Какое давление газа в газопроводе низкого давления: Как газ доставляется потребителям

Содержание

Типы и классификация газопроводов

По выполняемым функциям:

  • Магистральные газопроводы – используются для доставки газа на большие расстояния. На магистрали через определенный промежуток установлены газокомпрессорные станции, которые поддерживают давление. На конечном пункте магистрального трубопровода находятся газораспределительные станции, в которых давление снижается до необходимого уровня для снабжения потребителей.
  • Газопроводы распределительных сетей — используются для доставки газа от газораспределительных станций к конечному пользователю.

По давлению газа — высокого, среднего и низкого давления:

Давление газа Применение Диаметр труб
высокого давления категории I-a более 1,2 МПа применяют для подключения к газовой системе паровых и турбинных установок, а также теплоэлектростанций 1000-1200 мм
высокого давления категории I 0,6 — 1,2 МПа для передачи газа в газораспределительные пункты 1000-1200 мм
высокого давления категории II 0,3 — 0,6 МПа Поставляется в газораспределительные пункты для жилых домов и в промышленные объекты 500 -1000 мм
среднего давления категории III 5 КПа — 0,3 МПа для подведения газа к газораспределительным пунктам по трубам среднего давления, находящимся на жилых зданиях 300 — 500 мм
среднего давления категории IV менее 5 КПа непосредственно в жилые дома менее 300 мм

По типу прокладки: надземные, наземные, подземные, подводные.

Стальные трубы применяются для строительства надземных установок, а стальные и полимерные трубы используют для строительства подземных. Именно на полимерные трубы все чаще падает выбор в последнее время благодаря таким свойствам, как устойчивость к коррозии, и, следовательно, долговечность. Вместе с этим отпадает необходимость в определении способов антикоррозионной защиты.

Конструирование, строительство газопроводов, которые находятся в регионах с определенными условиями, должны исполняться, учитывая рельеф территории, геологическое строение грунта, климатические и сейсмические условия, а также другие воздействия.

Проблемы газопротребления сегодня

Мы резко перешли от простых отечественных котлов КЧМ и АОГВ к оборудованию с более совершенными системами управления таких известных во всем мире производителей, как Viessmann, Buderus, Vaillant, а также других «законодателей моды» в области отопительного оборудования. В этом немалая заслуга торговых компаний и представительств, которые занимаются активным внедрением современных технологий в системы газопотребления в России.

Производители техники постоянно форсируют развитие инноваций и усиленно работают над новыми решениями, которые позволяют более экономно использовать газовое топливо, поддерживать необходимый уровень экологической безопасности и обеспечивать высокий уровень комфорта. Однако, как известно, ни один прибор не работает сам по себе. Для того чтобы его характеристики соответствовали заявленным параметрам, воздействие на окружающую среду было минимальным, максимально экономились энергетические ресурсы, необходимо обеспечить перед газоиспользующим оборудованием стабильное давление газа именно того значения, которое указано в паспорте завода-изготовителя. Величина номинального давления природного газа, определенная для устойчивой работы отопительных приборов, составляет не менее 20 мбар (200 мм вод. ст.). В зимнее время, особенно в период сильных морозов, когда потребление газа растет, давление в сети значительно снижается. Пониженное давление вызывает падение мощности котла, возможности которого, таким образом, используются не полностью, и он работает вполсилы.
При этом возникают существенные проблемы, которые зачастую приводят не только к перебоям в работе, но и к остановке котла. Так многие плюсы превращаются в минусы, и вместо энергоэффективности нас ждет дорогостоящий ремонт. Какие же сети газопотребления мы имеем наряду с современными приборами зарубежного производства? А имеем мы сети, построенные и строящиеся до сих пор по устаревшей нормативной базе, которая не менялась со времен тех самых КЧМ и АОГВ. Законодательно закрепленный СНиП 42- 01-2002 «Газораспределительные системы» является переизданием СНиП 2.04.08-87* Госстроя СССР без существенных изменений в части проектирования и устройства внутридомового газового оборудования. По этой причине газораспределительные организации не могут обеспечить в сети абонента стабильное номинальное давление газа 20 мбар. Пока законодательные органы работают над внесением изменений и дополнений в нормативные акты и документы, попробуем разобраться, можно ли исправить ситуацию и избежать падения мощности оборудования? Рассмотрим существующие варианты технологических схем газораспределения и газопотребления населенных пунктов.

Первый вариант 

Сеть (рис. 1), в которой подача газа производится от пункта редуцирования газа (ПРГ) по распределительным газопроводам низкого давления 20 мбар к оборудованию потребителя.

Страница не найдена

Северо-Запад

143405, г. Красногорск, ул.Заводская, д.26

+7 (498) 569-03-04

Array


Все контакты филиала

Юго-Восток

140411 г.

Коломна, пр. Кирова, д. 9

+7 (496) 615-67-04

Array


Все контакты филиала

Север

141002, г. Мытищи, ул. Белобородова, д.6

+7 (498) 687-47-04

Array


Все контакты филиала

Восток

142412, г. Ногинск, ул. Ревсобраний, д.1

+7 (496) 516-80-04

Array


Все контакты филиала

Запад

143000, г. Одинцово, Транспортный пр-д., д.5

+7 (498) 690-43-04

Array


Все контакты филиала

Юг

142110, г. Подольск, ул.Кирова, д.31-а

+7 (496) 769-76-04

Array


Все контакты филиала

Не ваш филиал?

Омск – город будущего!. Официальный портал Администрации города Омска

Омск — город будущего!

Город Омск основан в 1716 году. Официально получил статус города в 1782 году. С 1934 года — административный центр Омской области.

Площадь Омска — 566,9 кв. км. Территория города разделена на пять административных округов: Центральный, Советский, Кировский, Ленинский, Октябрьский. Протяженность города Омска вдоль реки Иртыш — около 40 км.

Расстояние от Омска до Москвы — 2 555 км.

Координаты города Омска: 55. 00˚ северной широты, 73.24˚ восточной долготы.

Климат Омска — резко континентальный. Зима суровая, продолжительная, с устойчивым снежным покровом. Лето теплое, чаще жаркое. Для весны и осени характерны резкие колебания температуры. Средняя температура самого теплого месяца (июля): +18˚С. Средняя температура самого холодного месяца (января): –19˚С.

Часовой пояс: GMT +6.

Численность населения на 1 января 2020 года составляет 1 154 500 человек.

Плотность населения — 2 036,7 человек на 1 кв. км.

Омск — один из крупнейших городов Западно-Сибирского региона России. Омская область соседствует на западе и севере с Тюменской областью, на востоке – с Томской и Новосибирской областями, на юге и юго-западе — с Республикой Казахстан.

©Фото Б.В. Метцгера

Герб города Омска

Омск — крупный транспортный узел, в котором пересекаются воздушный, речной, железнодорожный, автомобильный и трубопроводный транспортные пути. Расположение на пересечении Транссибирской железнодорожной магистрали с крупной водной артерией (рекой Иртыш), наличие аэропорта обеспечивают динамичное и разностороннее развитие города.

©Фото Алёны Гробовой

Город на слиянии двух рек

В настоящее время Омск — крупнейший промышленный, научный и культурный центр Западной Сибири, обладающий высоким социальным, научным, производственным потенциалом.

©Фото Б.В. Метцгера

Тарские ворота

Сложившаяся структура экономики города определяет Омск как крупный центр обрабатывающей промышленности, основу которой составляют предприятия топливно-энергетических отраслей, химической и нефтехимической промышленности, машиностроения, пищевой промышленности.

©Фото Б.В. Метцгера

Омский нефтезавод

В Омске широко представлены финансовые институты, действуют филиалы всех крупнейших российских банков, а также брокерские, лизинговые и факторинговые компании.

Омск имеет устойчивый имидж инвестиционно привлекательного города. Организации города Омска осуществляют внешнеторговые отношения более чем с 60 странами мира. Наиболее активными торговыми партнерами являются Испания, Казахстан, Нидерланды, Финляндия, Украина, Беларусь.

Город постепенно обретает черты крупного регионального и международного делового центра с крепкими традициями гостеприимства и развитой инфраструктурой обслуживания туризма. Год от года город принимает все больше гостей, растет число как туристических, так и деловых визитов, что в свою очередь стимулирует развитие гостиничного бизнеса.

©Фото Б.В. Метцгера

Серафимо-Алексеевская часовня

Омск — крупный научный и образовательный центр. Выполнением научных разработок и исследований занимаются более 40 организаций, Омский научный центр СО РАН. Высшую школу представляют более 20 вузов, которые славятся высоким уровнем подготовки специалистов самых различных сфер деятельности. Омская высшая школа традиционно считается одной из лучших в России, потому сюда едут учиться со всех концов России, а также из других стран.

©Фото А.Ю. Кудрявцева

Ученица гимназии № 75

Высок культурный потенциал Омска. У омичей и гостей нашего города всегда есть возможность вести насыщенную культурную жизнь, оставаясь в курсе современных тенденций и течений в музыке, искусстве, литературе, моде. Этому способствуют городские библиотеки, музеи, театры, филармония, досуговые центры.

©Фото В.И. Сафонова

Омский государственный академический театр драмы

Насыщена и спортивная жизнь города. Ежегодно в Омске проходит Сибирский международный марафон, комплексная городская спартакиада. Во всем мире известны такие омские спортсмены, как борец Александр Пушница, пловец Роман Слуднов, боксер Алексей Тищенко, гимнастка Ирина Чащина, стрелок Дмитрий Лыкин.

©Фото из архива управления информационной политики Администрации города Омска

Навстречу победе!

Богатые исторические корни, многообразные архитектурные, ремесленные, культурные традиции, широкие возможности для плодотворной деятельности и разнообразного отдыха, атмосфера доброжелательности и гостеприимства, которую создают сами горожане, позволяют говорить о том, что Омск — город открытых возможностей, в котором комфортно жить и работать.

©Фото из архива пресс-службы Ленинского округа

Омск — город будущего!

Как работает система доставки природного газа?

Как работает система доставки природного газа?

Как работает система доставки природного газа?

Перетекание газа от более высокого давления к более низкому — фундаментальный принцип системы подачи природного газа. Величина давления в трубопроводе измеряется в фунтах на квадратный дюйм.

Из скважины природный газ поступает в «сборные» линии, которые похожи на ветки на дереве, увеличиваясь по мере приближения к центральному пункту сбора.

Системы сбора

Системе сбора может потребоваться один или несколько полевых компрессоров для перемещения газа в трубопровод или на перерабатывающий завод. Компрессор — это машина, приводимая в действие двигателем внутреннего сгорания или турбиной, которая создает давление, чтобы «протолкнуть» газ по трубопроводам. Большинство компрессоров в системе подачи природного газа используют небольшое количество природного газа из собственных трубопроводов в качестве топлива.

Некоторые системы сбора природного газа включают установку для обработки, которая выполняет такие функции, как удаление примесей, таких как вода, диоксид углерода или сера, которые могут вызвать коррозию трубопровода, или инертных газов, таких как гелий, которые могут снизить энергетическую ценность газа. Перерабатывающие предприятия также могут удалять небольшие количества пропана и бутана. Эти газы используются в качестве химического сырья и в других целях.

Система передачи

Из системы сбора природный газ поступает в систему передачи, которая обычно состоит из трубопровода из высокопрочной стали протяженностью около 272 000 миль.

Эти большие линии электропередачи для природного газа можно сравнить с национальной системой автомагистралей между штатами. Они перемещают большие объемы природного газа за тысячи миль от регионов добычи в местные распределительные компании (НРС).Давление газа в каждой секции трубопровода обычно составляет от 200 до 1500 фунтов на квадратный дюйм, в зависимости от типа области, в которой работает трубопровод. В качестве меры безопасности трубопроводы спроектированы и построены так, чтобы выдерживать гораздо большее давление, чем когда-либо фактически достигается в системе. Например, трубопроводы в густонаселенных районах работают при давлении менее половины от расчетного.

Многие крупные межгосударственные трубопроводы являются «кольцевыми» — есть две или более линий, идущих параллельно друг другу на одной полосе отчуждения.Это обеспечивает максимальную производительность в периоды пикового спроса.

Компрессорные станции

Компрессорные станции

расположены примерно через каждые 50-60 миль вдоль каждого трубопровода, чтобы повысить давление, которое теряется из-за трения природного газа, движущегося по стальной трубе. Многие компрессорные станции полностью автоматизированы, поэтому оборудование можно запускать или останавливать из центральной диспетчерской трубопровода. В диспетчерской также можно дистанционно управлять запорными клапанами в системе передачи.Операторы системы хранят подробные рабочие данные по каждой компрессорной станции и постоянно корректируют набор работающих двигателей, чтобы обеспечить максимальную эффективность и безопасность.

Природный газ движется по транспортной системе со скоростью до 30 миль в час, поэтому доставка газа из Техаса в пункт приема коммунальных услуг на северо-востоке занимает несколько дней. Попутно существует множество взаимосвязей с другими трубопроводами и другими инженерными системами, что дает системным операторам большую гибкость при транспортировке газа.

Линейный пакет

50-мильный участок 42-дюймовой линии электропередачи, работающий при давлении около 1000 фунтов, содержит около 200 миллионов кубических футов газа — этого достаточно для питания кухонной плиты более 2000 лет. Количество газа в трубе называется «линейным пакетом».

Повышая и понижая давление на любой сегмент трубопровода, трубопроводная компания может использовать этот сегмент для хранения газа в периоды, когда спрос на конце трубопровода меньше.Использование Linepack таким образом позволяет операторам трубопроводов очень эффективно справляться с почасовыми колебаниями спроса.

Трубопроводы природного газа и коммунальные службы используют очень сложные компьютерные модели потребительского спроса на природный газ, которые связывают дневные и почасовые тенденции потребления с сезонными и экологическими факторами. Вот почему клиенты могут положиться на надежность природного газа — когда он нужен, он есть.

Выходы

Когда природный газ по магистральному трубопроводу достигает местного газового предприятия, он обычно проходит через «затворную станцию».«Коммунальные предприятия часто имеют шлюзовые станции, принимающие газ из разных мест и из нескольких разных трубопроводов. Затворные станции служат трем целям. Во-первых, они снижают давление в линии с уровней передачи (200–1 500 фунтов) до уровней распределения, которые варьируются от ¼ фунта до 200 фунтов. Затем добавляется одорант, характерный кислый запах, связанный с природным газом, так что потребители могут почувствовать запах даже небольшого количества газа. Наконец, шлюзовая станция измеряет расход газа, чтобы определить полученное количество утилитой.

Система распределения

От шлюзовой станции природный газ поступает в распределительные трубопроводы или «магистрали» диаметром от 2 дюймов до более 24 дюймов. Внутри каждой распределительной системы есть секции, которые работают при разном давлении, с регуляторами, контролирующими давление. Некоторые регуляторы дистанционно управляются коммунальным предприятием для изменения давления в частях системы для оптимизации эффективности. Вообще говоря, чем ближе природный газ к потребителю, тем меньше диаметр трубы и ниже давление.

Как правило, центральный центр управления газовой компании непрерывно контролирует расход и давление в различных точках системы. Операторы должны гарантировать, что газ достигнет каждого потребителя с достаточным расходом и давлением для заправки оборудования и приборов. Они также обеспечивают, чтобы давление оставалось ниже максимального давления для контролируемых секций внутри системы. Линии распределения обычно работают при давлении менее одной пятой от расчетного.

По мере прохождения газа через систему регуляторы регулируют поток от более высокого до более низкого давления.Если регулятор обнаруживает, что давление упало ниже заданного значения, он соответственно откроется, чтобы пропустить больше газа. И наоборот, когда давление поднимается выше заданного значения, регулятор закроется для регулировки. В качестве дополнительной меры безопасности на трубопроводах устанавливаются предохранительные клапаны для выпуска газа в атмосферу, где это необходимо.

Сложные компьютерные программы используются для оценки пропускной способности сети и обеспечения того, чтобы все клиенты получали достаточные запасы газа при минимальном уровне давления или выше, требуемом их газовыми приборами.

Распределительные сети соединены между собой в несколько схем сети со стратегически расположенными запорными клапанами. Эти клапаны сводят к минимуму необходимость прерывания обслуживания заказчиком во время операций по техническому обслуживанию и в аварийных ситуациях.

Подача природного газа в дом

Природный газ проходит из магистрали в дом или офис по так называемой линии обслуживания. Как правило, коммунальное предприятие, занимающееся природным газом, отвечает за техническое обслуживание и эксплуатацию газопровода и объектов вплоть до счетчика газа в жилом секторе. Ответственность за все оборудование и линии газоснабжения после бытового счетчика лежит на заказчике.

Когда газ достигает счетчика потребителя, он проходит через другой регулятор давления, чтобы при необходимости снизить его давление до менее ¼ фунта. По некоторым коммуникационным линиям идет газ, который уже находится под очень низким давлением. Это нормальное давление для природного газа в бытовой трубопроводной системе, которое меньше давления, создаваемого ребенком, надувающим пузыри через соломинку в стакане с молоком.Когда газовая печь или плита включена, давление газа немного выше, чем давление воздуха, поэтому газ выходит из горелки и воспламеняется своим знакомым чистым голубым пламенем.

Информация для правильного определения размеров газовых линий для использования с безбаквальными водонагревателями — Справочная служба Eccotemp

ООО «Эккотемп Системс». Бесконтактное водяное отопление

ФАКТЫ О ГАЗОПРОВОДАХ

Информация по правильному выбору газовых линий для использования с водонагревателями без резервуаров

Для любого газового прибора важно, чтобы система подачи газа имела надлежащий размер, чтобы выдерживать нагрузку системы в БТЕ. Бесконтактные водонагреватели могут быть отличным решением для обеспечения горячей водой; тем не менее, большинство водонагревателей без резервуара имеют мощность от 140 000 до 200 000 и более БТЕ, что делает водонагреватель без резервуара одним из самых крупных отдельных приборов в типичной газовой системе. Необходимо убедиться, что система может обрабатывать мощность безбаквального водонагревателя вместе со всеми другими газовыми приборами в системе. В этом руководстве будут рассмотрены основы и факты определения размеров газовых труб для систем природного газа низкого давления (менее 2 фунтов на кв. Дюйм) с использованием жестких железных труб.

Факты о газотрубной системе

Будет ли работать безбаковый водонагреватель на ½-дюймовой газовой магистрали?

Да и Нет. Типичная бытовая газовая система — это система низкого давления, что означает, что в дом подается газ с давлением около 7 дюймов водяного столба. (дюймы водяного столба). Размер трубопровода должен быть достаточным, чтобы падение давления составляло полдюйма водяного столба или меньше, когда все газовые приборы включены. Это может быть ограничивающим фактором при попытке использовать существующие трубопроводы и модернизации от типичного водонагревателя резервуарного типа до водонагревателя без резервуара.Как правило, необходимо модернизировать газопровод для поддержки безбаквального водонагревателя из-за необходимого объема топлива. В таблицах 2 и 3 представлена ​​производительность по размеру и длине трубы на основе максимально допустимых падений давления. Во всех случаях для газового прибора объемом около 200 000 БТЕ потребуется как минимум ¾-дюймовая линия подачи газа.

В определенных условиях может использоваться газовая линия диаметром ½ дюйма. В Национальном кодексе топливного газа 2012 года (NFPA54. ANSI Z223.1) 3,0 дюйма водяного столба Добавлен график падения давления для определенных условий.Эта диаграмма позволяет установить газовый прибор на 200 000 БТЕ на ½-дюймовую газовую линию длиной до 40 футов. Однако должны быть соблюдены следующие условия: Минимальное статическое давление газа должно составлять 8 дюймов водяного столба. или выше; Расчетное падение давления (статическое давление минус падение давления на 3,0 дюйма) должно быть больше, чем максимальное минимальное давление газа, требуемое для любого из газовых приборов в системе. См. Таблицу 4, где указаны размеры и пропускная способность труб с 3-дюймовым водяным столбом. падение давления. Чтобы выбрать трубу правильного диаметра, сначала определите давление подачи природного газа в систему.

Будет ли существующий регулятор и счетчик поддерживать безбаковый водонагреватель?

Газовые системы новой конструкции, как правило, представляют собой гибридную систему давления, в которой входное давление составляет около 2 фунтов на квадратный дюйм, и каждое устройство или группа устройств обслуживаются одним регулятором. Во многих старых районах и зданиях система поставляется с одной газовой системой низкого давления (около 7 дюймов водяного столба) от поставщика. В любом случае мощность регулятора (ов) и счетчика необходимо будет проверить, чтобы убедиться, что система может подавать достаточно газа для поддержки добавления в систему безбаквального водонагревателя.В системах низкого давления давление должно быть больше, чем наивысшее минимальное требование для газовых приборов, плюс соответствующий перепад давления.

Газовая линия какого размера мне понадобится для моего безрезервуарного водонагревателя?

Размер газовой линии будет зависеть от номинальной мощности в BTU водонагревателя, других газовых приборов и места их установки на каждом ответвлении от счетчика и регулятора. Существует два метода определения требуемого размера трубы: метод наибольшей длины или метод длины ответвления.См. «Определение размеров газовой системы» для получения дополнительной информации.

Как мне узнать, какой у меня регулятор или измеритель размера?

Каждый метр имеет производительность в кубических футах в час (CFH). Найдите этот регулятор числа и умножьте его на 1024 (BTUH / CFH), чтобы получить приблизительную мощность для природного газа. Мощность счетчика и регулятора должна быть больше, чем общая сумма максимального номинала в БТЕ всех бытовых приборов в доме. Если мощность системы слишком мала, газовые приборы не будут получать объем газа, необходимый для правильной работы.

Что означают все эти разные давления газа?

Давление газа можно измерить двумя способами: в фунтах на квадратный дюйм (psi) или в дюймах водяного столба (дюймы водяного столба). Сторона высокого давления в гибридных газовых системах, работающих под давлением, обычно измеряется в фунтах на квадратный дюйм. Это давление составляет около 2 фунтов на квадратный дюйм. Дюймы водяного столба обычно используются для измерения газовых систем низкого давления, которые питают большинство приборов. Например, 27,7 дюйма вод. в 1 фунт / кв. дюйм.

Что такое дюймы водяного столба?

дюйма водяного столба — это мера того, сколько силы требуется, чтобы подтолкнуть столб воды вверх на несколько дюймов. Обычно он используется для измерения газовых систем низкого давления.

Как вы измеряете давление газа?

Вам понадобится прибор, называемый манометром. Этот инструмент позволяет измерять давление газа в системе. Доступны манометры, которые измеряют определенный диапазон давления в дюймах водяного столба или фунтах на квадратный дюйм. Цифровой манометр может измерять более широкий диапазон давлений. См. Инструкции производителя по правильному использованию манометра.

Где вы можете найти рейтинг в BTU для моих приборов?

На каждом приборе должна быть табличка с техническими данными. На этой табличке будут указаны номинальные значения БТЕ устройства и необходимое давление газа для правильной работы. Информацию о том, как разместить паспортную табличку на каждом газовом приборе, см. В инструкциях производителя.

Может ли газовый клапан отрицательного давления решить проблему недостаточного размера газовой системы?

Хотя газовый клапан отрицательного давления в приборе может работать при очень низком давлении газа, он может оказывать неблагоприятное воздействие на газовую систему меньшего размера. Этот тип устройства может фактически украсть газ из других устройств, таких как печь, и, возможно, вызвать неприятные перебои в работе. Размеры трубопроводов и системы должны выдерживать объем газа, а не только давление.

Как малоразмерная газовая система повлияет на бытовую технику?

Газовая система недостаточного размера может привести к ухудшению работы приборов. Это может привести к образованию сажи в горелках, выключению контрольных ламп и горелок или к образованию конденсата в теплообменнике печи или водонагревателя.Конденсат вызовет коррозию и, в конечном итоге, неисправность в приборах, не предназначенных специально для этого. Загрязнение может засорить горелки или дымоходы, что может привести к выходу прибора из строя или образованию вредных выхлопных газов, таких как угарный газ.

Размер газового соединения в соответствии с моделью Eccotemp:

  • Переносные (L5, EL5, CEL5, L7, EL7, L10, CEL10) — 1/2 «
  • Средний (FVi12, i12) — 1/2 «
  • Wholehome (20H / HI, 45H / HI, EL22 / 22i) — 3/4 дюйма
  • Электрический (iE-11, iE-18, iE-27) — 3/4 дюйма

Знайте типы, прежде чем копать

Природный газ проходит от устья скважины к конечным потребителям по ряду трубопроводов. Эти трубопроводы, включая выкидные трубопроводы, линии сбора, линии передачи, распределительные линии и линии обслуживания, транспортируют газ с переменным давлением. Чем выше давление газа в трубопроводе, тем более опасной может быть авария с этим трубопроводом.

Трубопроводы обычно прокладываются под землей, и маркеры трубопроводов не всегда располагаются непосредственно над трубопроводами.

Трубопроводы

Выкидные трубопроводы соединяются с одним устьем добывающего месторождения.По напорным трубопроводам природный газ перемещается от устья скважины в близлежащие резервуары для хранения, компрессорные станции передачи или дожимные станции перерабатывающих предприятий. Отводные трубопроводы представляют собой относительно узкие трубы, по которым неодорированный сырой газ проходит под давлением примерно 250 фунтов на квадратный дюйм (фунт / кв. Дюйм).

Как правило, они зарыты на глубину 4 фута под землей и могут подвергаться коррозии, особенно если они переносят влажный газ. Они также подвержены утечке метана. По данным EPA, «утечка метана из промысловых трубопроводов является одним из крупнейших источников выбросов в газовой промышленности.»

Линии сбора

Линии сбора собирают газ из нескольких трубопроводов и перемещают его в централизованные точки, такие как перерабатывающие предприятия, резервуары или морские доки. Линии сбора представляют собой стальные трубы среднего диаметра (обычно менее 18 дюймов в диаметре), по которым проходит неодорированный неочищенный газ под давлением примерно 715 фунтов на квадратный дюйм.

Как правило, трубопроводы заглубляются на глубину 4 футов под землей и несут в себе коррозионные вещества, которые могут повлиять на целостность трубопровода в течение нескольких лет.

Магистральные трубопроводы

По трубопроводам природный газ транспортируется на большие расстояния, а иногда и через государственные границы, обычно к компрессорам и от них, или к распределительному центру или хранилищу. Линии электропередачи представляют собой большие стальные трубы (обычно от 2 до 42 дюймов в диаметре; чаще всего более 10 дюймов в диаметре), которые регулируются на федеральном уровне. Они переносят неодорированный газ под давлением примерно от 200 до 1200 фунтов на квадратный дюйм.

Трубопроводы передачи могут выйти из строя из-за разрыва швов, коррозии, разрушения материалов и дефектной сварки.

Распределительные трубопроводы

Распределительные трубопроводы, также известные как «магистральные», являются промежуточным звеном между линиями передачи высокого давления и линиями обслуживания низкого давления. Распределительные трубопроводы работают при промежуточном давлении. В этом типе трубопровода используются трубы малого и среднего размера (от 2 до 24 дюймов в диаметре), которые регулируются на федеральном уровне и переносят одорированный газ при различных уровнях давления, от всего лишь 0,3 фунта на квадратный дюйм до 200 фунтов на квадратный дюйм.

Распределительные трубопроводы обычно работают ниже своей пропускной способности и изготавливаются из различных материалов, включая сталь, чугун, пластик и иногда медь.

Сервисные трубопроводы

Сервисные трубопроводы подключаются к счетчику, который поставляет природный газ отдельным потребителям. Подводящие трубопроводы представляют собой узкие трубы (обычно менее 2 дюймов в диаметре), по которым проходит одорированный газ при низком давлении, например 6 фунтов на квадратный дюйм. Подводящие трубопроводы обычно изготавливаются из пластика, стали или меди.

Звонок 811

В каждом штате США есть телефонный центр 811, который предоставляет различный объем информации о расположении инженерных коммуникаций, включая газопроводы.Если вы планируете какой-либо проект, связанный с раскопками в вашей собственности, настоятельно рекомендуется использовать эту услугу или иным образом определить расположение газопроводов и других инженерных сетей на вашей территории. Коммунальные предприятия обычно маркируют вашу собственность в течение нескольких дней после вашего звонка, поэтому убедитесь, что вы звоните задолго до того, когда планируете копать.

Даже небольшие проекты, такие как установка столбов для забора, могут привести к проблемам, если домовладельцы продолжат работу, не зная, что может быть под местом, где они копают.Узнавайте о методах сноса, пока вы занимаетесь этим.

Новое строительство жилых домов Программа 2 PSIG

Системы трубопроводов природного газа в жилых односемейных и многосемейных домах обычно работают при стандартном давлении подачи, 1/3 фунта на квадратный дюйм. Наша программа с манометром 2 фунта на квадратный дюйм (2 фунта на квадратный дюйм) обеспечивает давление подачи выше стандартного, помогая уменьшить размер и стоимость системы трубопроводов природного газа в новых жилых домах, где расстояние от счетчика до первого прибор отличный.

Преимущества

Проще говоря, 2 фунта на квадратный дюйм означает меньшие затраты.


Наша программа 2 PSIG поможет вам с наименьшими затратами доставлять газовые приборы и подключения, которые предпочитают жители, а строители знают, что они обеспечат жильцам комфорт, удержание и низкие счета за коммунальные услуги. Как правило, эксплуатационные расходы жилых домов, оборудованных системами нагрева воды на природном газе, комфортного отопления, приготовления пищи и сушки одежды, намного ниже, чем у электрических альтернатив.


Обеспечивая более высокое рабочее давление, можно уменьшить как размер, так и стоимость системы трубопроводов природного газа.По мере того, как жилые дома становятся все больше и сложнее с дополнительными приборами, работающими на природном газе, традиционный метод обеспечения необходимого объема природного газа достигается за счет увеличения размера трубы. Использование 2 фунтов на квадратный дюйм позволит уменьшить размер трубы, что приведет к экономии материальных и трудовых затрат и повышению эффективности, поскольку трубы меньшего размера проще в обращении и установке.


Программа 2 PSIG доступна для домов на одну семью, а также проектов многоквартирных домов, таунхаусов и кондоминиумов на нашей территории обслуживания, которые соответствуют всем требованиям программы.

Как принять участие

  • Подать онлайн-заявку на жилищное строительство (запрос на газоснабжение жилищного фонда)
  • Свяжитесь с вашим представителем по планированию SoCalGas, прежде чем указывать какую-либо систему 2 PSIG
  • Загрузите, просмотрите, заполните и отправьте форму запроса 2 PSIG и соглашение своему представителю по планированию SoCalGas
    • Примечание. Требования к программе указаны в Соглашении 2 PSIG
  • Ознакомьтесь с требованиями к установке вместе с представителем SoCalGas по планированию и сантехническим подрядчиком.

Основы распределения 2 PSIG

Дело не в «давлении». . . это «перепад давления», который перемещает природный газ внутри трубы. Системы трубопроводов в жилых домах традиционно работают при 8-дюймовом водяном столбе (WC) или 1/3 PSIG. Повышение давления до 2 фунтов на квадратный дюйм дает несколько преимуществ при строительстве жилых домов, где расстояние от счетчика до первого прибора велико.


Размер трубы определяется количеством энергии, которое может быть потеряно (также называемым перепадом давления) для перемещения природного газа, при этом остается давление, достаточное для удовлетворения минимальных требований органов управления устройством (обычно от 4 до 6 дюймов). .ТУАЛЕТ). По мере роста давления увеличивается и допустимый перепад давления. Чем больше перепад давления, тем большее количество природного газа можно «протолкнуть» через трубу для данного размера. Для данного количества природного газа размер трубы может быть уменьшен по мере увеличения допустимого падения давления. Как показано на рисунке ниже, количество природного газа (934 кубических фута в час или CFH), которое может быть перемещено по трубе длиной 100 футов — 3/4 дюйма (работающей при давлении 2 фунта на квадратный дюйм), потребует диаметра 2 дюйма. труба, когда та же система работает на 8-дюймовом унитазе.

Как это работает

Система 2 PSIG — это фактически две разные системы, объединенные в одну. Хотя каждый сегмент системы проектируется отдельно, общая цель состоит в том, чтобы минимизировать размеры труб и снизить стоимость установки. Сегмент 2 фунта на квадратный дюйм используется для подачи природного газа от счетчика к каждой жилой единице. В многоквартирных домах и больших индивидуальных домах на одну семью расстояние от счетчика до первого прибора намного больше, чем в типичных односемейных домах.


Во многих случаях длина этого участка трубы может составлять от 100 до 200 футов. Использование давления 2 фунта на квадратный дюйм обычно приводит к получению трубы диаметром 1/2 или 3/4 дюйма для этого участка по сравнению с трубой диаметром 1 или 1/4 дюйма, обычно используемой в системах низкого давления. Попав внутрь жилого помещения, линейный регулятор снижает давление природного газа до традиционного 8-дюймового туалета. Линейный регулятор необходим, потому что бытовые приборы рассчитаны на сжигание природного газа только при низком давлении.

Конфигурация внутренних трубопроводов природного газа

Существует множество способов настройки внутренней сети трубопроводов природного газа в зависимости от планировки здания, количества приборов в жилом помещении (ах) и расположения счетчика (ов) природного газа. Программа 2 PSIG основана на требованиях программы SoCalGas, в которой каждый жилой дом должен обслуживаться собственным счетчиком природного газа. Каждое жилое здание в некоторой степени уникально, когда дело доходит до проектирования блока счетчиков, необходимого для удовлетворения этого требования, а также других требований, перечисленных в Соглашении 2 PSIG.

Расположение здания относительно магистрали природного газа на улице и линии собственности будет влиять на расположение счетчика (ов). Расположение и конструкция счетчика (ов), в свою очередь, повлияет на конструкцию системы трубопроводов природного газа внутри здания.Следующие ниже примеры представляют собой лишь некоторые из различных возможностей для многоквартирных домов. Система трубопроводов может включать любой утвержденный материал трубопровода и / или комбинацию материалов

Малоэтажная установка с коллектором и ответвлениями

Малоэтажная установка с параллельными ответвлениями

Базовый размер трубы

Во избежание путаницы размеры трубопроводных систем природного газа 2 фунта на квадратный дюйм могут быть подобраны с использованием традиционного метода наибольшей длины в соответствии с UPC (Единые правила водопровода), но с небольшими изменениями. Система 2 PSIG разбита на две независимые секции, каждая из которых имеет размер отдельно.

1) Раздел 2 PSIG

От счетчика к линейному регулятору давления

  • Рассчитайте нагрузку по природному газу (сложив номинальные значения на паспортной табличке) для всех подключенных устройств.
  • Измерьте длину трубы от счетчика до регулятора давления в линии, расположенного внутри жилого помещения.
  • Если имеется несколько линейных регуляторов давления, измерьте расстояние от счетчика до регулятора, наиболее удаленного от счетчика.
  • Максимально допустимое падение давления для секции 2 фунта на квадратный дюйм составляет 1 фунт на квадратный дюйм.
  • Ссылаясь на таблицу A для систем 2PSI с перепадом давления 1PSI, найдите это расстояние в верхнем ряду или следующее большее расстояние, если точное расстояние не указано.
  • Проследите этот столбец до тех пор, пока не будет найдена нагрузка по природному газу или до следующей большей мощности, если точное значение не указано.
  • Вернитесь к левой колонке таблицы и выберите соответствующий размер трубы.
  • Если в системе несколько регуляторов, размер каждого сегмента линии должен соответствовать его фактической нагрузке по природному газу, но с использованием максимальной длины, определенной ранее.

Расположение параллельных ответвлений (секция 2 фунта / кв. Дюйм)


Расположение коллектора и ответвления (секция 2 фунта / кв. Дюйм)

2) Секция низкого давления

Все трубопроводы после регулятора давления в линии

  • Измерьте расстояние от регулятора давления в линии до устройства, наиболее удаленного от регулятора.
  • Используйте это расстояние для определения размеров всех участков аппарата низкого давления.
  • См. Таблицу B для 8 дюймов. В системах с унитазом с перепадом давления в унитазе 1/2 дюйма найдите это расстояние в верхнем ряду или на следующем большем расстоянии, если точное расстояние не указано.
  • Проследите этот столбец до тех пор, пока не будет найдена нагрузка прибора по природному газу или нагрузка для этого участка трубы; найдите следующую большую емкость, если точное значение не указано.
  • Найдите в таблице левый столбец и выберите соответствующий размер трубы.
  • Повторите этот процесс для каждого подключенного устройства или участка трубопровода.

Расположение параллельных ответвлений (секция низкого давления)

Устройство коллектора и ответвления (участок низкого давления)

Приложение

Таблица A. Данные о размерах труб

Максимальная пропускная способность труб различного диаметра и длины в кубических футах природного газа в час при начальном давлении 2,0 фунта на квадратный дюйм и удельном весе природного газа 0,06.

Скачать Adobe PDF, 132 КБ

Таблица B. Данные о размерах труб

Максимальная пропускная способность труб различного диаметра и длины в кубических футах природного газа в час для начального давления 7 дюймов водяного столба с перепадом давления 0,5 дюйма водяного столба и природного газа с удельным весом 0,6

Скачать Adobe PDF, 121

уравнений расхода природного газа низкого давления | 2020-10-31

Существует несколько уравнений и таблиц для определения расхода в трубопроводах природного газа и падений давления, связанных с этими потоками, или наоборот. Цель данной статьи — оценить имеющиеся уравнения потока природного газа низкого давления между собой и с таблицами в кодах.

Предыдущие статьи этой серии были использованы для оценки различных уравнений, используемых для определения падения давления в линиях природного газа высокого давления. Высокое давление определялось как входное давление от 1,5 фунтов на кв. Дюйм (10,3 кПа) до более 50 фунтов на кв. Дюйм (345 кПа). Кроме того, в более ранних статьях этой серии предлагалось, чтобы в качестве обычных материалов для трубопроводов использовались стальные трубы сортамента 40 или полиэтиленовые трубы (PE).Медь типа K также предлагается в кодах для трубопроводов природного газа низкого давления. Внутренний диаметр каждой из этих труб разный. В настоящее время стандартные таблицы существуют как в Национальном кодексе по топливному газу NFPA 54, так и в Международном кодексе по топливному газу ICC для потока природного газа низкого давления в трубопроводах.

Несколько ссылок были использованы для оценки исходного уравнения для сравнения. 2 / (2 * g)) (Уравнение 1)

Где: h L = потеря напора газа в футах (метрах) жидкости — в данном случае природный газ

f = коэффициент трения — безразмерный

L = длина трубы в футах (метрах)

D = внутренний диаметр трубы, те же единицы, что и «L»

V = скорость газа в футах в секунду (метры в секунду)

г = гравитационная постоянная 32.2)

В основе уравнений расхода AGA лежит значение « f », которое является функцией числа Рейнольдса. Классическое уравнение для числа Рейнольдса:

Re = ρ V D / μ (Уравнение 2)

Где: ρ = плотность газа

V = скорость газа

D = внутренний диаметр трубы

μ = газодинамическая вязкость — 6.98311E-06 фунт / фут / сек (0,010392 сантипуаз)

Чтобы помочь в расчетах, когда плотность разбивается (в уравнение закона идеального газа) и скорость (как функция потока и плотности), а затем подставляется в классическое уравнение числа Рейнольдса, следующее уравнение может быть выведено:

Re = 4 Q st 29 Sg P st / (μ π D R T st ) (Уравнение 3)

Где: Q st = Расход газа при стандартных условиях

29 = молекулярная масса воздуха, 28. 9647 фунтов / фунт-моль (28,9647 г / гмоль)

Sg = удельный вес природного газа

P st = стандартное давление газа — 14,696 фунтов на кв. Дюйм (101,325 кПа)

μ = газодинамическая вязкость — 6,98311E-06 фунт / фут / сек (0,010392 сантипуаз)

π = PI = 3,14159

D = внутренний диаметр трубы

R = Универсальная газовая постоянная, 1545,349 фунта f фут / (фунт-моль ° R) [8314.41 Дж / (кмоль ° К)]

T st = Стандартная температура газа, 518,67 ° R (288,15 ° K)

(Примечание: число Рейнольдса является «безразмерным», что означает, что все единицы в числителе и знаменателе должны быть отменены. Уравнения 2 и 3 не были скорректированы, чтобы включать единицы. Читателю потребуется использовать его / ее справочный материал, чтобы определить необходимые поправочные коэффициенты).

В газовых трубах встречаются три режима потока: ламинарный поток, частично турбулентный поток и полностью турбулентный поток. 0,5 = -2 * log10 (/ (3,7 * D)) (Примечание 2 ниже) (Уравнение 6)

Примечание 1: Раньше значение 2,825 в уравнении 5 было 2,51 и является уравнением Коулбрука-Уайта, 1990 г.

Примечание 2: Полностью турбулентный поток обычно не встречается в газопроводах низкого давления.

Где: Re = Число Рейнольдса

f = коэффициент трения — безразмерный

= шероховатость внутреннего диаметра трубы, те же единицы, что и «D»

D = внутренний диаметр трубы

Согласно Коэльо и Пиньо и «Нефтепереработка и переработка природного газа», переход между частично турбулентным потоком и полностью турбулентным потоком происходит там, где результаты двух уравнений пересекаются; используется более высокое значение «f» .Как будет обсуждено позже, существует также переход между Частично турбулентный поток и Ламинарный поток ; этот переход не имеет точного определения, потому что он происходит между «Re», , равным 2,000 и 4,000. Поскольку Laminar Flow зависит от диаметра трубы, а также скорости, Laminar Flow более распространен в меньших трубах, чем в больших трубах.

Просматривая диаграмму Муди, на которой коэффициент трения «f» сравнивается с числом Рейнольдса «Re» , обнаруживается несоответствие между Частично турбулентный и ламинарным потоком .Поскольку меньшие трубы, которые являются предметом данной статьи, имеют отношение «ℇ / D» , равное 0,0001 или меньше, «f» для частично турбулентного потока приблизится к «Re» , равному 4 000 по нижней гладкой трубе. «f» будет примерно равно 0,0413 на этом пересечении. Значение «f» падает до 0,032 при «Re» , равное 2,000 , и быстро повышается до 0.064 по адресу «Re» 1 000 . Это привело к тому, что меньшие значения расхода, предсказанные упрощенными уравнениями для длинных и / или малых труб, более чем вдвое превышают фактическую пропускную способность.

Выполняемые процедуры

Чтобы прийти к некоторым выводам относительно достоверности каждого из альтернативных уравнений, обсуждаемых ниже, в Excel и Visual Basic была создана программа для вычисления значения « f » с точностью до 5 значащих цифр для каждого потока. точку, а затем найдите расход на основе имеющегося перепада давления, используя приведенные выше уравнения (с помощью формулы Дарси).Эти точки сравнивались с ответами, полученными с использованием каждого из альтернативных уравнений и таблиц последовательности операций. После того, как набор результатов был собран для каждого альтернативного уравнения, общий пакет результатов сравнивался с ответами Дарси путем деления альтернативных результатов на ответы Дарси; по одному. Были собраны следующие статистические данные: минимальное отношение, максимальное отношение, среднее отношение и стандартное отклонение.

Сравнения проводились для каждого из следующих параметров: заданное давление на входе, заданное конечное давление, расстояние в футах, диаметр трубы (фактический) и шероховатость внутренней поверхности трубы (если учитывалась).

Характеристики природного газа: В тех случаях, когда уравнения допускали ввод, было включено следующее: Удельный вес природного газа = 0,60. Вязкость природного газа = 0,010392 сантипуаз или 6,98E-06 фунт / фут-сек.

Диапазоны давления: менее 2,0 фунтов на кв. Дюйм на входе при 0,3 дюйма водяного столба. падение, менее 2,0 фунтов на кв. дюйм при 0,5 дюйма вод. ст. падение, давление на входе менее 2,0 фунтов на кв. дюйм при 3,0 дюйма вод. ст. падение, и менее 2,0 фунтов на квадратный дюйм при 6,0 дюймов водяного столба. уронить. Для этой статьи давление газа на входе было установлено как 14,79 фунтов на квадратный дюйм (14.43 фунта на квадратный дюйм на высоте 500 футов и 10 дюймов водяного столба).

Расстояния: от 10 футов (3 метров) до 2000 футов (610 метров) для стальных и медных труб; с шагом, аналогичным NFPA 54 и IFGC. (При частично турбулентном потоке граничный слой между текущим газом и краевой стенкой аналогичен ламинарному потоку и определяется только диаметром. Поскольку в таблицах для стальных труб используется целая группа размеров от 0,622 дюйма (15,80 мм) до 11,938 дюйма. (304,37 мм), необходимость осмотра полиэтиленовой трубы была признана несущественной.Кроме того, для меди была исследована только одна таблица (NFPA 6.2.1 (h); в этой таблице указаны размеры труб до дюйма (DN6)).

Номинальные размеры труб: от 0,5 дюйма (DN15) до 4 дюймов (DN100) или 12 дюймов (DN300) для стали и от дюйма (DN6) до 2 дюймов (DN50) для меди, как установлено в NFPA 54 и IFGC.

Материалы труб: стальная труба Sch 40 и медная трубка типа K.

Используемые уравнения: уравнение NFPA / IFGC, уравнение Мюллера низкого давления и уравнение шпицгласа низкого давления.Значения в таблицах NFPA / IFGC также сравнивались; Здесь следует отметить, что уравнения для газа низкого давления и таблицы в кодах NFPA 54 и IFGC одинаковы. Обратите внимание, что все уравнения были изменены, чтобы обеспечить Q h (расход в час) как функцию от H 1 и H 2 (давления на входе и выходе)

.

Результаты

Для всех следующих уравнений, «Q h » — это расход в кубических футах в час, «H 1 « — давление на входе в дюймах водяного столба.c., «H 2 » — давление на выходе в дюймах вод.ст., «D» — внутренний диаметр трубы в дюймах, « S г » — удельный вес, а «L» — длина отрезка трубы в футах. Шероховатость внутренней поверхности трубы была оценена как 0,0018 дюйма для стали (0,046 мм) и 0,00006 дюйма (0,0015 мм) для медных труб. Примечание. Число Рейнольдса было создано для каждого диапазона значений, чтобы читатель мог посмотреть на ту часть диаграммы Муди, где существуют эти потоки.

NFPA / IFGC Уравнение низкого давления (для 1,5 фунтов на кв. Дюйм и ниже):

Q h = (D * {19,17 * [(H 1 -H 2 ) / (Cr * L)] 0,206 }) (1 / 0,381) (уравнение 7)

Где: Cr = 0,6094 для природного газа

Уравнение низкого давления Мюллера:

Q h = (2,971 * D 2,725 ) / S г 0.425 * [(H 1 -H 2 ) / L)] 0,575 (Уравнение 8)

Шпицгласс — уравнение низкого давления:

Q h = (3,350 / Sg 0,5 ) * [(H 1 -H 2 ) / L)] 0,5 * [D 5 / (1 + 3,6 / D + 0,03 * D)] 0,5 (Уравнение 9)

Таблица 1 [1] : Для менее 2.Входное давление 0 фунтов на кв. Дюйм (13,8 кПа-изб.) И 0,3 дюйма водяного столба. Падение (75 Па) при использовании стальной трубы Schedule 40, размеры от ½ дюйма (DN-15) до 12 дюймов (DN-300). (Результаты по сравнению с Darcy)

Уравнение

Мин. Коэффициент

Максимальное соотношение

Среднее соотношение

Std Dev.

Включены данные о ламинарном потоке

NFPA / IFGC LP

0.815

2,869

0,958

0,211

Мюллер LP

0,796

2.456

1.035

0,146

Spitzglass LP

0,597

2.375

0,940

0,177

Таблица NFPA

0,797

2.305

0,947

0,194

Данные о ламинарном потоке не включены

NFPA / IFGC LP

0.815

1,008

0,898

0,051

Мюллер LP

1.000

1,158

1.020

0,025

Spitzglass LP

0,653

1.182

0,924

0,093

Таблица NFPA

0,797

1,003

0,889

0,053

Примечание. Диапазон чисел Рейнольдса: от 3,2E + 02 до 6,9E + 05.

Таблица 2: Для менее 2.Входное давление 0 фунтов на кв. Дюйм (13,8 кПа-изб.) И 0,5 дюйма водяного столба. (124 Па) при использовании стальной трубы Schedule 40 размером от ½ дюйма (DN-15) до 12 дюймов (DN-300). (Результаты по сравнению с Darcy)

Уравнение

Мин. Коэффициент

Максимальное соотношение

Среднее соотношение

Std Dev.

Включены данные о ламинарном потоке

NFPA / IFGC LP

0.817

2,338

0,932

0,149

Мюллер LP

0,778

2,037

1.028

0,100

Spitzglass LP

0,597

1.896

0,898

0,133

Таблица NFPA

0,800

1,949

0,922

0,135

Данные о ламинарном потоке не включены

NFPA / IFGC LP

0.817

1,008

0,894

0,052

Мюллер LP

1.000

1.203

1.024

0,032

Spitzglass LP

0,627

1.113

0,891

0,092

Таблица NFPA

0,800

1,003

0,886

0,053

Примечание. Диапазон чисел Рейнольдса: от 4,2E + 02 до 9,1E + 05.

Таблица 3: Для менее 2.Входное давление 0 фунтов на кв. Дюйм (13,8 кПа-изб.) И 3,0 дюйма водяного столба. (746 Па) при использовании стальной трубы Schedule 40 размером от ½ дюйма (DN-15) до 4 дюймов (DN-100). (Результаты по сравнению с Darcy)

Уравнение

Мин. Коэффициент

Максимальное соотношение

Среднее соотношение

Std Dev.

Включены данные о ламинарном потоке

NFPA / IFGC LP

0.767

1.086

0,929

0,046

Мюллер LP

0,735

1,213

1.035

0,043

Spitzglass LP

0,556

1.013

0,795

0,096

Таблица NFPA

0,764

1.077

0,923

0,046

Данные о ламинарном потоке не включены

NFPA / IFGC LP

0.848

1,009

0,923

0,038

Мюллер LP

1.012

1,213

1.041

0,031

Spitzglass LP

0,562

1.013

0,798

0,096

Таблица NFPA

0,842

1,002

0,917

0,038

Примечание. Диапазон чисел Рейнольдса: от 1,1E + 03 до 4,1E + 05.

Таблица 4: Для менее 2.Входное давление 0 фунтов на кв. Дюйм (13,8 кПа-изб.) И 6,0 дюйма водяного столба. (14,9 кПа) при использовании стальной трубы Schedule 40 размером от ½ дюйма (DN-15) до 4 дюймов (DN-100). (Результаты по сравнению с Darcy)

Уравнение

Мин. Коэффициент

Максимальное соотношение

Среднее соотношение

Std Dev.

Включены данные о ламинарном потоке

NFPA / IFGC LP

0.842

1,061

0,908

0,046

Мюллер LP

0,820

1,280

1.036

0,051

Spitzglass LP

0,551

0.947

0,754

0,086

Таблица NFPA

0,835

1,061

0,902

0,047

Данные о ламинарном потоке не включены

NFPA / IFGC LP

0.842

1,004

0,902

0,038

Мюллер LP

1,005

1,280

1.038

0,050

Spitzglass LP

0,551

0.947

0,754

0,086

Таблица NFPA

0,835

1,001

0,896

0,038

Примечание: Диапазон чисел Рейнольдса: от 1,6E + 03 до 5,9E + 05

Таблица 5: Для менее 2.Входное давление 0 фунтов на кв. Дюйм (13,8 кПа-изб.) И 0,3 дюйма водяного столба. (75 Па) при использовании медных трубок типа K размером от 1/4 дюйма (DN-6) до 2 дюймов (DN-500). (Результаты по сравнению с Darcy)

Уравнение

Мин. Коэффициент

Максимальное соотношение

Среднее соотношение

Std Dev.

Включены данные о ламинарном потоке — 164 точки

NFPA / IFGC LP

0.768

2,520

1.093

0,286

Мюллер LP

0,732

2,197

1,062

0,224

Spitzglass LP

0,466

2.200

0,897

0,247

Таблица NFPA

0,757

2,517

1.086

0,285

Данные о ламинарном потоке не включены — только 57 точек

NFPA / IFGC LP

0.878

1,008

0,959

0,032

Мюллер LP

0,999

1.011

1,004

0,004

Spitzglass LP

0,635

1.042

0,846

0,089

Таблица NFPA

0,872

1,002

0,952

0,033

Примечание. Диапазон чисел Рейнольдса: от 1.01E + 02 до 3.64E + 04. Из-за высокой концентрации « Re’s » ниже 4 000 было удалено более 65% данных.По сути, все данные для труб размером от 1/4 до 3/4 дюйма были признаны ошибочными (от 5 до 100%).

Прочие соображения

Как обсуждалось, основной проблемой является преобразование потока из Частично турбулентный при Re = 4000 и Ламинарный при Re = 2000 . Поскольку «f» = 0,0413 при Re = 4,000 и « f» = 0,32 при Re = 2,000 , безопасным вариантом было бы сохранить значение « f» равным 0.0413 между Re = 4,000 и Re = 1,549 (где 64 / Re = 0,0413 ). Если зафиксировать «f» между этими значениями числа Рейнольдса, результатом будет консервативное значение для ожидаемого расхода и перепада давления.

Поскольку NFPA, Mueller и Spitzglass, формулы и таблицы NFPA не определяют число Рейнольдса, первое, что нужно сделать, это определить соответствующий критический расход для каждого размера трубы, связанный с числами Рейнольдса 4000 и 1,549 .

Следующая формула приближает критические значения расхода в зависимости от размера трубы:

Q Cr = 0,03586 * Re Cr * D (Q Cr = 3,9977E-05 * Re Cr * D) (Уравнение 10)

Где: Q Cr = критический расход, при котором поток преобразуется из частично турбулентного в « неопределенного » и из « неопределенного » в ламинарный — CuFt / час (M 3 / час).

Re Cr = Критическое число Рейнольдса: 4000 или 1549.

D = внутренний диаметр трубы — дюймы (мм)

При расходах, меньших критических, следующие уравнения будут использоваться для определения пропускной способности трубы в зависимости от диаметра.

Следующая формула приближает скорость потока на основе размера трубы и значения коэффициента трения «f» , равного 0,0413 . Это уравнение будет использоваться для определения пропускной способности трубопровода, где скорости потока находятся между двумя потоками, Q cr , где « Re Cr» значения находятся между 4,000 и 1,549 :

Q h = 2380.2 * D 2,5 * (Δh / L) 0,5 (Q = 0,000725636 * D 2,5 * (Δh / L) 0,5 ) (Уравнение 11)

Где: Q h = Расход в зависимости от диаметра трубы, конструкции Δh и длины трубы — CuFt / час (M 3 / час).

D = внутренний диаметр трубы — дюймы (мм)

Δh = падение давления в трубе ( H 1 — H 2 ) — дюймы шир.c. (Па)

L = длина отрезка трубы — футы (метры)

Наконец, следующая формула приближает расход на основе размера трубы и коэффициента трения «f» , равного 64 / Re (коэффициент трения ламинарного потока). Это уравнение будет использоваться для определения пропускной способности трубопровода, где скорость потока ниже потока, где критическое значение « Re Cr» составляет 1,549 :

Q h = 101990 * D 4 * Δh / L ( Q = 8.50273E-06 * D 4 * Δh / L ) (Уравнение 12)

Где: Q h = Расход в зависимости от диаметра трубы, конструкции Δh и длины трубы — CuFt / час (M 3 / час).

D = внутренний диаметр трубы — дюймы (мм)

Δh = падение давления в трубе ( H 1 — H 2 ) — дюймы водяного столба (Па)

L = длина отрезка трубы — футы (метры)

Во всех проведенных вычислениях использовано 0.6 как удельный вес. Это произошло потому, что все таблицы в NFPA 54 и IFGC основаны на удельном весе 0,6 . В Интернете удельный вес природного газа составляет от 0,6 до 0,7 . В Справочнике по сжиганию в Северной Америке (3 -е издание — 1986 г.) удельный вес природного газа находится в диапазоне от 0,59 до 0,64. Более высокий удельный вес означает более высокую вязкость, более низкое число Рейнольдса и более высокое значение для « f ». Это означает, что перепад давления будет выше или пропускная способность трубы при определенном падении давления будет ниже.Простой коэффициент мощности для газа составляет (0,65 / 0,60) 0,5 ; это равняется 1,04 (и приблизительно 1,06 с учетом «f» ). Следовательно, перепад давления будет в 1,08 до 1,12 раз больше для пропускной способности при Sg = 0,65 удельном весе.

(подзаголовок) Выводы

Уравнения и таблицы в NFPA и IFGC дают неутешительные сопоставимые значения по сравнению с использованием уравнения Дарси и формулы Колебрука-Уайта для «f ».Это в первую очередь связано с тем, что трубы с небольшими размерами, большой длиной и низким перепадом давления имеют режимы потока, которые попадают в диапазон ламинарного потока. Это видно из приведенных выше таблиц, когда данные Laminar Flow исключены из сравнения. Упрощенное уравнение и таблица расчетных данных о пропускной способности на 20–100% выше, чем сопоставимые данные Дарси в диапазонах ламинарного потока. Соотношения объемов для сравнений значительно уменьшаются, особенно при более высоких перепадах давления, когда вероятность ламинарного потока меньше.

Сравнение также значительно улучшается, когда потоки в областях критического перехода и ламинарного потока, где Re <4,000 , исключаются из сравнения.

Выше критической переходной области уравнение Мюллера обеспечивает несколько более высокие скорости потока и меньшие перепады давления, чем может быть на практике (максимальное отношение ~ 1,2). В результате это уравнение не рекомендуется для типичных сантехнических приложений.

Выше критической переходной области расчет NFPA / IFGC, расчет Sptizglass и таблицы NFPA / IFGC предоставляют разумные и более консервативные оценки пропускной способности этих трубопроводов для этих применений.

Однако ниже критических областей все рассмотренные уравнения и таблицы дают завышенные оценки пропускной способности трубопровода. Как указано в разделе «Прочие соображения», рекомендации состоят в том, чтобы сначала определить, при каких критических расходах встречаются значения Re = 4,000 и Re = 1,549 , используя уравнение 10. Разумные оценки пропускной способности можно определить, используя уравнение 11. между двумя критическими расходами и с использованием уравнения 12, когда расходы ниже Re = 1,549 расхода.

Инженеру следует рассмотреть возможность использования удельного веса для природного газа 0,65 , поскольку более высокий удельный вес снизит пропускную способность системы трубопроводов.

Низкое давление газа в вашем доме? Несколько советов по проверке низкого давления природного газа

Природный газ является предпочтительным нагревательным элементом во многих домах, обеспечивая его теплом, горячей водой, а иногда даже электричеством.Однако низкое давление природного газа в вашем доме может привести к множеству проблем, начиная от невозможности поддерживать тепло и заканчивая потенциальной утечкой газа. Однако, как только проблема будет обнаружена, ее можно будет устранить.

Во-первых, сравните давление природного газа с предполагаемым. Манометр природного газа можно найти на линии обслуживания, или вы можете позвонить своему поставщику газовых услуг и получить обновленную информацию о текущем давлении газа. Часто проблемы с давлением газа исходят от газовой компании, которая затем должна решать газовую проблему со своей стороны.

Если это не на стороне оператора, отключите все посторонние виды использования природного газа. Например, если у вас одновременно работают газовая плита, водонагреватель, камин и обогреватель, это может привести к низкому давлению. Оставьте только одно устройство за раз, а затем снова проверьте давление, чтобы увидеть, повышается ли оно. Чрезмерное использование может привести к падению давления, поскольку за один раз можно подать только определенное количество газа.

Затем проверьте, нет ли утечек газа в вашем доме. Используйте ручной детектор природного газа и переходите из комнаты в комнату, проверяя, есть ли уровни.Кроме того, осмотрите трубы природного газа и посмотрите, есть ли небольшие утечки на стыках, а также небольшое отверстие или трещина в трубопроводе.

Далее перекрываем газ. Для следующих нескольких шагов вам может понадобиться профессионал. Слейте воду из системы и замените поврежденную часть трубопровода на новую. Вырежьте участок трубы, где находится отверстие, с помощью ножовки и поместите новый отрезок трубы в щель. Включите ручную горелку и расплавьте полоску припоя вокруг соединений, образуя прочные соединения.Перед восстановлением давления дайте стыкам высохнуть.

После того, как профессионалы закончат ремонт, они снова проверит у вас уровень природного газа. Если вы заметили снижение давления газа, вероятно, лучше сразу же обратиться в компанию, которая ведет дело, если у вас нет надлежащего опыта работы с природным газом.

В чем разница между типами газопроводов?

На природный газ приходится почти четверть энергии, потребляемой в Соединенных Штатах, и 33 штата производят его в промышленных количествах.У компании более 68 миллионов жилых и пяти миллионов бизнес-клиентов в США, которые получают природный газ по трубопроводам протяженностью 2,6 миллиона миль. Газопроводы классифицируются по-разному, в зависимости от их пропускной способности, назначения и юрисдикции. Например, эти трубопроводы можно классифицировать как линии сбора, передачи и распределения, которые определяют не только то, как они используются, но и то, как они регулируются. Любой, кто связан с газопроводами, должен понимать иногда тонкие различия между этими классификациями трубопроводов.

Линии сбора

Линии сбора транспортируют газ от производственного объекта, такого как устье скважины, к линии передачи, также известной как магистраль. Диаметр этих труб колеблется от двух до восьми дюймов, что относительно мало. Линии сбора могут быть такими узкими, потому что они обычно используют полевые компрессоры для создания давления, которое перемещает газ по трубопроводу. В этих устройствах используется турбина или двигатель внутреннего сгорания, который обычно приводится в действие небольшой частью транспортируемого газа.

Некоторые системы сбора включают оборудование для обработки, которое выполняет дополнительные функции, такие как удаление примесей. Такие вещества, как вода, диоксид углерода и сера, могут вызывать коррозию труб, в то время как инертные газы, такие как гелий, снижают энергетическую ценность природного газа. Эти примеси часто используются в таких областях, как химическое сырье.

Линии передачи

Природный газ перемещается из системы сбора в систему передачи, которая транспортирует газ на большие расстояния. Диаметр этих труб обычно составляет от 6 до 48 дюймов, а давление составляет от 200 до 1500 фунтов на квадратный дюйм (фунт / кв. Дюйм), в зависимости от метода производства.Такое высокое давление необходимо для транспортировки газа из регионов добычи в местные распределительные компании (НРС), которые могут находиться на расстоянии в тысячи миль.

Трансмиссионные трубопроводы обычно рассчитаны на работу с гораздо большим давлением, чем когда-либо потребуется в качестве меры безопасности. Например, трубопроводы в населенных пунктах обычно не работают при более чем половине расчетного предельного давления. Более того, многие из этих конвейеров являются замкнутыми, что означает, что между одним и тем же источником и пунктом назначения проходит более одного линейного конвейера.Эта избыточность увеличивает максимальную пропускную способность магистрального трубопровода, которая может потребоваться в периоды пикового спроса.

Распределительные линии

Газ в магистральном трубопроводе обычно проходит через шлюзовую станцию, когда попадает в местное газовое предприятие. Затворная станция снижает давление в линии до уровня распределения, который составляет от 0,25 до 200 фунтов на квадратный дюйм. Эта установка также вводит одорант в природный газ, который обычно не имеет запаха. Одорант придает газу кислый запах, который потребители могут обнаружить в небольших количествах в качестве меры безопасности.Затворная станция также измеряет расход газа, чтобы определить количество, полученное газовым коммунальным предприятием.

Затем газ перемещается от станции затвора к распределительной линии, диаметр которой обычно составляет от 2 до 24 дюймов. В распределительных линиях обычно есть секции, которые работают при разном давлении, которое регулируется регуляторами. Размер трубы и давление обычно уменьшаются по мере приближения распределительной линии к заказчику.

Операторы центра управления газовой компанией непрерывно контролируют расход и давление газа в различных точках, чтобы гарантировать, что газ достигает потребителей с достаточным расходом и давлением для работы оборудования.Они также должны гарантировать, что давление остается ниже установленных пределов в целях безопасности. Близость распределительных линий к потребителям обычно ограничивает их давление до 20 процентов от проектного максимума.

Регуляторы регулируют поток газа через распределительную систему. Они откроются для увеличения потока газа, когда давление в секции упадет ниже указанной уставки, и закроются, когда давление поднимется выше другой уставки. Распределительные трубопроводы также имеют предохранительные клапаны, которые могут выпускать газ в атмосферу в качестве дополнительной меры безопасности, чтобы предотвратить разрыв труб.

Современные газораспределительные системы используют программное обеспечение для оценки своей мощности и обеспечения того, чтобы потребители получали газ с давлением выше минимального, необходимого для модернизации оборудования. Эти линии также соединены между собой в виде сетки с рядом запорных клапанов, которые сводят к минимуму перебои в обслуживании во время технического обслуживания и аварийных ситуаций.

Строительство

Безопасность является важным фактором при строительстве газопроводов из-за давления, которое они должны выдерживать, и последствий разрыва трубопровода.Линии распределения соответствуют самым высоким стандартам строительства из-за их близости к людям. Трубы необходимо проверять на соответствие государственным и отраслевым стандартам безопасности. Сборные и транспортировочные трубопроводы специально спроектированы для их предполагаемой роли в газопроводе, хотя они обычно изготавливаются из катаной высокоуглеродистой стали. Длина каждого сегмента трубы обычно составляет от 40 до 80 футов. Диаметр и толщина сильно зависят от таких факторов, как преобладающие почвенные условия, география и плотность населения.

Распределительные трубопроводы изначально были из чугуна, который с возрастом становится хрупким. Сталь по-прежнему является обычным материалом для старых трубопроводов, хотя новые трубопроводы все чаще изготавливаются из высокопрочного пластика или композитных материалов. Старые распределительные трубы могут быть изготовлены из пластика Aldyl-A, который особенно подвержен хрупкости. Национальный совет по безопасности на транспорте рекомендовал заменить распределительные трубопроводы из этого типа пластика.

Трубопроводы подвержены постоянным напряжениям, которые могут вызвать их разрушение. Движение грунта из-за циклов замерзания / оттаивания является основной причиной этих напряжений, которые обычно называют морозным пучением. В некоторых штатах требуется инспекция трубопроводов в зимний период, позволяющая отремонтировать их до того, как они разорвутся.

Установка

Исторически сложилось так, что трубопроводы прокладывались с открытыми траншеями, что до сих пор является наиболее распространенным методом сбора и транспортировки.Распределительные линии с большей вероятностью будут проложены бестраншейными методами, такими как бурение и горизонтально-направленное бурение (ГНБ), поскольку они вызывают меньшее нарушение окружающей среды. Растачивание особенно распространено для распределительных трубопроводов в городских условиях из-за его полезности при пересечении дорог.

Бестраншейные методы представляют больший риск повреждения существующих коммуникаций, так как они предполагают бурение и бурение, а не открытое копание. Металлические линии относительно легко обнаружить с помощью оборудования для обнаружения металлов, но канализационные трубы из глины и пластика требуют обнаружения менее надежными ультразвуковыми технологиями.Кроме того, поврежденные канализационные трубы могут оставаться незамеченными, пока домовладелец не заметит забитый канализационный коллектор. Наибольший риск возникновения поперечного отверстия заключается в том, что сантехники часто используют приводной шнек для очистки забитой канализационной линии, которая может нарушить газовую линию.

Федеральные правила, как правило, требуют, чтобы все линии электропередачи и некоторые линии сбора были проложены под землей на глубине не менее 30 дюймов в сельской местности и не менее 36 дюймов в густонаселенных районах. Дороги и железнодорожные переезды также требуют, чтобы эти линии были заглублены на глубину не менее 36 дюймов.Минимальная глубина для водных переходов может варьироваться от 18 до 48 дюймов, в зависимости от состава почвы или породы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *