Как получается электричество: история создания, как оно получается, объяснение свойств с позиции физики и применение в жизни

Содержание

история создания, как оно получается, объяснение свойств с позиции физики и применение в жизни

Трудно представить, что еще два столетия назад люди не использовали электричество столь же широко, как сейчас. Открытие и изучение свойств этой энергии сделали возможным появление бытовой техники, интернета, телевидения и высокоскоростного транспорта, без которых трудно представить комфортное существование. Однако не всем известно, что этим достижениям предшествовала многовековая исследовательская работа.

Состав невидимого потока

С точки зрения физики, сама возможность возникновения электричества исходит из способностей физической материи накапливать и сохранять электрический заряд. Вокруг этих накопителей образуется энергетическое поле.

В основе действия тока лежит сила невидимого потока заряженных частиц, движущихся в едином направлении, что образует магнитное поле, родственное по принципу действия с электрическим. Они могут влиять на другие тела, обладающие зарядом того или иного вида:

  • отрицательным;
  • положительным.

Согласно научным исследованиям, электроны вращаются вокруг центрального ядра любого атома, входящего в состав молекул, образующих все физические тела. Под воздействием магнитных полей они могут отрываться от родного ядра и присоединяться к другому, вследствие чего у одной молекулы получается недостаток электронов, а у другой возникает их переизбыток.

Но сама суть этих элементов состоит в стремлении восполнить нехватку в матрице — они всегда стремятся туда, где их наименьшее количество. Такая постоянная миграция наглядно показывает, как получается электричество, ведь на близком расстоянии электроны стремительно переходят от одного центра атома к другому. Это приводит к образованию тока, о нюансах действия которого интересно знать следующие факты:

  • вектор — его направление всегда исходит из отрицательного заряженного полюса и стремится к положительному;
  • атомы с избытком электронов имеют заряд «минус» и именуются «ионами», недостаток же этих элементов создает «плюс»;
  • в контактах проводов «минусовой» заряд называют «фаза», а «плюс» обозначается нулем;
  • наименьшее расстояние между атомами — в составе металлов, поэтому они являются наилучшими проводниками тока;
  • наибольшая межатомная дистанция зафиксирована в резине и твердых телах — мрамор, янтарь, фарфор, — которые являются диэлектриками, неспособными проводить ток, поэтому их еще называют «изоляторами»;
  • энергия, образующаяся при движении электронов и разогревающая проводники, именуется «мощностью», которую принято измерять в ваттах.

Интересно, что все свойства явления до сих пор не изучены до конца, хотя квантовая физика и термодинамика проводят постоянные исследования. Проще всего обозначить определение электричества через тезис ученого Вильяма Гилберта, сказавшего, что это энергия движущихся заряженных частиц и освещение, получаемое с использованием данной силы.

От янтаря к молнии — долгая история

Нет однозначного ответа на вопрос, кто создал электричество, выделив его как отдельную управляемую энергию. С древнейших времен до наших дней величайшие деятели науки работали над этой темой и добавляли к предыдущей теории собственные знания и опыты по применению на практике.

Первые шаги ученых прошлого

Лексический корень, который лег в основу понятия, произошел от древнегреческого слова «электрон», что означает «янтарь». Ученый и философ Фалес, живший в 7 веке до н. э., случайно заметил в ходе других физических опытов, что если тщательно потереть необработанный янтарь о шерсть, он начнет притягивать пыль и нити, а большой камень — ткань и тонкие кусочки папируса.

Заинтересовавшись, Фалес провел ряд опытов и вышел на теорию заряженных частиц, однако в то время не было подходящего оборудования для доказательств его выводов. Исследования не получили продолжения, однако имя ученого навсегда вошло в историю как первооткрывателя. Позже Аристотель изучал морских угрей и скатов, поражающих жертву электроразрядом, а Плиний интересовался смолой как проводником заряда.

После долгих лет средневекового невежества интерес к исканиям античных ученых возник только в 17 веке, причем одновременно в нескольких европейских странах. Бургомистр Магдебурга Отто фон Герике, интересовавшийся наукой больше, чем скучной работой чиновника, именно на основе древних рукописей создал механизм научно-исследовательского характера, использующий статическое электричество.

Он представлял собой прибор, состоящий из железного штифта и шарика серы вместо янтаря сверху. Механизм был сделан не для практической пользы, а для дальнейших исследований, в ходе которых Герике удалось создать подобие современной лампочки с серным зерном в центре.

Немногим позже британский врач и физик Вильям Гилберт изобрел усовершенствованный прибор для более глубокого изучения свойств

новой энергии, назвав его электроскопом. Это было простое устройство из стрелы, крутившейся на толстой металлической игле по принципу компаса, однако благодаря ему Гилберт выявил взаимосвязи огня и электричества, смог понять и доказать, что вместо янтаря можно использовать драгоценные камни и самоцветы, а также стекло и хрусталь. Он определил целый ряд так называемых «электрических» предметов.

Открытия эпохи просвещения

Ученые 18 века пришли к выводу, что сила трения вызывает разные виды электричества в зависимости от того, какой материал взят за основу. Английские исследователи Гренвиль Уиллер и Стивен Грей обнаружили, что некоторые вещества не обладают пропускной способностью, тогда как через определенные материалы ток проходит мгновенно.

Они и обозначили ряд «проводников» электроэнергии — металлы, солевые растворы, мокрая земля и даже человеческое тело. В 1729 году Уиллер и Грей провели невероятный по своему влиянию на промышленный прогресс опыт — передали электрический ток на небольшое расстояние.

В том же знаменательном году голландский физик и математик Мушенбрук вместе с немцем Эдвальдом фон Клейстом придумали устройство, вошедшее в историю электричества как «лейденская банка» — по названию университета, где впервые были продемонстрированы их опыты. Вода в стеклянном сосуде получала заряд через металлическую палку, которую вставляли через отверстие в крышке из станиоля. Дно банки также находилось на тарелке из аналогичного материала. Наружный металл выступал в качестве электродов для накапливания энергии внутри сосуда. Почти полтора века «лейденская банка» служила источником тока для первых электроприборов.

Такие успехи вдохновили ученых всего мира на дальнейшие опыты и открытия:

  1. Французский химик Шарль Дюфе сконструировал электроскоп с золотыми пластинками, а также выявил в ходе исследований, что бумага, натертая смолой, отталкивается от нее, но притягивается к стеклу, как к магниту, и наоборот. Он выделил два вида электричества — смоляное и стеклянное, на основе чего поделил все физические тела на две группы, согласно их реакции на смолу и стекло;
  2. Русский ученый Михаил Ломоносов изучал природу атмосферного электричества, возникающего при грозах, пробуя измерить его совместно с немецким исследователем Рихманом. Для этого ими была придумана громомерная машина, с ее помощью Ломоносов узнал о разности потенциалов молний и измерял уровень электричества в атмосфере не только при грозе, но и в обычное время;
  3. Французский ученый Шарль Кулон выявил закон электростатики с основным тезисом взаимодействия зарядов согласно квадрату расстояния между ними, а также определил силу отталкивания и притяжения одинаковых и противоположных «полюсов»;
  4. Итальянец Гальвани придумал первую батарейку, смастерив ее из круглых серебряных цилиндров, между которыми была размоченная в солевом растворе бумага;
  5. Англичанин Майкл Фарадей и француз Ампер разработали законы электродинамики, изучив химические свойства силы тока и их изменения при воздействии магнитного поля Земли, и доказали, что именно оно формирует электрическую энергию. С тех пор единица силы тока названа именем Ампера;
  6. Русский ученый Лодыгин придумал подобие современных ламп накаливания с основой из углевой пластины, а француз Жорж Клод изобретал устройство, близкое по конструкции к неоновым лампочкам;
  7. Итальянский химик Алессандро Вольта изобрел источник постоянного тока. Он пришел к выводу о необходимости подключения замкнутой цепи, в составе которой должны быть как металлические, так и жидкостные проводники. Он стал основоположником теории «контактного электричества», а его соотечественник Гальвани доказал присутствие этой энергии в теле человека.

Невозможно выделить одного ученого, которому можно приписать честь открытия и создания самой мощной энергии нашего времени. Каждый внес неоценимый вклад в общее дело.

Тесла и Франклин

Однако двое ученых все же выделяются из плеяды исследователей. Бенджамин Франклин проанализировал и синтезировал работы и опыты коллег, опубликовав самые аргументированные в одной книге под личной редакцией.

Он особо выделял теорию о положительных и отрицательных зарядах, а также доказал природное электрическое происхождение молний. После этого была выдвинута версия о том, что жизнь на планете зародилась вследствие синтеза первичных аминокислот, толчком к которому послужили молнии.

Франклин также впервые озвучил теорию об электрической природе нервных импульсов в человеческом теле, предшествующих двигательному процессу, циклу вдоха-выдоха, сенсорным ощущениям, что произвело революцию в научном мире.

Имя сербского ученого Никола Теслы является самым известным в народе и ассоциируется с открытиями в области электроэнергии. Он и правда посвятил этому всю жизнь, еще в детстве увидев, как светится шерсть любимой черной кошки от частых поглаживаний.

Тесла умел не только создавать теории, но и доказывать их экспериментами, которые бывали очень опасными. Он сконструировал и успешно применял высокочастотный механизм, получивший название «катушка Теслы», напряжение которого могло обеспечить работу компьютеров и телевизоров, тем более что их появление в будущем также было предсказано Теслой. К числу его гениальных изобретений можно отнести следующее:

  • способ сохранения света и передачи освещения, неоновые лампы;
  • переменный ток как безопасная альтернатива постоянному;
  • электродвигатель на вращающихся магнитных полях;
  • рентгеновские лучи и фотография;
  • радиосигналы и дистанционное управление на их частотах;
  • роботы и лазерные лучи.

Многие исследования ученого были связаны с разработкой машины времени и возможностью телепортации, но удалось ли ему осуществить эти теории, никто не знает. Он сжег многие свои работы, осознав, что человечество может использовать ценные знания во вред, а не во благо.

Освещение России

Русские ученые внесли огромный практический вклад в историю развития электричества, начиная с М. В. Ломоносова. Многие их идеи были заимствованы европейскими коллегами, однако в плане внедрения изобретений в практическую работу на пользу людям Россия всегда опережала другие страны.

Например, уже в 1879 году лампы фонарей на Литейном мосту были заменены на электрические, что было прогрессивным и смелым решением для того времени. В 1880 году был открыт отдел по делам электрификации городских районов при Русском техническом обществе. Первым населенным пунктом в мире, в котором было введено повсеместное освещение в вечернее и ночное время, стало Царское Село в 1881 году.

Весной 1883 года на Софийской набережной построили электростанцию и успешно провели праздничное освещение центра города, приуроченное к церемонии коронации нового императора — Александра ІІІ.

Праздничная иллюминация без сбоев и возгораний наглядно показала людям, пришедшим на праздник в большом количестве, как работает электричество в деле, и сторонников прогресса стало больше.

В этом же году был полностью электрифицирован центр Петербурга и его сердце — Зимний дворец. Небольшой отдел при техническом обществе вырос за пару лет в Ассоциацию электроосвещения Российской империи, стараниями которой было проведено множество работ по установке фонарей на улицах Москвы и Петербурга, включая отдаленные районы. Всего через два года по всей стране начнут строить электростанции, и население России окончательно встанет на путь прогресса.

Обыкновенное чудо природных явлений

Интересно, что тела человека и многих живых существ не просто являются проводниками электрических импульсов, но и способны вырабатывать эту энергию самостоятельно. Показательными примерами являются электрические скаты, миноги и угри, у которых есть специальные отростки в строении туловища, служащие своеобразной накопительной иглой, с помощью которой они поражают жертву разрядом частотой в несколько сотен герц.

Большинство ученых считают, что тело человека подобно электростанции с автономной системой саморегуляции. Бывали случаи, когда люди не только выживали после удара молнией, но и обретали исцеление от болезней и новые способности. Каждый из этих счастливцев обладал сильным природным иммунитетом, вследствие чего удар природного электричества только укрепил их врожденную силу.

В природе есть множество явлений, доказывающих, что электроэнергия — ее неотъемлемая часть и существует повсеместно:

  1. Огненные знаки святого Эльма — знакомы мореплавателям с античных времен. Внешне они похожи на кистеобразные огни свечей нежно-голубого и лилового оттенка, а длина их может достигать одного метра. Появляются в бурю и грозы на шпилях мачт кораблей. Матросы пытались отломить концы мачт и спуститься с факелом вниз, но это никогда не удавалось, поскольку огонь переходил на другие высоко расположенные объекты. Удивительно, что огонь не обжигает руки и холодноват при прикосновении. Мореплаватели считали, что это благодатный знак от святого Эльма о том, что корабль находится под его защитой и благополучно придет в порт. Современные исследования показали, что необычный огонь имеет электрическую природу;
  2. Полярное сияние — в верхних слоях атмосферы накапливается множество мелких элементов, прилетевших из глубин космоса. Они сталкиваются с частицами нижних слоев воздушной оболочки и пылинками с разными полюсами зарядов, результатом чего являются хаотично движущиеся световые вспышки разных цветов. Такое свечение характерно для периода полярной ночи и может длиться несколько суток;
  3. Молнии — изменения в атмосферных потоках вызывают одновременное возникновение льдинок и капель. Сила трения от их столкновения наполняет кучевые облака мощными электрозарядами. От соприкосновения облаков с разноименными зарядами возникает мощный световой выброс в громовых раскатах. Когда нижние слои атмосферы переполнены электрическими зарядами, они могут объединиться в одно целое, и получается шаровая молния, которая движется по довольно низкой траектории и очень опасна, поскольку может взорваться, столкнувшись с живым существом или статичным предметом.

Помимо переменного и постоянного тока, существует еще и статическое электричество, возникающее при нарушении баланса внутри атомов. Синтетическая ткань обладает способностью накапливать его, что выражается небольшими искрами при движении одежды во время переодевания и ощущением укола при касании человека или металла.

Это весьма неприятные ощущения, к тому же в больших дозах это вредно для здоровья. Статическое излучение исходит и от телевизоров, компьютеров и бытовой техники, электризующих пыль. Поэтому, чтобы сберечь здоровье, необходимо носить одежду из натуральных тканей, не находиться долгое время около электроприборов и почаще делать уборку.

Во избежание опасности

Несмотря на несомненную пользу, которое принесло открытие электричества людям, улучшив качество жизни, существует и обратная сторона медали. Электроразряд может убить или нанести существенный вред здоровью. Негативное воздействие электрического тока на человека может выражаться в следующем:

  • резкое и мощное сокращение мышечных волокон, что ведет к разрыву тканей;
  • незначительный внешне ожог с глубоким внутренним поражением органа;
  • нарушение баланса электролиза в теле;
  • поражение глаз ультрафиолетовой вспышкой;
  • перенапряжение и сбой в работе нервной системы;
  • паралич дыхания и остановка сердца.

Вред от воздействия напрямую зависит от силы тока. Если она равна 0,05 А, то это считается относительно безопасным для жизни. Частота в 0,1 А и выше может лишить сознания и нейтрализовать способность мышц к сокращению, что порой является фатальным при падении или наличии хронических заболеваний. Ни в коем случае нельзя прикасаться к оголенному проводу, не будучи уверенным, что напряжение отсутствует. Одновременное касание двумя руками приведет к поражению током сердца, что может оказаться смертельным.

Первую помощь при поражении электричеством нужно оказывать, не поддаваясь панике, поскольку схватив пострадавшего, чье тело по своей природе является накопителем, удерживающим полученный разряд, есть риск самому подвергнуться удару током. Нельзя стремительно бежать к упавшему, вместо этого надо идти мелкими шажками, что обеспечит безопасность и позволит вызвать врачей, вместо того чтобы самому пострадать. А уже в ожидании скорой постараться помочь следующим образом:

  • нейтрализовать главный источник энергии — через отключение рубильника или пробок;
  • убрать от жертвы опасный электроприбор с помощью предмета с изолирующими свойствами, лучше всего деревянной палкой или скрученным в рулон журналом;
  • при необходимости оттащить человека в безопасное место, нужно надеть резиновые перчатки или обмотать руки натуральной тканью, избегая прямого соприкосновения с кожей жертвы;
  • пальцами в перчатках попытаться прощупать пульс и если он слабый, то сделать закрытый массаж сердца и перевернуть пострадавшего на правый бок.

Во избежание опасности поражения электричеством необходимо регулярно проверять исправность бытовой техники и состояние розеток, надевая на них резиновые заглушки, если в доме есть малыши. Также не стоит гулять в грозу во время частых молний, а находясь дома в это время, окна лучше закрыть.

Кто изобрел электричество? | New-Science.ru

Бенджамин Франклин получает все заслуги в открытии электричества, но все, что он сделал, это установил связь между молнией и электричеством. Шарль Франсуа Дюфе, Луиджи Гальвани, Алессандро Вольта, Майкл Фарадей, Томас Алва Эдисон и Никола Тесла внесли значительный вклад в развитие и коммерциализацию электричества.

Электричество повсюду вокруг нас: светильники, вентиляторы, компьютеры, мобильные телефоны и бесчисленное множество других устройств. В современном мире от этого практически невозможно убежать. Даже пытаясь убежать от электричества, вы найдете его по всей природе, от синапсов внутри человеческого тела до молнии во время грозы.

Но знаете ли вы, кто открыл электричество? Вообще-то, это довольно сложный вопрос. Большинство людей отдают должное только одному человеку (Бенджамину Франклину), что вроде как несправедливо.

Многие другие ученые использовали эксперименты Франклина для изучения электричества, и некоторые из них смогли изобрести различные формы электричества. Давайте копнем глубже и выясним, кто были эти ученые и каков их вклад.

Электричество 2600 лет назад

Один из инструментов, обнаруженных в археологических раскопках близ Багдада, напоминает электрохимическую ячейку

Примерно в 600 году до нашей эры греческий математик Фалес Милетский обнаружил, что трение меха о Янтарь вызывает притяжение между ними. Более поздние наблюдения доказали, что это притяжение было вызвано дисбалансом электрических зарядов, который называется статическим электричеством.

Археологи также обнаружили доказательства того, что древние люди могли экспериментировать с электричеством. В 1936 году они нашли глиняный горшок с железным прутом и медной пластиной. Он похож на электрохимический (гальванический) элемент.

Неясно, для чего использовался этот инструмент, но он пролил некоторый свет на тот факт, что древние люди, возможно, изучали ранние формы батарей задолго до того, как мы это знаем.

Томас Браун использовал слово «электричество» в 1646 году

Версориум Гилберта

В 1600 году английский физик Уильям Гилберт написал книгу под названием De Magnete, в которой он объяснил, как статическое электричество генерируется трением янтаря. Однако он не понимал, что электрический заряд универсален для всех материалов.

Поскольку Гилберт изучал статическое электричество с помощью янтаря, а янтарь по-гречески называют «Электрум», он решил назвать его действие электрической силой. Он также изобрел электроскоп (известный как «versorium» Гилберта) для обнаружения присутствия электрического заряда на теле.

Работа Гилберта дала начало английскому слову «electricity», которое впервые появилось во втором выпуске научного журнала Pseudodoxia Epidemica , написанного сэром Томасом Брауном в 1946 году.

Шарль Франсуа Дюфе открыл типы электрических зарядов

Дальнейшие исследования проводились многими учеными. Отто фон Герике, например, изобрел примитивную форму фрикционной электрической машины в 1663 году. Стивен Грей различал проводимость и изоляцию и открыл явление, называемое электростатической индукцией, в 1729 году.

Один из основных вкладов начала 17 века сделал французский химик Шарль Франсуа Дюфе. Он открыл два типа электричества: стекловидное и смолистое (которое в настоящее время известно как положительный и отрицательный заряд соответственно).

Он также обнаружил, что объекты с одинаковым зарядом притягиваются друг к другу, а объекты с противоположным зарядом отталкиваются. Он также прояснил некоторые популярные заблуждения того времени, например, что электрические свойства объекта зависят от его цвета.

Бенджамин Франклин доказал, что молния имеет электрическую природу

В середине XVIII века Бенджамин Франклин широко изучал и проводил многочисленные эксперименты, чтобы понять электричество. В 1748 году он построил электрическую батарею, поместив несколько стеклянных листов, зажатых между свинцовыми пластинами. Он также открыл принцип сохранения заряда.

В июне 1752 года Франклин провел знаменитый эксперимент, чтобы доказать, что молния — это электричество. Он прикрепил металлический ключ к нижней части смоченной веревки воздушного змея и запустил змея во время грозы. Он был осторожен, стоя на изоляторе, чтобы избежать удара током.

Как он и ожидал, змей собрал немного электрического заряда из грозовых облаков, который затем потек по веревке, сотрясая его. Этот эксперимент доказал, что молния действительно была электрической по своей природе.

Луиджи Гальвани открыл биоэлектромагнетизм в 1780-х годах

Итальянский физик и биолог был пионером биоэлектромагнетизма. В 1780 году он провел несколько экспериментов на лягушках и обнаружил, что электричество является средой, через которую нейроны передают сигналы мышцам.

Алессандро Вольта изобрел электрическую батарею в 1800 году

Другой итальянский физик по имени Алессандро Вольта обнаружил, что некоторые химические реакции могут производить постоянный электрический ток. Он построил электрическую батарею, для производства непрерывного потока электрического заряда. Она была сделана из чередующихся слоев меди и цинка.

Вольта также различал электрический потенциал (V) и заряд (Q), описывая, что они пропорциональны для данного объекта. Это то, что мы называем законом емкости Вольта. За эту работу единица измерения электрического потенциала SI (вольт) была названа в его честь.

Исследования, проведенные Вольтом, привлекли большое внимание и побудили других ученых провести аналогичные исследования, что в конечном итоге привело к развитию нового раздела физической химии, называемого электрохимией.

Немецкий физик Георг Симон Ом дополнительно изучил электрохимическую ячейку Вольта и обнаружил, что электрический ток прямо пропорционален напряжению (разности потенциалов), приложенному к проводнику. Эта связь называется законом Ома.

Ханс Кристиан Эрстед обнаружил, что электричество создает магнитные поля

Ханс Кристиан Эрстед

В начале 19 века датский физик Ханс Кристиан Эрстед обнаружил прямую связь между электричеством и магнетизмом. В 1820 году он опубликовал свои открытия, описывая, как стрелка компаса может отклоняться под действием электрического тока.

Работы Эрстеда вдохновили французского физика Андре-Мари Ампера на разработку физико-математической теории, которая могла бы лучше объяснить связь между электричеством и магнетизмом. Он сформировал математическую формулу для представления магнитных сил между объектами, несущими ток. Для этой работы в его честь была названа единица измерения электрического тока (ампер).

В 1820-х годах Ампер изобрел многочисленные приборы, в том числе электромагнит (электромагнит, создающий управляемое магнитное поле) и электрический телеграф (система обмена текстовыми сообщениями «точка-точка»).

Майкл Фарадей сделал электричество практичным для использования в технологиях

Майкл Фарадей, около 70 лет

Майкл Фарадей заложил основы концепции электромагнитного поля. Он обнаружил, что на световые лучи может влиять магнетизм. Он изобрел электромагнитные вращательные устройства, которые легли в основу технологии электродвигателей.

В 1831 году Фарадей разработал электрическую динамомашину-машину, которая могла непрерывно преобразовывать вращательную механическую энергию в электрическую, что сделало возможным производство электричества.

В 1832 году Фарадей провел серию экспериментов по исследованию поведения электричества. Он пришел к выводу, что категоризация различных «типов» электричества была иллюзорной. Вместо этого он предложил, что существует только один «тип» электричества, и изменение таких параметров, как ток и напряжение (количество и интенсивность), приведет к созданию различных групп явлений.

Джеймс Клерк Максвелл сформулировал теорию электромагнитного излучения

В 1873 году шотландский ученый Джеймс Клерк Максвелл начал разрабатывать уравнения, которые могли бы точно описать электромагнитное поле. Он предположил, что электрические и магнитные поля движутся как волны со скоростью света.

Генрих Рудольф Герц окончательно доказал эту теорию, и Гульельмо Маркони использовал эти волны для разработки радио.

Томас Эдисон коммерциализировал электричество

В 1879 году Томас Альва Эдисон изобрел практичную лампочку, которая прослужит долго, прежде чем перегореть. Его следующей задачей была разработка электрической системы, которая могла бы обеспечить людей реальным источником энергии для питания этих ламп.

В 1882 году он построил первую электростанцию в Лондоне, чтобы вырабатывать электроэнергию и переносить ее в дома людей. Несколько месяцев спустя он создал еще одну электростанцию в Нью-Йорке для обеспечения электрическим освещением нижней части острова Манхэттен. Около 85 потребителей получили достаточно энергии, чтобы зажечь 5000 ламп.

На заводе использовались возвратно-поступательные паровые двигатели для включения генераторов постоянного тока. Но так как это было распределение постоянного тока, зона обслуживания была ограничена падением напряжения в фидерах.

Никола Тесла изобрел переменный ток

Поворотный момент в электрической эре наступил через несколько лет, когда Никола Тесла приехал в Нью-Йорк, чтобы работать на Эдисона. Он покинул Edison Machine Works через шесть месяцев из-за невыплаченных бонусов, которые, по его мнению, он заработал.

Вскоре после ухода из компании Тесла обнаружил новый тип двигателя переменного тока и технологию передачи электроэнергии. Он объединился с Джорджем Вестингаузом, чтобы запатентовать систему переменного тока, чтобы обеспечить страну электроэнергией высочайшего качества.

Энергетическая система, изобретенная Теслой, быстро распространилась в США и Европе благодаря своим преимуществам в дальней высоковольтной передаче. Первая гидроэлектростанция Теслы в Ниагарском водопаде могла транспортировать электроэнергию более чем на 200 квадратных миль. В отличие от этого, эдисоновская электростанция постоянного тока могла транспортировать электричество только в пределах одной мили.

Сегодня переменный ток вырабатывается большинством электростанций и используется почти всеми системами распределения электроэнергии. Общее мировое валовое производство электроэнергии в 2019 году составило 27 644 ТВтч.

Генрих Рудольф Герц наблюдал фотоэлектрический эффект в 1887 году

Генрих Рудольф Герц

Пока Тесла был занят изобретением и распределением переменного тока, Генрих Герц проводил серию экспериментов по пониманию электромагнитных волн. В 1887 году он наблюдал фотоэлектрический эффект, явление, при котором электроны испускаются, когда электромагнитное излучение (например, свет) попадает на материал.

В 1905 году Альберт Эйнштейн опубликовал «закон фотоэлектрических эффектов», выдвинув гипотезу о том, что световая энергия переносится дискретными квантованными пакетами. Это был решающий шаг в развитии квантовой механики. За эту работу Эйнштейн был удостоен Нобелевской премии по физике 1921 года.

Фотоэлектрический эффект используется в фотоэлементах, обычно встречающихся в солнечных батареях. Эти фотоэлементы вырабатывают напряжение и подают электрический ток, когда на них светит солнечный свет (или свет с определенной длиной волны).

К концу 2019 года во всем мире было установлено в общей сложности 629 гигаватт солнечной энергии. Это число будет увеличиваться в ближайшие годы, поскольку многие страны и территории переходят на возобновляемые источники энергии, чтобы уменьшить воздействие производства электроэнергии на окружающую среду.

И поэтому было бы неправильно отдать должное только одному человеку за то, что он открыл для себя электричество. В то время как идея электричества существовала тысячи лет, когда пришло время ее научного и коммерческого изучения, несколько великих умов работали над различными подмножествами этой проблемы.

Откуда берется ноль в электричестве — советы электрика

Ответы@Mail.Ru: фаза и ноль. Куда что течет, откуда что берется? Ликбез

Ток течет из за разности потенциалов. В один период потенциал больше чем у земли, в другой период, потенциал меньше чем у земли. Деньги платишь за то, что создается эта самая разность потенциалов в фазе относительно земли или нуля. Это так же с водой по сути.

Вода тоже из земли берется, а если бы не строили водонапорные башни, или насосные станции, которые создают разность уровней (по сути потенциалов) , то и вода не текла бы.

Так что не важно откуда ток берется из земли или с электростанции, важно то, за счет чего он движется, А движется он за счет разности потенциалов, которая создается за счет работы всяких устройств на электростанции. По другому из земли ток никак не получить))

Обратите внимание

Каша у вас – даже разгребать не хочется. Из основного: из ноля ничего не течет; “ноль” и “земля” – разное. Почитайте внимательно еще раз ключевые понятия.

Лампочка светиться не будет, хотя напруга, возожно, будет. Ток течет по замкнутой цепи, т. е.

второй “нулевой” вывод розетки должен быть воткнут в землю, а величина тока будет определяться сопротивлением земли промеж ломом и воткнутым в землю выводом. Правда, “нулевой” вывод ужо “воткнут” в землю изначально. Ессно, ответ некорректный, но.. .

но такой уж и сам вопрос. P.S. Все переменные розетки запитываются от транчформатора.. . с которым Вам все ясно.. . что, судя по вопросу, сомнительно.

Так воткните два лома, а между ними подключите лампочку и пользуйтесь дармовой электоэнергией)) ) В вашем случае земля является проводником

Для того чтобы в этом разбираться нужно как минимум прослушать курс по энергетике. На электростанции “О” заземлен, на подстанции “О” заземлен, жилой многоквартирный дом заземлен. Все это заземлено на специальный контур заземления. Это сделано для того чтобы не было разности потенциалов между домами, между этажами, между квартирами.

И если вас бьет слегка током когда вы набираете воду в ванную или умываетесь, то это не всегда значит что кто то ворует электроэнергию, это и есть разность потенциалов между нулями. Она блуждает по земле и проедает оболочки и броню кабелей и делает еще много, много нехороших вещей.

PS если воткнуть хорошо два лома, то работает транзисторный радиоприемник, я в детстве так пробовал.

Тогда вопрос. Вода вытекает из трубы, втекает в другую трубу обратно к источнику. Между этими двумя трубами стоит потребитель и жадно пьёт вытекающую водичку.

Откуда в источнике восполняется выпитая водица!?! (Если система замкнутая по контуру, как в случае в вашими генераторами и ломами?) а потребитель сливает воду вне цикла системы потребления. Т, е.

Важно

откуда в системе электроснабжения генератором появляются Электроны с неизрасходованным зарядом.

Источник: https://touch.otvet.mail.ru/question/88372225

Фаза, ноль и земля – что это такое?

Электрическая энергия, которой мы пользуемся, вырабатывается генераторами переменного тока на электростанциях. Их вращает энергия сжигаемого топлива (угля, газа) на ТЭС, падающей воды на ГЭС или ядерного распада на АЭС.

До нас электричество добирается через сотни километров линий электропередач, претерпевая по дороге преобразования с одной величины напряжения в другую. От трансформаторной подстанции оно приходит в распределительные щитки подъездов и далее – в квартиру.

Или по линии распределяется между частными домами поселка или деревни.

Разберемся, откуда берутся понятия «фаза», «ноль» и «земля». Выходной элемент подстанции — понижающий трансформатор, с его обмоток низкого напряжения идет питание потребителю.

Обмотки соединяются в звезду внутри трансформатора, общая точка которой (нейтраль) заземляется на трансформаторной подстанции. Отдельным проводником она идет к потребителю. Идут к нему и проводники трех выводов других концов обмоток.

Эти три проводника называются «фазами» (L1, L2, L3), а общий проводник – нулем (PEN).

Система с глухозаземленной нейтралью

Поскольку нулевой проводник заземлен, то такая система называется «системой с глухозаземленной нейтралью». Проводник PEN называется совмещенным нулевым проводником.

До выхода в свет 7-го издания ПУЭ ноль в таком виде доходил до потребителя, что создавало неудобства при заземлении корпусов электрооборудования. Для этого их соединяли с нулем, и это называлось занулением.

Но через ноль шел и рабочий ток, и его потенциал не всегда равнялся нулю, что создавало риск поражения электрическим током.

Совет

Теперь из вновь вводимых трансформаторных подстанций выходят два нулевых проводника: нулевой рабочий (N) и нулевой защитный (РЕ).

Функции их разделены: по рабочему протекает ток нагрузки, а защитный соединяет подлежащие заземлению токопроводящие части с контуром заземления подстанции.

На отходящих от нее линиях электропередачи нулевой защитный проводник дополнительно соединяют с контуром повторного заземления опор, содержащих элементы защиты от перенапряжений. При вводе в дом его соединяют с контуром заземления.

Напряжения и токи нагрузки в системе с глухозаземленной нейтралью

Напряжение между фазами трехфазной системы называют линейным, а между фазой и рабочим нулем – фазным. Номинальные фазные напряжения равны 220 В, а линейные – 380 В.

Провода или кабели, содержащие в себе все три фазы, рабочий и защитный ноль, проходят по этажным щиткам многоквартирного дома. В сельской местности они расходятся по поселку при помощи самонесущего изолированного провода (СИП).

Если линия содержит четыре алюминиевых провода на изоляторах, значит, используются три фазы и PEN. Разделение на N и РЕ в таком случае выполняется для каждого дома индивидуально во вводном щитке.

К каждому потребителю в квартиру приходит одна фаза, рабочий и защитный ноль. Потребители дома распределяются по фазам равномерно, чтобы нагрузка была одинаковой. Но на практике этого не получается: невозможно предугадать, какую мощность будет потреблять каждый абонент.

Так как токи нагрузки в разных фазах трансформатора не одинаковы, то происходит явление, называемое «смещением нейтрали». Между «землей» и нулевым проводником у потребителя появляется разность потенциалов.

Она увеличивается, если сечения проводника недостаточно или его контакт с выводом нейтрали трансформатора ухудшается. При прекращении связи с нейтралью происходит авария: в максимально нагруженных фазах напряжение стремится к нулю.

В ненагруженных фазах напряжение становится близким к 380 В, и все оборудование выходит из строя.

В случае, когда в такую ситуацию попадает проводник PEN, под напряжением оказываются все зануленные корпуса щитов и электроприборов. Прикосновение к ним опасно для жизни. Разделение функции защитного и рабочего проводника позволяет избежать поражения электрическим током в такой ситуации.

Как распознать фазные и защитные проводники

Фазные проводники несут в себе потенциал относительно земли, равный 220 В (фазному напряжению). Прикосновение к ним опасно для жизни. Но на этом основан способ их распознавания. Для этого применяется прибор, называемый однополюсным указателем напряжения или индикатором.

Внутри него расположены последовательно соединенные лампочка и резистор. При прикосновении к «фазе» индикатором ток протекает через него и тело человека в землю. Лампочка светится.

Сопротивление резистора и порог зажигания лампочки подобраны так, чтобы ток был за гранью чувствительности человеческого организма и им не ощущался.

Конструкция однополюсного указателя напряжения

Конструкция однополюсного указателя напряжения
1корпус
2разъемное соединение
3пружина
4индикаторная неоновая лампа
5контакт для прикосновения
6изолированная часть
7резистор

Распознать фазные проводники можно по их расцветке, для них используются черный, серый, коричневый, белый или красный цвет. Сложнее всего со старыми электрощитами: в них проводники одного цвета. Но «фазу» с помощью индикатора определить можно всегда и без ошибок.

Нулевой рабочий проводник – синего (голубого) цвета, защитный маркируется желто-зелеными полосами. Напряжение на них отсутствует, но лучше без нужды их не касаться. Есть у электриков такой закон: если сейчас напряжения нет, то оно может появиться в любой момент.

Источник: http://electric-tolk.ru/faza-nol-i-zemlya-chto-eto-takoe/

Отгорание нуля, что происходит и как защититься?

Привет, друзья. Сталкивались когда-нибудь с явлением «отгорание нуля»?  Если нет, то вы счастливый человек. Но знать об этом, особенно электрикам, будет полезно. Поговорим о том, почему этот таинственный ноль имеет тенденцию отгорать, что происходит при этом и какая бывает защита от отгорания нуля? Для того чтобы понять это, немного вспомним физику.

Нашел в интернете хорошее видео по теме, коротко и ясно, если не любите читать, смотрите ниже. Итак, начнем.

Ноль, для однофазной цепи, это название проводника, который не находиться под высоким потенциалом относительно земли. Фаза, это второй проводник , она имеет высокий потенциал переменного напряжения относительно земли. В России, чаще всего, это 220-230 Вольт. Ноль при этом не проявляет тенденции к отгоранию.

Основная загвоздка — все линии электропередачи, являются трехфазными. Рассмотрим традиционную схему «звезда»:

Здесь и появляется понятие «нулевой проводник».

Обратите внимание

В трех одинаковых нагрузках, переменный ток каждой фазы сдвинут по фазе на 1/3. В идеале, эти токи компенсируют друг друга. При такой нагрузке, в средней точке, векторная сумма токов равна нулю.

Получается, что через нулевой провод, подключенный к средней точке, ток не течет (он практически не нужен).

Незначительный ток на нулевом проводнике все же возникает. Это происходит, когда нагрузки на фазах не полностью компенсируют  друг друга, тоесть разные.

Прямое доказательство этому можно увидеть на практике, посмотрите на четырехжильные кабели для трехфазных цепей, нулевая жила вдвое меньшего сечения, чем фазные.

Зачем тратить дефицитную медь, если тока в жиле практически нет? Имеется смысл…

При сосредоточенной нагрузке, в трехфазной цепи, ноль тоже не расположен к отгоранию.

Интересное начинается тогда, когда к трехфазной цепи начинают подключать однофазные нагрузки (многоквартирных домах, например). Каждая нагрузка представляет случайно выбранное устройство.

При использовании одной фазы из трехфазной цепи, их стараются распределить по мощности так, чтобы на каждую приходилась  примерно одинаковая нагрузка.

Все понимают, что полного равенства при этом не достигнуть.  Жители дома будут случайным образом включать, выключать электроприборы, поэтому нагрузка будет постоянно меняться.

Полной компенсации токов в средней точке происходить не будет, но ток нулевого проводника обычно не достигает максимального значения, большего току в одной из фаз.

Ситуация предсказуемая, отгорание нуля при этом бывает крайне редко.

Почему происходит отгорание нуля?

Сегодня мы регулярно пользуемся большим количеством электрических приборов, большинство из них это импульсные источники питания. Это телевизоры, радиоприемники, компьютеры итд. Характер потребления тока этими приборами сильно отличается от прежних.

В цепи, возникают дополнительные импульсные токи, которые не компенсируются в средней точке. Прибавляем к ним некомпенсированные, вызванные разностью однофазных нагрузок и получаем ток, близкий к самому большому току одной из фаз, или даже превышающий его.

Вот мы и пришли к благоприятным условиям для отгорания нуля. Чаще всего отгорание происходит в слабых местах, где: поврежден провод, занижено сечение кабеля, плохой контакт.

С каждым днем в обиходе появляется все больше электроприборов, соответственно ситуация ухудшается. Поэтому при монтаже электропроводки, необходимо учитывать высокую вероятность отгорания нулевого проводника. Пренебрегать этим не стоит.

Что происходит при отгорании нуля?

В лучшем случае погаснет свет, перестанут работать розетки. О плохом писать не хочется, думаю, понимаете, что перегрузка приводит к нагреву провода, плавке, пробою изоляции итп.

Кроме того, при отгорании нуля, в цепи могут происходить серьезные скачки напряжения. На фазе, где было повышенное потребление, напряжение падает практически до нуля. В то же время, на фазе где потребление было меньше всего, оно вырастает до 380 Вольт. Чувствуете чем пахнет?

Подобное явление может вывести из строя вашу технику!

Что делать, спросите вы? Существует защита.

Защита от отгорания нуля

Для защиты от вышеуказанных инцестов  умные люди придумали реле контроля напряжения. Если напряжение выходит за допустимые пределы, реле отключает его, защищая тем самым все подключенные приборы и оборудование.

Напоследок небольшое видео, где наглядно можно увидеть, что происходит при отгорании нуля.

Такие вот дела. Если есть, что дополнить, оставьте комментарий.

Также советую , чтобы , получать новые статьи прямо к себе на e-mail.

Источник: https://elektrobiz.ru/zametki-elektrika/zashhita-ot-otgoranie-nulya.html

Фаза и ноль в электрике – назначение фазного и нулевого провода

Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления.

Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой.

В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.

В чем отличие фазного проводника от нулевого?

Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих.

Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно.

Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.

Важно

Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.

Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.

В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.

В зависимости от назначения электропередающей линии она может иметь:

  • Глухозаземленный нейтральный кабель.
  • Изолированный нулевой провод.
  • Эффективно-заземленный ноль.

Первый тип линий все чаще используется при обустройстве современных жилых зданий.

Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.

Наглядно про разницу между фазой и нолем на видео:

Для чего нужен заземляющий кабель?

Заземление предусмотрено во всех современных электрических бытовых устройствах.

Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения.

Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.

На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.

Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки.

Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам.

Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Заключение

В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила.

Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен.

Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.

Источник: https://YaElectrik.ru/elektroprovodka/faza-i-nol-v-elektrike

Фаза и ноль в сети: определение понятий, поиск обрыва

От магистральных линий трансформации электрической энергии посредством электропроводов в дома обывателей поступает электрический ток.

В городах на многоэтажные дома приходит трехфазное питание, но в каждую квартиру заходит только одна фаза напряжения.

Деление квартир по фазам происходит в каждом доме (распределение нагрузки), в других населенных пунктах такое деление происходит на подстанциях.

В многоэтажном доме есть входной щит (ВРУ), на который приходит трехфазная сеть плюс ноль плюс заземление. На каждую квартиру приходит ноль, фаза и заземление, это по новым стандартам, в домах старой постройки заземление и ноль совмещены.

Что такое фаза и ноль

Каждый раз, получив квартиру или приобретая ее на вторичном рынке недвижимости, жильцы начинают ремонтные работы. В этот период важно правильно провести электрические мероприятия, умея делать разные работы, не каждый обыватель понимает, что такое фаза и ноль. Каждый раз в дом электрика вызывать не будешь, если перегорела лампочка или пропало питание в розетке.

Важно каждому мастеру понять истину, что главное — не искать сразу причину поломки и устранять проблему, а соблюсти правила безопасной работы с электричеством, чтобы не попасть под воздействие электротока.

Конструкции электрических приборов выполнены таким образом, чтобы защитить человека от попадания на действие тока. Фаза – это токопроводящий провод, по которому протекает электрический ток.

Совет

Ноль в сети — это провод, который не имеет направленного движения электронов и соединен с нулем распределяющей электрическую энергию подстанцией. На фото ниже представлено распределение по квартире фазного и нулевого проводов:

Схема

Прежде чем что-то чинить в доме, что касается сети электропитания, надо почитать о безопасной работе с электричеством.

Бытовая электрическая проводка

Рассмотрим подробно, по какой схеме поступает ноль и фаза в квартиру или дом. В многоквартирный дом — от подстанции, которая принимает, преобразовывает высоковольтное напряжение в знакомые нам 380 вольт.

Обмотки трансформатора подстанции соединяются по схеме (Y), в общей точке соединения — нуле, другие концы являются фазами (А), (B), (C)

Собранные и подключенные концы в одной точке к нулю также подключаются на контур ТП, производится раздвоение соединения:

  • ноль — рабочий, обозначен синим;
  • защитный провод, или РЕ маркирован желто-зеленым цветом.

Все дома, которые строятся, собираются по этой схеме (TN-S), когда в многоквартирный дом приходит два нуля (рабочий и защитный) и три фазы. В домах, которые построены раньше, применяется схема (TN-C), это четыре провода, три фазы и рабочий ноль. В квартиру поступает одна из фаз и ноль.

Иными словами, нулем в жилом помещении называют проводник, имеющий соединение с контуром ТП, когда он и фаза тока могут создать нагрузку на обмотку трансформатора ТП.

Провод РЕ является защитой от возможных аварий в доме и поражения человека электротоком.

Поквартирная разводка должна соблюдать характеристики векторной диаграммы ТП, что характеризует правильно распределенную нагрузку, питание в каждом помещении 220 вольт.

Чем грозит обрыв фазного или нулевого провода

С течением времени в розетках, переходных коробках, выключателях можно наблюдать обрыв провода. Это может произойти вследствие некачественного соединения, когда нагрузка была больше допустимой. Когда пропадает ноль или фаза в квартире, электротехнические устройства и приборы прекращают работу.

Определение фазы на участке квартиры

Эта же ситуация будет ставить в известность потребителя, если произойдет обрыв провода на одном из участков питания до вводного или распределительного щита, тогда не только одна, но и все квартиры, питающиеся от оборванной фазы, останутся без электричества, но другие потребители, питающиеся от других фаз, будут его получать. Когда обрывается ноль, обесточиваются все квартиры в доме.

Определение фазы и нуля в помещении

Домашним инструментом для определения фазы служит отвертка-индикатор, которая в своем устройстве имеет:

  • токопроводящий наконечник по форме отвертки, который вставляют в одно из отверстий розетки для нахождения фазы;
  • резистор ограничения тока;
  • светодиод или неоновую лампочку, назначение которых — показать, что при их горении это и есть фаза;
  • с другой стороны пробника металлический контакт для пальца руки, которым создается цепь для протекания безопасного тока.

Определение фазы тока

Когда в проверяемом контакте есть свечение светодиода, то это и есть фаза. Значит, второй контакт — ноль. Можно также для определения использовать тестер или другой измерительный прибор напряжения, когда выполнено подключение защитного провода. В этом случае между фазой и рабочим нулем будет показываться 220 В, а между защитой и нулем стрелка не будет отклоняться.

Поиск неисправностей

Работоспособность схемы питания квартиры изображена простым определением. Наличие фазы или рабочего нуля — не совсем правильный подход, так как кроме этого надо соблюсти еще ряд мероприятий — учесть положение включающих устройств, наличие в розетках потребителей с нагревательными элементами, но выключенных кнопкой на приборе.

Нахождение электричества

По этой причине поиск обрыва сети надо проводить при пустых розетках и выключенных устройствах включения (выключателях), кроме тех случаев, когда обрыв может находиться на линии от выключателя до светильника.

Типовая схема разводки электропитания в квартире — это когда на розетки приходит фаза и рабочий ноль, а на осветительный прибор через выключатель — фаза.

Ноль на светильник обычно подается напрямую от распределительной коробки, что представлено на фото ниже:

Зануление в квартире

Зануление в квартире

Электричество в современной жизни — источник создания комфортной жизни для человека. Вокруг нас постоянно работают электрические помощники бытового предназначения, это может быть кухонный комбайн или моющий пылесос, телевизор или ПК, по этой причине понимать, как получают питание эти приборы и устройства просто необходимо.

Важным аспектом безопасной эксплуатации бытовой техники является наличие в квартире рабочего нуля (N) и защитного провода (РЕ). Ноль нужен для создания нагрузки с использованием фазы, а защитный провод — зануления. В качестве защиты может применяться провод, имеющий соединение с ТП по изолированной схеме или глухо заземленной нейтралью — эффективный заземленный ноль.

Значение защитного провода можно рассмотреть на таком примере, как работа нагревательного устройства (бойлера). Вариант, который можно часто встретить, — это когда вследствие нагрузки и длительной работы элемент нагревания ТЭН делает пробой, иными словами, корпус лопается, и нить спирали касается воды.

В этом случае вода — токопроводящая жидкость — касается корпуса обогревателя, но когда произойдет включение бойлера от терморегулятора, автомат защиты сработает от КЗ между корпусом и фазой, так как он был занулен защитным проводом, и человек не попадет под воздействие электротока.

Не существует выражения «нулевая фаза», это противоположные понятия.

Вывод

Важно, чтобы при работе по определению фазы или нуля всегда соблюдалась техника безопасной работы с электричеством, которая описывается в электротехнике.

Допустимый инструмент для самостоятельного поиска фазы в электрике — мультиметр.

Когда один щуп зажимаем в руке и выставляем на приборе замеры переменного напряжения, а вторым щупом ищем фазу, если касаемся фазного провода, прибор покажет напряжение. Можно пользоваться индикатором поиска фазы.

Источник: https://domelectrik.ru/baza/teoriya/faza-i-nol

Что такое фаза и ноль в электрике — учимся определять разными способами?

Электрические сети бывают двух типов. Сети переменного тока и сети с постоянным током. Электрический ток, как известно, — это упорядоченное движение электронов.

В случае постоянного тока они двигаются в одном направлении и. как принято говорить, имеют постоянную поляризацию.

В случае с переменным током направление движения электронов все время меняется, то есть ток имеет переменную поляризацию.

Принцип работы сети переменного тока

Сеть переменного тока делится на две составляющие: рабочая фаза и пустая фаза. Рабочую фазу иногда просто называют фазой. Пустую называют нулевой фазой или просто — ноль. Она служит для создания непрерывной электрической сети при подключении приборов, а также для заземления сети. А на фазу подается рабочее напряжение.

При включении электроприбора не важно, какая фаза рабочая, а какая пустая. Но при монтаже электропроводки и подключении ее в общедомовую сеть это нужно знать и учитывать. Дело в том, что установка электропроводки делается или с помощью двухжильного кабеля, или трехжильного. В двухжильном одна жила – рабочая фаза, вторая – ноль.

Обратите внимание

В трехжильном рабочее напряжение делится на две жилы. Получается две рабочих фазы. Третья жила – пустая, ноль. Общедомовая сеть выполняется из трехжильного кабеля. Общая схема электропроводки в частном доме или квартире, в основном, тоже делается из трехжильного провода.

Поэтому перед подключением квартирной проводки нужно определить рабочие и нулевую фазы.

Способы определения фазных и нулевых проводов

Узнать, на какую жилу подается напряжение, а на какую нет, несложно. Есть несколько способов определения фазы и нуля.

Первый способ. Фазы определяются по цвету оболочки жил. Обычно рабочие фазы имеют цвета черный, коричневый или серый, а ноль – светло-синий. Если устанавливается дополнительное заземление, то его жила — зеленого цвета.

В этом случае не используют дополнительных приборов для определения фаз. Следовательно, такой способ не очень надежен, потому что, монтируя проводку, электрики могут не соблюдать цветовую маркировку жил.

Надежнее определять фазы с помощью электроиндикаторной отвертки. Она представляет собой непроводящий ток корпус, в который встроены индикатор и резистор. В качестве индикатора используют неоновую лампочку.

При касании жалом отвертки оголенного, под напряжением, провода индикатор, если жила рабочая, загорается. Если ноль, то не срабатывает. С помощью такой отвертки можно определять и исправность сети.

Если при касании жалом поочередно жил провода лампочка не загорается, то сеть неисправна.

Случается, что индикатор загорается при прикосновении к обеим жилам провода, то есть и к фазе и к нулю. Это значит, что в пустой фазе где-то есть обрыв. Его нужно найти и устранить.

Можно осуществить определение фазы мультиметром. Сначала устанавливаем режим измерений – переменное напряжение. Потом конец одного щупа зажимаем в руке. Вторым щупом касаемся жилы. Если фаза рабочая, то на экране прибора будет показана величина напряжения.

Можно определить рабочую фазу и с помощью обычной электрической лампочки. Берем лампочку, вкрученную в патрон, с двумя отрезками провода. Один конец заземляем. Можно заземлить его, прикрутив к отопительной батарее. Концы проводов, естественно, должны быть оголенными. Вторым концом касаемся жилы. Если лампочка загорается, то фаза – рабочая.

Один из методов, показывающих что такое фаза и ноль в электрике, на видео

Источник: http://elektrik24.net/teorija/napryazhenie/chto-takoe-faza-i-nol.html

Как определить фазу и ноль: мультиметром, индикаторной отверткой, без приборов

Проведение ремонтных работ в любом помещении, важным моментом является оснащение этого помещения электричеством. Помимо электропроводки, не стоит забывать о необходимости установки розеток и выключателей, при помощи которых будет происходить регулирование освещения. Тут достаточно важным моментом будет найти фазу, ноль и заземляющего проводника системы.

Для профессиональных монтажников данная задача является очень простой, чего не скажешь о простых обывателях, которые далеко не всегда могут справиться с подобной задачей. Тем не менее, поиск фазы и нуля является процессом не настолько сложным, как может показаться изначально, при этом включает в себя несколько способов определения.

Следует понимать, что проводка в квартире обычно имеет напряжение в 220В, поскольку она предусматривает подключение к нулевому проводнику и к одной из фаз. При этом обязательным является заземление, что делает электрификацию помещения безопасной для обитателей.

Что такое фаза и ноль в электричестве для новичка

Чтобы уловить принцип нахождения фазы и нуля в сети, следует для начала определить для себя, что означают данные термины, которые для простого обывателя могут звучать как совершенно непонятные понятия. Любая система, независимо от ее протяженности, состоит из трех фаз, причем касается также и низковольтных линей, задачей которых является питание жилых домов.

Между двумя любыми фазами возникает линейное напряжение, составляющее 380В. Однако напряжение бытовой сети составляет 220В, главной задачей является появление требуемого для сети напряжения. Для этой цели в любой сети присутствует нулевой провод, которой в сочетании с любой фазой образует разность потенциалов в 200В, которая и будет представлять собой фазное напряжение.

Нулем в электрической цепи называется проводник, который соединяется с контуром земли и используется для создания нагрузки от фазы. Фаза эта подключена к противоположному концу обмотки на ТП. Таким образом, в стандартной розетке, для наглядности, один вход принимается за фазу, а второй за ноль.

Если говорить более простым языком, то фаза представляет собой провод, по которому поступает ток. По нулевому проводу ток возвращается обратно к источнику. В зависимости от количества фаз, система имеет несколько проводов. Допустим, в трехфазовой цепи имеются три фазовых провода и один обратный, нулевой.

Цветовое обозначение. Не редко многих интересует вопрос, какого цвета провода фаза ноль земля, как определить, где какой провод, часто предоставляется возможным при помощи используемых в электрике цветовых разграничений.

Важно

Однако сработает данный метод только в случае, если проводка действительно выполнена по всем правилам. Изоляция нулевого провода обычно обозначается синим или голубым цветом, земля сочетает в себе сразу две окраски – зеленую и желтую.

Провод фазы по правилам обозначается в коричневый, белый или черный цвет.

Обозначение фазы и нуля буквы. Помимо цветовых обозначений, возможной является также буквенная маркировка проводов. Фаза обычно обозначается латинской буквой “L” а нулевой провод принято маркировать буквой “N”. Кроме того, свое обозначение имеет и заземление, обозначать которое принято буквой “G”.

Как определить фазу и ноль индикаторной отверткой

Для нахождение фазы и нуля в сети можно использовать различные инструменты. Наиболее удачным изобретением в помощь начинающим электрикам считается индикаторная отвертка, имеющая специальные чувствительные элементы и индикатор-отражатель.

Осуществлять проверку фазу и нуля в сети при помощи отвертки проще простого. Отвертку следует зажать между большим и средним пальцем. Касаться неизолированной части жала отвертки не разрешается. Палец указательный следует поставить на металлический круглый выступ в конце рукоятки.

Далее жало прикладывают к оголенным концам проводов. В том случае, если произошло касание с фазным проводником, в отвертке загорается соответствующий светодиод.

Определить принцип действия индикаторной отвертки нетрудно, внутри нее расположена специальная лампа, а также резистор, представляющий собой сопротивление. Лампа загорается, если замыкается цепь. Благодаря сопротивлению, можно не бояться поражения током во время проверки, поскольку оно снимает его значение до минимального показателя.

Как узнать где фаза а где ноль в розетке индикаторным пробником видео

Найти ноль такой отверткой, соответственно, не получится. Кроме того, подобный способ нередко дает сбой из-за не слишком хорошей чувствительности. В итоге индикаторная отвертка, реагируя на наводки, может выдать напряжение там, где его совершенно нет.

Как определить фазу и ноль мультиметром

Помимо применения индикаторной отвертки, возможным является использование мультиметра, который также позволит узнать где фаза а где ноль в сети. Обязательным условием для его использования является предварительная зачистка проводов.

На приборе перед использованием требуется установить значение предела измерения переменного тока, величина которого должна превышать 220В. Ориентироваться также следует по маркировке гнезд, куда включены щупы прибора. Для данного типа проверки потребуется щуп, включенный в гнездо с маркировкой «V».

Сама проверка заключается в прикосновении щупа к одному из проводов, следя при этом за показаниями прибора. Если мультиметр идентифицирует какое либо напряжение, то данный провод является фазным. Если другой провод покажет нулевое значение, то это, соответственно, нулевой провод.

Прибор для работы может использоваться любого типа – стрелочный или с цифровым индикатором. В любом случае, важным моментом будет соблюдение мер безопасности, а также правильная индикация прибором показаний с проводов. Точность этого прибора обычно выше индикаторной отвертки.

Главным правилом при использовании мультиметра является запрет на одновременное касание фазы и заземляющего контура. Такая халатность может привести к короткому замыканию и, как следствие, к травматическим ожогам.

Как определить фазу и ноль без приборов

Несмотря на столь широкое распространение приборных способов определения фазы и нуля в сети, далеко не всегда под рукой может оказаться нужное устройство, которое позволит сделать верное заключение. При этом неправильное выявление проводов в сети «на глаз» может привести к достаточно опасным последствиям.

Первый метод, позволяющий справиться с данной задачей, был описан в одном из разделов выше. Заключается он в нахождении проводов, в зависимости от цвета их изоляции, а также от маркировки. Однако это окажется верным только в том случае, если проводка была выполнена по всем правилам.

Второй способ определить их – это сделать так называемую контрольную лампочку, применяя при этом подручные средства. Для этого потребуется простая лампа накаливания и два отрезка провода, длиной примерно 50 сантиметров.

Совет

Жилы проводов следует присоединить к лампочке, при этом вторым концом одного из проводов следует прикоснуться к трубам отопления (зачищенным), а вторым прикоснуться к «прозваниваемым» проводам.

Тот провод, при прикосновении к которому загорается лампочка, является фазным.

Определение фазы без индикатора и прибора видео

Стоит обратить внимание, что описанный способ является очень опасным и может привести к поражению током во время его использования. Ни в коем случае не рекомендуется применять его в случае наличия предельного напряжения в сети, а также нельзя касаться оголенных проводов.

Альтернативной лампочки накаливания может стать лампочка неоновая, которая позволит найти полярность системы.

В заключении следует отметить, что ответ на вопрос: как определить фазу и ноль имеет несколько решений. А именно: индикаторной отверткой, мультиметром, а также можно без приборов. Все зависит от возможностей и наличия приборов под рукой. Обязательным является соблюдение всех мер безопасности при работе с электричеством.

Источник: http://masterok-remonta.ru/elektrika-i-osveschenie/kak-opredelit-fazu-i-nol.html

Понятие электрического отгорания нуля

Понятие «отгорание нуля» появилось в электротехническом лексиконе в результате частого выгорания так называемого «нулевого проводника», который в промышленных трехфазных сетях переменного тока используется в качестве рабочего проводника и по нему протекает ток.

В случае квартирной однофазной цепи «нулевым проводом» считается проводник, имеющий нулевой потенциал по отношению к земле.

Второй проводник в этом случае называют «фазным»; он имеет по отношению к земле более высокий потенциал, равный 220 вольт, и никаких проблем при этом с отгоранием нуля не возникает.

Отгорание нуля возможно лишь в трёхфазных сетях переменного тока и только при появлении разбаланса нагрузок в каждой из фаз питающей электросети.

Само же понятие «нулевой провод» применимо лишь к схеме соединения трёхфазных источников тока и нагрузок по схеме «звезда», поэтому и анализировать имеет смысл только эту схему.

Хорошо известно также, что переменные токи в каждой из фазных линий (в случае одинаковых нагрузок) сдвинуты по фазе на одну треть периода, в результате чего векторная сумма обратных токов в нейтральном (нулевом) проводнике равна нулю.

Поскольку через нулевой провод в этом случае электрический ток не протекает, то практически можно обходиться и без него. Небольшие токи появляются в нулевом проводнике лишь в том случае, когда нагрузки в различных фазах начинают различаться и перестают компенсировать друг друга.

Именно поэтому большинство трёхфазных четырёхжильных проводов имеют нулевая жилу вдвое меньшего сечения, поскольку нет смысла тратить довольно дорогую медь на проводник, по которому ток всё равно не протекает.

Проблемы в трёхфазной электрической сети начинают появляться тогда, когда в них в качестве однофазных нагрузок включаются приборы, имеющие различные величины сопротивлений.

Обратите внимание

Любые попытки каким-то образом получить равномерно распределённые по мощности однофазные нагрузки в этом случае не дают положительного результата.

Вызвано это тем, что потребитель совершенно случайным образом подключает свои бытовые электроприборы, постоянно меняя, таким образом, величину нагрузки на каждой отдельной фазе.

При этом протекающий по нулевому проводу ток не превышает, как правило, критической величины, и рассчитанная на определённые токи проводка выдерживает их без особых последствий.

Но совершенно иная картина стала наблюдаться в последние годы, когда широкое распространение получили импульсные источники питания, устанавливаемые сегодня практически во всю современную домашнюю технику (компьютеры, телевизоры, DVD-проигрыватели и т. п.).

Токи нагрузки в цепях новых источников питания протекают только в течение определённого периода времени, и характер их потребления существенно отличается от режима потребления обычных приборов.

Как следствие этого – в трёхфазной цепи возникают дополнительные токи, и, с учётом несогласованности нагрузок, по нулевому проводу может начать протекать ток, равный или даже больший, чем максимальный ток фазы.

Всё это способствует возникновению условий, при которых может произойти опасное для электросети «отгорание нуля».

Связано это с тем, что все проводники (в том числе – и нулевой), работающие в составе трёхфазных проводных линий, имеют одно и то же сечение, выбираемое из расчёта максимального тока, протекающего в нагрузке. В особо неблагоприятных условиях (описанных выше) через нулевой проводник начинает протекать ток, значительно превышающий допустимые значения. В этом случае вероятность его отгорания резко возрастает.

Подобную ситуацию, вызывающую значительный «перекос фаз» и повышающую вероятность «отгорания нуля», обязательно нужно учитывать при подготовке рабочего проекта вашей домашней электросети.

Источник: http://cxem.net/electric/electric76.php

Фаза, ноль, земля – что это?

«То, что «потрясло», не убивает». Эта фраза, автором которой является Конфуций, стала сегодня расхожим «статусом» в соцсетях, приписываемая то Ницше, то Канту, трансформировавшись в: «То, что нас не убивает, делает сильнее».

Вы спросите, при чём тут древний китайский философ и проблема бытового электричества? Всё просто – если перепутать три пров

Как вырабатывают электричество на электростанциях

Автор канала “Atom Duba” показал занимательный эксперимент на тему, как получают электричество и каков механизм на электростанции.  Рассмотрен вопрос о природе переменного тока?

Если знаете, что такое электромагнитная индукция, просто понять что в опыте. В катушке 1500 витков, чтобы напряжение на каждом из них складывалась, и эффект был заметным. На экране осциллографа видим электрический сигнал.

Товары для изобретателей. 🔥 Перейти в магазин. Ссылка.

На электростанции катушка большего размера. Она переводит энергию механического движения в электрическую. Но согласитесь, метод, который видите на экране, не эффективен. Не захотели бы получать домой из розетки такие импульсы. Если обращали внимание, на всех электростанциях что-нибудь да крутится.

Покрутим магнит. Посмотрите, возле катушек создается напряжение. Почему? Несмотря на то, что он стоит на месте, магнитное поле меняется. Почему? Оно направлено то в одну сторону, то в другую, причём  увеличивается и уменьшается. То же происходит с напряжением – оно то положительное, то отрицательное.

Но для того, чтобы нормально крутить магнит, возьмем гениальное устройство — дрель. Нужно смотреть на диод. Загорается. Здорово! Примерно то происходит на электростанции. Тем или иным способом закручивается вал с магнитом. Необязательно крутить именно магнит. Можно вращать катушку в магнитном поле. Никакой разницы нет.

На электростанции делается 50 оборотов за секунду. То есть, как говорят физики, частота вращения 50 Герц. То есть, 50 раз за секунду делается один оборот. Следовательно, напряжение такое же количество ву секунду повторяет один контур. Следовательно, ток, который меняет свое направление, называется переменным током. Он принимает переменчиво положительное и отрицательное значение.

Получается что лампочка за секунду моргает 50 раз? И да и нет. Она светит за счёт того, что нитка внутри из вольфрама и сильно греется. За то время, пока ток равен нулю, не успевает остыть.
Напоследок глянем, как выглядит зависимость напряжений от времени. Если бы не тряслись руки и можно было бы засунуть магнит внутрь катушки, и крутить его там, то тогда зависимость была бы замечательным синусом. Это незамысловатая функция.

Вибрации и электричество.

Природное электричество — Мегаобучалка

Суть электричества. Электричество — это…

Электричество — это движущийся в определенном направлении поток частиц. Они обладают неким зарядом. По-другому, электричество — это энергия, которая получается при движении, а также освещение, появляющееся после получения энергии. Термин ввел ученый Уильям Гилберт в 1600 году. При проведении опытов с янтарем еще древнегреческий Фалес обнаружил, что минералом приобретался заряд. «Янтарь» в переводе с греческого означает «электрон». Отсюда пошло и название.

Электричество — это…

Благодаря электричеству, вокруг проводников тока или тел, обладающих зарядом, создается электрическое поле. Через него появляется возможность воздействовать на другие тела, у которых также есть некий заряд.

Все знают, что заряды бывают положительными и отрицательными. Конечно, это условное деление, но по сложившейся истории их так и продолжают обозначать. Если тела заряжены одинаково, они будут отталкиваться, а если по-разному — притягиваться. Суть электричества заключается не только в создании электрического поля. Возникает и магнитное поле. Поэтому между ними имеется родство. Больше века спустя, в 1729 году, Стивен Грей установил, что есть тела, обладающие очень большим сопротивлением. Они способны проводить электрический ток. В настоящее время больше всего электричеством занимается термодинамика. Но квантовые свойства электромагнетизма изучает квантовая термодинамика.

История

Вряд ли можно назвать конкретного человека, открывшего явление. Ведь и по сей день продолжаются исследования, выявляются новые свойства. Но в науке, которую нам преподают в школе, называют несколько имен.

Считается, что первым, кто заинтересовался электричеством, был философ Фалес, живший в Древней Греции. Это он тер янтарь о шерсть и наблюдал, как начинали притягиваться тела. Затем Аристотель изучал угрей, поражавших врагов, как поняли позже, электричеством. Позже Плиний писал об электрических свойствах смолы. Ряд интересных открытий закрепили за врачом английской королевы, Вильямом Жильбером. В середине семнадцатого века, после того как стал известен термин «электричество», бургомистр Отто фон Герике изобрел электростатическую машину. В восемнадцатом веке Франклин создал целую теорию явления, говоряющую о том, что электричество — это флюид или нематериальная жидкость. Кроме упомянутых людей, с этим вопросом связывают такие знаменитые имена, как:



· Кулон;

· Гальвани;

· Вольт;

· Фарадей;

· Максвелл;

· Ампер;

· Лодыгин;

· Эдисон;

· Герц;

· Томсон;

· Клод.

Несмотря на их неоспоримый вклад, самым могущественным из ученых в мире по праву признают Николу Теслу.

Ученый родился в семье сербского православного священника на территории нынешней Хорватии. В шесть лет мальчик обнаружил чудесное явление, когда играл с черной кошкой: ее спина вдруг осветилась полоской голубого цвета, что сопровождалось искрами при прикосновении. Так мальчик впервые узнал, что такое «электричество». Это и определило всю его будущую жизнь.

Ученому принадлежат изобретения и научные работы о:

· переменном токе;

· эфире;

· резонансе;

· теории полей;

· радио и еще многом другом.

Многие связывают событие, получившее название Тунгусский метеорит, с именем Николы Теслы, считая, что огромный взрыв в Сибири был вызван не падением космического тела, а опытом, проводимым ученым.

Природное электричество

Одно время в научных кругах существовало мнение, что электричества в природе не существует. Но эту версию опровергли тогда, когда Франклином была установлена электрическая природа молнии.

Именно благодаря ей аминокислоты начали синтезироваться, а значит, и появилась жизнь. Установлено, что движения, дыхание и другие процессы, происходящие в организме, возникают от нервного импульса, который имеет электрическую природу.

Всем известные рыбы — электрические скаты — и некоторые другие виды защищаются таким образом, с одной стороны, и поражают жертву, с другой.

Применение

Подключение электричества происходит за счет работы генераторов. На электростанциях создается энергия, передаваемая по специальным линиям. Ток образуется за счет преобразования внутренней или механической энергии в электрическую. Станции, которые ее вырабатывают, где происходит подключение или отключение электричества, бывают различных видов. Среди них выделяют:

· ветровые;

· солнечные;

· приливные;

· гидроэлектростанции;

· тепловые атомные и другие.

Подключение электричества сегодня происходит практически везде. Представить себе жизнь без него современный человек не может. С помощью электричества производится освещение, передается информация по телефону, радио, телевидению… За счет него функционирует такой транспорт, как трамваи, троллейбусы, электрички, поезда метро. Появляются и все смелее заявляют о себе электромобили.

Если происходит отключение электричества в доме, то человек часто становится беспомощным в разных делах, так как даже бытовые приборы работают при помощи этой энергии.

Что нужно знать каждому про электричество

Что нужно знать каждому про электричество? Прежде чем приступить к работам, связанным с электричеством, необходимо усвоить базовые понятия.

Постоянный и переменный ток

Постоянный ток практически не меняет направления и величины во времени (пример — пальчиковая батарейка). Если соединить контакты, заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет. Переменный ток — ток, который с определенной периодичностью меняет направление движения и величину. Представьте, что это поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую. С током это происходит намного быстрее — 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока возрастает до максимума, затем проходит через нуль, а потом начинается обратный процесс, но уже с другим знаком.

Зачем нужен переменный ток? Для передачи энергии на дальнее расстояние переменный ток подходит лучше всего, поскольку так теряется меньше энергии. С помощью трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и на- оборот. Большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток также применяется достаточно широко — во всех видах батарей, в электротранспорте, химической промышленности (электролизные ванны, дуговые электропечи) и других областях.

Переменный электрический ток имеет такую характеристику, как частота (измеряется в герцах, Гц). С этим понятием сопряжено понятие нагрузки сети. Когда мы подключаем к сети или отключаем электроприборы, соответственно увеличивается или уменьшается нагрузка в ней. Пропорционально увеличению либо уменьшению нагрузки будет падать либо возрастать напряжение в сети. Это не ведет к обесточиванию наших квартир, так как задача понижающих подстанций, оснащенных автоматической системой регулирования напряжения, — выравнивать постоянное напряжение в сети, несмотря на то что мы изменяем нагрузку на нее. Однако перебои с напряжением в квартирной сети все-таки периодически случаются. Это происходит по многим причинам: аварии, качения в системе электроснабжения, коммутационные и грозовые перенапряжения и т. п.

Фаза и нуль

Любая электрическая цепь состоит из двух проводов. По одному ток попадает к потребителю (например, к чайнику), а по другому возвращается обратно. Если разомкнуть такую цепь (она называется однофазной), то тока не будет. Тот провод, по которому ток идет, называется фазным или просто фазой, а по которому возвращается — нулевым или нулем. Трехфазная цепь состоит из трех фазных проводов и одного обратного. Такое возможно потому, что векторы трехфазной сети сдвинуты относительно друг друга на 120 электрических градусов.

 
Заземление

Заземление — третий провод в однофазной сети. Рабочей нагрузки он не несет, а служит для обеспечения электробезопасности. Заземление необходимо, когда электричество выходит из-под контроля (например, в результате короткого замыкания). Допустим, в электродвигателе стиральной машины возникла поломка (случился пробой изоляции от частых вибраций) и фазный потенциал попал на корпус установки. Если заземления нет, этот заряд будет сохраняться на корпусе. Когда человек прикоснется к нему, то получит удар током (электротравму). При заземленном корпусе в щитке сработает аппарат защиты (автомат, дифференциальный автомат или даже устройство защитного отключения, УЗО) и отключит поврежденный участок, то есть стиральную машину, от сети. Ситуация, когда в  доме нет заземления, небезопасна.

ВАЖНО!
Некоторые потребители, полагаясь на начальные знания по электротехнике, устанавливают нулевой провод как заземляющий. Ни в коем случае этого делать нельзя! При обрыве нулевого провода корпуса заземленных приборов окажутся под напряжением 220 В.

Схемы соединения трехфазной цепи

Трехфазные цепи соединяются в основном по схеме «звезда» или «треугольник». «Звезда» — это такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и потребителя, называются линейными, провод, соединяющий две нейтрали, — нейтральным. «Треугольник» — соединение, при котором конец первой фазы соединяется с началом второй, конец второй фазы — с началом третьей, а конец третьей фазы — с началом первой.

Разделение фазных проводов по цвету

Чтобы избежать путаницы, изоляция на проводах различается по цвету: заземление — желто-зеленый, нуль — голубой или синий, фаза — любой другой цвет (последнее объясняется тем, что существуют также четырех- и пятипроводные системы, по которым, соответственно, проходят две или три фазы). Обычно фазный провод окрашен в белый, черный, красный, зеленый или коричневый цвет. Изоляция может быть и белой, но с продольной полоской соответствующего цвета: желто-зеленого, синего, красного и т. п.

 

 

 

  • Как электричество попадает в дом
  • Устройство системы водоснабжения

Семь основных источников электричества, о которых вы должны знать

Само представление о мире без электричества кажется невозможным. Это один из величайших даров науки человечеству. Почти все в нашем мире сегодня зависит от электроэнергии.

Ожидается, что электрическая зависимость со временем будет только расти. По оценкам, в 2018 году мировой спрос на электроэнергию вырос до 23000 ТВтч, и это число, вероятно, будет увеличиваться с каждым годом.Этот стремительно растущий спрос отвечает за половину роста потребностей в энергии и составляет 20% от общего потребления энергии во всем мире.

СВЯЗАННЫЕ: 3+ РАЗЛИЧНЫХ ТИПОВ ЭЛЕКТРОСТАНЦИЙ, ГЕНЕРИРУЮЩИХ ЭЛЕКТРОЭНЕРГИЮ ДЛЯ США

Эти статистические данные ясно показывают, что электричество — это генератор будущего. Тем не менее, как мы можем генерировать такое ошеломляющее количество электроэнергии для удовлетворения постоянно растущих потребностей? Давайте узнаем!

Определение электричества

Электричество можно определить как форму энергии, которая вырабатывается в результате потока электронов из положительных и отрицательных точек внутри проводника.Мы рассматриваем электричество как вторичный источник энергии.

Это связано с тем, что он не поставляется в виде готового продукта, а должен быть получен из первичных источников, таких как ветер, солнечный свет, уголь, природный газ, реакции ядерного деления и гидроэнергетика.

Вот несколько основных способов, с помощью которых мы можем производить электричество, и как это можно сделать!

1. Электричество через трение

Первые наблюдения электрических явлений были сделаны в Древней Греции.Это произошло, когда философ Фалес Милетский (640–546 гг. До н.э.) обнаружил, что когда янтарные бруски натирают о загорелую кожу, они приобретают привлекательные характеристики, которыми раньше не обладали.

Это тот же эксперимент, который теперь можно провести, протерев пластиковый стержень тканью. Поднося его ближе к маленьким кусочкам бумаги, он привлекает их, как это характерно для наэлектризованных тел.

Все мы знакомы с эффектами статического электричества. Некоторые люди более подвержены влиянию статического электричества, чем другие.Некоторые пользователи автомобилей ощущают его воздействие при нажатии на ключ или прикосновении к пластине автомобиля.

Мы создаем статическое электричество, когда протираем ручку одеждой. То же самое происходит, когда мы натираем стекло о шелк или янтарь с шерсти.

Следовательно, понятия заряда и подвижности необходимы при изучении электричества, и без них электрический ток не мог бы существовать.

2. Электроэнергия за счет химического воздействия

Все батареи состоят из электролита (который может быть жидким, твердым или полутвердым), положительного электрода и отрицательного электрода.Электролит — это ионный проводник.

Один из электродов производит электроны, а другой электрод их принимает. Когда электроды подключены к питаемой цепи, они производят электрический ток.

Батареи, в которых химическое вещество не может вернуться в исходную форму после преобразования химической энергии в электрическую, называются первичными или гальваническими батареями.

Батареи или аккумуляторы двусторонние.В этих типах батарей химическое вещество, которое реагирует в электродах с образованием электрической энергии, может быть восстановлено путем пропускания через него электрического тока в направлении, противоположном нормальному режиму работы батареи.

3. Электричество под действием света

Когда солнечный свет становится более интенсивным, напряжение, генерируемое между двумя слоями фотоэлектрического элемента, увеличивается. Но как работает фотоэлемент?

При отсутствии света система не вырабатывает энергию.Когда солнечный свет попадает на пластину, клетка начинает функционировать. Фотоны солнечного света взаимодействуют с доступными электронами и увеличивают их энергетические уровни.

Таким образом, электричество вырабатывается за счет солнечной энергии.

4. Тепловая электроэнергия за счет теплового воздействия

Тепловая генерирующая установка — это тип установки, в которой турбина, приводимая в действие паром под давлением, используется для перемещения оси электрогенераторов. Обычные тепловые электростанции и атомные тепловые электростанции используют энергию, содержащуюся в сжатом паре.

Самый простой пример — подключить чайник, полный кипятка, к лопастному колесу, которое, в свою очередь, соединено с генератором. Струя пара из котла приводит в движение ротор.

Следовательно, мы можем получить пар разными способами, например, сжигая уголь, нефть, газ, городские отходы или используя большое количество тепла, выделяемого в результате ядерных реакций деления. Вы даже можете производить пар, концентрируя энергию солнца.

Не будет ошибкой сказать, что тепловая энергия — один из самых распространенных способов производства электроэнергии.

5. Электричество за счет магнетизма

В 1819 году датский физик Ганс Кристиан Эрстед сделал необычайное открытие, обнаружив, что можно отклонить магнитную стрелку с помощью электрического тока. Это открытие, показавшее связь между электричеством и магнетизмом, было разработано французским ученым Андре Мари Ампером.

Ампер изучил силы между проводами, по которым циркулируют электрические токи. В том же духе французский физик Доминик Франсуа Араго, как известно, намагнитил железо, поместив его рядом с кабелем, по которому проходит ток.

После этого, в 1831 году, британский ученый Майкл Фарадей обнаружил, что движение магнита вблизи кабеля индуцирует в нем электрический ток. Этот эффект был противоположен обнаруженному Эрстедом.

Таким образом, Эрстед продемонстрировал, что электрический ток может создавать магнитное поле. С другой стороны, Фарадей продемонстрировал, что мы можем использовать магнитное поле для создания электрического тока. Оба открытия являются новаторскими.

В этом контексте полное смешение теорий магнетизма и электричества произошло благодаря британскому физику Джеймсу Клерку Максвеллу.Максвелл предсказал существование электромагнитных волн и определил свет как электромагнитное явление.

Очевидно, потребовалось много ученых и исследователей, чтобы сделать вывод, что электричество также может быть произведено с помощью магнетизма.

6. Электроэнергия, вырабатываемая под давлением

Давление, оказываемое подземными водными потоками, — это процесс, используемый на больших судах в качестве альтернативной энергии основной системы. В плотинах электричество вырабатывается путем выпуска контролируемого потока воды под высоким давлением через принудительный трубопровод.

Вода приводит в движение турбины, которые приводят в движение генераторы и, таким образом, вырабатывают электрический ток. Затем этот высокий ток низкого напряжения проходит через усилитель напряжения, который преобразует его в электричество.

7. Гидравлическое электричество за счет действия воды

Из всех перечисленных выше способов получения энергии магнитная энергия чаще всего используется для производства электроэнергии в больших количествах. Его изготовление основано на том, что при перемещении проводника в присутствии магнита в проводнике происходит упорядоченное движение электронов.

Это происходит в результате сил притяжения и отталкивания, вызванных магнитным полем. Работа генераторов переменного тока, двигателей и динамо-машин основана на этой форме производства электроэнергии.

Примечательно, что гидроэлектроэнергия вырабатывает около 9% электроэнергии в США. Более того, он является возобновляемым и может производиться с очень небольшим количеством выбросов.

СВЯЗАННЫЕ С: 21 ТОП-ПЛОТИНЫ В МИРЕ, ПОЛУЧАЮЩИЕ БОЛЬШОЕ КОЛИЧЕСТВО ЭЛЕКТРОЭНЕРГИИ

Производство электроэнергии имеет богатую историю и еще более светлое будущее.Согласно прогнозам, сделанным Институтом энергетических исследований, ископаемые виды топлива сохранят свой статус ведущего источника производства электроэнергии в США до 2040 года.

Использование воды для производства электроэнергии (VOA Special English 2004-05-04)

www.manythings.org/voa/how
Загрузить MP3 (Щелкните правой кнопкой мыши или выберите ссылку.)

Это специальный английский отчет VOA по сельскому хозяйству.

Сила проточной воды может быть использована для производства электроэнергии.Это можно сделать везде, где есть вода и холм, по которому она быстро стекает.

Микрогидравлические системы вырабатывают электроэнергию из воды. Эти небольшие водные системы могут производить до пятнадцати киловатт электроэнергии. Этого достаточно, чтобы обеспечить электричеством деревню из пятидесяти-восьмидесяти домов, чтобы использовать ее для освещения и небольших двигателей. Он не обеспечивает достаточной мощности для промышленного использования. Микрогидросистемы важны для деревень, которые расположены рядом с водой и не имеют электроэнергии.

Перед тем как начать проект, вы должны убедиться, что люди, живущие рядом с вами, одобряют его. Люди протестуют, если у них остается меньше воды для посева или стирки одежды.

Строительство или покупка микрогидравлической системы требует планирования. Во-первых, кто-то должен оценить количество электроэнергии, которую может произвести падающая вода. Это сложный процесс. Необходимо выяснить, как далеко опускается вода, и измерить количество воды, протекающей через участок каждую секунду.Эти числа могут показать, сколько электроэнергии может быть произведено. Тогда вы сможете купить или построить микрогидросистему нужного размера.

Затем вам нужно решить, должна ли падающая вода течь внутри трубы или может течь свободно. Длинная труба стоит дороже, но воду легче контролировать. Даже если вода течет свободно, она должна попасть в кусок трубы непосредственно перед тем, как попасть в машину, называемую турбиной. Вода, протекающая по трубе, вращает в турбине большое колесо. Турбина передает энергию генератору, который вырабатывает электричество.

Сильный дождь может вызвать проблемы для микрогидросистемы. Дождь переносит траву, листья и другие материалы в водоемы. Это может привести к остановке вращения турбины. Проблему можно предотвратить, поместив стальные стержни в трубу до того, как вода потечет в турбину. Эти стальные стержни захватывают материал, прежде чем он может повредить машину.

Люди, которые могут использовать проточную воду для производства электроэнергии, имеют бесплатный запас энергии. Вы можете получить дополнительную информацию о подобных проектах в группе «Волонтеры в технической поддержке».VITA находится в Интернете на vita.org.

Этот специальный английский отчет по сельскому хозяйству VOA был написан Гэри Гэрриоттом.

Скрипт: Как производится электричество

  • Ресурс исследования
  • Исследовать
    • Искусство и гуманитарные науки
    • Бизнес
    • Инженерная технология
    • Иностранный язык
    • История
    • Математика
    • Наука
    • Социальная наука
    Лучшие подкатегории
    • Продвинутая математика
    • Алгебра
    • Основы математики
    • Исчисление
    • Геометрия
    • Линейная алгебра
    • Предалгебра
    • Предварительный камень
    • Статистика и вероятность
    • Тригонометрия
    • другое →
    Лучшие подкатегории
    • Астрономия
    • Астрофизика
    • Биология
    • Химия
    • Науки о Земле
    • Наука об окружающей среде
    • Наука о здоровье

Подробнее об электричестве и магнетизме

БОЛЬШЕ ОБ ЭЛЕКТРИЧЕСТВЕ И МАГНЕТИЗМЕ

После прочтения этого раздела вы сможете сделать следующее:

  • Объясните, что такое гальванометр и как он используется.
  • Начните обсуждать, как магнетизм можно использовать для создания электрического тока.

В этой демонстрации вы будете использовать инструмент под названием гальванометр . Это инструмент с железным стержнем, обмотанным электрическим проводом, и магнитом. Он обнаруживает электрический ток. Если к этому прибору подключен провод, он может определить, течет ли по проводу электричество. Если в проводе нет тока, игла переместится влево.Точно так же, если через провод течет ток, стрелка будет двигаться вправо от шкалы. Эта демонстрация должна помочь вам понять взаимосвязь между магнетизмом и электричеством.

Вопросы

  1. Что происходит со стрелкой гальванометра, когда магнитные силовые линии от магнита взаимодействуют с электрическим проводом?
  2. Когда стрелка гальванометра перемещается вправо, что он говорит вам о том, что происходит с проводом?
  3. Почему стрелка гальванометра возвращается на ноль, когда магнит перестает двигаться?

Если электричество производит магнетизм, могут ли магниты производить электричество?

В ходе этого эксперимента вы только что обнаружили, что электричество можно генерировать, перемещая провод через магнитное поле.Этот процесс называется электромагнитной индукцией . Когда электрический провод пересекает магнитные силовые линии, в проводе возникает ток. Мы знаем это, потому что ток регистрируется по стрелке гальванометра, который является инструментом, который может измерять электрический ток в проводах. Тот же результат получается, когда магнит перемещается в катушку с проволокой и выходит из нее. Не имеет значения, перемещается ли магнит или катушки с проволокой. Важно то, что в магнитном поле есть движение и что магнитные силовые линии перерезаны.

Почему для нас важна электромагнитная индукция?

Открытие электромагнитной индукции очень важно в нашей жизни, потому что это принцип, по которому электрические генераторы могут производить электричество. С помощью магнитов генератор может преобразовывать механическую энергию в электрическую и обеспечивать электричеством, которое нам нужно для многих вещей. Помните, что энергия — это способность выполнять работу, а механическая энергия — это энергия, вызываемая движущимися объектами.Например, когда вы двигаете ногами, чтобы управлять велосипедом, вы вызываете энергию, которая приводит в движение колеса велосипеда и приводит в движение велосипед. Когда стремительная волна воды ударяет по лодке и переворачивает ее, движущаяся вода заставляет энергию, которая движет лодку, перевернуть ее. Когда есть способ превратить эту движущуюся энергию в электричество, которое может зажечь лампочку, мы можем получить свет в нашем доме.

Как магнит помогает генератору преобразовывать механическую энергию в электрическую?

Генератор работает почти так же, как вы видели в эксперименте.Внутри генератора находится магнит, электрический провод и источник механической энергии. Механическая энергия перемещает проволоку в магнитное поле магнита, так что проволока прорезает магнитные силовые линии. В результате вырабатывается электрический ток. Электрогенераторы бывают любых размеров. Некоторые электрические генераторы очень большие и содержат огромные магниты, поэтому они могут производить много электроэнергии. С другой стороны, некоторые генераторы содержат небольшие магниты и достаточно малы, чтобы их можно было держать в руке.Эти небольшие генераторы могут производить электричества, достаточное только для того, чтобы зажечь одну маленькую лампочку.

Powering A Generation: Производство электроэнергии

Генерация Электроны

Есть много способов производить электричество. Электроны может течь между некоторыми различными материалами, обеспечивая ток, как в обычная батарея. Будучи надежными и портативными, химические батареи работают вниз быстро. Для обеспечения большого количества стабильной мощности, необходимой для построены современные общества, большие электростанции.Большинство электростанций производить электричество с помощью машины, называемой генератором.

Ротор турбины 1925 г. для генератора Westinghouse, Изображение № 21.035, Коллекция исторических изображений Science Service, Национальный музей американской истории

Генераторы

состоят из двух важных частей: ротор (который вращается) и статор (который остается неподвижным). Генераторы использовать принцип электромагнитной индукции, который использует соотношение между магнетизмом и электричеством.В больших генераторах переменного тока внешняя оболочка с мощными магнитами вращается вокруг неподвижной «арматуры» который обмотан тяжелой проволокой. При движении магниты вызывают электрический разряд. ток в проводе.

Важно понимать, что электричество не добывается и не добывается, его необходимо производить. И поскольку это не так легко хранится в большом количестве, он должен изготавливаться по мере необходимости. Электричество это форма энергии, но не источник энергии. Различные электростанции использовать различные источники энергии для производства электроэнергии.Два самых распространенных типы — «Тепловые растения» и «Кинетические растения».

Тепловой Генерирующие установки

Тепловые электростанции используют энергию тепла для производства электроэнергии. Вода нагревается в бойлере до состояния высокотемпературного пара. Этот затем пар проходит через турбину, к которой прикреплено множество лопастей вентилятора. к валу. Когда пар движется по лопастям, он заставляет вал вращение. Этот вращающийся вал соединен с ротором генератора, и генератор производит электричество.

Схема термического (масляного сжигание) установка в системе Hydro-Québec
Copyright, Hydro-Québec

На ископаемом топливе растения

Ископаемое топливо — остатки растений и животный мир, который жил очень давно. Подвержены воздействию высоких температур и давлений за миллионы лет под землей эти останки были преобразованы в формы углерода: уголь, нефть и природный газ. В отличие от самого электричества, ископаемое топливо можно хранить в больших количествах.После 100 лет исследований и развития, растения, работающие на ископаемом топливе, в целом надежны, а проблемы которые действительно происходят, обычно ограничиваются определенной территорией. Многие электрические сети десятилетиями эксплуатировали установки, работающие на ископаемом топливе, и эти установки (теперь полностью оплачено) очень выгодно запускать. Это не только увеличивает прибыль утилита, но снижает прямые затраты для пользователей.

Однако станции, работающие на ископаемом топливе, могут создавать серьезные экологические проблемы. При сжигании этих видов топлива образуется диоксид серы. и загрязнение воздуха оксидом азота, требующее дорогих скрубберов.Сточные Воды из отработанного пара может переносить загрязняющие вещества в водосборники. Даже с очень хороший контроль загрязнения, все еще образуются отходы. Углекислый газ газ и зола являются текущими проблемами.

Кроме того, ископаемое топливо не возобновляемо. На их создание ушли миллионы лет, и в какой-то момент они закончатся. Их извлечение и транспортировка для использования создало экологические проблемы. Открытая добыча угля и разливы нефти в море могут иметь катастрофические последствия по экосистемам.

Когенерация

Нефть стала слишком дорогой для большинства электростанции.Уголь и природный газ в настоящее время дешевы в США и стоят используется чаще. Эти два вида топлива используются более эффективно в «когенерационных» установках. Когенерация — это не новая идея, и использует преимущества того, как работают многие крупные потребители электроэнергии. Многие фабрики в производственном процессе используют пар. Коммунальные предприятия часто производят и продают пар для этих клиентов, а также для запуска собственных генераторов.

Вместо того, чтобы просто сгущать и истощать отработанный пар после его прохождения через турбину, «верхний цикл» когенераторы подают этот полезный товар ближайшим потребителям.«Нижний цикл» когенераторы работают в обратном направлении и используют отработанный пар из промышленных обработка для привода турбин. За счет повторного использования пара тепловой КПД при когенерации растения могут превышать 50%.

Недавно разработанные когенерационные установки использовать новые материалы и конструкции для повышения надежности и контролировать оба термическое и атмосферное загрязнение. Поскольку эти новые технологии разработаны в растения с самого начала, они дешевле в установке. Экономика а возможности когенерационной технологии позволяют многим станциям возвращаться сжигать уголь без превышения стандартов качества воздуха.»Циркулирующий Котлы с псевдоожиженным слоем, селективно-каталитические (и некаталитические) «Редукция» и «Без сброса» систем очистки воды. являются примерами технологий, используемых для контроля различных экологических проблемы.

Комбинированный цикл и биомассы

Некоторые газовые установки могут производить электричество без пар. Они используют турбины, очень похожие на турбины на реактивных самолетах. Вместо сжигания реактивного топлива и создания тяги, однако эти агрегаты сжигают естественные газ и мощность генератора.Газотурбинные генераторы были популярны много лет, потому что их можно быстро запустить в ответ на временные скачки спроса на электроэнергию. Более новый поворот — «комбинированный цикл». завод, который использует газовые турбины таким образом, но затем направляет горячие выхлопной газ в котел, который заставляет пар вращать другой ротор. Этот существенно повышает общую эффективность электростанции.

В дополнение к этим инновациям, некоторые тепловые станции проектируются для сжечь «биомассу».» (Показан завод по производству биомассы во Флориде, авторское право на изображение US Generating). Термин применяется к древесным отходам или какой-либо другой возобновляемый растительный материал. Например, Okeelanta Cogenration. Завод во Флориде сжигает отходы переработки сахарного тростника операций в течение одной части года, а древесные отходы во время выращивания сезон.

Атомная Растения

Хотя есть некоторые важные технические (и социальные) отличия, атомные электростанции — это тепловые станции, которые производят электричество во многом так же, как и на заводах по производству ископаемого топлива.Разница в том, что они генерировать пар, используя тепло атомного деления, а не сжигая уголь, нефть или газ. Затем пар вращает генератор, как и в других тепловых растения.

Схема атомной станции в Гидро-Квебеке система
, авторское право, Hydro-Québec

Атомные станции не используют большое количество топлива и не часто заправляются топливом, в отличие от угольной электростанции, которая должна иметь железнодорожные составы. топлива, поставляемого регулярно.Тот факт, что парниковые газы и взвешенные в воздухе частицы минимальны при нормальной эксплуатации, что делает атомную энергетику привлекательной для многих, кто обеспокоен качеством воздуха. Сточные Воды горячее, чем на ископаемом заводе, и большие градирни предназначены для решения этой проблемы.

Однако стремление к полевой ядерной власть в США пошатнулась из-за обеспокоенности общественности вопросами безопасности, окружающей среды и экономики. Поскольку было указано больше механизмов безопасности, стоимость строительства и система сложности росли.Кроме того, на заводах обнаружены некоторые неожиданные особенности, например преждевременный износ котельных труб. Инженеры-ядерщики утверждают, что ранние проблемы с ядерной заводов подлежат техническим исправлениям и работают над новыми «по своей сути безопасные »конструкции заводов. Противники утверждают, что простое использование урана и плутоний в качестве топлива создает слишком много проблем и рисков, не стоящих никакой пользы от технологии должно быть.

Пока одна проблема, которая не решена проблема утилизации отработавших ядер топлива и загрязненных принадлежностей. которые могут оставаться опасными в течение тысяч лет.Постоянное захоронение в геологически стабильные местоположения — это план, который реализуется в настоящее время, хотя это все еще очень спорный.

Крупные аварии на Три-Майл Остров в 1979 г. и Чернобыль в 1986 г. атомная промышленность, общественные катастрофы. Сохраняющиеся экономические проблемы сделали атомные станции менее привлекательными для инвестиций. Несмотря на то, что он произвел 22% электроэнергии Америки в 1996 г. будущее ядерной энергетики в этой стране было неопределенным и горячо обсуждаемым.

кинетическая Генерирующие установки

Гидроэлектростанции и ветряные мельницы также преобразовывать энергию в электричество.Вместо тепловой энергии используют кинетическая энергия или энергия движения. Движущийся ветер или вода (иногда называемый «белый уголь») вращает турбину, которая, в свою очередь, вращает ротор генератора. Поскольку топливо не сжигается, не происходит загрязнения воздуха. произведено. Ветер и вода — возобновляемые ресурсы, и, хотя есть было много последних технических инноваций, у нас есть долгая история использования эти источники энергии. Однако проблемы существуют даже с этими технологиями.

Гидроэлектрический Растения

В эксплуатации находятся два основных типа гидроэлектростанций.Один тип, завод «русла реки», потребляет энергию от быстро движущегося ток, чтобы раскрутить турбину. Расход воды в большинстве рек может быть разным. широко в зависимости от количества осадков. Следовательно, есть несколько подходящих участки для русловых растений.

Мост гидроэлектрический растения используют резервуар для компенсации периодов засухи и для повысить давление воды в турбинах. Эти искусственные озера покрывают большие территории, часто создавая живописные спортивные и развлекательные объекты.Массивные плотины также необходимы для борьбы с наводнениями. Раньше мало кто задавал вопросы распространенное предположение, что выгоды перевешивают затраты.

Эти расходы связаны с потерей земли. затоплен водохранилищем. Плотины вытеснили людей и уничтожили дикую природу среда обитания и археологические памятники. Прорыв дамбы может иметь катастрофические последствия. Некоторые экологические затрат можно избежать за счет продуманного дизайна; использование рыболовных трапов для разрешения Одним из хороших примеров является перемещение рыбы вокруг плотины. Однако остаются другие расходы, и протесты против некоторых недавних гидроэнергетических проектов стали столь же злыми как антиядерные протесты.

Особый вид гидроэнергетики называется «ГАЗ». Некоторые негидравлические станции могут использовать периоды низкой потребности (и низких затрат) за счет откачки воды в резервуар. Когда спрос растет, часть этой воды проходит через гидротурбину. для выработки электроэнергии. Поскольку энергоблоки «пиковой нагрузки» (б / у для удовлетворения временных скачков спроса), как правило, дороже в эксплуатации, чем блоки «базовой нагрузки» (которые работают большую часть времени), гидроаккумулирующие установки это один из способов повысить эффективность системы.

Ветер Мощность

Ветропаркам не нужны резервуары и не создают загрязнения воздуха. Небольшие ветряные мельницы могут обеспечить энергией отдельные дома. Воздух несет гораздо меньше энергии, чем вода, однако, гораздо больше это нужно для вращения роторов. Нужны либо несколько очень больших ветряных мельниц или много маленьких, чтобы управлять коммерческой ветроэлектростанцией. В любом случае конструкция затраты могут быть высокими.

Как и русловые ГЭС, там ограниченное количество подходящих мест, где ветер дует предсказуемо.Даже на таких объектах часто приходится проектировать турбины со специальной зубчатой ​​передачей, чтобы ротор вращался с постоянной скоростью в несмотря на переменную скорость ветра. Некоторые находят меньше технических проблем с инсталляциями, способными превратить живописный хребет или превратиться в некрасивую сталь лес, или это может сказаться на птицах.

Альтернатива Поколение

Электростанции других типов не использовать традиционное оборудование для производства электроэнергии. Геотермальные установки заменяют котлы с самой Землей.Фотогальваника (PV) и топливо Ячейки идут дальше, полностью отказываясь от турбогенераторов. Эти альтернативные энергетические технологии разрабатывались уже несколько десятилетий, и сторонники считают, что техническая и политическая ситуация принесет их на рынок.

Геотермальная энергия Растения

Давление, радиоактивный распад и подстилающая Расплавленная порода действительно разогревает глубины земной коры. Яркий Пример тепла, доступного под землей, наблюдается при извержении гейзеров, пар и горячая вода витают высоко в воздухе.Природные источники пара и горячей воды привлекали внимание энергетиков с начала нынешнего века.

При нажатии на эту естественную тепловую энергии, геотермальные электростанции обеспечивают электричество с низким уровнем загрязнения. Есть несколько разных сортов растений, и продукт из геотермальная площадка используется как для отопления, так и для производства электроэнергии. Найти подходящие сайты может быть сложно, хотя из-за технических новшеств происходят, больше сайтов становятся практичными.Использование геотермальных источников также может имеют эффект «выключения» природных гейзеров, и эта возможность необходимо учитывать на этапе планирования.

Солнечная Мощность

Солнечные элементы или «фотоэлектрические батареи» не используйте генератор; они генератор. Обычно собираются панелями, эти устройства используют способность света вызывать ток течь в некоторых веществах. Ряд ячеек соединены вместе, и ток течет от панели, когда на нее попадает солнечный свет.Они не производят загрязнение во время работы, и большинство ученых предсказывают, что запас топлива прослужит не менее 4 миллиардов лет.

Солнечные панели были относительно дорогими сделать, и конечно они не будут работать ночью или в непогоду. Несколько процессы, необходимые для их производства, недавно были поставлены под сомнение с точки зрения экологии. Не весь солнечный свет, падающий на солнечный элемент, превращается в электричество, и повышение эффективности было медленной работой. Тем не менее, идея использования всего этого свободного солнечного света остается мощным двигателем солнечной энергии. мощность.

Топливо Ячейки

Ценится за их полезность на космических кораблях, топливные элементы химически объединяют вещества для выработки электроэнергии. В то время как это может звучать очень похоже на батарею, топливные элементы питаются от непрерывный поток топлива. Например, в американском Space Shuttle топливные элементы объединить водород и кислород для производства воды и электричества.

Топливные элементы обычно были дорогими для изготовления и не очень подходят для больших установок.Однако они представляют «модульная» технология в этой способности может быть добавлена ​​в небольшие приращения (5-20 МВт) по мере необходимости, позволяя коммунальным предприятиям сократить капитальные расходы и сроки строительства. Исследования кажутся многообещающими; одна испытательная установка в Йонкерсе, штат Нью-Йорк, может производить 200 кВт с использованием газа, образующегося при работе очистных сооружений. Кроме того, в Японии в качестве центрального источника энергии используются установки на топливных элементах.

Децентрализованная генерация

Максимальная полезность топливных элементов или фотоэлектрических элементов не может находиться в крупных центральных электростанциях.В эпоху до великих сети проводов, охватывающие весь континент, небольшая генерирующая станция на помещения имели экономический смысл для многих деловых и промышленных потребителей. Поскольку двигатели и оборудование были усовершенствованы и разработаны с учетом новое энергоснабжение, больше клиентов электрифицировали свой бизнес и дома.

В начале 20-х годов -го века, объединены малые генерирующие компании и независимых растения медленно исчезли.Просто стало экономнее покупать электроэнергию от централизованного энергоснабжения, а не на месте. Крупные региональные энергетические пулы выросли, поскольку компании объединили свои передачи системы и разделяемые резервные мощности. «Экономия масштаба» стала часы-слова.

Это может измениться в 21 st Века. По мере совершенствования технологии производства электроэнергии и окружающей среды растут опасения, сама концепция крупных централизованных генерирующих станций ставится под сомнение.Например, в большинстве случаев это неэкономично. для обогрева домов и предприятий из центра. Индивидуальные печи обеспечивать теплом отдельные здания за счет топлива системы транспортировки и распределения. Бензиновые или дизельные генераторы обеспечивать децентрализованное электроснабжение зданий в чрезвычайных ситуациях, хотя они не экономичен для штатного питания. Продолжение технических улучшений в топливные элементы или фотоэлектрические элементы могут изменить эту экономику. Эта возможность особенно привлекателен с учетом стоимости и возражений против строительства большие линии электропередач.

Медь и электричество — как производить электричество от движения

Что такое генератор?
Ветряная турбина включает генератор для выработки электроэнергии. Ветер заставляет его вращаться. В свою очередь турбина вращает генератор; внутри генератора находится катушка с проволокой, которая вращается в магнитном поле. При вращении катушки в катушке возникает напряжение. Напряжение может управлять током по кабелям национальной сети, чтобы освещать наши дома.

(С любезного разрешения «Новости альтернативной энергетики».)

Компоненты ветряной турбины.

Генераторы на электростанции похожи, но намного больше. Они способны производить многие мегаватты энергии.

Генератор немного похож на двигатель заднего хода. Приводим в движение и вынимаем электрический ток.

Это пример электромагнитной индукции — в катушке возникает напряжение, когда она движется в магнитном поле.

Внутри генератора
Внутренняя часть простого генератора очень похожа на внутреннюю часть простого электродвигателя.Катушка может свободно вращаться между двумя магнитами. Магниты связаны стальным каркасом, а катушка соединяется с проводами с помощью щеток. Однако вместо коммутатора в генераторе используются контактные кольца. Таким образом, контакты не меняются местами — каждая щетка поддерживает контакт с одним концом катушки на протяжении всего цикла.

Напряжение индуцируется, когда катушка вращается в магнитном поле. Смотрите видео ниже.

Простая анимация генерации постоянного тока. (Любезно предоставлено Стивеном Карпентером.)

Уведомление:

  • положение катушки, когда наведенное напряжение достигает максимального значения.
  • изменение направления тока во время цикла.

Что заставляет генератор работать?
Генератор вырабатывает напряжение. Он подает ток, когда мы подключаем его к нагрузке (например, к лампочке). Ток загорается лампочкой. Однако это также затрудняет вращение генератора.

Мы должны усерднее работать, чтобы генератор продолжал вращаться после того, как потребляется ток.Чем больше тока мы получаем от генератора, тем труднее его крутить.

В этом есть смысл: мы ничего не получаем даром. Как только мы заставим генератор работать за нас, мы должны вложить в него больше работы. И чем больше у нас работы, тем больше работы мы должны вложить. Если бы это было не так, мы бы получали что-то бесплатно. А это противоречило бы идеям сохранения энергии.

Есть веская физическая причина, по которой становится труднее повернуть генератор, когда он выдает ток: он начинает вести себя как двигатель.В катушках течет ток. Следовательно, на катушки действует сила — как если бы это был двигатель. И эта сила будет противодействовать движению генератора и затруднять его вращение. Это физическое происхождение закона Ленца. Сила наведенного тока противостоит силе, которую вы прикладываете, чтобы заставить ток течь.

Работа включена, электричество отключено
Когда вы крутите педали на велосипеде, становится немного сложнее, когда динамо-машина работает для включения света. Дело не только в увеличении трения.Вы должны работать, чтобы динамо-машина снабжала свет электричеством. И чем больше тока потребляет лампа, тем сложнее крутить педали.

Каждый раз, когда мы получаем ток от генератора или динамо-машины, должна присутствовать механическая движущая сила:

  • Велосипедист крутил педали, чтобы включить динамо-машину (используя химическую энергию из пищи).
  • Ветер вращает турбину; ветер стихает.
  • Движущийся пар на тепловой электростанции вращает турбины, которые вращают генераторы (мы должны сжигать больше топлива, чтобы произвести больше пара).

В каждом случае мы ничего не получаем даром. Чтобы подать электрический ток, нам необходимо выполнять механическую работу.

Велосипедное динамо-машина генерирует напряжение для зажигания лампы. Чем больше сила тока, тем труднее крутить педали.

Что такое индукция?

Создание напряжения
Мы можем вызвать напряжение в проводе с помощью магнитного поля. Нам нужно заставить проволоку двигаться по полю.Мы называем напряжение наведенной ЭДС (электродвижущей силой). Чем быстрее проводник движется через поле, тем больше наведенная ЭДС. Это закон Фарадея.

Если мы переместим провод в другую сторону, то направление ЭДС изменится на противоположное.

ЭДС упадет до нуля, если на проводе:

  • останавливается или
  • находится вне магнитного поля.

Проволоку необходимо прорезать линии потока, чтобы вызвать ЭДС.

Создание напряжения в проводе, проходящем через магнитное поле.

Чем быстрее проводник движется через поле, тем больше наведенная ЭДС.

Перемещение провода в обратном направлении меняет направление ЭДС на противоположное.

ЭДС падает до нуля, если провод перестает двигаться или выходит за пределы магнитного поля.

Мы получаем наибольшее наведенное напряжение, когда эти три величины расположены под прямым углом друг к другу:

  • движение кондуктора.
  • магнитное поле Б.
  • провод (а значит и наведенная ЭДС).

Почему у нас напряжение?
Представьте, что несколько свободных электронов (или пучок электронов) попадают в магнитное поле. На электроны будет действовать сила. Электроны имеют отрицательный заряд. Это означает, что, хотя электроны движутся слева направо, они подобны току, текущему справа налево.

Мы можем использовать правило мотора левой руки Флеминга, чтобы определить направление силы.Это вниз. Итак, электроны выталкиваются вниз.

Кусок медной проволоки также содержит свободные электроны (A). Поэтому, когда провод движется в поле, электроны выталкиваются вниз (B). Это оставляет чистый положительный заряд наверху провода. Следовательно, заряд разделяется в проводе, создавая напряжение (C). Верх стал более позитивным, а нижний — более негативным.

(А)

(В)

(К)

В каком направлении находится сила?
Эта ЭДС подобна ЭДС клетки.Он может управлять током по цепи. Если к проводу прикрепить нагрузку, то будет течь ток. Мы называем это индуцированным током. Однако, как только мы снимаем ток с провода, он ощущает силу (провод, по которому течет ток в магнитном поле, ощущает силу).

Мы можем использовать правило моторики левой руки Флеминга, чтобы определить направление силы. В данном случае это вниз.

Другими словами, сила будет давить против движения проволоки.Проволока замедлится. Если мы хотим, чтобы он продолжал двигаться, нам нужно его подтолкнуть.

Если мы возьмем из провода больший ток, нам придется протолкнуть его сильнее. Чем больше ток, который мы получаем от наведенной ЭДС, тем больше работы мы должны приложить.

В этом есть смысл: мы ничего не получаем даром. Когда мы берем больший ток, мы заставляем наведенную ЭДС выполнять за нас больше электрической работы. Следовательно, мы должны приложить больше механической работы. Это сохранение энергии.

Закон Ленца
Когда мы начинаем получать ток из индуцированного напряжения, на провод действует сила. Мы уже видели, что сила будет замедлять провод или затруднять его удержание. Это выражено в законе Ленца:

«Индуцированный ток течет таким образом, чтобы противодействовать движению, которое его вызвало».

Закон Ленца основан на идее сохранения энергии. Если бы индуцированный ток не протекал таким образом, то мы могли бы получить что-то бесплатно.

Индукция в катушках

Наведение тока
Представьте себе магнит возле катушки с медной проволокой. Катушка подключена к чувствительному амперметру. Когда магнит неподвижен, в катушке нет тока. Однако, если мы подвинем магнит к катушке, амперметр сдвинется вправо. Теперь давайте вытащим магнит. Катушка щелкнет влево.

Это показывает, что мы индуцировали ток в катушке — но только во время движения магнита. Направление тока зависело от направления движения.

Чтобы получить длительный ток от катушки, мы должны постоянно вталкивать магнит внутрь и вытягивать его. Это заставит ток двигаться вперед и назад. Другими словами, мы создали переменный ток.

Но как определить, в каком направлении будет течь ток? Используя закон Ленца.

Закон Ленца и катушки
Когда мы индуцируем ток в катушке, она становится электромагнитом. Один конец катушки — это северный полюс, а другой конец — южный полюс.

Когда северный полюс нашего магнита движется к левому концу катушки, индуцированный ток течет против часовой стрелки (если смотреть на левый конец). Это превращает левый конец катушки в северный полюс. И этот северный полюс пытается оттолкнуть прибывающий северный полюс магнита.

Итак, индуцированный ток противостоит движению, которое его вызвало (из закона Ленца).

Когда мы вытаскиваем магнит, левый конец катушки становится южным полюсом (чтобы попытаться удержать магнит).Следовательно, индуцированный ток должен течь по часовой стрелке.

Поддержание тока
Мы можем установить магнит на коленчатый вал и повернуть ручку, чтобы сделать простой генератор.

Как всегда, мы должны продолжать вращать магнит, чтобы преодолеть противодействующую силу, создаваемую индуцированным током. Т.е. мы должны провести механическую работу, чтобы получить электрическую энергию.

В некоторых генераторах используется магнит, перемещающийся рядом с катушкой. Другие используют движущуюся катушку в магнитном поле.Хотя движется катушка, это работает по тому же принципу — магнитное поле движется относительно катушки.

Еще раз о движущихся катушках
Теперь мы можем понять, почему мы получаем индуцированное напряжение в движущейся катушке. На это можно взглянуть двумя способами.

  • провода на стороне катушки прорезают линии магнитного потока.
  • : катушка продвигается к северному полюсу, затем к южному полюсу и так далее.

Флюс и плотность потока

Наведение тока
Мы видели, что мы можем индуцировать ЭДС, изменяя величину магнитного поля в цепи.Мы можем сделать это, пропуская провод через магнитное поле или перемещая магнит рядом с катушкой. Но что мы подразумеваем под величиной магнитного поля?

Магнитный поток
Представьте себе провод, движущийся в магнитном поле. Мы представляем магнитное поле с помощью силовых линий. По мере того, как провод движется по полю, он прорезает силовые линии. Количество силовых линий, которые перерезает провод, называется магнитным потоком. Это связано с площадью магнитного поля, через которое проходит провод, и силой магнитного поля (плотностью магнитного потока).

Мы можем увеличить поток, перемещая провод быстрее или увеличивая силу магнитного поля. Это похоже на приближение магнита к катушке в предыдущем примере.

Значит, поток в цепи меняется, если мы:

  • переместите провод в устойчивом поле или
  • поменять поле.

И в каждом случае получаем наведенную ЭДС.

Плотность магнитного потока
Вы можете думать о магнитном потоке, как о количестве силовых линий.Мы иногда называем их линиями магнитного потока. Чем ближе друг к другу линии потока, тем сильнее поле. То есть напряженность поля представлена ​​плотностью линий магнитного потока. Иногда мы называем напряженность магнитного поля B плотностью магнитного потока. И мы используем эту идею для определения потока:

Напряженность магнитного поля = плотность магнитного потока = поток на единицу площади

B = Φ / A
Φ = B A

Закон Фарадея
Мы видели, что чем быстрее мы перемещаем провод, тем большую ЭДС мы индуцируем.Фактически, мы обнаруживаем, что ЭДС (ε) пропорциональна скорости изменения потока. Итак, в простой схеме:

ε ∝ dΦ / dt

Это означает, что если мы удвоим скорость проволоки, поток в цепи увеличится вдвое. Следовательно, ЭДС в два раза больше.

Мы можем увеличить общий поток, соединяющий цепь, используя катушку, а не отдельный кусок провода. В этом случае ЭДС ε будет увеличиваться пропорционально количеству катушек N.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *