Как рассчитать количество секций батареи: Как рассчитать радиаторы отопления

Содержание

размер и количество секций на комнату, детальное фото и видео

Содержание:

1. Современные типы радиаторов отопления
2. Как сделать расчет количества секций отопительных батарей
3. Принципы расчета радиатора отопления

Для того чтобы система теплоснабжения работала эффективно, недостаточно просто равномерно распределить радиаторы по периметру комнаты. Очень важно правильно рассчитать количество батарей отопления, а также их мощность исходя из параметров обустраиваемого помещения и нагревательного оборудования (площадь комнаты, мощность котла и т.п.). Не менее важно учитывать также и тип применяемых радиаторов (детальнее: "Какие бывают типы батарей отопления - обзор и сравнение").

Сегодня существует несколько видов батарей отопления, каждый из которых отличается индивидуальной технологией производства, формами и техническими характеристиками. Поэтому перед тем как рассчитать батареи отопления, следует разобраться с достоинствами и недостатками того или иного вида отопительного оборудования.

Далее речь пойдет о том, как рассчитать количество батарей отопления, требующихся для комфортного проживания, а также о принципах расчета мощности для этих агрегатов.

Современные типы радиаторов отопления


Сегодня на строительном рынке в свободном доступе продаются традиционные радиаторы из чугуна, только эти модели являются более современными по сравнению со своими предшественниками. Встречаются также аппараты, изготовленные из алюминия, а также батареи, основой для производства которых служит биметалл.

Благодаря широкому разнообразию оттенков и внешнего вида подобрать тот или иной радиатор для конкретного интерьера не составит большого труда.

Тем не менее, в первую очередь следует обращать внимание на технические характеристики такого оборудования, а уже затем на их внешний вид:
  1. Особой популярностью пользуются сегодня биметаллические отопительные приборы, то есть те для производства которых было использовано два разных по структуре металла. Их основу, как правило, составляют два сплава – сталь и металл. Эти батареи имеют привлекательный внешний вид, кроме того, они экономичны и отличаются простотой в эксплуатации.

    Главный недостаток таких приборов – возможность их применения исключительно в тех системах теплоснабжения, где давление, является достаточно высоким, то есть для тех, которые подключены к центральному отоплению. Их применение в автономных системах крайне нежелательно, поэтому в них такой установки лучше избежать.
  2. Говоря о чугунных конструкциях, нельзя не отметить, что, несмотря на их, казалось бы, устаревшую функциональность, эти приборы по-прежнему весьма востребованы. Кроме того, современные модели чугунных батарей изготавливаются в разной цветовой гамме, поэтому подобрать такой радиатор для того или иного оформления комнаты не составит труда. Классический стиль, в котором изготовлены эти приборы, может стать настоящим украшением помещения и придать ему незабываемое оформление.

    Эксплуатировать батареи из чугуна можно как, в автономных системах, так и в центральном отоплении. Прогрев их проходит несколько дольше по сравнению с приборами из биметалла, однако и время их остывания значительно выше, благодаря чему тепло дольше сохраняется в помещении. Для того, чтобы чугунный радиатор прослужил долго, очень важно соблюсти все тонкости процесса его установки.
  3. 3. Стальные отопительные приборы разделяются на два вида: трубчатые модели и образцы, состоящие из панелей. Батареи трубчатого типа имеют более высокую стоимость, нагрев их происходит медленнее, чем у панельных радиаторов, но и необходимую температуру они держат дольше. 

    Отопительные приборы панельного типа нагреваются очень быстро. Они отличаются весьма доступной рядовому потребителю стоимостью, однако их основной недостаток – быстрое остывание, из-за чего комната охлаждается гораздо раньше требуемого срока. Именно поэтому экономичность таких моделей в автономных отопительных системах стоит под сомнением, поскольку они нуждаются в постоянном притоке энергии тепла.

    Эти факторы напрямую влияют на то, как рассчитать количество батарей из стали для помещения. Подобные критерии учитываются при размещении приборов теплоснабжения в комнате и являются основой для грамотного планирования мощности этих агрегатов и количества их секций (детальнее: "Как рассчитать количество радиаторов отопления правильно, формула расчета").

    Батареи из стали весьма привлекательны внешне, поэтому они идеально подойдут для любого интерьера и без проблем впишутся в оформление любой комнаты.
  4. Еще один вариант отопительных аппаратов – радиаторы, изготовленные из алюминия. Эти приборы отличаются хорошей проводимостью тепла и, как следствие, высокими показателями экономичности.

    Однако при покупке алюминиевых батарей очень важно помнить, что алюминий очень плохо переносит теплоноситель низкого качества, который обычно встречается в централизованном отоплении, поэтому такие механизмы все де будут более подходящими для автономных систем теплоснабжения.

Для того чтобы разобраться с тем, как рассчитать батарею на комнату, требуется принять во внимание большое количество факторов, причем связанных не только с техническими характеристиками самих радиаторов, но и с другими условиями, способными в должной мере повлиять на сохранность тепла в комнате (прочитайте также: "Как рассчитать гкал на отопление - правильная формула расчета").

Как сделать расчет количества секций отопительных батарей


Перед тем как рассчитать размер батареи отопления, перед ее установкой очень важно учесть все требуемые для этой работы параметры, причем касается это не только всех имеющихся в обустраиваемом помещении проемов (двери и окна), но также и других факторов.

Важно помнить, что то, какой будет теплоотдача нагревательного прибора, зависит, в первую очередь, не от размера агрегата, а от мощности, которую имеет каждая из его секций. Именно поэтому следует тщательно разобраться с тем, как рассчитать количество секций батареи отопления (детальнее: "Как рассчитать количество секций радиатора отопления самостоятельно"). Правильнее всего будет расположить в помещении несколько небольших по размеру радиаторов, а не один большой прибор. Обусловлено это тем, что тепло, поступающее из разных участков, произведет больший эффект, нежели энергия, идущая от одного аппарата.

На установку радиаторов во многом влияет также и такие показатели помещения, как его площадь и общий объем, поэтому эти данные крайне важно учитывать при расчете необходимого числа секций для батарей (читайте также: "Правильный расчет батарей отопления - сколько нужно секций").

Принципы расчета радиатора отопления


Считается, что оптимальная мощность, требуемая для качественного обогрева помещения, составляет примерно 100 Вт/1 м².

При этом не стоит забывать и о следующих нормах расчета мощности этого оборудования:
  • рабочую мощность следует увеличить на 20% при условии, если комната является угловой, либо две ее стены выходят на улицу;
  • прибавить к показателю мощности 30% нужно будет в том случае, если в помещении имеется не одно, а два выходящих наружу окна;
  • при недостатке солнечного света специалисты рекомендуют увеличить мощность оборудования примерно на 10% и размеры батарей отопления;
  • если в месте монтажа батареи под окном имеется ниша, то теплоотдача будет ниже, чем требуется, вследствие чего понадобится добавить еще 5% мощности;
  • некоторые радиаторы оснащены защитным экраном, используемым, как правило, в целях декорирования. Такой элемент снижает производительность работы нагревательного оборудования приблизительно на 15%, поэтому этот объем мощности также должен быть восполнен.

Соблюдение этих мер позволит не только подключить батарею максимально правильно, но и продлить срок ее службы и надолго избавить хозяев от необходимости выполнения каких бы то ни было ремонтных работ, а многочисленные фото этих приборов и видео по их монтажу, которые всегда можно найти у профессиональных мастеров, лишь облегчат этот процесс.

Посмотрите также советы на видео о выборе батарей отопления:


Расчет секций радиаторов: по площади, объему помещений

Радиаторы отопления являются распространенными отопительными приборами. Их устанавливают для экономного расхода газа и для создания комфортного температурного режима в доме. Выбирая качественный радиатор, необходимо учитывать его мощность, материалы изготовления, производителя, стоимость. Перед покупкой отопительного оборудования важно произвести расчет количества секций для радиаторов.

Расчет радиаторов отопления по площади

Расчет количества секций батарей проводится для конкретных целей:

  • Экономической выгоды.
  • Комфортного температурного режима в доме.

Сделать расчет радиатора по площади довольно легко. Для этого применяются разные методики, но суть у них одна — определить тепловые потери помещения и рассчитать количество отопительных приборов, которые справятся с этими потерями.

Самые простые методы позволяют добиться приблизительных данных, а при точном расчете используются специальные коэффициенты, учитывающие особенности помещения (угловая комната, наличие дверей, окон, выход на лоджию).

Популярными способами расчета радиаторов являются:

  • На 1 квадратный метр необходимо 100 Ватт тепла. Из этой формулы легко сделать расчет необходимого количества батарей.
  • Расчет при помощи тепловизора. Это устройство четко зафиксирует, в каких местах в помещение происходят максимальные теплопотери, позволит определить, чем они спровоцированы (трещина в стене, недочеты ремонта).

Высчитывая количество необходимых батарей для помещения, учитываются такие факторы, как:

  1. Потери тепла в помещении.
  2. Мощность секций радиаторов.

Очень важно учитывать высоту потолков, количество оконных и дверных проемов, так как через них выходит большое количество тепла.

Как посчитать секции радиатора по объему помещения

Подсчитывая количество секций батареи для обогрева помещения по площади, стоит учитывать, что чем больше площадь комнаты, тем больше радиаторов необходимо в ней установить. Если в квартире индивидуальная система отопления, потребуется учитывать и то, что чем больше батарей вы установите, тем большее количество теплоносителей будет циркулировать в системе.

Следовательно, у вас будут большие финансовые затраты на поддержание комфортной температуры в доме. Если же речь идет о центральной системе отопления, которые встречаются в городских квартирах, этот показатель можно не учитывать.

Просчитав тепловые потребности помещения, можно легко рассчитать число необходимых батарей.

В паспорте отопительного прибора обязательно должен указываться объем тепла, который он способен обеспечить.

Получившийся показатель необходимого количества секций можно округлить до меньшего или большего значения. Если комната находится между другими помещениями, показатель округляется к меньшему значению, если помещение является угловым или в нем расположено огромное окно, показатель округляется до большего значения.

Как показывает практика, люди просчитывают количество секций батарей по формуле 100 Ватт на 1 кв.м. Несмотря на то, что данная система довольно простая, у нее есть свои недостатки. Не все учитывают толщину стен постройки, высоту потолков, утеплено здание или нет, и множество других факторов.

Также стоит учесть и то, что если жилая постройка располагается в регионе с холодным климатом в зимнее время, то на 1 кв. м требуется большее количество энергии — от 150 и до 200 Вт. Данный метод расчета можно считать условным, а для более точного значения вносятся определенные корректировки.

Ориентируясь на данную методику расчета, следует учесть все показатели площади с учетом высоты потолков. Это позволит более точно определить, какое количество тепла необходимо для помещения, чтобы прогреть воздух до подходящей температуры. Согласно нормам СНиПа, расчет отопительного оборудования определяет оптимальное количество тепла, отталкиваясь от следующих факторов:

  • На 1 кубический метр воздуха в помещениях панельного типа необходимо 41 Вт.
  • Для кирпичных построек этот показатель составляет 34 Вт.

Корректировка результатов

Чтобы получить точный результат, потребуется учесть все факторы, влияющие на увеличение или уменьшение потерь тепла. К этим факторам относятся:

  • Толщина и используемый материал при строительстве стен.
  • Размеры окон.
  • Утеплен дом или нет.
  • Тип остекления помещения.
  • Количество торцевых стен.

Все значения потерь тепла необходимо умножить на определенные коэффициенты.

В зависимости от размеров окон и типа, их остекления теплопотери варьируется в пределах — 15-35% тепловой энергии. В связи с этим предусматривается два коэффициента:

  1. Остекление по стандартным нормам — двойные рамы — 1, 27, двухкамерные стеклопакеты — 1,0, трехкамерные стеклопакеты — 0, 85.
  2. Соотношения площади окон и пола: 50% — 1,2, 40% — 1,1, 30% — 1,2.

Что касается теплопотерь через стены, то они составляют 20-30%. Здесь при расчете потребуется выяснить степень из теплоизоляции, количество внешних стен, материалы их изготовления. Для этого применяют такие коэффициенты:

  • Степень теплоизоляции: хорошая — 0,8, отсутствующая (недостаточная) — 1, 27, нормой считается кирпичная стена, сооруженная в 2 кирпича.
  • Количество внешних стен: 3 — 1,3. 2-1,2, 1-1,1.

Также на потерю тепла влияет и то, отапливается или нет помещение, расположенное сверху. Здесь применяются следующие коэффициенты:

  1. При наличии неотапливаемого чердака — 1.
  2. При отапливаемом чердаке — 0,9.
  3. При наличии отапливаемом помещении сверху (квартира соседа) — 0,7.

Рассчитывая количество секций батарей, учитываются специфические параметры помещения и климатические особенности региона, в которых располагается дом или квартира.

Если проводить расчет по площади комнаты с потолками нестандартной высотой, необходимо использовать пропорциональное увеличение или уменьшение коэффициента: фактическую высоту потолка необходимо поделить на стандартную высоту 2,7 м.

Если теплопотери здания рассчитывать через фундамент, чердак или кровлю, получившийся результат следует увеличить на 50%.

Также подкорректировать расчет можно, исходя из климатических условий в зимнее время года:

  • -30 градусов тепла — 1,5.
  • -25 градусов тепла — 1,3.
  • -20 градусов тепла — 1,1.
  • -15 градусов тепла — 0,9.
  • -10 градусов тепла — 0,7

Благодаря вышеперечисленным корректировкам можно максимально точно рассчитать нужное количество батарей для помещения, которые обеспечат комфортные условия проживания.

Расчет разных типов радиаторов

При планировании установки стандартных секционных радиаторов, определить их число не составит особого труда, так как вам будут известны технические характеристики выбранных отопительных приборов и их тепловая мощность.

Если в паспорте изделия вместо мощности производитель укажет расход жидкости теплопотери, рассчитывается мощность: 1 литр теплоносителя равен 1 кВт мощности.

Если вы еще не определились, какие батареи будете устанавливать в доме, потребуется учесть, что большое значение имеет материал изготовления. Следовательно, у продукции, изготовленной из чугуна, алюминия или стали, будет разная тепловая мощность. Одна секция стандартного по размерам радиатора будет излучать такое количество тепла:

  1. Чугунные батареи — 145 Вт.
  2. Биметаллические радиаторы — 185 Вт.
  3. Алюминиевые — 190 ВТ.

При выборе нестандартных габаритов, необходимо будет внести коррективы. При этом стоит учитывать, что чем меньше высота прибора, тем ниже у него мощность.

Зависимость мощности радиаторов от подключения и места расположения

Также мощность отопительных приборов напрямую зависит и от типа подключения батареи. Идеальным вариантом является диагональный тип подключения радиатора. В таком случае потери тепловой мощности будут отсутствовать. А при боковом подключении теплопотери будут достигать 22%. У остальных типов подключения будут наблюдаться средние потери тепла.

Важно: мощность батареи будет уменьшаться при наличии загромождающих конструкций (подоконников, сетчатых экранов).

Определение количества радиаторов для однотрубных систем

Все вышеперечисленные примеры относись к батареям, подключенным к двухтрубной системе отопления. Расчет количества батарей для однотрубной системы будет немного отличаться. Мощность прибора в обеих системах отопления рассчитывается одинаково.

В однотрубных системах число и размеры батарей стоит увеличивать, учитывая их отдаленность от места входа в систему теплоносителя.

Подводя итоги, стоит отметить, что приблизительный расчет количества радиаторов для отопительной системы рассчитать можно довольно легко. При этом необходимо учитывать все влияющие факторы: вид подключения, размеры комнат, другие специфические характеристики. При правильном подсчете нужного количества батарей, в вашем доме всегда будет тепло и уютно — даже в самую стуженую зиму.

Расчет количества секций радиаторов отопления – для чего это нужно знать

На первый взгляд рассчитать, сколько секций радиатора установить в том или ином помещении – просто. Чем больше комната – тем из большего количества секций должен состоять радиатор. Но на практике то, насколько тепло будет в том или ином помещении зависит от более чем десятка факторов. Учитывая их, рассчитать нужное количество тепла от радиаторов, можно намного точнее.

Общие сведения

Теплоотдача одной секции радиатора указана в технических характеристиках изделий от любого производителя. Количество радиаторов в помещении обычно соответствует количеству окон. Под окнами чаще всего и располагаются радиаторы. Их габариты зависят от площади свободной стены между окном и полом. Нужно учитывать, что от подоконника радиатор должен быть опущен не менее, чем на 10 см. А между полом и нижней линией радиатора расстояние должно быть не меньше 6 см. Эти параметры определяют высоту прибора.

Теплоотдача одной секции чугунного радиатора – 140 ватт, более современных металлических – от 170 и выше.

Можно производить расчет количества секций радиаторов отопления,выходя из площади помещения или же его объема.

По нормам считается, что на обогрев одного квадратного метра помещения нужно 100 ватт тепловой энергии. Если же исходить из объема, то тогда количество тепла на 1 кубический метр будет составлять не менее 41 ватта.

Но ни один из этих способов не будет точным если не учитывать особенностей того или иного помещения, количества и размер окон, материал стен, и многое другое. Поэтому рассчитывая секции радиатора по стандартной формуле, будем добавлять коэффициенты, созданные тем или иным условием.

Площадь помещения – расчет количества секций радиаторов отопления

Такой расчет обычно применяется к помещениям, расположенным в стандартных панельных жилых домах с высотой потолка до 2,6 метра.

Площадь комнаты множится на 100 (количество тепла для 1м2) и делится на указанную производителем теплоотдачу одной секции радиатора. Например: площадь комнаты 22 м2, теплоотдача одной секции радиатора – 170 ватт.

22Х100/170=12,9

Для этой комнаты нужно 13 секций радиатора.

Если же одна секция радиатора будет иметь 190 ватт теплоотдачи, то получим 22Х100/180=11,57 , то есть можно ограничиться 12 секциями.

К расчетам нужно добавить 20% если комната имеет балкон или находится в торце дома. Батарея, установленная в нише, еще на 15% снизит теплоотдачу. Но в кухне будет на 10-15% теплее.

Производим расчеты по объему помещения

Для панельного дома со стандартной высотой потолков, как уже указывалось выше, расчет тепла производится из потребности 41 ватт на 1м3. Но если дом новый, кирпичный, в нем установлены стеклопакеты, а наружные стены утеплены, то нужно уже 34 ватт на 1м3.

Формула расчета количества секций радиатора выглядит так: объем (площадь, умноженная на высоту потолка) умножается на 41 или 34 (в зависимости от типа дома) и делится на теплоотдачу одной секции радиатора, указанного в паспорте производителя.

Например:

Площадь комнаты 18 м2, высота потолка 2, 6 м. Дом – типичная панельная постройка. Теплоотдача одной секции радиатора – 170 ватт.

18Х2,6Х41/170=11,2. Итак, нам нужно 11 секций радиатора. Это при условии, что комната не угловая и в ней нет балкона, в противном случае лучше установить 12 секций.

Посчитаем максимально точно

А вот формула, по которой максимально точно можно сделать расчет количества секций радиатора:

Площадь помещения умноженная на 100 ватт и на коэффициенты q1, q2, q3, q4, q5, q6, q7 и поделенная на теплоотдачу одной секции радиатора.

Подробнее об этих коэффициентах:

q1 – тип остекления: при тройном стеклопакете коэффициент будет 0,85, при двойном стеклопакете - 1 и при обычном остеклении – 1,27.

q2 – теплоизоляция стен:

  • современная теплоизоляция – 0,85;
  • кладка в 2 кирпича с утеплителем – 1;
  • неутепленные стены - 1,27.

q3 – соотношение площадей окон и пола:

  • 10% - 0,8;
  • 30% - 1;
  • 50% - 1,2.

q4 - минимальная наружная температура:

  • -10 градусов – 0,7;
  • -20 градусов – 1,1;
  • -35 градусов – 1,5.

q5 – количество наружных стен:

  • 1 – 1,1;
  • 2 – 1,2;
  • 3 – 1,3.

q6 – тип помещения, которое находится выше расчетного:

  • обогреваемое - 0,8;
  • чердачное обогреваемое - 0,9;
  • чердачное необогреваемое – 1.

q7 – высота потолка:

  • 2,5 – 1;
  • 3 – 1,05;
  • 3,5 – 1,1.

Если будут учтены все вышеперечисленные коэффициенты, посчитать количество секций радиатора в помещении можно будет максимально точно.

Как рассчитать количество секций батареи на комнату

Главная » Отопление » Как рассчитать количество секций радиатора

Как рассчитать количество секций радиатора

При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.

В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.

Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления

Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).

Расчет по площади

Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:

  • для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
  • для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.

Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.

Как рассчитать количество секций радиатора: формула

Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.

Пример расчета количества секций радиаторов по площади помещения

Угловое помещение 16 м 2. в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.

Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.

Теперь считаем количество: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.

Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.

Считаем батареи по объему

Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:

  • для кирпичных на 1 м 3 требуется 34 Вт тепла;
  • для панельных — 41 Вт

Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).

Формула расчета количества секций по объему

Пример расчета по объему

Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м 2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:

  • Находим объем. 16 м 2 * 3 м = 48 м 3
  • Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м 3 * 34 Вт = 1632 Вт.
  • Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.

Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.

Теплоотдача одной секции

Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500). Еще более ощутимые отличия могут быть у разных производителей.

Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу

Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средине значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт (0,120 кВт).

Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :

  • биметаллическая секция обогреет 1,8 м 2 ;
  • алюминиевая — 1,9-2,0 м 2 ;
  • чугунная — 1,4-1,5 м 2 ;

Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2. для ее отопления примерно понадобится:

  • биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
  • алюминиевых 16 м 2 / 2 м 2 = 8 шт.
  • чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.

Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе 60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

Формула расчета температурного напора системы отопления

Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

Таблица коэффициентов для систем отопления с разной дельтой температур

Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

Расчет количества секций радиаторов отопления: разбор 3-х различных подходов + примеры

Правильный расчет радиаторов отопления — довольно важная задача для каждого домовладельца. Если будет использовано недостаточное количество секций, помещение не прогреется во время зимних холодов, а приобретение и эксплуатация слишком больших радиаторов повлечет неоправданно высокие расходы на отопление. Поэтому при замене старой отопительной системы или монтаже новой необходимо знать как рассчитать радиаторы отопления. Для стандартных помещений можно воспользоваться самыми простыми расчетами, однако иногда возникает необходимость учесть различные нюансы, чтобы получить максимально точный результат.

Расчет по площади помещения

Предварительный расчет можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы. Это очень простое вычисление, которое подходит для комнат с низкими потолками (2,40-2,60 м). Согласно строительным нормам для обогрева понадобится 100 Вт тепловой мощности на каждый квадратный метр помещения.

Вычисляем количество тепла, которое понадобится для всей комнаты. Для этого площадь умножаем на 100 Вт, т. е. для комнаты в 20 кв. м. расчетная тепловая мощность составит 2000 Вт (20 кв.м Х 100 Вт) или 2 кВт.

Правильный расчет радиаторов отопления необходим, чтобы гарантировать достаточное количество тепла в доме

Этот результат нужно разделить на теплоотдачу одной секции, указанную производителем. Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет составлять:

2000 Вт / 170 Вт = 11,76, т. е. 12, поскольку результат следует округлить до целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже среднего, например, для кухни, можно округлять в меньшую сторону.

Обязательно следует учесть возможные теплопотери в зависимости от конкретной ситуации. Разумеется, комната с балконом или расположенная в углу здания теряет тепло быстрее. В этом случае следует увеличить значение расчетной тепловой мощности для комнаты на 20%. Примерно на 15-20% стоит повысить расчеты, если планируется скрыть радиаторы за экраном или монтировать их в нишу.

А чтобы вам было удобнее считать, мы сделали для вас этот калькулятор:

Расчеты в зависимости от объема помещения

Более точные данные можно получить, если сделать расчет секций радиаторов отопления с учетом высоты потолка, т. е. по объему помещения. Принцип здесь примерно такой же, как и в предыдущем случае. Сначала вычисляется общая потребность в тепле, затем рассчитывают количество секций радиаторов.

Если радиатор будет скрыт экраном, нужно увеличить потребность помещения в тепловой энергии на 15-20%

Согласно рекомендациям СНИП на обогрев каждого кубического метра жилого помещения в панельном доме необходим 41 Вт тепловой мощности. Умножив площадь комнаты на высоту потолка, получаем общий объем, который умножаем на это нормативное значение. Для квартир с современными стеклопакетами и наружным утеплением понадобится меньше тепла, всего 34 Вт на кубический метр.

Например, рассчитаем необходимое количество тепла для комнаты площадью 20 кв.м. с потолком высотой 3 метра. Объем помещения составит 60 куб.м (20 кв.м. Х 3 м.). Расчетная тепловая мощность в этом случае будет равна 2460 Вт (60 куб.м. Х 41 Вт).

А как рассчитать количество радиаторов отопления? Для этого нужно разделить полученные данные на указанную производителем теплоотдачу одной секции. Если взять, как и в предыдущем примере, 170 Вт, то для комнаты будет нужно: 2460 Вт / 170 Вт = 14,47, т. е. 15 секций радиатора.

Производители стремятся указывать завышенные показатели теплоотдачи своей продукции, предполагая, что температура теплоносителя в системе будет максимальной. В реальных условиях это требование соблюдается редко, поэтому следует ориентироваться на минимальные показатели теплоотдачи одной секции, которые отражены в паспорте изделия. Это сделает расчеты более реалистичными и точными.

Что делать если нужен очень точный расчет?

К сожалению, далеко не каждая квартира может считаться стандартной. Еще в большей степени это относится к частным жилым домам. Возникает вопрос: как рассчитать количество радиаторов отопления с учетом индивидуальных условий их эксплуатации? Для это понадобится учесть множество различных факторов.

При расчете количества секций отопления нужно учесть высоту потолка, количество и размеры окон, наличие утепления стен и т.п.

Особенность этого метода состоит в том, что при вычислении необходимого количества тепла используется ряд коэффициентов, учитывающих особенности конкретного помещения, способные повлиять на его способность сохранять или отдавать тепловую энергию. Формула для расчетов выглядит так:

КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7. где

КТ — количество тепла, необходимого для конкретного помещения;
П — площадь комнаты, кв.м.;
К1 — коэффициент, учитывающий остекление оконных проемов:

  • для окон с обычным двойным остеклением — 1,27;
  • для окон с двойным стеклопакетом — 1,0;
  • для окон с тройным стеклопакетом — 0,85.

К2 — коэффициент теплоизоляции стен:

  • низкая степень теплоизоляции — 1,27;
  • хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0;
  • высокая степень теплоизоляции — 0,85.

К3 — соотношение площади окон и пола в помещении:

К4 — коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:

  • для -35 градусов — 1,5;
  • для -25 градусов — 1,3;
  • для -20 градусов — 1,1;
  • для -15 градусов — 0,9;
  • для -10 градусов — 0,7.

К5 — корректирует потребность в тепле с учетом количества наружных стен:

К6 — учет типа помещения, которое расположено выше:

  • холодный чердак — 1,0;
  • отапливаемый чердак — 0,9;
  • отапливаемое жилое помещение — 0,8

К7 — коэффициент, учитывающий высоту потолков:

Такой расчет количества радиаторов отопления включает практически все нюансы и базируется на довольно точном определении потребности помещения в тепловой энергии.

Остается полученный результат разделить на значение теплоотдачи одной секции радиатора и полученный результат округлить до целого числа.

Некоторые производители предлагают более простой способ получить ответ. На их сайтах можно найти удобный калькулятор, специально предназначенный для того, чтобы сделать данные вычисления. Чтобы воспользоваться программой, нужно ввести необходимые значения в соответствующие поля, после чего будет выдан точный результат. Или же можно воспользоваться специальным софтом.

Когда получали квартиру не задумывались о том, какие у нас радиаторы и подходят ли они к нашему дому. Но со временем потребовалась замена и тут уже стали подходить с научной точки зрения. Так как мощности старых радиаторов явно не хватало. После всех вычислений пришли к выводу, что 12 достаточно. Но нужно еще учесть вот какой момент — если ТЕЦ плохо выполняет свою работу и батареи чуть теплые, то тут уже никакое количество вас не спасет.

Последняя формула для более точного расчета понравилась, но не понятен коэффициент К2. Как определить степень теплоизоляции стен? Например, стена толщиной 375мм из пеноблока "ГРАС", это низкая или средняя степень? А если добавить снаружи стены 100мм плотного строительного пенопласта, это будет высокая, или все еще средняя?

Ок, последняя формула добротная вроде бы, окна учитываются, но а если в помещении еще и дверь есть наружная? А если это гараж в котором 3 окна 800*600 + дверь 205*85 + гаражные секционные ворота толщиной 45мм размерами 3000*2400?

Если делать для себя — я бы увеличил кол-во секций и поставил бы регулятор. И вуаля — мы уже значительно в меньшей степени зависим от прихотей ТЭЦ.

Пример расчета секций алюминиевых радиаторов отоплениия на квадратный метр

Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.

Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.

Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.

Расчет секций алюминиевых радиаторов на квадратный метр

Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия. которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.

Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.

  1. Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
  2. Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
  3. В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
    • если потолок равен 3 м, то параметры умножаются на 1.05;
    • при высоте 3.5 м он составляет 1.1;
    • при показателе 4 м – это 1.15;
    • высота стены 4.5 м – коэффициент равен 1.2.
  4. Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.

Сколько нужно секций алюминиевого радиатора?

Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:

  • S – площадь помещения, где требуется установка батареи;
  • k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
  • P – мощность одного элемента радиатора.

При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.

Q = 20 х 100 / 0.138 = 14.49

В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.

Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:

  • если они закреплены под подоконником, то потери составят до 4%;
  • установка в нише моментально увеличивает этот показатель до 7%;
  • если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
  • закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.

Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.

Пример расчета

Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:

  • каждое окно добавляет к показателю 0.2 кВт;
  • дверь «обходится» в 0.1 кВт.

Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:

Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56

  • первый показатель – это площадь комнаты;
  • второй – стандартное количество Вт на м2;
  • третий и четвертый указывают на то, что в комнате по одному окну и двери;
  • следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
  • шестой – корректирующий коэффициент касаемо расположения батареи.

Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.

Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.

Узнайте полезную информацию об алюминиевых батареях на нашем сайте:

Вычисление по объему

Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.

Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.

  1. Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
  2. Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
  3. Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.

Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.

Тепловая мощность 1 секции

Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.

Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.

Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.

Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.

Формула, необходимая для этого выглядит следующим образом:

КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7

  1. КТ – это то количество тепла, которое требуется данному помещению.
  2. S – площадь.
  3. К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
  4. К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
  5. К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
    • 50% — коэффициент составляет 1.2;
    • 40% — 1.1;
    • 30% — 1.0;
    • 20% — 0.9;
    • 10% — 0.8.
  6. К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
    • +35 = 1.5;
    • +25 = 1.2;
    • +20 = 1.1;
    • +15 = 0.9;
    • +10 = 0.7.
  7. К5 указывает на корректировку при наличии наружных стен.Например:
    • когда она одна, показатель равен 1.1;
    • две наружные стены – 1.2;
    • 3 стены – 1.3;
    • все четыре стены – 1.4.
  8. К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
    • неотапливаемого чердака – коэффициент 1.0;
    • чердак с обогревом – 0.9;
    • жилая комната – 0.8.
  9. К7 – это коэффициент, который указывает на высоту потолка в комнате:
    • 2.5 м = 1.0;
    • 3.0 м = 1.05;
    • 3.5 м = 1.1;
    • 4.0 м = 1.15;
    • 4.5 м = 1.2.

Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.

Если вы решили установить алюминиевые радиаторы отопления важно знать следующее:

Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.

Полезное видео

Источники: http://stroychik.ru/otoplenie/raschet-sekcij-radiatorov, http://aqua-rmnt.com/otoplenie/raschety/raschet-radiatorov-otopleniya.html, http://netholodu.com/elementy-otopleniya/radiatory/alyuminievye/raschet-sektsij.html

Расчет количества секций радиаторов отопления по площади и объему

Любой хозяин понимает, как важно произвести точный расчёт количества секций радиаторов отопления: если секций мало, прибор будет плохо отапливать квартиру; если же много, отопление будет неэффективным, и лишние джоули нужно будет выпускать в форточку.

Существует несколько вариантов расчётов батарей отопления частного дома. Если вы живёте в хорошо утеплённой стандартной квартире – воспользуйтесь быстрыми расчётами. Итак, как как рассчитать количество радиаторов?

Расчет батарей отопления на площадь

Расчет радиаторов отопления по площади помещения – это не самый точный вариант, но подходит, если квартира с высотой потолков 2,6 – 2,7 м.

Порядок действий:

  1. Узнаём общую площадь отапливаемого пространства (данные берутся в документации). Например, это 50 м2.
  2. Умножаем это число на 100 (Вт). Пример: 50 х 100 = 5000 Вт. (Или 5 кВт) – это общее количество тепла необходимое для данной квартиры.
  3. Смотрим в документах к радиатору, сколько тепла может выделить одна секция (см. ниже Таблицу 1). Например, биметаллический L 500 = 180 Вт.
  4. Теперь общее тепло делим на тепло из одной секции. 5000 Вт : 180 Вт = 27,77. Округляем до 28. Результат: для обогрева квартиры 50 м2 нужно 28 секции радиаторов.

Секции радиаторов отопления

Нужно будет произвести такие же расчёты батареи отопления для каждой комнаты отдельно.

Если батареи планируется монтировать в нише или скрыть за экраном, то нужно добавить 15%. Например, мы получили для спальни в 14 м2, радиатор в 8 секций. Но т.к. батареи будут «прятаться», поэтому 8 + 1,2 (15% от 8) = 9,2 т.е. 9 секций.

Для кухни округлять число радиаторов можно в меньшую сторону. А для угловой комнаты и комнаты с балконной дверью – в большую.

Расчет по объему

Если высота потолков в квартире нестандартная, это нужно учитывать при расчётах и вычислять не площадь, а объём.

Порядок действий:

  1. Считаем объём комнаты. Для этого умножаем площадь на высоту потолков. Пример: комната 12 м2. Потолки – 3,1 м. 12 х3,1 = 37,2 м3.
  2. Расчет тепловой энергии на отопление. Узнаём из СНИП, сколько тепловой мощности нужно на обогрев 1 м3 в нашем доме (см. ниже таблицу 2). Например, у нас кирпичный дом, значит показатель =34 Вт.
  3. Перемножаем два получившихся значения. Пример: 37,2 х 34 = 1264,8
  4. Смотрим в документах к радиатору, какова теплоотдача 1 секции. Например, для алюминиевого радиатора А350, это 138 Вт.
  5. Делим итог из пункта 3 на теплоотдачу. Пример: 1264,8 : 138 = 9 секций.

Примерный метод

Упрощенный вариант расчётов основан на принятие за стандарт нескольких показателей:

В помещении с обычными потолками 1 секция батареи обогреет 1,8 м2. Например, если комната 14 м2. 14 : 1,8 = 7,7. Округляем = 8 секций.

Или так:

В комнате с 1 окном и 1 внешней стеной, 1 кВт мощности радиатора может обогреть 10 м2. Пример: комната 14 м2. 14 : 10 = 1,4. То есть для такой комнаты нужен обогреватель мощностью 1,4 кВт.

Такие методы можно использовать для примерных расчётов, но они чреваты серьёзными погрешностями.

Если результатами вычислений стал длинный радиатор более 10 секций, то имеет смысл разделить его на два отдельных радиатора.

Причины возможных ошибок

Производители стараются указывать в документах к батареям максимальные показатели теплоотдачи. Они возможны только если температура воды в отоплении будет на уровне 90 0С (в паспорте тепловой напор указан 60 0С).

В реальности такие значения достигаются теплосетями далеко не всегда. Это значит, что мощность секции будет ниже, а секций нужно больше. Теплоотдача одной секции может быть 50-60 против заявленных 180 Вт!

Боковое подключение радиаторов отопления

Если в сопроводительном документе к радиатору указано минимальное значение теплоотдачи, опираться в расчётах теплоотдачи радиатора батарей отопления лучше на этот показатель.

Ещё одно обстоятельство, которое влияет на мощность радиатора – схема его подключения. Если, например, длинный радиатор из 12 секций подключить боковым методом, дальние секции всегда будут намного холоднее, чем первые. А значит, и расчёты мощности были напрасными!

Длинные радиаторы нужно подключать по диагональной схеме, коротким батареям подойдёт любой вариант.

Самый точный расчёт

Чтобы наиболее точно рассчитать количество секций нужно принимать во внимание больше условий, чем объём и теплоотдача.

100 Вт х S(площадь помещения) х А х Б х В х Г х Д х Е х Ж

Буквы в этой формуле означают:

А – вид остекления. Если у вас:

  • обычные стёкла = 1,26;
  • двойной стеклопакет = 1;
  • тройной стеклопакет = 0,85.

Б – теплоизоляция стен.

  • современная, качественная = 0,85;
  • в два кирпича или утепление = 1;
  • некачественная изоляция = 1,26.

В – сколько занимают площади окна по сравнению с площадью пола.

  • 10% = 0,8;
  • 20% = 0,9;
  • 30% = 1;
  • 40% = 1,1;
  • 50% = 1,2.

Г – минимальная tна улице.

  • -10 0С = 0,7;
  • -20 0С = 1,1;
  • -30 0С = 1,4;
  • -40 0С = 1,7.

Д – количество наружных стен.

  • 1 = 1,1;
  • 2 (угол) = 1,2;
  • 3 = 1,3;.
  • 4 = 1,4
Е – что над квартирой?
  • другая квартира = 0,8;
  • тёплое чердачное помещение = 0,9;
  • холодный чердак = 1.

Ж – Высота потолков.

  • до 2,9 = 1;
  • 3-3,5 = 1,1;
  • 3,6 – 4,5 = 1,2.

Рассмотрим пример. Комната 14 м2 в стареньком доме. Радиаторы будут алюминиевые с теплоотдачей 205. По обычным формулам (для идеальных условий) получается, что нужно 7 радиаторов.

Теперь попробуем учесть все факторы.

  • В окнах обычное остекление (А=1,26).
  • Теплоизоляция оставляет желать лучшего (Б=1,26).
  • Окна занимают 29% площади пола (В = 1).
  • На улице бывает до 35 0С (Г = 1,5).
  • Наружная стена одна (Д = 1,1).
  • Предпоследний этаж. Сверху другая квартира (Е = 0,8).
  • Потолки 3,2м (Ж = 1,1).

Подставляем данные в формулу:

100 х 14 (м2) х 1,26 х 1,26 х 1 х 1,5 х 1,1 х 0,8 х 1,1 = 3227

Теперь если разделить 3227 на теплоотдачу 205 Вт, получим 16 (!) секций радиаторов!

Но и это ещё не всё! Указанная теплоотдача будет действительно такой при 70 0С в трубах. Но если t меньше, нужно вносить поправки и в эти данные.

Если t теплоносителя ниже стандартной (70 0С), на каждые 10 градусов нужно добавить +15%.

В нашем примере t в трубах около 60 0С. Значит к полученным 17 секциям нужно прибавить 2,4 (округляем до 2) секции. Итог – 19 секций. Большая разница с примерными расчётами!

При выборе системы отопления владельцы домов часто отталкиваются от критериев эффективности с экономичностью. Однотрубная система отопления частного дома – простой и удачный вариант для загородного жилища. Узнайте подробнее о достоинствах и недостатках этой системы.

Возможно, вам будет интересно узнать об организации водяного отопления в частом доме. Монтаж по шагам вы найдете здесь.

Пройдя по этой ссылке https://microklimat.pro/otopitelnoe-oborudovanie/obogrevateli/dlya-doma-energosberegayushhie.html вы узнаете, какие обогреватели для дома являются энергосберегающими и на чем строится экономия энергии.

Полезная информация

Показатели теплоотдачи для 1 секции некоторых видов радиаторов (Вт):

  • Алюминиевый А 350 – 138.
  • Алюминиевый А 500 – 185.
  • Алюминиевый S500 – 205.
  • Биметаллический L350 – 130.
  • Биметаллический L500 – 180.
  • Чугунные – 160.

Чугунные батареи

Рекомендации СНИП по тепловой мощности для:

  • Для кирпичного дома – 34 Вт
  • Для панельного дома – 41 Вт.
  • Новостройка, сделанная по всем стандартам. – 20 Вт.

Итак. Приблизительные расчёты подходят для новых добротных домов с пластиковыми окнами. Если же квартира угловая и/или с большими стеклянными окнами, на последнем этаже, с высокими потолками – это всё поводы пересчитать более основательно. Разница может быть немалой!

Для тех, кто далёк от математики, существуют онлайн–калькуляторы. Необходимо знать запрашиваемые показатели, ввести их и ответ будет тут же готов. Калькуляторы можно найти на сайтах изготовителей радиаторов.

Водяное отопление – самый распространенный варианта обогрева помещения. Для максимальной эффективности важно правильно подобрать радиаторы. Батареи отопления – какие лучше? Обзор основных характеристик: температура, давление, теплоотдача, материал.

О вреде инфракрасного обогревателя читайте в этом материале.

Видео на тему

Как рассчитать количество секций радиатора отопления: формулы и общепринятые правила

Со временем любое оборудование изнашивается. И радиатор не является исключением. С истечением его срока эксплуатации, а бывает и раньше, прибор приходится менять. Конечно, некоторые замену проводят и когда устройство еще в хорошем состоянии, просто есть желание установить более новую и современную модель, которая лучше впишется в общий интерьер.

В любом случае очень важен правильный расчет. Правда, данная задача не из легких. Но зная, какие размеры может иметь батарея отопления как выбрать количество секций, выбор изделия можно будет сделать гораздо легче, покупка будет совершена более грамотно. Поэтому стоит рассмотреть тему расчета обогревательных агрегатов более подробно.

Зачем нужен расчет?

Важно знать, как определить необходимое количество секций батареи. От этого напрямую зависит то, какой микроклимат в доме будет зимой. Если количество секций недостаточное, помещение не будет отапливаться на должном уровне и в нем будет холодно, неуютно. Если же радиатор будет чересчур большим, это повлечет за собой расходы не только на его покупку, но и на эксплуатацию. Поэтому, только зная, как рассчитать количество секций радиатора отопления, можно создать эффективную систему теплоснабжения.

Конечно, расчет следует проводить с учетом типа помещения. Для стандартных зданий подойдут и простые методы, позволяющие узнать необходимое число секций. Для некоторых домов важно учитывать ряд нюансов, чтобы результат был более точным.

Каких размеров и форм бывают радиаторы?

При выборе батареи для обогрева комнаты надо учитывать такие критерии, как форма, размер и количество секций. Так, радиаторы отопления размеры по высоте могут иметь разные. У типичных сооружений высота подоконника составляет 800 мм. Поэтому наиболее ходовыми являются модели с высотой 600 мм. Самыми высокими считаются батареи, высота которых достигает 2400 мм. Такие изделия подходят для помещений, в которых многосекционный длинный обогреватель не помещается.

Низкими считаются пластинчатые изделия, высота которых всего 300 мм. Правда есть и более низкие, эксклюзивные версии. Для нестандартных помещений идеальны такие радиаторы отопления высота 200 мм которых позволяет провести их установку под низким подоконником либо у витражей. Агрегаты данного типа не привлекают особого внимания. И к тому же позволяют создать широкую тепловую завесу. Обогрев будет проводиться более эффективно.

В зависимости от конструкции выделяют радиаторы отопления секционные, панельные, колончатые, стеновые и потолочные. Наибольшей популярностью пользуются стандартные секционные модели.

Секционные модели могут быть изготовлены из разных материалов:

  • стали;
  • чугуна;
  • алюминия;
  • биметалла.

Многие сегодня отдают предпочтение именно биметаллическим вариантам. И связано это с тем, что радиатор биметаллический секционный соединяет в себе свойства двух металлов, и отличается высокой теплоотдачей, надежностью, устойчивостью к гидроударам, долговечностью. Более подробно о биметаллических радиаторах можно прочитать здесь.

Как провести расчет числа секций?

Не зависимо от того, какие бывают радиаторы отопления расчет количества секций проводится одинаково. Чаще всего используют упрощенные методы. Если помещение является стандартными и имеет обычную высоту потолка, то одна секция прибора сможет обогреть 1,8 кв.м.

Принято считать, что 1 кВт мощности батареи обеспечивает оптимальный температурный режим на участке, площадью 10 кв.м.

Если же квартира расположена в угловой части дома, есть две наружные стены, то расчет проводится по-другому. На 10 кв.м. уже требуется около 1,3 кВт мощности. Как правило, для обогрева 10 кв.м. надо 5 секций. Но если дом не утеплен или дверь в комнату остается постоянно открытой, то специалисты советуют добавлять еще одну секцию. Применяется такой способ крайне редко. Поскольку характеризуется высокой степенью погрешности.

Также на биметаллические радиаторы размеры секции и их количество определяются с учетом тепловых потерь в здании. Например, угловая комната нагревается медленнее, а тепло отдает быстрее. В этом случае расчет теплоотдачи батареи проводится с запасов примерно 20%.

Более точным считается объемный расчет. При этом учитывается объем отапливаемой комнаты. Так секция радиатора мощностью в 200 Вт способна обогреть 5 куб.м. помещения. Чтобы узнать необходимое число секций, надо объем квартиры разделить на мощность одной секции обогревательного прибора. Зная, как рассчитать количество секций биметаллических радиаторов отопления по приведенному способу, можно получить наиболее достоверные данные.

Сколько стоит одна секция?

Сегодня типов и моделей радиаторов на рынке очень много. Есть импортные варианты, есть отечественные. Выбор зависит от предпочтений покупателя. И конечно, его финансового положения. Ведь стоимость разных вариантов батарей разная.

Зависит на секционные батареи отопления цена от ряда факторов:

  1. Типа устройства и модели.
  2. Материала изготовления. Например, чугунные изделия являются самыми дешевыми, а биметаллические – самые дорогостоящие.
  3. Качества. Более качественными считаются импортные приборы.
  4. Мощности оборудования.
  5. Фирмы-производителя. Сегодня рынок предлагает покупателям батареи от разных компаний.
  6. Количества секций. Данная величина определяется для каждого помещения индивидуально.

Указывается на любой радиатор отопления цена за секцию, поэтому правильный расчет размера батареи еще важен и в плане экономии. Ведь, выбрав батарею больше, чем нужно, покупателю придется отдать больше финансовых средств. Причем такие затраты будут неоправданными. Отопление выйдет дороже. Рыночная цена данных приборов начинается от 6 долларов. Отечественные изделия стоят дешевле. Но у зарубежных аналогов от известного бренда, качество и срок службы выше. Например, отлично зарекомендовали себя радиаторы из Италии, Германии.

Так, на итальянский агрегат цена за секцию составляет порядка 10 долларов. Допустим, требуется около 8 секций. На радиаторы биметаллические 8 секций цена будет составлять от 80 долларов. Ниже 10 долларов такой радиатор стоить точно не будет. Поскольку изделие достаточно дорогое в производстве.

Стоит остерегаться дешевых приборов от известных производителей: вероятнее всего это китайская подделка под именитый бренд.

Из более дешевых вариантов можно назвать российские аналоги. Например, радиатор биметаллический Rifar Forza 500 12 секций является наиболее востребованным среди всех моделей отечественного производства, представленных на рынке. Высота такого изделия составляет 570 мм. Одна секция весит порядка 1,84 кг. В продажу выпускаются обогреватели с количеством секций от 4 до 14.

Конечно, на секции батарей отопления цена будет в разы ниже, чем на аналоги импортного производства. При этом качество является неплохим. Многие пользователи отдают предпочтение именно продукции Рифар потому, что она отличается оптимальным сочетанием качества и цены, во время работы устройства не возникает проблем.

Таким образом, зная, какие бывают радиаторы отопления как рассчитать необходимую высоту и количество секций, можно оборудовать эффективную систему обогрева, которая позволит создать комфортный микроклимат в доме.

способы и схемы, что влияет на теплопотери

Для расчёта количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.

Способы расчёта радиаторов отопления

Сделать расчёт радиаторов можно двумя способами: по площади или объёму помещения

Методы расчёта есть разные. Самые простые дают приблизительные результаты. Тем не менее их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т. п.). Есть более сложный расчёт по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.

Есть ещё один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем ещё хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т. д. Так что заодно можно выправить положение.

По площади

Самый простой способ. Посчитать требуемое на обогрев количество тепла исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:

  • для средней климатической полосы на отопление 1 кв. м жилого помещения требуется 60-100 Вт;
  • для областей выше 60ºC требуется 150-200 Вт.

Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находится в средней климатической полосе, для отопления площади 16 кв. м, потребуется 1 600 Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100 Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60 Вт.

Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключён к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?».

Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определённое количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1 600 Вт. Пусть мощность одной секции 170 Вт. Получается 1 600/170=9,411 шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и ещё ряд факторов не учитывается. Так что расчёт количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

По объёму помещения

При таком расчёте учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объём помещения, а затем по нормам узнаём, сколько нужно тепла на его обогрев:

  • в панельном доме на обогрев кубометра воздуха требуется 41 Вт;
  • в кирпичном доме на 1 куб. м — 34 Вт.

Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объёму.

Рассчитаем все для того же помещения площадью 16 кв. м и сравним результаты. Пусть высота потолков 2,7 м. Объём: 16*2,7=43,2 куб. м.

Дальше посчитаем для вариантов в панельном и кирпичном доме:

  • В панельном доме. Требуемое на отопление тепло 43,2 куб м*41В=1 771,2 Вт. Если брать все те же секции мощностью 170 Вт, получаем: 1 771 Вт/170 Вт=10,418 шт. (11 шт.).
  • В кирпичном доме. Тепла нужно 43,2 куб. м*34 Вт=1 468,8 Вт. Считаем радиаторы: 1 468,8 Вт/170 Вт=8,64 шт. (9 шт.).

Как видно, разница получается довольно большая: 11 и 9 шт. Причём при расчёте по площади получили среднее значение (если округлять в ту же сторону) — 10 шт.

Корректировка результатов

Для того чтобы получить более точный расчёт нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего сделаны стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т. п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Как количество секций зависит от величины потерь тепла

Теплопотери зависят от нескольких факторов: размещения окон, стен

Окна

На окна приходится от 15 до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

Соотношение площади окна к площади пола:

  • 10% — 0,8;
  • 20% — 0,9;
  • 30% — 1,0;
  • 40% — 1,1;
  • 50% — 1,2;

Остекление:

  • трёхмерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85;
  • обычный двухкамерный стеклопакет — 1,0;
  • обычные двойные рамы — 1,27.

Стены и кровля

Для учёта потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

Степень теплоизоляции:

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0;
  • недостаточная (отсутствует) — 1,27;
  • хорошая — 0,8;

Наличие наружных стен

  • внутреннее помещение — без потерь, коэффициент 1,0;
  • одна — 1,1;
  • две — 1,2;
  • три — 1,3.

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т. п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Если расчёт проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7 м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7 м. Получаете искомый коэффициент.

Посчитаем для примера: пусть высота потолков 3,0 м. Получаем: 3,0 м/2,7 м=1,1. Значит количество секций радиатора, которое рассчитали по площади для этого помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Климатические факторы

Можно внести корректировки в зависимости от средних температур зимой:

  • 10ºC и выше — 0,7;
  • 15ºC — 0,9;
  • 20ºC — 1,1;
  • 25ºC — 1,3;
  • 30ºC — 1,5 .

Учитывая все требуемые корректировки, получаяте более точное количество требуемых на обогрев комнаты радиаторов с учётом параметров помещений. Но это ещё не все критерии, которые оказывают влияние на мощность теплового излучения. Есть ещё технические тонкости, о которых расскажем ниже.

Расчёт разных типов радиаторов

Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчётом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1 л/минуту примерно равен мощности в 1 кВт (1 000 Вт).

Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя. Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчёт секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

Осевое расстояние определяют между центрами отверстий для теплоносителя. Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчёта количества секций биметаллических радиаторов от расчёта алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.

Чтобы считать было проще, есть усреднённые данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50 см приняты такие значения мощностей:

  • алюминиевые — 190 Вт;
  • биметаллические — 185 Вт;
  • чугунные — 145 Вт.

Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведём самый простой расчёт секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50 см) принимается, что одна секция может обогреть 1,8 кв. м площади. Тогда на помещение 16 кв. м нужно: 16 кв. м/1,8 кв. м=8,88 шт. Округляем — нужны 9 секций.

Аналогично считаем чугунные или стальные баратареи. Нужны только нормы:

  • биметаллический радиатор — 1,8 кв. м;
  • алюминиевый — 1,9-2,0 кв. м;
  • чугунный — 1,4-1,5 кв. м.

Это данные для секций с межосевым расстоянием 50 см. Сегодня же в продаже есть модели с самой разной высоты: от 60 до 20 см и даже ещё ниже. Модели 20 см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придётся вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.

Расчёт чугунных радиаторов отопления. Считать может по площади или объёму помещения. Для наглядности сделаем расчёт алюминиевых радиаторов по площади. Помещение то же: 16 кв. м. Считаем количество секций стандартного размера: 16 кв. м/2 кв. м=8 шт. Но использовать хотим маломерные секции высотой 40 см. Находим отношение радиаторов выбранного размера к стандартным: 50/40 см=1,25. И теперь корректируем количество: 8 шт.*1,25=10 шт.

Корректировка в зависимости от режима отопительной системы

Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90ºC, в обратке — 70ºC (обозначается 90/70) в помещении при этом должно быть 20ºC. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчёт откорректировать.

Для учёта режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора. Чтобы было понятнее произведём расчёт чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50 см). Помещение то же: 16 кв. м. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5 кв. м. Потому нам потребуется 16 кв. м/1,5 кв. м=10,6 шт. Округляем — 11 шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдём температурный напор для каждой из систем:

  • высокотемпературная 90/70/20 — (90+70)/2-20=60ºC;
  • низкотемпературный 55/45/20 — (55+45)/2-20=30ºC.

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16 кв. м требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчёте можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20ºC а, например, 25ºC просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчёт все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55ºC. Теперь находим соотношение 60/55ºC=1,1. Чтобы обеспечить температуру в 25ºC нужно 11 шт*1,1=12,1 шт.

Зависимость мощности батарей от подключения и места расположения

 

Кроме всех описанных выше параметров, теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Для однотрубных систем

Есть ещё один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления, когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

Поясним на примере: на схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остаётся по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8 шт., будет на 20% больше — 9 или 10 шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.

В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции. Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают  радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

Приблизительный расчёт количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

Оцените статью: Поделитесь с друзьями!

Как рассчитать кулоны | Sciencing

Обновлено 3 ноября 2020 г.

Клэр Гиллеспи

Электрический заряд, который проходит через что угодно, от батареи AA до молнии, измеряется в кулонах. Если вы знаете, какой ток в цепи и как долго он течет, вы можете рассчитать электрический заряд в кулонах.

Свойства кулонов

Электроны крошечные и имеют очень маленький заряд. В физике очень большое количество электронов определяется как 1 единица заряда, называемая кулоном.Один кулон эквивалентен 62 × 10 18 электронам. Количество кулонов в секунду называется током (т. Е. Скоростью потока кулонов в цепи). Энергия кулона называется напряжением и измеряется в джоулях.

Как рассчитать электрический заряд

Чтобы определить величину электрического заряда, протекающего в цепи, вам необходимо знать, какой ток течет и как долго он протекает. Уравнение:

\ text {заряд в кулонах} = \ text {ток в амперах} \ times \ text {время в секундах}

Например, если ток 20 А течет в течение 40 с, расчет равен 20. × 40.Итак, электрический заряд равен 800 C.

Как рассчитать переданную энергию

Если вы знаете количество электрического заряда в кулонах и напряжение (также известное как разность потенциалов), вы можете определить, сколько энергии передается. Уравнение:

\ text {энергия, преобразованная в джоулях} = \ text {разность потенциалов в вольтах} \ times \ text {заряд в кулонах}

Например, если разность потенциалов составляет 100 В, а заряд равен 3 Кл. , расчет 100 × 3.Таким образом передается 300 Дж энергии.

Использование закона Кулона

Произведение электрических зарядов в двух телах (т. Е. Притягиваются они или отталкиваются друг от друга) зависит от заряда каждого тела в кулонах, а также от расстояния между телами. Если полярности одинаковы (обе положительные или обе отрицательные), кулоновская сила отталкивается, но если полярности противоположны (отрицательная / положительная или положительная / отрицательная), кулоновская сила притягивается. Электрический заряд также обратно пропорционален квадрату расстояния между двумя телами.Это известно как закон Кулона, который сформулирован как:

В этом уравнении F - сила, приложенная к зарядам (q 1 ) и (q 2 ), k - постоянная Кулона, а (r) - расстояние между (q 1 ) и (q 2 ). Значение k зависит от среды, в которую погружены заряженные объекты. Например, значение воздуха составляет приблизительно 9,0 × 10 9 Нм 2 / C 2 . Закон Кулона можно использовать для решения многих физических задач, в которых известны все значения, кроме одного.

Емкость аккумулятора - обзор

20.2.3 Емкость аккумулятора

Емкость аккумулятора соответствует количеству электрического заряда, который может быть накоплен во время заряда, сохранен во время пребывания в разомкнутой цепи и высвобожден во время разрядки в реверсивном устройстве. манера. Это достигается интегрированием тока разряда, начиная с полностью заряженной батареи и заканчивая процесс разряда при определенном пороге напряжения, часто обозначаемом как напряжение отсечки или U cut_off , достигнутом в момент t cut_off .В этом случае она обозначается как разрядная емкость или C d , а для случая электрохимии свинцово-кислотных аккумуляторов она может быть выражена как

(20,5) Cd = ∫0tcut_offIdt = −2FMPbO2 (mPbO2initial − mPbO2cut_off ) = - 2FMPb (mPbinitial − mPbcut_off)

Уравнение (20.5) показывает, что емкость батареи пропорциональна количеству активных материалов, которые могут быть преобразованы электрохимически, пока напряжение батареи не достигнет порогового значения напряжения U cut_off .Знак разрядной емкости отрицательный; однако на практике его значение рассматривается как модуль. Когда батарея разряжается постоянным током, ее емкость определяется по формуле: C d = I · t d , где t d - продолжительность разряда. Когда последнее выражается в часах, типичной единицей измерения емкости аккумулятора является ампер-час.

Разрядная емкость новой батареи (т. Е. До заметного начала деградации батареи) является функцией температуры и профиля тока разряда.Основным этапом разработки каждого алгоритма управления батареями является оценка зависимости разрядной емкости от тока и температуры. Обычно это делается путем подвергания одной или нескольких идентичных батарей или элементов нескольких циклов заряда / разряда при постоянной температуре с использованием гальваностатического разряда с разными токами разряда и фиксированным режимом полной перезарядки. Процедура повторяется при нескольких разных температурах. При разработке такого плана экспериментов следует учитывать типичную скорость разрушения батареи при циклическом включении.Для аккумуляторов, скорость старения которых в режиме глубокого цикла высока (например, свинцово-кислотные аккумуляторы с тонкими пластинами и решетками, не содержащими сурьмы), количество таких глубоких циклов определения характеристик должно быть меньше, а количество экспериментальных точек на батарею должно быть ограничено. можно было бы компенсировать испытанием большего количества батарей.

Зависимость разрядной емкости от тока разряда часто соответствует уравнению Пейкерта [2]:

(20.6a) Cd = K · I1 − n

, где K и n - эмпирические константы.Коэффициент n сильно зависит от конструкции электродов. Например, свинцово-кислотные батареи с толстыми пластинами имеют значение n в диапазоне 1,4 [3], а для конструкций с более тонкими пластинами n находится в диапазоне 1,20–1,25 [4]. Для таких технологий, как литий-ионные батареи, где пластины очень тонкие (в диапазоне 0,2–0,3 мм), значение n близко к 1 [5]. В этом случае уравнение Пойкерта и соответствующие экспериментальные данные могут быть представлены с использованием продолжительности разряда t d вместо емкости:

(20.6b) td = K · I − n

Когда экспериментальные данные t d (I) построены в двойных логарифмических координатах, уравнение (20.6b) преобразуется в прямую линию с наклоном, равным к коэффициенту n . Уравнение Пойкерта демонстрирует одну и ту же тенденцию почти для всех типов первичных и аккумуляторных батарей - чем выше ток разряда, тем меньше емкость. Последнее с электрохимической точки зрения соответствует меньшему количеству активных материалов, превращающихся в продукты разряда.В технологии аккумуляторов степень этого преобразования обозначается как «использование активных материалов». Уменьшение использования активных материалов при высоких токах разряда очень часто можно приписать эффектам диффузии. Например, в случае разряда свинцово-кислотной батареи (уравнения (20.1a) и (20.1b)) серная кислота, необходимая для преобразования PbO 2 и Pb в PbSO 4 , должна диффундировать из объема электролита. к геометрической поверхности электрода, а затем внутрь его пористого объема.При высоких токах разряда электролит из объема элемента, расположенного между пластинами батареи, не успевает диффундировать внутри объема пластин, где он быстро истощается из-за электрохимических реакций. Это приводит к развитию локальных градиентов концентрации и появлению диффузной поляризации [6]. Последнее вызывает быстрое снижение напряжения разряда ячейки. По логике вещей, мы можем достичь большей емкости при более высоких токах только в аккумуляторных технологиях, использующих конструкции ячеек с более тонкими пластинами, где диффузия происходит быстрее.

Уравнение Пейкерта имеет различный диапазон применимости для каждой аккумуляторной технологии - для очень высокого и очень низкого тока разряда оно больше не действует. Следует отметить, что точный алгоритм BMS должен также полагаться на набор параметров n и K , измеренных для конкретного типа батареи, используемой в энергетической системе, т. Е. Пара «батарея плюс BMS» ведет себя как ключ и замочная скважина.

Уравнение (20.6b) может использоваться для объяснения терминов «номинальная емкость» и «номинальный ток», которые часто используются в аккумуляторной практике.Здесь «номинальный» соответствует выбору тока, который соответствует заданной продолжительности разряда (или желаемой автономности), или наоборот - как долго мы будем работать от батареи при приложенном токе разряда. Таким образом, ток, соответствующий 20-часовому разряду, обозначается как 20-часовой номинальный ток или I 20 (или I 20h ). Когда последнее умножается на 20 часов, произведение обозначается как 20-часовая номинальная производительность C 20 (C 20h ).

Еще один термин, связанный с емкостью батареи, - это «номинальная емкость» (или емкость, указанная на паспортной табличке), обозначенная как C n . Определение C n часто связано с определенным приложением или стандартом тестирования батарей. Например, номинальная емкость свинцово-кислотных аккумуляторов для запуска, освещения и зажигания обычно совпадает с 20-часовой номинальной емкостью C 20h . Номинальная емкость может использоваться для выражения плотности тока заряда и разряда в виде рейтинга C, представленного как отношение между номинальной емкостью и `` целевой '' длительностью разряда или заряда (последняя отличается от реальной продолжительности заряда или продолжительности заряда). увольнять).Таким образом, для тока, предназначенного для зарядки или разрядки аккумулятора в течение 10 часов, плотность тока выражается как C n /10 час. Более высокие токи, такие как C n /1 ч, обозначаются как 1 C, C n /30 мин как 2 C, C n /15 мин как 4 C и т. Д. Когда ток выражается таким образом, он позволяет применять одинаковые условия тестирования к батареям разного размера и надежно сравнивать полученные результаты. Удобство такого подхода связано с большой разницей между возможностями тестирования аккумуляторов в лаборатории, которая занимается разработкой BMS, и фактическими размерами установки для аккумулирования энергии.Обычно стенды для проверки аккумуляторных батарей предназначены для проверки ячеек в диапазоне напряжений 0–5 В и тока ± 5–50 А (чем выше ток, тем дороже оборудование). Во многих реальных аккумуляторных установках для хранения возобновляемой энергии и поддержки сети типичный диапазон постоянного напряжения составляет 400 В, а токи могут достигать 500–1000 А в случае, когда используются огромные аккумуляторные элементы, что свидетельствует о том, что BMS фактически экстраполирует лабораторные характеристики элементов и батарей меньшего размера, чтобы контролировать и прогнозировать работу крупногабаритных аккумуляторов энергии.

Электрический ток - Веб-формулы

Электрический ток определяется по формуле:

I = В / R

Соответствующие единицы:
ампер (А) = вольт (В) / Ом (Ом)

Эта формула получена из закона Ома . Где у нас:
В: напряжение
I: ток
R: сопротивление

Если электрическая мощность и полное сопротивление известны, то ток можно определить по следующей формуле:

I = √ ( P / R )

Соответствующие единицы:
Ампер (А) = √ (Ватт (Вт) / Ом (Ом))

Где P - электрическая мощность.


Электрический ток
Скорость потока заряда через поперечное сечение некоторой области металлического провода (или электролита) называется током через эту область.

Если скорость потока заряда непостоянна, тогда ток в любой момент задается дифференциальным пределом: I = dQ / dt.

Если заряд Q течет по цепи в течение времени t, то
I = Q / t.

Единица измерения тока S.I называется ампер (А) (кулон в секунду).
1 ампер = 6,25 × 10 8 электронов / сек

В металлических проводниках ток возникает из-за движения электронов, тогда как в электролитах и ​​ионизированных газах и электроны, и положительные ионы движутся в противоположном направлении. Направление тока принимается за направление движения положительных зарядов.

В проводимости, хотя ток возникает только за счет электронов, ранее предполагалось, что ток возникает из-за положительных зарядов, протекающих от положительного полюса батареи к отрицательному.Поэтому направление тока считается противоположным потоку электронов.

Если ток постоянный: Δq = I.Δt

функция времени:

Заряд = Площадь под графиком = ½ × t 0 × I 0

To Найти ток в электрической цепи
Для простой цепи или одиночного провода мы имеем:

Для сложной цепи с более чем одним проводом мы можем определить ток с помощью двух законов Кирхгофа

Первый закон: Этот закон основан на на принципе сохранения заряда и утверждает, что в электрической цепи (или сети проводов) алгебраическая сумма токов, встречающихся в точке, равна нулю.

Стрелка, отмеченная на схеме, представляет направление обычного тока, то есть направление потока положительного заряда, тогда как направление потока электронов дает направление электронного тока, противоположное направлению обычного тока.
I 1 + I 4 + I 5 = I 3 + I 2 + I 6

Второй закон: Алгебраическая сумма произведения тока и сопротивление в любом замкнутом контуре цепи равно алгебраической сумме электродвижущих сил, действующих в этом контуре.
Математически.

Электродвижущие силы - ЭДС (𝜖) источника определяется как работа, совершаемая на единицу заряда при прохождении положительного заряда через гнездо ЭДС от конца с низким потенциалом к ​​концу с высоким потенциалом. Таким образом,
𝜖 = w / Q

Когда ток не течет, ЭДС источника в точности равна разности потенциалов между его концами. Единица ЭДС такая же, как и у потенциала, то есть вольт.

Средний поток электронов в проводнике, не подключенном к батарее, равен нулю, т.е. количество свободных электронов, пересекающих любой участок проводника слева направо, равно количеству электронов, пересекающих участок проводника справа налево. ток не течет по проводнику, пока он не будет подключен к батарее.

Скорость дрейфа свободных электронов в металлическом проводнике

В отсутствие электрического поля свободные электроны в металле беспорядочно вращаются во всех направлениях, поэтому их средняя скорость равна нулю.При приложении электрического поля они ускоряются в направлении, противоположном направлению поля, и поэтому имеют общий дрейф в этом направлении. Однако из-за частых столкновений с атомами их средняя скорость очень мала. Эта средняя скорость, с которой электроны движутся в проводнике под действием разности потенциалов, называется дрейфовой скоростью .

Если E - приложенное поле, e - заряд электрона, m - масса электрона и τ - временной интервал между последовательными столкновениями (время релаксации), то ускорение электрона составляет

Поскольку средняя скорость сразу после столкновения равна нулю, а непосредственно перед следующим столкновением это τ, скорость дрейфа должна быть:

Если I - ток через проводник и n - это количество свободных электронов на единицу объема, тогда можно показать, что:

Подвижность µ носителя заряда определяется как скорость дрейфа на единицу электрического поля:

Плотность тока (J)
(i)
(ii) S.I Единица J = Am -2 .
(iii) Плотность тока - это векторная величина, ее направление - это направление потока положительного заряда в данной точке внутри проводника.
(iv) Размеры плотности тока = [M 0 L -2 T o A 1 ]

Носители тока: заряженные частицы, поток которых в определенном направлении составляет электрический ток, являются носителями тока. . Носители тока могут иметь положительный или отрицательный заряд.Ток переносится электронами в проводниках, ионами в электролитах, электронами и дырками в полупроводниках.

Пример 1: Частица с зарядом q кулонов описывает круговую орбиту. Если радиус орбиты равен R, а частота орбитального движения частиц равна f, то найти ток на орбите.

Решение: Через любой участок орбиты заряд проходит f раз за одну секунду. Следовательно, через этот участок общий заряд, проходящий за одну секунду, равен fq.По определению i = fq.

Пример 2: Ток в проводе изменяется со временем в соответствии с уравнением I = 4 + 2t, где I - в амперах, а t - в секундах. Вычислите количество заряда, прошедшего через поперечное сечение провода за время от t = 2 с до t = 6 с.

Решение: Пусть dq будет изменением, которое произошло за небольшой интервал времени dt.
Тогда dq = I dt = (4 + 2t) dt

Следовательно, общий заряд, прошедший за интервал t = 2 с и t = 6, равен
q = ∫ 6 2 (4 + 2t) dt = 48 кулонов

Пример 3: Дан токоведущий провод неоднородного сечения.Что из следующего является постоянным по всей сети?
(a) Только ток
(b) Ток и скорость дрейфа
(c) Только скорость дрейфа
(d) Ток, скорость дрейфа

Решение : (a)

Пример4 : Когда разность потенциалов на данном медном проводе увеличивается, скорость дрейфа составляет
носители заряда:
(a) Уменьшается
(b) Увеличивается
(c) Остается прежним
(d) Уменьшается до нуля
Решение : (b)

Размер your Battery Bank

Определение размера вашей аккумуляторной батареи

Определение размера вашей аккумуляторной батареи

Важной частью любой системы возобновляемых источников энергии является способность хранить произведенную энергию для будущего использования.Здесь в игру вступает ваш аккумуляторный блок. Выбор системы аккумуляторов в соответствии с вашей системой возобновляемой энергии зависит от трех основных факторов: размера вашей системы, того, сколько вы собираетесь хранить для будущего использования и сколько часов необходимо покрыть. Получив эту информацию, мы сможем разработать аккумуляторный блок, соответствующий вашим потребностям. Вы также можете использовать калькулятор на этой странице, чтобы определить количество и размер батарей, которые вам понадобятся. Воспользуйтесь калькулятором ниже, чтобы узнать, какой размер батареи вам понадобится.Количество батарей в банке будет зависеть от номинальной мощности (емкости каждой батареи).

Преобразовать ватт-часы в мАч

Вставьте ватт-часы (Втч) и напряжение (В) и нажмите «Рассчитать», чтобы получить миллиампер-часы (мАч).

Формула: (Вт · ч) * 1000 / (В) = (мА · ч). Например, если у вас аккумулятор 1,5 Вт · ч с номиналом 5 В, мощность составит 1,5 Вт · ч * 1000/5 В = 300 мА · ч.

При покупке батарей следует учитывать стоимость, срок службы, установку и обслуживание. Доступны 3 основных типа аккумуляторов: свинцово-кислотные и литий-ионные.Литий-ионные батареи обеспечивают больше циклов в течение своего срока службы по сравнению со свинцово-кислотными, а также обеспечивают более высокую эффективность заряда и разряда. С другой стороны, свинцово-кислотные батареи в основном предназначены для использования в режиме ожидания, однако технология была недавно обновлена, а функция глубокого цикла теперь включена в некоторые свинцово-кислотные батареи так же, как и в литий-ионные батареи.

Батарейный блок должен иметь точные размеры, чтобы гарантировать, что блок может хранить то, что вам нужно от вашей системы возобновляемой энергии, а его глубина разряда дает вам необходимую резервную мощность.Таким образом, при выборе аккумуляторной системы подходящего размера выбор необходимого вам типа батарей зависит от того, для чего и когда вам нужно их использовать. Однако глубина разряда очень важна, и ее никогда не следует упускать из виду, так как она напрямую влияет на срок службы ваших батарей. Это требует тщательного планирования, чтобы гарантировать, что то, что вы покупаете, будет соответствовать предполагаемому использованию без отрицательного влияния на срок службы ваших батарей.

Концепция аккумуляторов с морской водой или Aquion Energy в промышленных масштабах родилась в 2008 году, и с тех пор эта технология постоянно совершенствуется.Они устойчивы к любым изменяющимся профилям циклов и длительным интервалам при частичном заряде. Езда на велосипеде для поддержания работоспособности / жизни не нужна. Его механические материалы могут быть переработаны в обычных потоках вторичной переработки. Химические материалы можно утилизировать без специального оборудования или контейнеров. Батареи - это то, что мы бы назвали хорошими, и будущее батарей в целом. Но они очень дорогие!

В предыдущем разделе мы привели ряд терминов, которые заставят любого задуматься: «Что это значит?» Что ж, мы вас охватили, вот краткое объяснение терминов, относящихся к батареям и их использованию:

1.Срок службы: срок службы аккумулятора - это количество полных циклов зарядки / разрядки, которое аккумулятор может выдержать до того, как его емкость упадет ниже 80% от первоначальной емкости. Батареи проявляют человеческие качества и нуждаются в полноценном питании, отдыхе и уходе. Уход начинается с работы при комнатной температуре и разрядки умеренным током.

2. Глубокий цикл: Эти батареи предназначены для регулярного использования и разряда большей части (70-80%) своей емкости.

3. Глубина разряда: Глубина разряда, используется для описания степени разряда аккумулятора.Это будет зависеть от типа батареи; для батареи с наименьшими характеристиками вы можете получить от батареи 30-40% запасенной энергии без каких-либо повреждений, особенно если они используются регулярно. На других батареях вы можете полностью разрядиться; это может быть разбито дальше относительно количества раз, когда вы можете полностью разрядить батарею. Для некоторых аккумуляторов вы можете выполнять это на регулярной основе без значительных отрицательных последствий, для других - только изредка, если возникнет чрезвычайная ситуация.

Вернуться к сервису Страница

Как без колебаний рассчитать напряжение батареи в процентах для батареек AA 2? - Nordic Q&A - Nordic DevZone

В идеале, вы хотите провести разрядный тест, чтобы найти «формулу», о которой вы говорите.

Если вы посмотрите на это изображение, вы можете увидеть напряжение холостого хода аккумулятора по сравнению с состоянием заряда аккумулятора. Что вы хотите сделать, так это провести тест на разряд постоянным током, когда вы разряжаете аккумулятор, например, с помощью разряда C / 30 A.Это означает, что для полной разрядки (т.е. 0% SoC) одной батареи от полной зарядки (100% SoC) потребуется 30 часов. Это сделано для минимизации гистерезиса ячейки. Но вы также можете провести тест разряда C / 10, например, если вы хотите немного сэкономить время (т.е. он будет выполнен за 10 часов). Испытание на разряд обычно проводится в профессиональных камерах для тестирования аккумуляторов, в идеале при постоянной температуре около 25 градусов Цельсия. Затем эти тесты повторяются при разных температурах, чтобы получить соотношение SoC и OCV для разных температурных областей (например,грамм. -10, 0, 10, 20, 30, 40 Цельсия). Во время разряда элемента вы хотите измерять напряжение, например, каждую 1 секунду, а также количество разряженных ампер-часов (Ач, т. Е. Ток * время).

Это должно дать вам кривую, подобную этой:

Цифру можно найти в конспектах лекции Грегори Плетта здесь. Тогда вы можете предположить, что кулоновская эффективность eta приблизительно равна 1. Это оставляет вас с формулой: SoC (t) = 1-Ач разряжено (t) / емкость элемента Q , где t означает количество секунд, в течение которых выполняется испытание на разряд. была запущена, и емкость элемента Q указана в Ач.Затем SoC задается в виде десятичной дроби, где 0 означает 0%, а 1 - 100% SoC. Показанная формула часто называется подсчетом кулонов.

Если у вас нет лабораторного оборудования (или вы не хотите тратить столько времени на выяснение взаимосвязи между SoC и напряжением холостого хода), вы можете поговорить с производителем элемента и попросить справочную таблицу, сравнивающую OCV с SoC на каждом этапе. Например, 1% SoC. Скорее всего, они выполнили именно этот тест. К сожалению, я не уверен, захотят ли они предоставить вам данные...

Если вам интересно, вы можете посмотреть конспекты лекций профессора Грегори Плетта. См. Главу 2.7 «Определение OCV в зависимости от температуры». В этой главе все объясняется гораздо более подробно. Вы также можете скачать видео с лекцией, если предпочитаете послушать его выступление. Может быть проще. Надеюсь, это поможет!

Как держится ваша батарея? Отчет об уровне заряда Windows 10 сообщит вам

С помощью команды PowerCfg вы можете следить за уровнем заряда аккумулятора мобильного устройства с Windows 10.

Изображение: iStockphoto.com/wektorygrafika

В моей недавней серии статей я показал вам, как настроить параметры питания и сна и использовать новую функцию энергосбережения Windows 10 для настройки, мониторинга и экономии заряда аккумулятора вашего мобильного устройства. В процессе написания этих статей я слышал от многих читателей, которые испытывают более короткое время автономной работы и считают, что виновата Windows 10. Конечно, многие факторы могут влиять на разрядку аккумулятора с разной скоростью в разное время, поэтому, вообще говоря, трудно точно сказать, в чем может быть причина.

Тем не менее, вы все равно должны помнить, что батареи не работают вечно и со временем будут держать все меньше и меньше заряда, пока они в конечном итоге не изнашиваются. Чтобы помочь вам следить за самой батареей, Windows 10 (и Windows 8) предоставляет вам инструмент для создания подробного отчета о батарее в вашей системе. Фактически отчет создается с помощью специального параметра в команде PowerCfg. Давайте рассмотрим подробнее.

Начало работы

Запустить команду PowerCfg и запустить отчет о батарее легко, если вы знаете, как это сделать.Для начала вам нужно открыть командную строку администратора, что можно сделать, щелкнув правой кнопкой мыши кнопку «Пуск» и выбрав команду «Командная строка (администратор)». Затем введите команду:

powercfg / batteryreport

и нажмите [Enter]. Утилита настройки электропитания немедленно скомпилирует отчет и отобразит сообщение, показанное на рисунке , рисунок A .

Рисунок A
Утилите настройки электропитания достаточно времени, чтобы составить отчет о батарее.

Теперь просто введите battery-report.html в командной строке. Когда в вашем браузере загрузится страница отчета об уровне заряда батареи, вам придется прокрутить вниз, чтобы просмотреть весь отчет. Как вы увидите, он содержит шесть разделов плюс заголовок. Чтобы упростить просмотр отчета в этой статье, я разделил свой снимок экрана с отчетом на отдельные изображения, соответствующие каждому разделу.

Заголовок

Вверху отчета, показанного на рисунке Рисунок B , представлена ​​общая информация о компьютере, включая имя, присвоенное системе, марку и модель устройства, версию и дату BIOS, а также номер сборки операционной системы.Он также отображает элемент под названием «Роль платформы», который, как вы можете видеть, для этого ноутбука обозначен как «Мобильный». Следующий элемент в этом разделе - режим ожидания с подключением. Как видите, этот конкретный ноутбук указан как не поддерживаемый. Последний элемент показывает дату и время создания отчета.

Рисунок B
Вверху отчета вы найдете некоторую общую информацию о компьютере.

Установленные батареи

В разделе «Установленные батареи», показанном на рисунке Рисунок C , вы найдете подробную информацию о батарее, включая название, серийный номер и производителя.

Рисунок C
В разделе «Установленные батареи» представлена ​​подробная информация о батарее.

В случае моей системы в качестве примера в списке Chemistry указано Lilo, что указывает на то, что это литиевая батарея. Следующий пункт - проектная мощность. Он представляет собой количество заряда, которое батарея должна удерживать. Значение представлено в мВтч, что соответствует милливатт-часам. (Аккумуляторы для ноутбуков имеют номинальное напряжение (В) и значение в миллиампер-часах (мАч), которые умножаются, чтобы получить емкость в милливатт-часах.)

Следующая расчетная емкость - это полная емкость заряда, которая представляет собой количество заряда, которое фактически может удерживать аккумулятор. В случае моей примерной системы полная емкость заряда на самом деле меньше проектной. Это падение емкости напрямую связано с возрастом батареи. Этой батарее два года, и мы узнаем больше подробностей, когда перейдем к разделу «История емкости батареи».

Последний элемент в этом разделе называется «Счетчик циклов».Это значение указывает, сколько раз батарея израсходовала 100% своего заряда. Например, цикл можно измерять каждый раз, когда батарея полностью разряжается, а затем заряжается. Цикл также может быть результатом разрядки до 50%, полной зарядки и повторной разрядки до 50%. Батареи могут пройти ограниченное количество циклов, прежде чем они будут считаться разряженными. Максимальное значение счетчика циклов будет варьироваться в зависимости от ряда факторов, но производитель батареи укажет максимальное значение счетчика в технических характеристиках батареи.

Вы могли заметить, что счетчик циклов в моей примерной системе не сообщается. К сожалению, я обнаружил, что это справедливо для многих систем, которые я исследовал.

Недавнее использование

В разделе «Недавнее использование», показанном на рис. D , вы найдете таблицу, в которой перечислены состояния электропитания - «Активное» или «Приостановленное», через которые система прошла за последние три дня. Он указывает время запуска системы, источник питания - аккумулятор или переменный ток, а также оставшуюся емкость аккумулятора на момент ввода.Оставшаяся емкость показывает процент, а также мВтч.

Рисунок D

В разделе «Недавнее использование» отображается таблица, в которой перечислены различные состояния питания за последние 72 часа использования.
Использование батареи

В разделе «Использование батареи» представлена ​​диаграмма и таблица, в которой указаны дата и время для каждого случая, когда батарея была разряжена за последние три дня. Как вы можете видеть на рисунке , рис. E , после одного часа и 16 минут использования 30 ноября батарея этого ноутбука разряжена на 55%, что соответствует потребляемой мощности 13 142 мВтч.

Рисунок E
В разделе «Использование батареи» есть диаграмма и таблица.
История использования

В разделе «История использования», показанном на рис. F , вы найдете таблицу, которая отображает историю использования системы как от сети переменного тока, так и от батареи. Первый столбец показывает период использования - обычно семь дней - и это может быть или не быть последовательным набором дней, в зависимости от того, как часто вы используете свою систему. В таблице также указано, сколько часов и минут в течение указанного периода времени система работала от батареи и как долго она работала от сети переменного тока.

Рисунок F
В разделе «История использования» подробно описано использование системы как от сети переменного тока, так и от батареи.

История емкости аккумулятора

В разделе истории емкости аккумулятора, показанном на рис. G , отображается история емкости аккумулятора системы. В этой таблице указаны как полная емкость заряда, так и расчетная емкость, а также период использования, что дает вам возможность отслеживать состояние вашей батареи с течением времени.

Например, вы можете видеть, что, когда я впервые начал использовать этот ноутбук в сентябре 2013 года с Windows 8, полная емкость заряда была близка к проектной - разница примерно в 3000 мВтч.Это довольно типично.

Мой пример отчета о батареях также показывает, что при регулярном использовании в первый год полная зарядная емкость постоянно снижалась в течение каждого периода измерения. Разница в итоге составила 8 176 мВт / ч .

Рисунок G
В течение первого года регулярного использования полная зарядная емкость упала на 8 176 мВтч.

После второго года полная зарядка продолжала падать. Разница в конечном итоге составила 3670 мВтч, как показано на Рисунок H .Таким образом, за двухлетний период полная зарядная мощность упала на 11 846 МВтч. За последние несколько месяцев полная зарядка выровнялась.

Рисунок H
В течение второго года регулярного использования полная емкость заряда упала на 3 670 мВтч.

Как говорится, ваш пробег может отличаться - но велика вероятность, что вы увидите, что ваша батарея больше не заряжается до своей первоначальной полной емкости.

Расчетный срок службы батареи

В конце отчета находится раздел «Расчетный срок службы батареи».Он включает в себя таблицу, в которой указано, как долго вы можете рассчитывать на то, что аккумулятор будет работать при полной зарядке и при расчетной емкости. Эти оценки основаны на наблюдаемых стоках. Это также даст вам хорошее представление о состоянии вашей батареи.

Как вы можете видеть на рис. I , когда я впервые начал использовать эту систему, я мог получить около трех с половиной часов использования при полной зарядке батареи; сегодня у меня всего около двух часов.

Рисунок I
В разделе «Оценка срока службы батареи» показано, как долго вы можете рассчитывать на полную зарядку батареи.

Что вы возьмете?

Вы запускали отчет о заряде батареи в своей системе Windows 10? Вы обнаружили падение полной емкости заряда? Каков расчетный срок службы батареи вашего ноутбука? Поделитесь своим опытом в ветке обсуждения ниже.

Также прочтите ...

Сбалансируйте эффективность и производительность с помощью параметров электропитания Windows 10

Увеличьте время автономной работы мобильного устройства с помощью Battery Saver

в Windows 10

Какие выпуски Windows позволяют использовать подключение к удаленному рабочему столу с несколькими мониторами?

Изучение диспетчера задач Windows 10: больше простоты, больше мощности

Еженедельный бюллетень Microsoft

Будьте инсайдером Microsoft в своей компании, прочитав эти советы, рекомендации и шпаргалки по Windows и Office.Доставка по понедельникам и средам.

Зарегистрироваться Сегодня

Как проверить состояние батареи и историю в Windows

Узнайте, как накопить много данных о вашей батарее с помощью удобной команды, встроенной в Windows.

Изображение: iStockphoto / VikiVector

Windows предлагает вам быстрый просмотр состояния вашей батареи на панели задач, чтобы вы могли видеть, сколько процентов и сколько времени осталось на вашем текущем заряде. Но вы также можете найти более подробную информацию о заряде батареи и истории батареи. Используя инструмент командной строки powercfg, вы можете создать отчет с названием батареи, производителем, серийным номером, химическим составом, количеством циклов и историей использования.Давайте посмотрим, как создать отчет о заряде батареи в Windows.

СМОТРЕТЬ: Советы по питанию Windows 10: Секретные ярлыки для ваших любимых настроек (TechRepublic Premium)

Во-первых, вы можете легко проверить текущий уровень заряда аккумулятора. Щелкните значок батареи на панели задач, и в уведомлении должен быть показан процент оставшегося заряда, а также количество часов и минут до полного заряда. Во многих случаях вы также можете настроить параметры режима питания здесь, чтобы найти баланс между лучшей производительностью и лучшим временем автономной работы ( Рисунок A ).

Рисунок A

Оттуда вы можете дополнительно просмотреть и настроить параметры аккумулятора, щелкнув ссылку «Параметры аккумулятора». В окне настроек вы можете настроить определенные функции, которые влияют на время автономной работы, например яркость экрана. Вы также можете включить опцию Battery Saver, которая снижает яркость экрана и изменяет другие факторы, чтобы попытаться сохранить заряд батареи, если он упадет ниже определенного значения ( Рисунок B ).

Рисунок B

Допустим, вы хотите узнать больше о заряде, емкости и истории вашего аккумулятора.Эта информация может быть полезна, если ваш ноутбук стареет и батарея не заряжается так сильно, как раньше. Это также может помочь, если вам нужно заменить батарею и вы хотите убедиться, что вы приобрели такой же тип.

Вы можете создать отчет о батарее с множеством деталей. Для этого откройте командную строку и введите powercfg / batteryreport . Эта команда создает отчет о батарее в виде файла HTML. Файл сохраняется в любой папке или каталоге, на который указывает командная строка.Таким образом, вы можете использовать команду CD, чтобы перейти в определенную папку, например, в подпапку с вашим именем пользователя в разделе Пользователи, например cd \ users \ [ваше имя пользователя] ( Рисунок C ).

Рисунок C

Откройте проводник или проводник Windows и дважды щелкните файл battery-report.html, чтобы открыть его в браузере по умолчанию. В верхней части отчета о батарее отображается основная информация, такая как имя вашего компьютера, название продукта, версия и дата BIOS, а также сборка ОС.

Прокручивая отчет вниз, вы найдете подробную информацию о своей батарее, включая количество установленных батарей с указанием их производителя, серийный номер, расчетную емкость и полную емкость заряда.Сравнение проектной емкости с полной зарядной емкостью может сказать вам, насколько ваша батарея могла ухудшиться с точки зрения сохранения максимальной емкости, для которой она была разработана ( Рисунок D ).

Рисунок D

Прокрутите вниз, чтобы найти раздел «Недавнее использование», в котором отображаются данные за последние три дня как в активном, так и в приостановленном режимах вашей батареи. Активный режим описывает используемый портативный компьютер, а приостановленный режим указывает на то, что портативный компьютер находится в спящем режиме или в режиме гибернации.В этом разделе также показано, когда ноутбук работал от аккумулятора, а не от сети. Вы можете увидеть дату и время, а также оставшуюся емкость для каждого чтения ( Рисунок E ).

Рисунок E

В следующем разделе показаны данные об использовании и разряде батареи за последние три дня с данными о количестве разряженного заряда и продолжительности ( Рисунок F ).

Рисунок F

Затем раздел «История использования» уходит в прошлое, чтобы показать использование как переменного тока, так и аккумулятора.Раздел «История емкости аккумулятора» также имеет более раннюю историю, чтобы показать вам полную емкость заряда по сравнению с расчетной емкостью на определенные даты ( Рисунок G ).

Рисунок G

Наконец, последний раздел оценки срока службы батареи пытается спрогнозировать количество оставшихся часов работы от батареи на основе количества и уровня разряда на данный момент ( Рисунок H ).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *