Как добывается электричество: «Где добывают электричество и ток?» – Яндекс.Кью

Содержание

Откуда берется электричество? | ТГК-1

Наверное, каждому пользователю в душе интересно, откуда берутся эти самые электроны в электрической лампочке. Все знают — вырабатываются на ГЭС, ТЭЦ, с атомных станций. Меньше людей слышали о солнечных, ветряных, геотермальных, приливных станциях, ещё меньше — о ГРЭС (государственные районные электрические станции), и ГАЭС. И уж совсем мало кто знает, как это оказывается сложно — управлять электричеством.

В чём сложность? И вот тут в двух словах не объяснить — приходится лезть в дебри энергетики. А знать стоит, потому что именно из этих знаний складывается самая волнующая нас интрига — цена за киловатт.

Первая хитрость — электричество нельзя запасти «на завтра», и приходится ориентироваться на текущую выработку, а потери при транспортировке высоки — поэтому энергетики вынуждены приспосабливаться буквально на каждом шагу: использовать низкий ток, менять сечения проводов, использовать повышающие и понижающие трансформаторы, дозировать электроэнергию дополнительными станциями.

Мало того, трудности возникают и в частном порядке — есть пики и провалы в энергопотреблении, а тяжесть проводов может не выдержать погодных условий — например, снегопада. Вот почему земля буквально опутана проводами разных сортов — электричество нужно всем и каждому, желательно — бесплатно, а подать его в нужной мощности и за деньги не легко.

Вот пример. Генератор может выдавать только столько мощности, сколько может потребить потребитель. Если даже генератор имеет установленную мощность на 100 МВт, то он не сможет ее набрать, если нет соотвестствующей нагрузки. Как частный случай – выдаст, но с отклонением от принятой частоты в 50Гц, что сделает невозможным использовать такую электроэнергию, а это — невосполнимые затраты.

Всё начинается именно с генератора — это чудесное устройство невообразимым, но легко объяснимым физикой способом вырабатывает с помощью силы воды поток электронов, которые начинают своё экстравагантное путешествие по проводам — к чайнику.

ГЭС преобразует механическую энергию воды в электрическую — в этом она, кстати, самая экологичная. Вода «давит» на лопасти рабочего колеса, которое на одном валу с генератором. Чем больше напор – тем больше давление. Генератор представляет из себя ротор и статор. Статор – неподвижная часть с обмоткой. Ротор вращается в электрическом поле статора, возникает Электродвижущая сила (ЭДС). С выводных устройств идет съем электроэнергии — это описание принципа работы любого генератора.

Но вот в чём чудо — в этом «пахтании океана» появляются электроны, и они не одиноки. Есть ещё электрически заряженные частицы, квази частицы. Электроны в проводах можно сравнить с рыбами в воде: проводники для них — среда обитания. В диэлектриках жизни нет)

Трансформаторами мощность и понижают, и повышают, и что там происходит с частицами — можно представить. И через поля проходят — правда, магнитные; притягиваются и отталкиваются, исчезают — и возникают! В путешествиях по подстанциям могут менять и вид энергии, и форму. Двигаются с небольшой скоростью, но по отношению с неподвижными собратьями находятся на границе, которая уже имеет скорость света.

.. У электронов море приключений прежде, чем они постучатся в ваш дом.

Поздороваться с электронами нельзя, как и поговорить. По сути они — просто другая форма жизни, которую нам по счастливой случайности или глубокой закономерности удалось приручить — как оленей, кошек, окучить картошку. С этой точки зрения наше существование на планете явление столь же необычное и интересное, как и бег электронов.

Но вернёмся на Землю. Для нас важно – уровень напряжения, частота электрического тока в сети. Суточная неравномерность потребления регулируется автоматикой: у системного оператора стоит основной управляющий блок станциями, которые в этой системе состоят. Генераторы например работают в системе ГРАМ – «групповое регулирование активной мощности». Система распределяет нагрузку оптимально для каждого генератора. Естественно, стараются применять типовые генераторы. Тогда случае изменения нагрузки потребителем система ГРАМ загружает или разгружает генераторы за секунды.

Есть еще система АРЧМ – «автоматическое регулирование частоты и мощности». Это специальная программа, которая воздействует на управление регуляторами скоростей. Ее задача – держать заданные показатели в норме. Допустим, задано держать переток из Кольской энергосистемы в Карельскую мощность в 500 МВт. И вдруг «отваливается» какой-то крупный потребитель на 50 МВт. Значит, система АРЧМ должна воздействовать на некоторые управляющие элементы и где-то в энергосистеме снизить  их мощность.

Система действует в течении секунд. В пределах 10 секунд обычно устраняется возмущение. При очень крупных дисбалансах установка равновесия может занимать 1-2 минуты.

То есть ГРАМ управляет в масштабе одной станции, а АРЧМ управляет станциями. К сожалению, и это не всегда эффективно. Допустим, маленькая станция, 6 МВт. А потребитель в нашем примере «отвалился» на 50 МВт. Что там регулировать?

Потому АРЧМ стараются ставить на больших станциях, например, на Верхнетуломской ГЭС, на Серебрянских, на Териберке. На Княжегубской ГЭС. Каждая система управления это немалые расходы на монтаж и содержание, хоть процессы и автоматизированы. И всё это — только начальные дебри! 

Море энергии. Как добывают электричество в океане — ЖЖ

Честно говоря, тема альтернативных источников энергии меня мало интересует. Ну, вот не интересно, и всё.

Но, интересует-не интересует, хочу-не хочу, тема эта мало интересуется моими желаниями и настырно о себе напоминает. Был в Европе, так там ветряков натыкали, глаз некуда кинуть, чтобы за ветряк не зацепиться. И мало того, что весь берег утыкали, полезли и в море ставить свои мельницы.

Копенгаген. И это ещё мало.

В тех же районах.

Дома вижу, что всё чаще и чаще на крышах домов устанавливают солнечные панели. А по дорогам забегали машинки-электрички.

Ну, и специализированные сайты не отстают, подбрасывают темы…на эту тему. И одна такая тема меня всё таки заинтересовала. Как получают энергию из моря.

Сама идея использовать море в качестве источника энергии не нова. Даже скажем так, очень старая тема. Вот только надлежащего развития не получала. Трудности были и преграды. Но ломают потихоньку преграды и преодолевают трудности. А тема старая настолько, что ещё в 1799 году был получен первый патент на устройство, предназначенное для получения электроэнергии с использованием морских волн.

По оценочным данным мировой потенциал волновой энергии оценивается в 2 ТВт. Ну, так и почему использование моря значительно отстаёт от использования энергии Солнца и ветра?

Дэйв Левитан написал большой обзор ( Здесь ) о текущем состоянии дел в сфере волноэнергетики. Ему удалось немного прояснить, почему прогресс в этой сфере движется настолько медленно.

Далее следуют моменты его обзора, которые следует выделить особо.

1. Океан — жесткая среда для машинного оборудования, поэтому затраты на его создание намного выше, чем если бы речь шла об оборудовании, работающем на земле. Соленая вода разъедает все предметы, волны могут быть по-настоящему жестокими. Посылать людей для починки оборудования стоит очень дорого. К примеру, строительство и содержание ветровой электростанции на берегу намного дешевле, чем строительство и содержание такой электростанции в море.

2.Исследования и разработки в области волновой энергетики просто не являлись приоритетными. Солнечной и ветровой энергетике уделялось гораздо больше внимания.

3.Несмотря на сложности, в волноэнергетике есть и успехи. Например, идут программы предварительных исследований в Португалии, Шотландии, Австралии и других странах. Дела могут пойти лучше, если созданные прототипы волновых устройств покажут, что могут действительно хорошо работать. Иногда больше времени требуется на изобретение правильной формулы, чем на разработку реализующего ее устройства.

4.При этом есть повод и для пессимизма. Если не будет найден способ снизить стоимость, не будет смысла строить станции по производству волновой энергии в тех местах, где дешевле построить станции производства ветряной или солнечной энергии.

Многие эксперты в области волновой энергетики говорят, что эта область науки сейчас находится примерно на том уровне, на каком ветровая энергетика была десятилетия назад.

Тогда инженеры еще не разработали оптимальный вид ветряных турбин, но десятилетия научных изысканий привели к тому, что были разработаны более изощренные виды турбин. В области волновой энергетики научные исследования усилились в 1970х годах после введения арабскими странами эмбарго на арабскую нефть, но с того времени волновая энергетика отошла на второй план, если сравнивать с солнечной и ветряной энергией.

Отсюда.

Ещё на эту тему:

Скрытый клад

В океанах кипит энергия. Сила прилива передвигает огромные массы воды. Сильные ветры вызывают большие волны. Почти 90% мировой энергии ветра содержится в турбулентности над поверхностью морских вод. Ветер, волны и течения вместе взятые содержат в 300 раз больше энергии, чем потребляется человечеством в настоящий момент. Долгое время это изобилие не было использовано. В последние годы, однако, мы начинаем приручать эту энергию. Построены первые морские ветряные электростанции. Сотни генераторов строятся, чтобы конвертировать энергию морских течений и волн в электричество.

Основными видами морской возобновляемой энергии являются:

· Энергия ветра

· Энергия волн

· Энергия прилива

· Энергия морских течений

· Энергия, получаемая из-за различий температур на различных глубинах океана (преобразование тепловой энергии океана в электрическую — OTEC),

· Энергия, получаемая из-за различий содержания соли в соленой и пресной воде (осмотическая энергия).

Теоретически эти источники энергии могут удовлетворить потребности всей человеческой расы. Однако, только часть из этого потенциала можно использовать: разработка многих морских районов, таких как глубокая часть морей, практически недостижима, стоимость прокладки кабеля делает такие проекты нерентабельными.

Многие потенциальные места в прибрежных районах также не могут быть использованы, так как они либо отведены под рыболовство, либо под судоходство, либо защищены законом. Тем не менее, эти виды возобновляемой энергии все же могут удовлетворить значительную долю потребностей человечества в электроэнергии в будущем.

Некоторые технологии уже используются вовсю и вырабатывают энергию. Например, основанные на принципе «коле​**ющегося тела».

Волновые электростанции этого типа используют движение океанских волн для генерации электричества. В них используются полуогружные генераторы, на которых буек двигается вверх-вниз либо из стороны в сторону. Другие системы такого типа состоят из подвижных компонентов, которые двигаются относительно друг друга, создавая гидравлическое давление в масле. Масло, в свою очередь, приводит в движение турбину. Система ‘Pelamis’, первая в мире волновая электростанция, была установлена в 2008 году вблизи побережья Португалии и соединена с электролинией подводным кабелем. Подобные станции планируются к постройке в Испании и Португалии.

Ещё примеры.

Ну, а мне стала интересна такая концепция — WaveRoller.

Один финский дайвер, по имени Райно Койвусаари, ныряя в местах кораблекрушений, однажды заметил, как под действием волны лист обшивки судна колебался. Многие такое видели, и не обязательно лист обшивки судна. Но видеть то, видели, а вот как к делу приспособить то? Вот, что значит особый склад мозгов. А Райно вот додумался.

И пошло дело. Прототипы, эксперименты. Понятно, что не один, времена героев -одиночек прошли.

Вот так это выглядит:

Как работает?

Волна туда-сюда, шатает плавник.

WaveRoller ведет себя по существу таким же образом, как плоской части затонувшего судна, что наблюдается Rauno. Назад и вперед движение воды обусловлено волновой волной и приводит композитные панели в движение. Для того, чтобы максимально увеличить энергию, WaveRoller панель может абсорбировать от волн, устройство устанавливается под водой на глубине около 8 — 20 метров, где волна всплеска является самым мощным. Панель охватывает почти всю глубину толщи воды с морского дна, не нарушая поверхность. Это гарантирует, что панель не выступает на морской пейзаж и препятствует созданию материальных неэффективностью, которые поставили бы дополнительную нагрузку на структуру.

По мере того как панель движется и WaveRoller поглощает энергию от океанских волн, гидравлические поршневые насосы, прикрепленные к панели насоса гидравлической жидкости внутри замкнутого гидравлического контура. Все элементы гидравлического контура заключены внутри герметичного структуры внутри устройства и не подвержены воздействию морской среды. Следовательно, нет никакого риска утечки в океан. Жидкости высокого давления подают в гидравлический двигатель, который приводит в действие электрогенератор. Электрический выход из этой электростанции возобновляемых источников энергии волны затем подключается к электрической сети через подводному кабелю.

Выходная мощность от одного устройства WaveRoller, или другими словами выходе из одной панели, колеблется в пределах от 500 до 1000 кВт.

Эксплуатация и техническое обслуживание:

Поскольку WaveRoller не требует какого-либо топлива, основными факторами затрат в течение жизненного цикла проекта являются эксплуатация и техническое обслуживание. WaveRoller решает эти проблемы с помощью смарт-дизайн, который сочетает в себе проверенную технологию подводных лодок с удаленными системами мониторинга и контроля состояния.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ВСЕГДА НА ПОВЕРХНОСТИ: Блоки WaveRoller могут плавать без какой-либо внешней поддержки. Эта особенность делает его относительно дешевым и легко буксировать устройств и с сайта проекта. Мы используем блоки затоплением балластные цистерны с водой — в результате чего устройство, чтобы погрузить на морское дно, где оно может начаться нормальные операции.

Для обслуживания или технического обслуживания, мы просто нагнетаем воздух обратно к балластных танков, так что блок WaveRoller может подняться на поверхность. Операторы могут затем получить доступ к деталям машины непосредственно на месте или буксировать устройство в подходящее место для более тесной работы по техническому обслуживанию. Эта интеллектуальная конструкция также позволяет решить очень важный вопрос здоровья и безопасности.

ДИСТАНЦИОННЫЙ МОНИТОРИНГ СОСТОЯНИЯ И СИСТЕМЫ УПРАВЛЕНИЯ: Блок WaveRoller проконтролировано удаленно, что позволяет получить доступ к данным производительность устройства и состояние в реальном времени от нескольких местах по всему земному шару. Эти данные собираются с помощью массива датчиков, расположенных внутри устройства. Кроме контроля качества выходной мощности, дистанционный мониторинг позволяет получать данные об условиях внутри устройства и поведение отдельных его компонентов. Данные о производительности и состояние служат для многих целей.

Для того, чтобы выявить любые потенциальные недостатки или потребности в техническом обслуживании.

Чтобы настроить WaveRoller реагировать на состояние моря и обеспечить оптимальную выходную мощность преобладающих условий волны.

Для сбора данных для долгосрочного анализа производительности.

Для того, чтобы предоставить данные для входов R & D для будущих поколений WaveRoller.

Что делается сейчас?

А сейчас эти парни из AW Energy получили одобрение и сертификат безопасности Регистра Ллойда, и начнут устанавливать первые панели в коммерческих целях.

Также они привлекли инвестиций на 10 миллионов евро.

Первая, пилотная электростанция 3Х100 кВт была построена в 2012 году.

Устанавливать начнут в Португалии и пока маленькие. Но в планах развернуть подводный парк с мощностью в 5,6 мегаватт,опирающийся на 16 панелей.

Вот как -то так. Удачи парням.

Читать в блоге автора: http://gruppman.livejournal.com/152152.html

Атмосферное электричество — Энергетика и промышленность России — № 09 (317) май 2017 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 09 (317) май 2017 года

Одним из первых проводил опыты с воздушным электричеством Бенджамин Франклин – ученый и политический деятель, знакомый нам по портрету на стодолларовой купюре. Он изучал природу молний, запуская воздушного змея в грозу. Кстати, именно он изобрел громоотвод, конструкция которого практически не изменилась до наших дней, и ряд электростатических моторов.

Одновременно подобные опыты проводились и в других странах. Так, например, в России был убит молнией сподвижник Ломоносова Георг Рихман, когда в воздух поднимали провода, чтобы продемонстрировать, что электричество накапливается в облаках.

Земля – конденсатор

Сейчас природа атмосферного электричества достаточно хорошо изучена. Однако попытки использовать ее на благо человечества не прекращаются. Что вполне понятно: задачи получения «бесплатной» энергии волновали людей всегда.

Земля – хороший проводник электричества. Как и верхний слой атмосферы – ионосфера. Нижний же слой атмосферы обычно не проводит электричество, является электрическим изолятором. По сути – диэлектриком. Таким образом, планета и слои атмосферы являются огромным конденсатором, способным накапливать электроэнергию, подобно электрическому полю. Гигантский конденсатор постоянно заряжается в одних регионах и разряжается в других, создавая глобальный электрический контур. Таким образом, вероятно, вполне возможно создать атмосферную электростанцию, чтобы получать электричество из воздуха.

В нижних слоях атмосферы Земли идут интенсивные процессы испарения, переноса тепла и влаги, образования облаков, сопровождающиеся явлениями электризации. Молнии и осадки также переносят к земле отрицательный заряд. В результате, у поверхности Земли напряженность электростатического поля достигает 100‑150 В / м летом и до 300 В / м зимой. Перед грозой регистрируют напряженность поля до десятков киловольт на метр и выше! Мы почти не чувствуем этого поля просто потому, что воздух – хороший изолятор.

Таким образом, в вероятности, вполне возможно создать атмосферную электростанцию, чтобы получать электричество из воздуха.

Станция из воздушных шаров

Как могла бы выглядеть атмосферная электростанция? Один из возможных способов ее создания состоит в запуске в атмосферу группы высотных воздушных шаров, способных притягивать электричество. Эти шары соединяются электропроводами, которые также закрепляют их на земле в резервуарах, содержащих раствор воды и электролита. Если такой шар поднимется до нижних ионизированных слоев атмосферы, постоянный электрический ток потечет по проводу через растворенный электролит, что приведет к разложению воды на водород и кислород. Далее эти газы можно будет собрать так же, как в любом другом электролитическом устройстве. Водород можно использовать в качестве горючего для топливных элементов или для автомобилей на водородном топливе.

Эксперименты с аэростатами, изготовленными из тонких листов магниево-алюминиевого сплава, покрытого очень острыми, электролитическим способом изготовленными иглами, провел в Финляндии доктор Герман Плаусон. Иглы содержали также примесь радия, чтобы увеличить местную ионизацию воздуха. Поверхность аэростата также красили цинковой амальгамой, которая в солнечную погоду давала дополнительный ток вследствие фотоэффекта.

Плаусон получил мощность 0,72 кВт от одного аэростата и 3,4 кВт от двух, поднятых на высоту 300 м. На свои устройства он в 1920‑х гг. получил патенты США, Великобритании и Германии. Его книга «Получение и применение атмосферного электричества» содержит детальное описание всей технологии.

Доводы скептиков

Но действительно ли запасы электричества Земли велики?

По мнению скептиков, множество проектов по использованию электрического поля планеты опираются на совершенно мифические механизмы отбора энергии от глобального конденсатора.

Для начала стоит заметить, что возникают противоречия в подсчете емкости конденсатора, образованного поверхностью Земли и ионосферой (расхождение результатов – более чем в 1000 раз!).

Земной конденсатор заряжен до напряжения приблизительно 300 кВ, причем поверхность Земли имеет отрицательный заряд, а ионосфера – положительный. Напряженность поля между «обкладками» такого конденсатора составляет 120‑150 В / м у поверхности и резко падает с высотой.

Как у всякого конденсатора, в нем имеются токи утечки. Эти токи очень малы. Но пересчет на всю поверхность Земли дает суммарный ток утечки около 1800 А. А электрический заряд Земли оценивается в 5,7×105 степени кулон. То есть земной конденсатор должен разрядиться всего за 8‑10 мин.

На практике мы подобной картины не наблюдаем. Значит, существует некий природный генератор, мощностью более 700 МВт, компенсирующий потерю заряда системы Земля – ионосфера.

Современная наука оказалась бессильной объяснить механизмы подзарядки конденсатора. На сегодня существует более десяти гипотез, описывающих механизмы и процессы поддержания постоянного заряда Земли. Но экспериментальная проверка и уточненные расчеты показывают недостаточность количества вырабатываемых зарядов для поддержания стабильного значения поля Земли.

В числе кандидатов на генераторы зарядов рассматривались грозы, циркуляция токов в расплавленной мантии Земли, поток частиц от Солнца (солнечный ветер). Выдвигалась даже экзотическая гипотеза о существовании природного МГД генератора, работающего в верхних слоях атмосферы. Но сегодня наука точно не знает, откуда восполняются заряды природного конденсатора. Возможно, каждый из перечисленных механизмов дает свой вклад в пополнение заряда земного накопителя.

Попытки использовать напряженность поля Земли в утилитарных целях предпринимались более двух веков. Лучшее достижение – уже упомянутые конструкции с использованием аэростатов – позволили получить мощность около 1 кВт, а современные, реально работающие схемы позволяют лишь запитать маломощный светодиод или подзарядить мобильный телефон.

Дело в том, что проводимость атмосферного воздуха составляет только 10–14 степени Сименс / метров. Отобрать от столь высокоомного источника заметную мощность просто невозможно. Для этого детали «генератора» должны иметь более надежную изоляцию – иначе он быстро «закорачивается».

Воздушная электроэнергия

Однако доводы скептиков не останавливают экспериментаторов.

По их мнению, высокая разность потенциалов между поверхностью Земли и ионосферой приводит к формированию мощного электрического поля в тропосфере и стратосфере. Заряд в этом суперконденсаторе поддерживается за счет солнечного излучения, космических лучей, а также радиоактивности земной коры. Все эти излучения взаимодействуют с магнитным полем Земли и атомами в верхних слоях атмосферы, пополняя заряд суперконденсатора.

Постоянный заряд атмосферного суперконденсатора составляет от 250  000 до 500  000 В, что сопоставимо с напряжением высоковольтных электрических линий. Однако разница электрических потенциалов поверхности Земли и атмосферы – это постоянный ток, а не переменный. Общее среднее значение силы тока, протекающего через атмосферный суперконденсатор, только в результате гроз составляет 1500 А (по два ампера на каждую из 750 гроз). Электрическая мощность в ваттах составляет произведение силы тока в амперах на напряжение в вольтах. Приведенные выше цифры означают, что земная атмосфера постоянно рассеивает несколько сотен миллионов ватт электроэнергии. Этой мощности хватает на полное пиковое обеспечение электроэнергией среднего города.

Преимущества и недостатки атмосферных электростанций

В качестве преимуществ отмечаются следующие факторы:

• земельно-ионосферный суперконденсатор постоянно подзаряжается с помощью возобновляемых источников энергии – солнца и радиоактивных элементов земной коры;
• атмосферная электростанция не выбрасывает в окружающую среду никаких загрязнителей;
• оборудование атмосферных станций не бросается в глаза. Воздушные шары находятся слишком высоко для того, чтобы их увидеть невооруженным глазом;
• атмосферная электростанция способна вырабатывать энергию постоянно, если поддерживать шары в воздухе.

Недостатки:

• атмосферное электричество, как и энергию солнца или ветра, трудно запасать. Его необходимо либо использовать сразу же, на месте получения, либо преобразовывать в любую другую форму, например в водород;
• значительная разрядка земельно-ионосферного суперконденсатора может нарушить баланс глобального электрического контура. В этом случае последствия для окружающей среды будут непредсказуемы;
• высокое напряжение в системах атмосферных электростанций может быть опасным для обслуживающего персонала;
• воздушные шары необходимого размера сложно обслуживать и поддерживать на необходимой высоте. Кроме того, они могут представлять опасность для авиации;
• общее количество электроэнергии, которую можно получать из атмосферы, ограничено. В лучшем случае атмосферная энергетика может служить лишь незначительным дополнением к другим источникам энергии.

Если атмосферная электростанция когда‑либо будет построена, то наиболее вероятным местом ее расположения окажется некий островок в океане, а воздушные шары будут крепиться к земле двумя-тремя проводами. Попытка соорудить ее в жилом месте может привести к значительным разрушениям (например, во время торнадо).

На добычу биткоина уходит огромное количество электроэнергии. И чем он дороже, тем больше

Автор фото, Getty Images

Подпись к фото,

На электричестве, которое тратится в год на майнинг биткойнов, все чайники Британии могли бы работать 27 лет

Исследователи из Кембриджского университета пришли к выводу, что на годовое производство биткоинов требуется больше электроэнергии, чем его потребляет такая страна, как Аргентина.

Дело в том, что «майнинг» криптовалюты включает в себя активную работу компьютеров, которые проверяют все мировые транзакции с ней и затрачивают при этом много электроэнергии.

Много — это, по выкладкам ученых, 121,36 тераватт-часов в год, и эти показатели едва ли снизятся, если только не рухнет сама криптовалюта.

Однако пока что стоимость биткоина подскочила до 48 тыс. долларов на волне сообщений о том, что компания Tesla вложила полтора миллиарда долларов в криптовалюту и намерена в будущем принимать ее к оплате.

Более того, повышение стоимости биткоина подталкивает «добытчиков» к тому, чтобы включать в свои майнинговые сети все больше компьютеров, что, в свою очередь, ведет к увеличению потребления электроэнергии.

Для примера, энергии, затрачиваемой на годовой майнинг криптовалюты, хватило бы на то, чтобы все чайники Великобритании кипели 27 лет.

С другой стороны, признают эксперты, электричества, которое потребляют в год все не работающие, но не выключенные из электросети приборы Америки, хвватило бы на год работы всей биткоиновой сети.

Добыча биткоинов

Для майнинга криптовалюты компьютеры, часто специализированные, объединяются в специальные сети.

В их задачу входит подтверждение транзакций, когда люди посылают или получают биткоины.

Этот процесс включает решение определенных задач, что само по себе не является составной частью поверки движения криптовалюты, но обеспечивает определенную защиту от возможного мошеннического редактирования глобального списка таких транзакций.

В качестве награды майнеры периодически, часто по принципу лотереи, получают небольшое вознаграждение в биткоинах.

Для увеличения прибыли люди часто подключают к такой сети большое количество компьютеров, иногда целые «фабрики».

Поскольку компьютеры решают задачи практически безостановочно, они потребляют много электроэнергии.

Специалисты из Кембриджского центра альтернативного финансирования, разработавшие онлайн-программу, которая рассчитывает потребление электроэнергии на производство криптовалют, говорят, что компьютеры, по всему миру добывающие криптовалюту, работают с разной эффективностью.

Но взяв за основу среднюю цену за киловатт-час электроэнергии и потребление энергии сетью компьютеров, которые занимаются майнингом, можно вычислить, сколько электричества расходуется на производство биткоинов в заданную единицу времени.

Эко-загадка

«Биткоин по сути анти-экономичен, — утверждает автор книги «Нападение 50-футового блокчейна» (Attack of the 50 Foot Blockchain) Дэвид Джерард, — так что более экономичная аппаратура для майнинга не поможет, ей придется соревноваться с другой, столь же экономичной. А это, в свою очередь, означает, что затраты энергии на производство биткоинов, и, стало быть, выбросы в атмосферу углекислого газа, будут лишь бесконечно расти. И очень плохо, что вся эта энергия тратится по сути дела на игру в лотерею».

В понедельник, после того как компания Tesla объявила, что инвестирует средства в криптовалюту, стоимость биткоинов вновь подскочила.

При этом аналитики усмотрели в таких инвестициях противоречие с прежней экологической позицией компании.

«Илон Маск одним махом перечеркнул хорошую работу по промотированию чистой энергии, которую вела Tesla, и это очень плохо, — считает Джерард. — Не представляю, как он сможет теперь отыграть назад».

«Tesla получила в прошлом году экологические субсидии на полтора миллиарда долларов, и все за счет налогоплательщиков, — продолжает писатель. — А потом сделала разворот и потратила полтора миллиарда на биткоины, которые добываются с помощью электричества, вырабатываемого при сжигании угля. Так что эти субсидии стоило бы пересмотреть».

Джерард в связи с этим предлагает ввести углеродный налог на криптовалюту, который частично уравновесил бы ущерб от потребления электроэнергии.

Как уголь превращается в электричество?

<p>Что такое атомная энергия, как атом стал мирным, что такое энергоблок и как устроен реактор атомной станции?</p>

Что такое атомная энергия, как атом стал мирным, что такое энергоблок и как устроен реактор атомной станции? Телекомпания ТВ21 и филиал «ОАО Концерн Росэнергоатом» — «Кольская атомная электростанция» продолжают телевизионный проект «Мир Атома», посвящённый 65-летию атомной отрасли России. Сегодня речь пойдёт о том, что же такое энергия? Какая она бывает и чем её можно измерить.

В повседневной жизни мы с вами часто употребляем слово «энергия». Ну, например, о шоколаде говорим, что он хорошо восполняет энергетические затраты, о полном сил человеке — пышет энергией, а чересчур инициативных учителей и воспитателей дети в шутку называют «энерджайзерами». А что же такое эта энергия? В переводе с греческого энергия означает действие или деятельность. Это общая количественная мера движения и взаимодействия всех видов материи. Другими словами, энергия — это запасенная работа или способность совершать какое либо действие.

Итак, энергия необходима для того, чтобы начать какое-либо движение, ускорить перемещение, что-то поднять, нагреть или осветить. Без энергетической подпитки невозможна любая жизнедеятельность, не двигаются автомобили и не работает отопление. При этом энергия не может возникнуть из ничего. Она может быть получена из природных ресурсов, таких как уголь, природный газ или уран и превращена в удобные для нас формы, например в тепло или электричество.

Энергия не может возникнуть из ничего и не может просто так исчезнуть, она только может переходить из одной формы в другую. Например, в генераторе происходит превращение механической энергии вращения вала турбины в электрическую. Именно так образуется электрический ток — это самый распространённый вид энергии. Электрическую энергию легко передавать на большие расстояния по проводам и преобразовывать в другие виды энергии.

Количество электроэнергии измеряют в киловатт-часах. Например 1 кВт•ч. это количество энергии, которое расходует за сутки лампочка мощностью 40 Вт. А что же тогда такое мощность? Это энергия, потребленная или произведенная за единицу времени. Так например мощность 1 блока Кольской АЭС — 440 МВт. Это значит, что за час блок выработает 440 тысяч кВт×ч электроэнергии. То есть мощности 1 блока Кольской АЭС хватит для того, чтобы одновременно горели 11 миллионов лампочек мощностью 40 Вт каждая.

Для удовлетворения нашей потребности в энергии существуют три большие группы энергоносителей. Горючие ископаемые — нефть, уголь и природный газ, при переработке в энергию теряются безвозвратно. Восстанавливаемые источники энергии — солнце, ветер, гидроэнергия и даже подземное тепло возобновляются без человеческого участия естественным образом, не загрязняя при этом окружающую среду. Однако  при современном уровне развития техники этих источников явно не хватит для покрытия все возрастающих потребностей человечества в энергии.

Спасти человечество от энергетического голода сегодня способен третий вид топлива — ядерное — уран или плутоний. Эти вещества открывают нам доступ к гигантским запасам энергии, скрытым в микроскопическом атомном ядре.

Таким образом, человек, для улучшения качества жизни, на протяжении всего своего существования пытался искать всё новые и новые способы добычи энергии — от приготовления пищи на костре до расщепления ядер в атомных реакторах. Это естественный процесс, без которого невозможно прогрессивное развитие человечества. О том, что такое атом и как из него можно получить необходимую нам энергию, узнаем в следующий четверг.

Просто, доступно, популярно и интересно мы будем рассказывать об атомной энергетике каждый четверг в вечерних выпусках новостей. Смотрите на ТВ21 телевизионный проект «Мир Атома».

Как прожить без нефти: энергетика Швеции

Уже сегодня Швеция — лидер в ЕС по развитию возобновляемых источников энергии (ВИЭ). Например, в прошлом году больше половины всего электричества в стране было произведено на гидроэлектростанциях, в ветропарках или путем переработки отходов лесопромышленного сектора. А к 2040 году Швеция собирается совсем отказаться от ископаемого топлива. Реально? Давайте посмотрим.

Несчастье помогло

В Швеции почти нет своих нефти и газа. Небольшие нефтяные месторождения были обнаружены в районе острова Готланд и прилегающей акватории Балтийского моря, но экономического смысла в их разработке не было, скромные запасы угля тоже не добываются.

Поэтому до 1970-х страна практиковала в основном импорт энергоносителей, пока грянувший в 1973 году нефтяной кризис, а с ним и резкий скачок цен на «черное золото» не поставили экономику Швеции в неудобное положение — которое пошло ей на пользу. Правительство задумалось об энергетической независимости страны — например, о том, как разнообразить в ней виды топлива.

Началось все с активного строительства гидро- и атомных станций, пик которого пришелся на 70-е и 80-е, как раз на волне «нефтяного шока». Сейчас ГЭС и АЭС дают около 80% энергобаланса страны (и их доли примерно равны), в Швеции работают 10 атомных реакторов, «на каждый миллион жителей приходится более одного реактора — так много нет ни в одной стране мира», рассказывает Татьяна Ланьшина из РАНХиГС, исследующая возобновляемую энергетику на планете.

Ситуация вокруг атомной энергетики в Швеции традиционно очень непростая, ее регулярно критикуют и международные экологические организации (в том числе Greenpeace), и местные шведские. Но с конца 80-х доля атома в энергетике не растет. «В Швеции стали признавать, что атомная энергетика стала очень дорогой и экономически неконкурентоспособной, и от субсидирования атомной энергетики здесь отказываются, так что мы вряд ли увидим строительство новых энергоблоков», — говорит Владимир Сидорович, директор Центра энергоэффективных технологий в строительстве. Недавно глава Шведской энергетической инспекции (управляющей энергосектором страны) Анне Вадаш Нильссон в интервью Reuters прямым текстом подтвердила смену энергетических вех: «Ядерная энергетика — очень дорогостоящий источник, в том числе в связи с техникой безопасности и необходимостью долгосрочно финансировать контроль за ядерными отходами». Кстати, новые гидроэлектростанции (тоже вызывающие критику экологов — они негативно влияют на экосистемы регионов) в стране тоже пока строить не собираются.

Зато начиная с 90-х Швеция стала больше обращать внимание на возобновляемую энергетику — прежде всего, помощь ветра и солнца.
Швеция — страна морская, сильные ветра здесь не редкость. Все, кто бывал в Швеции, наверняка замечали и гигантские офшорные ветропарки, расположенные вдоль побережий (некоторые из них видны даже с самого длинного моста в Европе — Öresundsbron, соединяющего Мальмё с Копенгагеном), и меньшие по размеру группы ветряков, и просто отдельно стоящие ветряки на фермах.

В 2019 году в стране получали 20 ТВт·ч электроэнергии от ветротурбин (доля их сектора в производстве электричества в Швеции — 12-15%). А это больше, чем вся запланированная к 2024 году мощность электростанций, работающих на ВИЭ, например, в России.

Как работает гидроэлектростанция? Просто как дважды два

При этом этот ресурс возобновляемый. Развитием гидроэнергетики в стране в основном занимается компания «РусГидро» — ей принадлежат более 90 объектов возобновляемой энергетики. РусГидро управляет самой мощной в России Саяно-Шушенской ГЭС, девятью станциями Волжско-Камского каскада. Кроме того, у РусГидро несколько мощных ГЭС на Дальнем Востоке (Бурейская, Зейская, Колымская), а также несколько десятков гидростанций на Северном Кавказе и др.

Шаг 1. Создать напор.

Гидроэлектростанции (ГЭС) обычно строят там, где много воды и есть перепад высот. Мог бы подойти водопад, где вода стремительно летит вниз и создает большой напор. Но не везде, где нужны гидростанции, есть водопады. Поэтому люди придумали, как использовать более спокойную воду для выработки энергии. Они сами создают перепады уровней воды с помощью плотин.

Для этого реку перегораживают, то есть поперек реки возводят высокую стенку – плотину, которая подпирает воду. За счет нее вода с одной стороны (энергетики называют ее верхним бьефом) копится и поднимается, с другой (в нижнем бьефе) – сохраняется на низком уровне. Разницу между уровнями называют напором.

Уровень верхнего бьефа для каждой плотины разный и колеблется в течение года. К началу половодья гидроэнергетики опустошают водохранилища своих ГЭС, чтобы встретить «большую воду». В период половодья и паводков уровень воды повышается, чтобы к осени достигнуть максимально возможных значений. А зимой, когда естественный приток реки снижается, вода, накопленная в водохранилище, используется для различных нужд, в том числе и выработки электроэнергии. Иногда к ГЭС притекает слишком много воды, излишки которой надо сливать. Для этого на каждом гидроузле есть специальное сооружение, называемое водосбросом. Когда он открыт еще говорят, что на ГЭС холостые сбросы.

Шаг 2. Найти энергию.

Вода, находящаяся в верхнем бьефе, обладает потенциальной энергией, которую человечество научилось превращать в электрическую. Для этого нужно воду из верхнего бьефа по специальным водоводам подать к гидроагрегатам, которые, пропустив через себя воду, сделают всю работу за вас.

Гидроагрегат – это такое устройство, состоящее из турбины, генератора и вала их соединяющего. Чем больше напор, тем больше гидроагрегат может выработать энергии.

Шаг 3. Превратить потенциальную энергию в электрическую.

Гидротурбины располагаются в здании ГЭС. Они бывают разные по конструкции, но принцип действия у них похож. Вода, под напором, созданным плотиной давит на лопасти и раскручивает турбину. Вращение с помощью вала передается на гидрогенератор – устройство, которое вырабатывает электроэнергию.

А как же вода? А с ней ничего не случается! Раскрутив турбину, она целая и невредимая поступает в нижний бьеф.

Шаг 4. Преобразовать энергию.

С генератора по специальным токопроводам энергия поступает на трансформаторы для повышения напряжения и уменьшения силы тока. Это необходимо для уменьшения потерь при передаче электроэнергии. Оттуда энергия поступает на распределительное устройство, после чего передается по проводам в энергосистему . Все вместе это называется схемой выдачи мощности.

Шаг 5. Передать энергию.

В нашей стране существуют разные энергосистемы. Есть Единая энергосистема России (ЕЭС), которая объединяет 79 регионов. И энергия большинства ГЭС и других электростанций этих регионов поступает именно в ЕЭС. Но на Дальнем Востоке и Севере есть изолированные энергосистемы, где электростанция питает энрегосистему региона, не связанную с ЕЭС. Например, Колымская и Усть-Среднеканская ГЭС в Магаданской области обеспечивают до 95% потребностей региона в электроэнергии.

Внутри энергосистем энергия передается по линиям электропередач (ЛЭП), еще их называют высоковольтными линиями (ВЛ). Они позволяют передать электроэнергию на большие нрасстояния. Чем больше напряжение — тем дальше расстояние на которое может быть передана электроэнергия

Шаг 6. Подготовить энергию для конкретного потребителя.

По высоковольтным линиям течет ток очень высокого напряжения (до 500 киловольт), которое подходит не всем. Поэтому, прежде чем попасть в каждую квартиру, энергия вновь проходит преобразование на специальных подстанциях и трансформаторных пунктах, где напряжение преобразуется в относительно безопасные 380В и затем раздается по квартирам в виде однофазного напряжения 220 В.

Как производится электричество — UGI EnergyLink

Электроэнергия не является сырым источником энергии. Он должен быть создан из другого источника топлива, прежде чем он достигнет вашего дома и запитает ваше освещение, электронику и бытовую технику. Вот пошаговое описание того, как производится электричество.

  • Источник топлива генерирует энергию: Процесс начинается на электростанции, совместимой с конкретным источником топлива, таким как уголь, нефть, природный газ, ядерная энергия, солнечная энергия, ветер, вода или биотопливо.Выбор возобновляемых источников энергии для производства электричества снижает выбросы и делает электричество более экологически безопасным для производства.
  • Турбина и генератор преобразуют энергию в электричество: Выбранный источник топлива производит пар, газ или жидкость, часто за счет нагрева, который перемещает лопасти турбины. Турбина соединена со стержнем, который соединен с генератором. Генератор преобразует механическую энергию движущейся турбины в электрическую, вращая большой магнит, окруженный медной проволокой.Это заставляет электроны в меди двигаться, производя электричество.
  • Трансформатор увеличивает напряжение питания: Электрический ток, генерируемый магнитом и медным проводом, передается на трансформатор. Здесь напряжение увеличивается минимум до 500 000 вольт.
  • Линии электропередачи подают электроэнергию к подстанциям: Линии электропередачи высокого напряжения передают электрический ток от электростанции на одну из нескольких подстанций, соединенных между собой в национальной электрической сети.Трансформаторы на каждой подстанции снижают электрическое напряжение до среднего уровня, пригодного для использования крупными коммерческими потребителями, такими как фабрики и торговые центры.
  • Местные трансформаторы подготавливают электричество для конечного использования: Распределительные линии, установленные на столбах или заглубленные под землю, несут электричество на последнем этапе пути к местным трансформаторам. Эти металлические устройства, установленные на столбах или бетонных основаниях, снижают напряжение до 220–110 вольт, делая электричество безопасным для использования в домах и на предприятиях.
  • Электроэнергия поступает в дом или офис через счетчик: Последний шаг — измерить количество потребляемой вами электроэнергии. Для этого электричество проходит через счетчик на центральный пульт управления, который распределяет мощность по каждой цепи в вашем доме. Это то, что питает ваши светильники, компьютеры, бытовую технику и все остальное, что вы подключаете к стене.

Теперь, когда вы знаете, как производится электричество, вы можете по-новому оценить его. Чтобы узнать больше о снижении тарифов на электроэнергию, чтобы вы могли наслаждаться хорошо освещенным, охлаждаемым и отапливаемым домом с меньшими затратами, свяжитесь с UGI EnergyLink или позвоните нам по телефону 800-797-0712.

Как в вашем штате вырабатывается электроэнергия?

Этот интерактив был обновлен в 2020 году. Посетите эту страницу, чтобы увидеть последние.

В целом ископаемое топливо по-прежнему доминирует в производстве электроэнергии в Соединенных Штатах. Но переход с угля на природный газ помог снизить выбросы углекислого газа и другие загрязнения. В прошлом году уголь был основным источником производства электроэнергии для 18 штатов по сравнению с 32 штатами в 2001 году.

Главный источник производства электроэнергии в каждом штате

Но эксперты предупреждают, что одного перехода на природный газ недостаточно для сокращения выбросов и предотвращения опасного глобального потепления.

«Переход с угля на газ — это хорошо в краткосрочной перспективе, но это не решение в долгосрочной перспективе», — сказал Северин Боренштейн, директор Института энергетики Калифорнийского университета в школе бизнеса Haas в Беркли.«Газ по-прежнему производит много парниковых газов. Мы не можем оставаться на газе и решить эту проблему. В конечном итоге нам придется перейти к источникам с гораздо меньшим или нулевым содержанием углерода ».

Мы составили диаграмму структуры производства электроэнергии в каждом штате в период с 2001 по 2017 год, используя данные Управления энергетической информации США. Прокрутите вниз или перейдите к своему состоянию:

В 2001 году уголь служил топливом для более чем половины электроэнергии, производимой в Алабаме, но с тех пор несколько стареющих угольных электростанций штата были закрыты или перешли на сжигание более дешевого природного газа.К 2017 году основным источником электроэнергии в штате был природный газ, за ​​которым следовала атомная энергия. Уголь занял третье место, обеспечивая чуть менее четверти выработки электроэнергии в штате.

Алабама вырабатывает больше электроэнергии, чем потребляет, и обычно отправляет около одной трети своей продукции в соседние штаты.

Природный газ был основным источником выработки электроэнергии на Аляске с 2001 года, но за это время доля гидроэлектроэнергии увеличилась.Государство стремится к 2025 году получать 50 процентов своей электроэнергии из возобновляемых источников, но эта цель является добровольной и не имеет юридического значения.

Аляска имеет свою собственную электрическую сеть, а это означает, что «какая бы электроэнергия ни была произведена, они потребляют то, что они потребляют», — сказал Гленн МакГрат, аналитик энергетических систем Управления энергетической информации. «Это настолько изолированно, насколько это возможно».

Многие сельские районы Аляски вообще не подключены к основной сети и используют дизельные генераторы для выработки электроэнергии.

Уголь

был основным источником электроэнергии в Аризоне до 2016 года, когда природный газ производил больше энергии. В прошлом году природный газ, атомная энергия и уголь обеспечивали чуть менее трети электроэнергии, производимой в штате.

Но ожидается, что мощность угля и дальше будет снижаться. Государственная генерирующая станция навахо, крупнейшая угольная электростанция на Западе, должна быть закрыта в 2019 году, в основном из-за конкуренции со стороны более дешевого природного газа.

Аризона поставляет электроэнергию на весь Юго-Запад. Штат обладает богатым солнечным потенциалом и потребует, чтобы коммунальные предприятия получали 15 процентов своей электроэнергии из возобновляемых источников к 2025 году. В ноябре избиратели отклонили инициативу голосования, которая повысила бы эту цель до более амбициозных 50 процентов к 2035 году.

Уголь

был основным источником электроэнергии, производимой в Арканзасе каждый год в период с 2001 по 2017 год, но его доля в генерации в течение этого времени медленно снижалась.Между тем, объем природного газа вырос, и он обеспечил более четверти электроэнергии, произведенной в штате в прошлом году, по сравнению с 6 процентами в 2001 году.

Арканзас производит больше электроэнергии, чем потребляет, и экспортирует электроэнергию в соседние штаты.

Природный газ является основным источником электроэнергии в Калифорнии с 2001 года. Но половина электроэнергии, произведенной в штате в прошлом году, была получена из возобновляемых источников, включая солнечную, ветровую, геотермальную и гидроэлектроэнергетику.

Электроэнергетика, объем которой сократился в период с 2014 по 2015 год из-за засухи, в прошлом году снова вырос, обеспечивая наибольшую долю возобновляемой генерации в штате. Солнечная энергия быстро выросла за последние пять лет, в основном из-за государственной политики, такой как агрессивный стандарт возобновляемой энергии. В этом году Калифорния обязалась к 2045 году получать всю свою электроэнергию из источников с нулевым выбросом углерода.

В прошлом году около четверти электроэнергии, потребляемой в штате, в том числе вырабатываемой за счет угля, поступало из-за пределов его границ.(Импорт не показан на графике выше.) Но Калифорния планирует прекратить покупать электроэнергию у угольных электростанций в Юте и других штатах.

Подавляющее большинство электроэнергии, производимой в Колорадо, поступает из ископаемых источников топлива: около половины из угля и четверть из природного газа. Но за последнее десятилетие ветроэнергетика набирала обороты. В прошлом году ветер был третьим по величине источником электроэнергии, производимым в Колорадо, на его долю приходилась почти пятая часть выработки в штате.

Колорадо установило требование, чтобы к 2020 году 30 процентов электроэнергии, продаваемой коммунальными предприятиями, поступало из возобновляемых источников.

Ядерная энергия и природный газ обеспечивали подавляющее большинство электроэнергии, произведенной в Коннектикуте в период с 2001 по 2017 год. За это время наблюдался рост производства электроэнергии на природном газе, на долю которого в прошлом году приходилось почти половину выработки электроэнергии в штате по сравнению с почти 13%. двумя десятилетиями ранее.Угольная генерация в штате почти полностью исчезла, и последняя оставшаяся угольная электростанция Коннектикута, Бриджпорт-Харбор, должна быть закрыта в 2021 году.

В 2017 году пять процентов электроэнергии, произведенной в Коннектикуте, было произведено из возобновляемых источников. В этом году штат расширил свой стандарт возобновляемой энергии, потребовав, чтобы коммунальные предприятия получали 40 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников к 2030 году.

Природный газ заменил уголь в качестве основного источника электроэнергии, производимой в Делавэре в 2010 году, и с тех пор доля угля в выработке электроэнергии резко снизилась.На уголь приходилось 70 процентов электроэнергии, производимой в Делавэре в 2008 году, на пиковом уровне, но чуть меньше 5 процентов к 2017 году. За тот же период доля природного газа в выработке электроэнергии увеличилась более чем в четыре раза.

Частично благодаря этому сдвигу выбросы углекислого газа в электроэнергетическом секторе штата снизились за последнее десятилетие. Делавэр потребует, чтобы к 2025 году коммунальные предприятия получали 25 процентов электроэнергии из возобновляемых источников.

Электроэнергия, производимая в штате, обеспечивает «от двух третей до трех четвертей электроэнергии, проданной потребителям Делавэра», согласно данным E.Я. Остальное поступает из соседних государств через региональную сеть. (Импорт не показан в таблице выше.)

В 2001 году более трети электроэнергии, производимой во Флориде, приходилось на сжигание угля, но два года спустя природный газ превзошел уголь в качестве основного источника выработки электроэнергии в штате и продолжал увеличивать свою долю в структуре электроэнергетики штата. К 2017 году природный газ составлял две трети производства электроэнергии Флориды, что более чем вдвое превышало средний показатель по стране.

Флорида является вторым по величине производителем электроэнергии в стране после Техаса, но по-прежнему полагается на импорт из соседних штатов для удовлетворения потребительского спроса.

Несмотря на свое прозвище, Солнечный штат вырабатывает очень мало энергии за счет солнечной энергии и не имеет потребности в возобновляемых источниках энергии.

Уголь обеспечивал большую часть выработки электроэнергии в Грузии в течение 2000-х годов, но его объем снизился по мере увеличения производства природного газа.В последние годы доля угольной генерации резко упала, поскольку несколько устаревающих угольных электростанций были выведены из эксплуатации.

Коммунальные предприятия штата находятся в процессе строительства двух новых ядерных реакторов, это единственные новые ядерные проекты, строящиеся в стране.

Около десятой части электроэнергии в Грузии в прошлом году приходилось на возобновляемые источники, в основном из биомассы и гидроэлектроэнергии. Но солнечная энергия в штате быстро растет.Джорджия не предъявляет каких-либо требований к возобновляемым источникам энергии в масштабах штата, но город Атланта разрабатывает план по обеспечению всей электроэнергии из возобновляемых источников к 2035 году.

Гавайи в последние два десятилетия в значительной степени полагались на импортную нефть для производства электроэнергии. Но у штата есть смелый план — к 2045 году вырабатывать всю свою энергию из местных возобновляемых источников.

В прошлом году на долю возобновляемых источников энергии приходилось четверть электроэнергии, производимой на Гавайях, по сравнению с менее чем одной десятой в 2001 году.Производство солнечной энергии, в основном из небольших крышных панелей, быстро выросло в штате за последние пять лет.

Гидроэнергетика долгое время преобладала в структуре генерирующих компаний Айдахо. Но в последние годы его доля снизилась, отчасти из-за засухи. Штат по-прежнему производит большую часть электроэнергии из возобновляемых источников: в прошлом году ветряная энергия вырабатывала 15 процентов электроэнергии в штате по сравнению с менее чем 2 процентами десять лет назад.Солнечная энергия, хотя ее доля все еще небольшая, резко выросла в период с 2016 по 2017 год.

Айдахо в значительной степени зависит от импорта электроэнергии из других штатов. В то время как уголь составляет лишь часть производства внутри штата, в конечном итоге, по данным E.I.A., «около трети электроэнергии, потребляемой в Айдахо, вырабатывается угольными электростанциями, расположенными в других штатах». (Данные импорта не показаны на диаграмме выше.)

Атомная энергия — главный источник электроэнергии в штате Иллинойс. Он обеспечивает более половины электроэнергии, производимой в штате в течение почти двух десятилетий. Уголь также является важным источником энергии для государства — даже превосходя ядерный как источник энергии высшего качества дважды за последнее десятилетие, в 2004 и снова в 2008 году, — но его доля снизилась в последние годы, поскольку старые электростанции были выведены из эксплуатации или преобразованы для сжигания природного газа. Как природный газ, так и энергия ветра увеличились за последнее десятилетие.

Иллинойс производит «значительно больше» электроэнергии, чем потребляет в штате, согласно данным E.Я. Он отправляет излишки в государства Средней Атлантики и Среднего Запада через региональные сети.

Уголь вырабатывает большую часть электроэнергии, производимой в Индиане в течение почти двух десятилетий, но в последние годы природный газ и энергия ветра получили широкое распространение. В 2001 году на природный газ приходилось 2 процента выработки электроэнергии в штате, но в 2017 году он вырос до почти 20 процентов.

Законодательное собрание штата Индиана установило в 2011 году добровольный стандарт чистой энергии, который поощряет электроэнергетические компании получать все большее количество энергии из возобновляемых и других альтернативных источников энергии.Однако, по данным E.I.A., в прошлом году в программе не участвовали коммунальные предприятия Индианы.

За последнее десятилетие в Айове произошел взрыв энергии ветра. Ветер давал лишь 1 процент электроэнергии, производимой в штате в 2001 году, но вырос почти до 40 процентов к 2017 году. Айова по-прежнему производит почти половину своей электроэнергии из угля, но доля угля в генерации снизилась с 2010 года.

В абсолютном выражении штат, один из самых ветреных в стране, был третьим по величине производителем энергии ветра в прошлом году после Техаса и Оклахомы. Айова производит больше энергии, чем потребляет, отправляя излишки в соседние штаты.

Айова в 1983 году стала первым штатом, принявшим закон, требующий от коммунальных предприятий получать некоторое количество электроэнергии из возобновляемых источников, но штат не обновил свои стандарты.

Как и во многих штатах Великих равнин, в Канзасе за последнее десятилетие наблюдается значительный рост ветроэнергетики. Доля электроэнергии, вырабатываемой за счет ветра, с 2010 года увеличилась в пять раз.

В 2009 году законодательный орган Канзаса принял стандарт возобновляемой энергии, требующий от коммунальных предприятий получать все большее количество электроэнергии из ветряных, солнечных и других возобновляемых источников — до 20 процентов к 2020 году. Но губернатор Сэм Браунбэк и законодатели штата смягчили эту меру в 2015 году. , сделав цель добровольной после того, как консервативные группы, связанные с промышленным конгломератом Koch Industries, выступили против более строгих стандартов.

Уголь по-прежнему обеспечивает подавляющее большинство электроэнергии, производимой в Кентукки, штате, давно занимающемся добычей угля.В прошлом году уголь был источником почти 80 процентов государственной генерации, но на протяжении большей части последних двух десятилетий это число колебалось ближе к 90 процентам.

С 2014 года ряд старых угольных электростанций Кентукки был остановлен или переоборудован для сжигания природного газа, который обеспечивал 13 процентов выработки электроэнергии в штате в 2017 году.

Природный газ обеспечивает большую часть производства электроэнергии в Луизиане, входящей в пятерку крупнейших производителей природного газа в стране.В прошлом году на газ приходилось 60 процентов электроэнергии, производимой в штате, по сравнению с 46 процентами в 2001 году. За это время угольная генерация снизилась, опустившись со второго по величине источника энергии в штате на третье место. .

Луизиана также получает электричество из соседних штатов. (Импорт не указан в таблице выше.)

Мэн «лидирует в Новой Англии по производству ветровой энергии», согласно E.Я. В прошлом году ветер поставлял пятую часть электроэнергии, производимой в штате. Электроэнергия и энергия биомассы, получаемая при сжигании древесины и других органических материалов, были следующими по величине источниками генерации.

С 2000 года государство требует, чтобы поставщики электроэнергии получали 30 процентов электроэнергии, которую они продают потребителям, из существующих возобновляемых источников. Ожидалось, что в 2017 году коммунальные предприятия получат 10 процентов от новых возобновляемых источников. У государства есть отдельные цели по развитию ветроэнергетики.

Общее количество электроэнергии, производимой в штате Мэн, снизилось с 2010 года, особенно за счет природного газа, и штат все больше полагается на импорт энергии из Канады. (Импорт не включен в приведенную выше таблицу.)

Угольная энергетика в Мэриленде снижалась в течение десяти лет и обеспечивала менее половины электроэнергии, производимой в штате с 2012 года. За это время увеличилась доля электроэнергии, вырабатываемой атомной энергетикой и природным газом.

Производство солнечной энергии, хотя и невелико, быстро выросло за последние несколько лет. С 2004 года государство требует, чтобы все большее количество электроэнергии, продаваемой коммунальными предприятиями, поступало из возобновляемых источников, с целью достичь 25 процентов к 2020 году.

Мэриленд потребляет больше электроэнергии, чем производит, и импортирует почти половину своей энергии из других среднеатлантических штатов через региональную сеть.(Импорт не включен в приведенную выше таблицу.)

За последние два десятилетия доля природного газа в производстве электроэнергии в Массачусетсе увеличилась более чем вдвое. Производство угля и нефти резко упало в тот же период, а последняя крупная угольная электростанция в штате была закрыта в прошлом году. Количество энергии, создаваемой за счет солнечной энергии, резко увеличилось в штате с 2013 года.

В этом году штат ужесточил свои полномочия для коммунальных предприятий по продаже электроэнергии из возобновляемых источников, повысив требование до 35 процентов от общего объема продаж к 2030 году.Новое законодательство также поощряет развитие морской ветроэнергетики.

Массачусетс потребляет больше электроэнергии, чем производит в штате, а остальную часть получает из близлежащих штатов через региональную сеть. (Импорт не показан на диаграмме выше).

Уголь

оставался основным источником электроэнергии, производимой в Мичигане в прошлом году, но его доля в генерации снизилась с немногим более 60 процентов в 2001 году до чуть менее 40 процентов в 2017 году. За тот же период доля природного газа в выработке электроэнергии почти удвоилась. Ветер, основной возобновляемый источник энергии в штате Мичиган, в прошлом году обеспечил почти 5 процентов электроэнергии, произведенной в штате.

В 2008 году штат Мичиган потребовал, чтобы коммунальные предприятия и другие поставщики электроэнергии получали как минимум 10 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников к 2015 году. Эта цель была достигнута, а к 2021 году она была увеличена до 15 процентов.

Уголь был основным источником электроэнергии, производимой в Миннесоте в течение последних двух десятилетий.Но доля угольной генерации снизилась в период с 2001 по 2017 год по мере роста ветровой и газовой генерации.

Штат требует, чтобы коммунальные предприятия постепенно продавали все большее количество электроэнергии из возобновляемых источников, при этом к 2025 году требуется 25 процентов от общего объема продаж.

В прошлом году на природный газ приходилось более трех четвертей электроэнергии, произведенной в Миссисипи. Уголь, когда-то являвшийся основным источником электроэнергии в штате, за последнее десятилетие сократился, уступив более дешевому природному газу.Уголь обеспечивал 36 процентов электроэнергии, произведенной в штате в 2001 году, но только 8 процентов в 2017 году.

Структура производства электроэнергии в штате Миссури практически не изменилась за почти два десятилетия. Уголь обеспечивал подавляющую часть электроэнергии, производимой в штате в период с 2001 по 2017 год, и лишь немного снизился за это время, поскольку старые угольные электростанции отключились или перешли на сжигание природного газа.

Миссури потребует, чтобы коммунальные предприятия получали к 2021 году не менее 15 процентов электроэнергии, которую они продают, из возобновляемых источников, в том числе небольшую часть из солнечной энергии.

Уголь был основным источником электроэнергии, производимой в Монтане в течение почти двух десятилетий, но его доля в производстве снизилась с 70 процентов в 2001 году до чуть менее 50 процентов в прошлом году. Гидроэнергетика, второй по величине источник электроэнергии в штате, увеличила свою долю за это время почти до 40 процентов, а энергия ветра выросла до 8 процентов от выработки внутри штата.

Монтанцы потребляют только около половины электроэнергии, производимой в штате, согласно данным E.Я. Остальное государство отправляет своим западным соседям.

Уголь

был основным источником электроэнергии, производимой в Небраске в течение почти двух десятилетий, но его доля в производстве несколько снизилась в период с 2001 по 2017 год. Ядерная энергия обеспечивала в среднем 25 процентов производства электроэнергии в штате в течение этого времени, но ее доля варьировалась из года в год. году.

Wind увеличивал свою долю в общем объеме производства за последнее десятилетие, на него приходилось 15 процентов электроэнергии, произведенной в штате в прошлом году.По данным E.I.A., Небраска имеет потенциал для значительно большего количества ветровой энергии.

Природный газ вытеснил уголь в качестве основного источника электроэнергии в Неваде в 2005 году. Крупнейшая угольная электростанция штата Мохаве была отключена в конце того же года, что еще больше снизило роль угля в структуре электроэнергетики штата. С тех пор многие угольные генераторы в Неваде закрылись из-за конкуренции со стороны дешевого природного газа и законов штата, требующих развития возобновляемых источников энергии.

В прошлом году природный газ обеспечивал почти 70 процентов электроэнергии, производимой в штате, за ним следовала солнечная энергия, которая обеспечивала 12 процентов выработки в штате. До недавнего времени Невада требовала, чтобы 25 процентов электроэнергии, продаваемой коммунальными предприятиями штата, поступало из возобновляемых источников к 2025 году. В ноябре жители Невады проголосовали за повышение этого требования до 50 процентов к 2030 году.

Основная часть электроэнергии, производимой в Нью-Гэмпшире, поступает от атомной электростанции Сибрук, крупнейшего реактора в Новой Англии.Природный газ обеспечивает примерно пятую часть электроэнергии, производимой в штате с начала 2000-х годов, когда начали работать две новые генерирующие станции. Доля электроэнергии штата Нью-Гэмпшир, вырабатываемой из угля, за последние два десятилетия сократилась с 25 процентов в 2001 году до менее 2 процентов в 2017 году.

Штат требует, чтобы коммунальные предприятия получали 25 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников к 2025 году. Два основных источника возобновляемой энергии в штате — это биомасса, или энергия, получаемая от сжигания древесины и других органических веществ, и гидроэлектроэнергия. мощность.

Нью-Гэмпшир производит больше электроэнергии, чем потребляется в штате, и отправляет около половины в соседние штаты через региональную электрическую сеть Новой Англии. (Экспорт не включен в приведенную выше таблицу.)

Атомная энергия была основным источником электроэнергии в Нью-Джерси до недавнего времени, когда ее вытеснил природный газ. В прошлом году природный газ составлял почти половину выработки электроэнергии в штате, а ядерная энергия — 45 процентов.Солнечная энергия обеспечивала 4% электроэнергии штата.

В этом году штат Нью-Джерси повысил свой стандарт возобновляемой энергии и потребовал, чтобы 21 процент электроэнергии, продаваемой в штате, поступал из возобновляемых источников к 2021 году, с увеличением этого требования до 35 процентов к 2025 году и до 50 процентов к 2030 году. Чтобы снизить выбросы углерода, штат также принял закон для поддержки своих атомных станций, которые в настоящее время обеспечивают большую часть энергии с нулевым уровнем выбросов.

Штат получает часть потребляемой энергии через региональную сеть Срединно-Атлантического океана. (Импорт не включен в приведенную выше таблицу.)

Уголь

был основным источником электроэнергии в штате Нью-Мексико на протяжении почти двух десятилетий. Но угольная энергия снизилась с 2004 года «в ответ на ужесточение правил качества воздуха, более дешевый природный газ и решение Калифорнии в 2014 году прекратить закупку электроэнергии, вырабатываемой из угля» в соседних штатах, согласно данным E.Я.

На природный газ, ветер и солнечную энергию приходилось немногим менее половины электроэнергии, произведенной в Нью-Мексико в прошлом году, по сравнению с 15 процентами двумя десятилетиями ранее. Штат потребует, чтобы коммунальные предприятия получали 20 процентов электроэнергии, которую они продают, за счет возобновляемых источников энергии к 2020 году. Нью-Мексико также стремится увеличить производство из источников с нулевым выбросом углерода, поскольку он отправляет значительный объем электроэнергии в Калифорнию, штат с одними из самых строгих политика в области возобновляемых источников энергии в стране.

Природный газ и атомная энергия обеспечивали большую часть электроэнергии, производимой в Нью-Йорке в течение почти двух десятилетий, и их доля увеличилась по мере сокращения использования угля в штате. За последнее десятилетие Нью-Йорк также производил около пятой части своей электроэнергии за счет гидроэнергетики, крупнейшего в штате источника возобновляемой энергии.

Штат потребует, чтобы коммунальные предприятия получали 50 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников к 2030 году. Это амбициозная цель, направленная на существенное сокращение выбросов парниковых газов.Ветровая и солнечная энергия составляют небольшую, но растущую часть производства электроэнергии в Нью-Йорке, вместе обеспечивая чуть более 4 процентов электроэнергии штата в прошлом году.

Нью-Йорк, как правило, потребляет больше энергии, чем создает, и импортирует часть электроэнергии из соседних штатов и Канады. (Импорт электроэнергии не включен в приведенную выше таблицу.)

Coal обеспечивала большую часть выработки электроэнергии в Северной Каролине в период с 2001 по 2011 год.Но почти 30 угольных блоков в штате были остановлены в течение следующих шести лет, и к 2017 году выработка угля упала ниже уровня ядерной энергии и мощности, производимой на природном газе. Производство природного газа увеличилось после национального бума гидроразрыва пласта в конце 2000-х годов и стало вторым по величине источником производства электроэнергии в штате в 2016 году.

Северная Каролина в настоящее время является единственным южным штатом со значительной выработкой солнечной энергии. Уникальное осуществление государством принятого на протяжении десятилетий федерального закона — Закона о политике регулирования коммунальных предприятий 1978 года — способствовало развитию солнечной энергетики в масштабах коммунальных предприятий.Северная Каролина также установила требование, чтобы к 2021 году коммунальные предприятия получали 12,5% электроэнергии, которую они продают потребителям, из возобновляемых источников энергии.

Как и во многих штатах Великих равнин, ветроэнергетика в Северной Дакоте стала популярной за последнее десятилетие. В прошлом году ветер вырабатывал более четверти электроэнергии, производимой в штате, по сравнению с менее чем 2 процентами десятилетием ранее.

В 2007 году Законодательный орган Северной Дакоты поставил перед коммунальными предприятиями добровольную цель: к 2015 году получать 10 процентов электроэнергии, продаваемой потребителям, из возобновляемых или вторичных источников энергии.По мнению аналитиков, эта цель была достигнута и даже превзойдена.

Северная Дакота производит больше электроэнергии, чем потребляется в штате, и примерно половина ее отправляется соседям. (Экспорт не показан выше.)

Уголь

был основным источником электроэнергии, производимой в Огайо в течение почти двух десятилетий, но его доля в выработке электроэнергии снижалась с 2011 года, поскольку несколько угольных электростанций штата были закрыты.За тот же период доля природного газа в производстве электроэнергии в Огайо увеличилась.

Ветер в настоящее время является основным источником возобновляемой энергии в штате, хотя в прошлом году он обеспечил лишь около 1 процента электроэнергии, произведенной в Огайо. Однако государство хочет это расширить. К концу 2026 года коммунальные предприятия должны будут получать не менее 12,5% электроэнергии, которую они продают потребителям, из возобновляемых источников.

Основная часть выработки электроэнергии в Оклахоме на протяжении большей части последних двух десятилетий приходилась на природный газ и уголь, причем эти два источника часто конкурировали за право быть основным источником электроэнергии в штате.Но в 2016 году ветер обогнал уголь как второй по величине источник электроэнергии, производимый в штате.

В прошлом году штат уступал только Техасу по общему объему выработки электроэнергии с помощью ветра.

В 2010 году Оклахома потребовала, чтобы к 2015 году 15 процентов ее генерирующих мощностей приходилось на возобновляемые источники. Власти также указали, что природный газ является предпочтительным выбором для новых проектов по ископаемому топливу. К 2012 году штат превысил план по возобновляемым источникам энергии.

Большая часть электроэнергии, производимой в Орегоне в любой год, приходится на гидроэнергетику, но доля, производимая за счет воды, колеблется в зависимости от количества осадков. Мощность природного газа обычно увеличивается в засушливые годы и уменьшается в годы с достаточным количеством гидроэлектроэнергии.

За последнее десятилетие ветроэнергетика стала третьим по величине источником электроэнергии в штате.Стремясь стимулировать увеличение количества возобновляемых источников энергии, не связанных с гидроэлектростанциями, штат Орегон потребует от своих крупнейших коммунальных предприятий к 2040 году получать 50 процентов электроэнергии, которую они продают, из новых возобновляемых источников энергии. Программа охватывает проекты, введенные или модернизированные с 1995 года, исключая старая гидроэнергетика.

На угле

была произведена основная часть электроэнергии, производимой в Пенсильвании до 2014 года, когда она впервые упала ниже уровня ядерной энергии.Доля угольной генерации в штате снизилась после бума гидроразрыва пласта в конце 2000-х, когда стареющие угольные электростанции закрылись из-за конкуренции со стороны более дешевого природного газа.

В прошлом году ядерная энергия была основным источником электроэнергии в Пенсильвании. Но природный газ оказывает экономическое давление и на ядерные генераторы штата: один реактор должен быть остановлен в 2019 году. Сторонники ядерной энергетики, заявляя, что потеря этой электроэнергии без выбросов является плохой новостью для изменения климата, обратились за государственными субсидиями. для ядерной энергетики.

Пенсильвания потребует, чтобы к 2021 году 18 процентов электроэнергии, которую коммунальные предприятия продают потребителям, приходилось на возобновляемые и альтернативные источники энергии, при этом не менее 0,5 процента приходилось на солнечную энергию. В прошлом году возобновляемые источники энергии составили около 5 процентов производства в штате.

Пенсильвания — третий по величине производитель электроэнергии в стране после Техаса и Флориды. Штат является крупным поставщиком энергии в Среднеатлантический регион.

Природный газ преобладает в производстве электроэнергии в Род-Айленде, но энергия ветра и солнца, хотя и остается небольшой, в последние годы быстро растет.

Род-Айленд потребует, чтобы поставщики электроэнергии получали почти две пятых электроэнергии, которую они продают потребителям, из возобновляемых источников к 2035 году. Штат потребляет больше электроэнергии, чем производит, а остальную часть получает от соседних штатов.(Импорт не включен в приведенную выше таблицу.)

Большая часть электроэнергии, вырабатываемой в Южной Каролине, вырабатывается ядерной энергетикой, при этом уголь и природный газ занимают второе и третье места соответственно. Доля угля в выработке электроэнергии за последнее десятилетие снизилась по мере увеличения выработки электроэнергии из природного газа.

Южная Каролина производит больше энергии, чем потребляет, и отправляет излишки в соседние штаты.

Гидроэнергетика поставляла большую часть электроэнергии, производимой в Южной Дакоте на протяжении большей части последних двух десятилетий, но угольная генерация превосходила гидроэлектроэнергетику в течение трех лет: 2001, 2004 и 2008 годов. С тех пор доля угля в структуре генерации штата снизилась, в то время как увеличилась доля ветроэнергетики.

В прошлом году ветер был вторым по величине источником электроэнергии, производимой в Южной Дакоте, на него приходилась почти треть выработки в штате.

Южная Дакота экспортирует электроэнергию в штаты Центральной и Западной США.

Coal поставляла большую часть электроэнергии, производимой в Теннесси в период с 2001 по 2016 год, но ее доля в генерации начала снижаться около десяти лет назад, когда доля электроэнергии на природном газе увеличилась. В прошлом году угольная генерация опустилась ниже атомной энергии впервые почти за два десятилетия.

Теннесси потребляет больше электроэнергии, чем производит, и компенсирует дефицит электричеством из близлежащих штатов.(Импорт не включен в приведенную выше таблицу.)

Техас производит больше электроэнергии, чем любой другой штат, и с 2001 года основным источником ее выработки является природный газ, а на втором месте — уголь. Но доля угольной генерации снизилась по мере роста ветроэнергетики. В 2014 году ветер обогнал атомную энергетику как третий по величине источник электроэнергии, производимый в штате. Техас в целом производит больше энергии из ветра, чем любой другой штат, при этом Оклахома и Айова занимают второе и третье места.

Техас принял требование о возобновляемых источниках энергии в 1999 году, требуя от штата установить 10 000 мегаватт возобновляемых источников энергии к 2025 году. Эта цель уже достигнута.

Большая часть электроэнергии, производимой в Юте, производится из угля, но доля угля снизилась за последние несколько лет по мере увеличения объемов природного газа.

Штат производит больше энергии, чем потребляет, и отправляет излишки в соседние штаты, такие как Калифорния.По крайней мере, одна электростанция в Юте переходит с угля на природный газ, чтобы соответствовать более строгим экологическим нормам Калифорнии.

В 2016 году солнечная энергия стала крупнейшим источником возобновляемой энергии в штате, а в прошлом году ее доля снова увеличилась. Юта поставила перед коммунальными предприятиями цель к 2025 году получать 20 процентов электроэнергии, которую они продают, из возобновляемых источников.

Большая часть электроэнергии, вырабатываемой в Вермонте, производилась на атомной электростанции до 2014 года, когда была закрыта единственная в штате АЭС, станция Vermont Yankee.С тех пор почти вся электроэнергия, производимая в штате, поступает из возобновляемых источников, включая гидроэнергетику, биомассу, ветер и солнце. Но абсолютная генерирующая мощность Вермонта существенно снизилась.

Вермонт импортирует большую часть электроэнергии из близлежащих штатов и Канады. По данным E.I.A., в прошлом году собственная генерация штата «обеспечивала лишь около двух пятых электроэнергии, потребляемой в Вермонте».

Амбициозная цель Вермонта в области возобновляемых источников энергии требует, чтобы к 2032 году 75 процентов электроэнергии, продаваемой в штате, поступало из возобновляемых источников, в том числе 10 процентов из небольших внутренних источников.

Уголь был основным источником электроэнергии, производимой в Вирджинии в период с 2001 по 2008 год, когда его доля начала снижаться. Производство природного газа в штате увеличилось после бума гидроразрыва пласта в конце 2000-х годов, и в 2015 году оно стало основным источником выработки электроэнергии в штате. За последние два десятилетия ядерная генерация в среднем обеспечивала чуть более трети электроэнергии Вирджинии. .

Вирджиния потребляет больше электроэнергии, чем производит, поэтому получает дополнительную электроэнергию из близлежащих штатов через региональную сеть Срединно-Атлантического океана.Штат поставил перед коммунальными предприятиями добровольную цель получать 15 процентов электроэнергии, которую они продают, из возобновляемых источников к 2025 году.

Гидроэнергетика поставляет большую часть электроэнергии, производимой в Вашингтоне каждый год с 2001 года, но ее доля в выработке штата колеблется в зависимости от количества осадков. Уголь, природный газ, атомная энергия и энергия ветра чередовались в качестве второго по величине источника электроэнергии, производимой в штате на протяжении большей части последних двух десятилетий.

Вашингтон производит больше электроэнергии, чем потребляет, и экспортирует электроэнергию в Канаду и другие западные штаты. Штат потребует от своих крупных коммунальных предприятий к 2020 году получать 15 процентов продаж электроэнергии из новых возобновляемых источников.

Уголь доминирует в структуре производства электроэнергии Западной Вирджинии, обеспечивая более 90 процентов электроэнергии, производимой в штате каждый год в течение почти двух десятилетий.В период с 2001 по 2017 год гидроэнергетика обеспечивала небольшую часть выработки внутри штата. В последние годы доля ветра и природного газа увеличилась, но на каждый из этих источников приходилось лишь около 2 процентов электроэнергии, произведенной в штате в прошлом году.

После многих лет лоббирования со стороны консервативных групп Западная Вирджиния стала первым штатом, отменившим свой стандарт возобновляемой энергии в 2015 году. Закон требовал, чтобы коммунальные предприятия получали 25 процентов своей электроэнергии из альтернативных и возобновляемых источников энергии к 2025 году.Противники стандарта заявили, что он наносит ущерб рабочим местам в угле и повышает тарифы на электроэнергию, в то время как сторонники говорят, что он поможет диверсифицировать государственный электроэнергетический сектор в то время, когда национальный рынок угля находится в упадке.

Западная Вирджиния вырабатывает больше электроэнергии, чем потребляет, и поставляет около половины своей энергии в другие среднеатлантические штаты через общую региональную сеть. (Экспорт не показан в таблице выше.)

Большая часть электроэнергии, производимой в Висконсине, производится из угля, но производство природного газа увеличилось за последние три года.Ветроэнергетика прочно обосновалась в штате десять лет назад и постепенно увеличивала свою долю в производстве электроэнергии.

Висконсин потребовал от своих коммунальных предприятий получать 10 процентов электроэнергии, продаваемой в штате, из возобновляемых источников к концу 2015 года. Эта цель была достигнута на два года раньше запланированного срока.

Подавляющее большинство электроэнергии, вырабатываемой в Вайоминге, вырабатывается из угля, но за последнее десятилетие ветроэнергетика получила широкое распространение.В прошлом году ветер обеспечивал почти десятую часть электроэнергии, производимой в штате.

Из-за своего небольшого населения Вайоминг производит гораздо больше энергии, чем потребляет, и отправляет около 60 процентов энергии в соседние штаты.

Как вырабатывается электроэнергия — Электростанции и производство электроэнергии

Все гидроэлектростанции Дравске электрарне Марибор на реке Драва (за исключением гидроэлектростанций Златоличье и Формин) в основном построены таким образом, что русло реки перекрывается плотиной. железобетонный барьер.В шлагбауме установлены турбины и генераторы. Каждая турбина соединена с генератором вертикальным валом.

Преграды также имеют водосливы со шлюзами, которые используются для выпуска излишков воды через преграду. За барьером образуется резервуар, и в то же время высота барьера определяет каплю воды, необходимую для питания турбины. Мощность турбины зависит от размера капли воды и количества воды, протекающей через турбину.Вода приводит в движение турбину, которая, в свою очередь, приводит в действие электрогенератор, вырабатывающий электричество по принципу электромагнитной индукции.

Производство электричества по принципу электромагнитной индукции

Электромагнитная индукция основана на том факте, что каждое вещество состоит из атомов, содержащих субатомные частицы с электрическим зарядом. У атома есть ядро ​​с протонами и нейтронами, а также электроны, которые связаны с ядром.Электроны заряжены отрицательно, а ядро ​​содержит такое же количество положительно заряженных протонов. Внешне атом электрически нейтрален. Субатомные частицы с одинаковым электрическим зарядом отскакивают друг от друга, а частицы с разным зарядом притягиваются друг к другу. Что отличает материалы, так это то, насколько тесно электроны связаны с ядрами в своих атомах. Вещества, в которых электроны прочно связаны с ядрами, являются электрическими изоляторами. У них нет свободных электронов и они не проводят электрический ток.

Однако электрические проводники — это вещества, в которых электроны движутся свободно (у них есть свободные электроны). Если такой проводник (обычно медный провод) помещается в магнитное поле и перемещается в сторону от направления поля, к электронам в проводнике прикладывается сила, толкая их к одному концу проводника (в зависимости от направление движения). Так образуется избыток электронов. Поскольку они имеют отрицательный электрический заряд, мы говорим об отрицательном электрическом потенциале.Такой же дефицит электронов создается на другом конце проводника, который имеет положительный потенциал. Разница между потенциалами равна напряжению и называется индуцированным напряжением . Он индуцирует электрический ток, если обе стороны проводника соединены токопроводящим проводом.

Следовательно, электрический ток — это направленное движение электронов по проводнику от точки избытка электронов к точке их дефицита. Сила электрического тока зависит от величины индуцированного напряжения и электрического сопротивления соединительного проводника.Чем длиннее проводник, тем выше наведенное напряжение, тем сильнее магнитное поле и тем больше скорость движения проводника. Неважно, движется ли проводник в магнитном поле или он статичен, а магнитное поле движется. Описанный принцип электромагнитной индукции используется в электрических генераторах для производства электроэнергии.

Электрогенераторы состоят из статора (неподвижная часть), ротора (вращающаяся часть) и электромагнитных полюсов, установленных на торце ротора.Статор сделан из железа. В статоре размещены электрические проводники, которые соединены друг с другом таким образом, что наведенные напряжения в отдельных проводниках складываются. Такая система соединенных проводов называется обмоткой статора. Магнитные полюса установлены на торце ротора. Чередуются северный и южный полюс. Магнитное поле создается между северным и южным полюсами через воздушный паз и статор, так что обмотка находится в магнитном поле. При вращении ротора устанавливается движение магнитного поля относительно проводников обмотки.В обмотке индуцируется электрическое напряжение , которое можно измерить между началом и концом обмотки. Начало и конец обмотки называются выводами генератора. К этим клеммам подключаются электрические проводники, и получаемое электричество передается пользователям.

Передача электроэнергии

В первые дни использования электроэнергии электростанции были небольшими по сравнению с сегодняшними, и электрогенераторы непосредственно обеспечивали электроэнергией находящихся поблизости потребителей.На них подавалось напряжение, которое не могло быть слишком высоким из-за опасности поражения людей электрическим током. Первые генераторы производили так называемый постоянный ток, в котором ток всегда течет в одном и том же направлении.

Использование электричества из-за ряда преимуществ быстро росло, и стала очевидной потребность в более мощных станциях, которые можно было бы строить рядом с подходящими ресурсами (реки, угольные шахты). Однако проблема передачи электроэнергии удаленным пользователям осталась, поскольку потребовались бы чрезвычайно большие участки линий электропередачи, чтобы минимизировать уровень потерь энергии во время передачи.

С изобретением переменного тока, , в котором направление тока изменяется (это происходит 50 раз в секунду в нашей сети), и многополярных генераторов, которые также работают в соответствии с описанным принципом электромагнитной индукции, использование электроэнергии значительно расширилась. Переменный ток позволяет относительно легко изменять напряжение с помощью трансформатора . Чем выше напряжение, тем меньше энергии теряется при передаче.В настоящее время напряжение, создаваемое генератором, преобразуется в более высокое напряжение и передается по линиям передачи с напряжениями 110 кВ, 400 кВ и выше на большие расстояния. Чтобы обеспечить питание пользователей, напряжение затем преобразуется в более низкие значения, вплоть до напряжения, используемого в домашних условиях (220 В или 380 В для трехфазных подключений).

Различные методы производства электроэнергии

Для чего мы используем энергию?

Различные методы производства электроэнергии

Существуют различные методы производства электроэнергии в зависимости от видов энергии.
Среди источников энергии уголь и природный газ используются для производства электроэнергии путем сжигания (тепловая энергия), уран путем ядерного деления (ядерная энергия), чтобы использовать их тепло для кипячения воды и вращающейся паровой турбины.
Среди возобновляемых источников энергии солнечный свет напрямую преобразуется в электричество (фотоэлектрическая энергия), энергия вращения ветра преобразуется в электричество (энергия ветра), вращение водяного колеса проточной водой для производства (гидро). Магматическое тепло закипает подземную воду, чтобы вращать паровую турбину для генерации (геотермальной энергии).
Продолжается непрерывное развитие технологий для преобразования энергии ресурсов или возобновляемых источников энергии в электричество с меньшими потерями. Для эксплуатации электростанции также важно проводить техническое обслуживание или обучение операторов.


Тепловая мощность

Производство энергии на пылеугольном топливе в настоящее время является основным методом производства электроэнергии на угле. Уголь измельчается до мелкого порошка и сжигается в котле. Нагрев в бойлере превращает воду в пар.Давление пара вращает паровую турбину, а генератор вырабатывает электричество.


Электроэнергетика с комбинированным циклом сначала вырабатывает газ за счет сжигания топлива в сжатом воздухе.
Давление газа вращает газовую турбину, а генератор вырабатывает электричество.
Кроме того, тепло выхлопных газов газовой турбины используется для кипячения воды для выработки пара, который вращает турбину для генерации.


Комбинированный цикл комплексной газификации угля (IGCC) газифицирует топливный уголь в газификаторе.Газифицированное топливо сжигается в сжатом воздухе с образованием газа. Давление газа вращает газовую турбину для выработки электроэнергии. Кроме того, тепло выхлопных газов газовой турбины используется для превращения воды в пар для выработки электроэнергии.

Международное сравнение энергоэффективности производства тепловой энергии

Международное сравнение эффективности производства тепловой энергии (ископаемое топливо). Установки для разжигания угля в Японии достигают наивысшей эффективности, вырабатывая много электроэнергии с меньшим количеством топлива.Несмотря на то, что эффективность генерации может быть увеличена за счет использования мощностей (или технологий) по производству электроэнергии с новейшими и наивысшими показателями эффективности, важно проводить техническое обслуживание объекта или также поддерживать или повышать качество работы.


Атомная энергия

Легкая вода означает обычную воду в отличие от тяжелой воды. В активной зоне реактора в результате ядерного деления вырабатывается тепло, которое затем вызывает кипение воды с образованием пара. Пар используется для вращения турбины для выработки электроэнергии, затем охлаждается в конденсаторе морской водой и снова превращается в жидкую воду.Затем эта вода возвращается в активную зону реактора.


Легкая вода означает обычную воду в отличие от тяжелой воды. В активной зоне реактора при ядерном делении выделяется тепло, но нагретая вода подавляется перед кипением за счет приложения высокого давления. Эта вода с высокой температурой и давлением направляется в парогенератор, превращает воду в пар, а затем вращает турбину для выработки электроэнергии в генераторе, после чего она охлаждается в конденсаторе морской водой и снова превращается в жидкую воду.Затем эта вода возвращается в паровую турбину.

Глоссарий

Как вырабатывается и распределяется электричество в наших домах

Различные методы производства электроэнергии

Поскольку электричество — это форма энергии, ее можно получить только из других видов энергии. В результате, методы генерации столь же разнообразны, как доступные формы энергии, и некоторые входящие энергии могут быть преобразованы в электричество более чем одним методом.

Существует различных способов классификации источников энергии , но обычно их называют возобновляемыми или невозобновляемыми:

  • A возобновляемый источник энергии — это источник энергии, который можно использовать, не влияя на его доступность в будущем. Солнечная энергия — отличный пример: каждое здание в мире может быть покрыто фотоэлектрическими панелями, и это никак не повлияет на количество солнечного света, достигающего планеты завтра.
  • Невозобновляемый источник энергии — это источник, на который влияет сегодняшнее потребление.Например, мировые запасы ископаемого топлива ограничены, а чрезмерное использование ограничивает их доступность в будущем.

Мы склонны использовать слово «возобновляемая энергия» для описания чистой энергии, но это не всегда так. Например, энергия биомассы считается возобновляемой, потому что она использует органические отходы, очень богатый ресурс. Однако энергия биомассы производит выбросы углерода в результате сгорания, и поэтому она не считается чистой.

Отправляемые и неотправляемые источники энергии

Различие между управляемыми источниками питания и неуправляемыми источниками питания гораздо менее известно широкой публике, но очень важно в современной электроэнергетике.Проще говоря, управляемый источник может обеспечивать питание по запросу, в то время как неуправляемый источник имеет переменный выход, который зависит от неконтролируемых условий.

  • Природный газ и гидроэлектроэнергия — отличные примеры диспетчерских источников. Они могут быстрее реагировать на изменения в потреблении электроэнергии, чем большинство других источников.
  • Солнечная и ветровая энергия — неуправляемые источники, так как вы не можете получать от них электроэнергию, когда их вводы недоступны.

Если кто-то спросит, какой источник электричества лучший, это вопрос с подвохом. У всех технологий генерации есть сильные и слабые стороны, и они дополняют друг друга. В результате система питания, использующая сочетание источников, намного надежнее, чем другая, в значительной степени зависящая от одного источника. Например, энергосистема, в которой используется только природный газ, уязвима для неустойчивых цен, а сеть, зависящая от гидроэлектроэнергии, уязвима для засух.

Как вырабатывается гидроэлектроэнергия? — Enbridge Inc.

НАЗАД К ВОПРОСАМ ЭНЕРГЕТИКИ

Гидроэлектроэнергия — это возобновляемый источник энергии, который использует энергию движущейся воды для производства электроэнергии.

Гидроэлектрический процесс начинается задолго до того, как вы включаете свет дома или на работе.

Крупномасштабные гидроэнергетические проекты обычно связаны с плотинами. Реочные и приливные проекты также используют силу движущейся воды для производства возобновляемой электроэнергии.

Плотина гидроэлектростанции преобразует потенциальную энергию, запасенную в водоеме за плотиной, в механическую энергию — механическую энергию также называют кинетической энергией. Когда вода течет через плотину, ее кинетическая энергия используется для вращения турбины.

Генератор преобразует механическую энергию турбины в электричество.

Эта электрическая энергия затем проходит через различные процессы передачи, прежде чем достигнет вас.

Посмотрите это видео от Министерства энергетики США, чтобы узнать больше о том, как генерируется гидроэлектроэнергия:

Вам интересно узнать об энергетической терминологии, используемой в этом произведении? U.На веб-сайте S. Energy Information Administration представлен простой для понимания обзор таких терминов, как потенциальная энергия и механическая / кинетическая энергия.

Вот несколько ссылок на дополнительные ресурсы, чтобы узнать больше о гидроэнергетике:

г. до н. Э. Гидроэнергетика: как вырабатывается гидроэлектроэнергия

Министерство энергетики США: как работает гидроэнергетика

Ontario Power Generation: гидроэлектроэнергия


Движущаяся вода может дать вам энергию, необходимую для освещения вашей комнаты и зарядки вашего мобильного телефона.


В мировом разговоре об энергии один момент не подлежит обсуждению: энергия вносит жизненно важный вклад в качество жизни людей, в общество и в прогресс человечества. Это верно сегодня и останется верным в будущем. Вот почему была создана Energy Matters. Мы считаем важным снабдить людей беспристрастной информацией, чтобы они могли сформировать свое мнение, присоединиться к беседе и почувствовать уверенность в работе и достижениях энергетического сектора.Energy Matters — это инициатива, которая предоставляет прозрачную информацию и перспективы в области энергетики. Здесь мы рассмотрим ряд тем: масштабы мировой энергетики; способы получения и производства энергии; современные энергетические технологии; грядущие нововведения; будущие потребности мира в энергии; и устойчивые источники энергии, которые их восполнят. Поскольку энергия важна для всех, мы надеемся, что вы будете полагаться на Energy Matters как на постоянный источник сбалансированной информации.

О компании U.С. Электроэнергетическая система и ее влияние на окружающую среду | Энергия и окружающая среда

Электроэнергетическая система США

Современная электроэнергетическая система США представляет собой сложную сеть, состоящую из электростанций, линий передачи и распределения, а также конечных потребителей электроэнергии. Сегодня большинство американцев получают электроэнергию от централизованных электростанций, которые используют широкий спектр энергоресурсов для производства электроэнергии, например уголь, природный газ, ядерную энергию или возобновляемые ресурсы, такие как вода, ветер или солнечная энергия.Эту сложную систему генерации, доставки и конечных пользователей часто называют электросетью .

Используйте схему ниже, чтобы узнать больше об электросети. Щелкните каждый компонент, чтобы получить обзор со ссылками на более подробную информацию.

Посмотреть текстовую версию этой схемы ►

Начало страницы

Источник: Управление энергетической информации США, Обозреватель данных по электроэнергии. Доступ к этим данным был осуществлен в декабре 2017 года.Как и где вырабатывается электроэнергия

Электроэнергия в Соединенных Штатах вырабатывается с использованием различных ресурсов. Три наиболее распространенных — это природный газ, уголь и атомная энергия. Одними из наиболее быстрорастущих источников являются возобновляемые ресурсы, такие как ветер и солнце. Большая часть электроэнергии в США вырабатывается на централизованных электростанциях. Гораздо меньшее, но растущее количество электроэнергии производится за счет распределенной генерации — различных технологий, которые генерируют электроэнергию там, где она будет использоваться или поблизости от нее, таких как солнечные панели на месте и комбинированное производство тепла и электроэнергии. Подробнее о централизованной и распределенной генерации.

Начало страницы

Подача и использование электроэнергии

Когда электричество вырабатывается на централизованной электростанции, оно проходит через серию взаимосвязанных высоковольтных линий электропередачи. Подстанции «понижают» мощность высокого напряжения до более низкого напряжения, отправляя электроэнергию более низкого напряжения потребителям через сеть распределительных линий. Подробнее о доставке электроэнергии.

На бытовых, коммерческих и промышленных потребителей приходится примерно треть потребляемой в стране электроэнергии. На транспортный сектор приходится небольшая часть потребления электроэнергии. Узнайте больше о конечных потребителях электроэнергии.

Источник: Управление энергетической информации США, Обозреватель данных по электроэнергии. Доступ к этим данным был получен в декабре 2017 г. Как сеть соответствует выработке и спросу

Количество электроэнергии, используемой в домах и на предприятиях, зависит от дня, времени и погоды.По большей части электричество должно вырабатываться во время использования. Электроэнергетические компании и операторы сетей должны работать вместе, чтобы производить необходимое количество электроэнергии для удовлетворения спроса. Когда спрос увеличивается, операторы могут отреагировать увеличением производства на уже работающих электростанциях, выработкой электроэнергии на электростанциях, которые уже работают на низком уровне или в режиме ожидания, импортом электроэнергии из удаленных источников или вызовом конечных пользователей, которые согласились потребляют меньше электроэнергии из сети.

Начало страницы

Воздействие энергосистемы на окружающую среду

Почти все части электроэнергетической системы могут повлиять на окружающую среду, и размер этих воздействий будет зависеть от того, как и где электроэнергия вырабатывается и доставляется. В общем, воздействие на окружающую среду может включать:

  • Выбросы парниковых газов и других загрязнителей воздуха, особенно при сжигании топлива.
  • Использование водных ресурсов для производства пара, охлаждения и других функций.
  • Сбросы загрязняющих веществ в водные объекты, в том числе теплового загрязнения (вода, температура которой превышает исходную температуру водоема).
  • Образование твердых отходов, которые могут включать опасные отходы.
  • Использование земель для производства топлива, выработки электроэнергии, а также линий передачи и распределения.
  • Воздействие на растения, животных и экосистемы в результате воздействия на воздух, воду, отходы и землю, указанные выше.

Некоторые из этих воздействий на окружающую среду могут также потенциально повлиять на здоровье человека, особенно если они приводят к тому, что люди подвергаются воздействию загрязнителей в воздухе, воде или почве.

Начало страницы

Влияние используемой вами электроэнергии на окружающую среду будет зависеть от источников генерации («структуры электроэнергии»), имеющихся в вашем районе. Чтобы узнать о выбросах, связанных с потребляемой электроэнергией, посетите Power Profiler EPA.

Вы можете уменьшить воздействие на окружающую среду от использования электроэнергии, покупая экологически чистую энергию и повышая энергоэффективность. Узнайте больше о том, как уменьшить свое влияние.

В более широком смысле, несколько решений могут помочь снизить негативное воздействие на окружающую среду, связанное с производством электроэнергии, в том числе:

  • Энергоэффективность. Конечные пользователи могут удовлетворить некоторые свои потребности, приняв энергоэффективные технологии и методы. В этом отношении энергоэффективность — это ресурс, который снижает потребность в выработке электроэнергии. Узнайте больше об энергоэффективности.
  • Чистая централизованная генерация. Новые и существующие электростанции могут снизить воздействие на окружающую среду за счет повышения эффективности производства, установки средств контроля за загрязнением и использования более чистых источников энергии. Узнайте больше о централизованной генерации.
  • Чистая распределенная генерация. Некоторая распределенная генерация, такая как распределенная возобновляемая энергия, может помочь обеспечить доставку чистой и надежной энергии потребителям и снизить потери электроэнергии на линиях передачи и распределения. Узнать больше о распределенной генерации.
  • Теплоэлектроцентраль (ТЭЦ). Также известная как когенерация, ТЭЦ вырабатывает электроэнергию и тепло одновременно из одного источника топлива. Благодаря использованию тепла, которое в противном случае было бы потрачено впустую, ТЭЦ представляет собой одновременно распределенную генерацию и форму энергоэффективности.Узнать больше о ТЭЦ.

Начало страницы

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *