатывать электричество.

Колеса

Pelton обычно используются там, где высота падения воды превышает 70 метров. Колеса Pelton имеют КПД 80,90%. Турбина с колесом Пелтона регулирует мощность генератора, ограничивая поток воды из сопла высокого давления.В гидроэлектрических генераторах среднего давления используются турбины Каплана, Фрэнсиса или Турго. Колеса Фрэнсиса и Каплана называются реактивными устройствами, потому что они приводятся в движение протекающей по ним водой.

Эти турбины используются с перепадами воды 10-70 метров. Они используют так называемые «калитки» для контроля воды, поступающей в турбину. Они примерно на 90% эффективны в преобразовании потенциальной энергии воды в энергию вращения вала, подаваемую в генератор.

Некоторое оборудование, используемое для систем низкого давления, включает реверсивный винт Архимеда, водяное колесо или ламповую турбину, установленную в реке. Гребное колесо в реке может производить значительное количество электроэнергии. Эти типы гидроэлектрических генераторов могут производить энергию для капель воды глубиной до 10 метров. КПД колеблется от 65% до 85%.

Требования к воде:

Обычно, чем выше перепад воды (напор), тем ниже требуемый объемный расход воды для той же выходной мощности.Уравнение, которое можно использовать для моделирования гидроэлектростанции, может быть выражено как P = 9,8I * Q * h * E, где P — выходная мощность в кВт; Q — расход в кубических метрах в секунду, h — высота падения в метрах, а E — эффективность в процентах. Есть еще несколько важных уравнений.

Скорость воды на турбине может быть рассчитана по формуле V = sqrt (2 * g * h) _, где g — гравитационная постоянная (9,81 метра! Сек? 2), а h — снова высота капли воды в метрах. Тогда площадь трубы водовода A = Q / V.Из этого уравнения диаметр водопроводной трубы равен D = sqrt (4 дюйма A / 3,1415). Эти уравнения теперь будут использоваться для моделирования трех гидроэлектростанций: системы высокого давления с колесом Пелтона, системы среднего давления с Колесо Фрэнсиса и система низкого давления с обратным колесом Архимеда. Предположения для системы высокого давления состоят в том, что желаемая мощность должна составлять 514 Вт, а высота источника воды — 10 м. Эффективность консервативно установлена ​​на уровне 75%.

Расчет объемного расхода Q = 5 / (9.81 * 150 * 0,75), дает 0,0045 м3 / сек, 4,5 л / сек, 272 л / мин. Скорость воды на турбинном колесе V = sqrt (2 * 9,8 л * 150), дает 54 метра в секунду. Расчет площади трубы дает A =.?) 045f54 или D0008 квадратных метров, диаметр трубы D = sqrt (4 * .00008 / 3,1415), или 0,010 метра, l см. Это отверстие длиной 1 см представляет собой диаметр форсунки, подающей воду под высоким давлением к турбинному колесу Пелтона. Труба водозаборной трубы обычно доставляет воду из источника в электростанцию. Хотя теоретически требуется отверстие диаметром 1 см для выработки желаемой мощности, прокладывать трубу такого размера от источника непрактично.По мере уменьшения диаметра трубы скорость воды увеличивается, с увеличением скорости увеличиваются потери на трение. Для поддержания скорости потока диаметр заглушки должен быть увеличен, чтобы уменьшить потери на трение. Чтобы потери на трение не превышали 10%, диаметр стержня ручки должен составлять 7,5–10 см. Это рассчитано для поддержания скорости воды в трубе на уровне 0,8–1,5 м / сек. Часто дизайнер подбирает размер загона по секциям так, чтобы верхняя треть трубы была в три раза больше диаметра нижней трети, а средняя треть секции была вдвое больше диаметра нижней трети.Это также сделано для уменьшения трения трубы и улучшения потока воды и повышения эффективности.

Для системы среднего давления рассматривается колесо Фрэнсиса, мощность 5 литров, высота воды 40 метров, КПД снова 75%. Расчет расхода Q = 5 / (9,81 * 40 * 0,75) дает 0,01 7 кубических метров / сек, 17 литров / сек, 1019 литров / мин. Скорость на турбинном колесе составляет V == sqrt (2 * 9,81 * 4O) или 28 м / сек. Расчет площади трубы дает A = 0,07 / 28 или 0,0006 квадратных метров, а диаметр трубы D = sqit (4 * .0006 / 3.1415) или около 2,8 см. Как и прежде, это размер отверстия, ведущего к колесу Фрэнсиса. Чтобы снизить скорость в трубе до 0,8 метра в секунду, чтобы уменьшить потери на трение, расчет должен быть A = 0,17 / 0,8, затем D = sqrt (4 * A / 3,1415) или 16,5 см.

Для системы низкого давления можно использовать обратное колесо Архимеда для выработки электроэнергии. Предположения здесь: мощность 5 кВт, высота воды 4 метра, КПД 75%.

Расход Q = 5 / (9,81 * 4 * 0,75) дает.17 кубических метров в секунду, 10000 литров в минуту, скорость воды на входе в турбину составляет 8,9 метра в секунду, а диаметр трубы составляет 15,6 см. Из-за особенностей винта Архимеда это открытая труба и требования к медленной трубе. Скорость воды размер необходимой трубы увеличивается до 75-100 см.

Потенциальная мощность, которая может быть произведена из водных ресурсов, всегда может быть определена из уравнения P = 9,81 * Q * h * E, переменные, константы и единицы такие, как описано выше.Например, источник воды на высоте 80 метров с доступным потоком 0,006 кубических метров / сек и КПД оборудования 80% может генерировать 3,5 кВт.

Для установок высокого и среднего давления наличие препятствий на всасывающем участке всегда является проблемой. Плавающий мусор может попасть в трубу, вызывая серьезные проблемы с турбиной. Можно построить небольшую плотину и бассейн, которые позволят входному отверстию находиться на некотором уровне ниже поверхности воды, позволяя мусору плавать у входа. Могут быть изготовлены металлические профили и экраны, позволяющие мусору проходить мимо впускного отверстия.

Присоединения к электросетям:

Начиная с 19605 года, многие коммерческие производители и распределители энергии были обязаны платить за электроэнергию, которая предоставляется и подается в распределительную электрическую сеть.

Избыточная энергия, производимая малыми гидроэлектростанциями, может быть возвращена в сеть, принося доход. Для обеспечения работоспособности такой системы требуются некоторые предохранительные устройства. Как минимум требуется как положительное отключение от электросети, так и реле защиты от обратной мощности.Оба они легко доступны. Положительный разъединитель необходим для защиты работников энергосистемы, работающих во время перебоев в подаче электроэнергии, а реле обратной мощности защищает оборудование электростанции.

Дополнительным преимуществом подключения к существующей электросети является то, что в этом случае нет необходимости в каком-либо управлении напряжением и частотой гидроэлектрического генератора. Сеть устанавливает напряжение и частоту, а генератор просто обеспечивает постоянную нагрузку на сеть, что значительно упрощает схему управления.

Фотографии / чертежи различного гидрооборудования любезно предоставлены? Www.british-hydro.org?

Как построить микрогидро-турбогенератор

Производство электроэнергии из возобновляемых источников энергии становится все более популярным, поскольку люди пытаются уменьшить свою зависимость от ископаемого топлива и сократить деньги, которые они тратят на коммунальные услуги. Небольшой эксперимент с домашней гидроэлектростанцией может быть поучительным, чтобы увидеть, как работает этот процесс.

Микрогидротурбинный генератор может быть построен для производства электроэнергии в небольших масштабах.В крупномасштабных проектах по производству гидроэлектроэнергии часто используются искусственные конструкции, такие как плотины, для изменения потока воды с целью повышения эффективности.

Для постройки самодельного гидротурбинного электрогенератора достаточно небольшой реки или ручья с быстрым течением. Вам понадобятся все элементы комплекта генератора водяного колеса, перечисленные ниже.

    Найдите подходящее место для установки водяного колеса. Турбинный генератор будет вырабатывать больше электроэнергии, если он может быть построен с использованием более эффективного типа конструкции водяного колеса.

    • В идеале водяное колесо должно быть помещено под небольшую каплю или падение в воду, используя силу тяжести для большего поворота колеса; это известно как колесо «выстрела грудью». Или колесо может просто вращаться потоком воды; это известно как колесо с недокусом.

    Соберите колесо, используя водостойкую фанеру. Основной корпус колеса будет состоять из двух больших дисков, в каждом из которых просверлено отверстие в центре. Чтобы соединить эти два диска, прикрепите несколько плоских лопастей из водостойкой фанеры, прикрученных к каждому диску.

    Слегка наклоните лопасти по направлению к потоку воды, чтобы увеличить площадь поверхности, которая будет контактировать с водой, что повысит эффективность колеса.

    Сделайте опору для колеса и позвольте ему вращаться. Сделайте треугольную форму для каждой стороны колеса, используя водонепроницаемые деревянные прутья. Основание треугольника должно быть немного длиннее диаметра колеса, а высота должна быть на несколько дюймов больше, чем радиус колеса (расстояние до центра колеса).

    Соедините соответствующие углы обоих треугольников, используя несколько стержней; стержень, соединяющий верхние углы, должен проходить через отверстия в центре колес. Убедитесь, что колесо может свободно вращаться на подставке.

    Установите водяное колесо на место. Убедитесь, что он устойчив на своем основании и что вода вращает колесную арку.

    Присоедините двигатель стержнем к центру колеса, чтобы преобразовать вращение колеса во вращение внутри двигателя.Это вращение внутри двигателя затем может быть преобразовано в электрическую энергию. Повышенная эффективность преобразования оборотов колеса в обороты двигателя может быть достигнута за счет использования шестерен.

    Проведите шток от колеса к двигателю. К концу стержня прикрепите большую шестерню, а к концу мотора прикрепите шестерню меньшего размера. Соедините две шестерни так, чтобы каждый поворот большей шестерни приводил к большему количеству оборотов меньшей, прикрепленной к двигателю.

    Подключите двигатель к аккумулятору, подключив положительный и отрицательный провода к соответствующим электродам на аккумуляторе.Электричество можно хранить до использования.

    Накройте двигатель, шестерни, если они используются, и аккумулятор пластиковой пленкой или каким-либо другим средством защиты от погодных условий.

Объяснение гидроэнергетики — Управление энергетической информации США (EIA)

Гидроэнергетика — это энергия движущейся воды

Люди давно используют силу воды, текущей в ручьях и реках, для производства механической энергии. Гидроэнергетика была одним из первых источников энергии, используемых для производства электроэнергии, и до 2019 года гидроэнергетика была крупнейшим источником общего годового U.S. возобновляемая генерация электроэнергии.

В 2020 году на долю гидроэлектроэнергии приходилось около 7,3% от общего объема производства электроэнергии в коммунальном масштабе США 1 и 37% от общего объема производства электроэнергии из возобновляемых источников в коммунальном масштабе. Доля гидроэлектроэнергии в общем объеме производства электроэнергии в США со временем снизилась, в основном из-за увеличения производства электроэнергии из других источников.

Гидроэнергетика зависит от круговорота воды

  • Солнечная энергия нагревает воду на поверхности рек, озер и океанов, что приводит к ее испарению.
  • Водяной пар конденсируется в облака и выпадает в виде осадков — дождя и снега.
  • Осадки собираются в ручьях и реках, которые впадают в океаны и озера, где они испаряются и снова начинают цикл.

Количество осадков, которые стекают в реки и ручьи в географической области, определяет количество воды, доступной для производства гидроэлектроэнергии. Сезонные колебания количества осадков и долгосрочные изменения в структуре осадков, такие как засухи, могут иметь большое влияние на доступность производства гидроэлектроэнергии.

Источник: адаптировано из Национального проекта развития энергетического образования (общественное достояние)

Источник: Управление долины Теннесси (общественное достояние)

Гидроэлектроэнергия вырабатывается с помощью движущейся воды

Поскольку источником гидроэлектроэнергии является вода, гидроэлектростанции обычно располагаются на источнике воды или рядом с ним. Объем потока воды и изменение высоты — или падения, часто называемого напором — от одной точки к другой определяют количество доступной энергии в движущейся воде.Как правило, чем больше расход воды и чем выше напор, тем больше электроэнергии может производить гидроэлектростанция.

На гидроэлектростанциях вода течет по трубе или водопроводу , затем толкает лопасти турбины и вращает их, вращая генератор для выработки электроэнергии.

Обычные гидроэлектростанции включают

  • Русловые системы , где сила течения реки оказывает давление на турбину.Сооружения могут иметь водослив в водотоке для отвода потока воды к гидротурбинам.
  • Системы хранения , где вода накапливается в резервуарах, созданных плотинами на ручьях и реках, и сбрасывается через гидротурбины по мере необходимости для выработки электроэнергии. Большинство гидроэнергетических объектов США имеют плотины и водохранилища.

Гидроэлектростанции с гидроаккумулятором — это тип гидроаккумулирующей системы, в которой вода перекачивается из источника воды в водохранилище на более высоком уровне и сбрасывается из верхнего водохранилища в гидротурбины, расположенные ниже верхнего резервуара.Электроэнергия для перекачки может поставляться гидротурбинами или другими типами электростанций, включая ископаемое топливо или атомные электростанции. Обычно они перекачивают воду в хранилище, когда спрос на электроэнергию и затраты на ее производство и / или когда оптовые цены на электроэнергию относительно низкие, и высвобождают накопленную воду для производства электроэнергии в периоды пикового спроса на электроэнергию, когда оптовые цены на электроэнергию относительно высоки. Гидроэлектростанции с гидроаккумулятором обычно используют больше электроэнергии для перекачки воды в верхние водохранилища, чем они производят с накопленной водой.Таким образом, гидроаккумулирующие сооружения имеют чистый отрицательный баланс выработки электроэнергии. Управление энергетической информации США классифицирует выработку электроэнергии на гидроаккумулирующих гидроэлектростанциях как отрицательную.

История гидроэнергетики

Гидроэнергетика — один из старейших источников энергии для производства механической и электрической энергии, и до 2019 года она была крупнейшим источником общего годового производства электроэнергии из возобновляемых источников в США.Тысячи лет назад люди использовали гидроэнергетику, чтобы крутить гребные колеса на реках для измельчения зерна. До того, как в Соединенных Штатах стали доступны паровая энергия и электричество, зерновые и лесопильные заводы питались напрямую от гидроэнергии. Первое промышленное использование гидроэлектроэнергии для выработки электроэнергии в Соединенных Штатах было в 1880 году для питания 16 щеточно-дуговых ламп на фабрике стульев Росомахи в Гранд-Рапидс, штат Мичиган. Первая в США гидроэлектростанция для продажи электроэнергии открылась на реке Фокс недалеко от Аплтона, штат Висконсин, 30 сентября 1882 года.

В Соединенных Штатах работает около 1450 обычных и 40 гидроаккумулирующих гидроэлектростанций. Самая старая действующая гидроэлектростанция в США — это гидроэлектростанция Whiting в Уайтинге, штат Висконсин, которая была введена в эксплуатацию в 1891 году и имеет общую генерирующую мощность около 4 мегаватт (МВт). Большая часть гидроэлектроэнергии в США производится на крупных плотинах на крупных реках, и большинство из этих плотин гидроэлектростанций были построены до середины 1970-х годов федеральными правительственными агентствами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *