Источник электроэнергии: Самые необычные альтернативные источники электроэнергии

Содержание

Самые необычные альтернативные источники электроэнергии

С каждым годом нам нужно больше электроэнергии. Ученым приходится изобретать нетрадиционные способы ее получения — недорогие и безопасные для атмосферы. Рассказываем о необычных разработках в области электроэнергетики

Энергия из морских волн

В апреле 2021 года британская компания Mocean Energy представила Blue X — прототип установки, которая будет преобразовывать кинетическую энергию морских волн в электричество.

Установка Blue X (Фото: Mocean Energy)

Принцип работы такой: установку помещают на поверхность воды, она качается на волнах и приводит в движение шарнир посередине. Тот в свою очередь запускает генератор, который вырабатывает электроэнергию и по кабелям перенаправляет ее на сушу.

Как это применять: по оценкам Mocean Energy, если использовать хотя бы 1% всей доступной энергии волн в мире, можно обеспечить электричеством 50 млн зданий. Для сравнения: в России насчитывается около 14 млн жилых домов.

Энергия из ДНК

Оказалось, что органические молекулы тоже преобразуют солнечную энергию в электричество. В 2021 году немецкие ученые сумели синтезировать супрамолекулярную — то есть более сложную, чем обычная молекула — систему на основе ДНК.

Структура супрамолекулы (Фото: frontiersin.org)

Основа системы — фуллерен, «футбольный мяч» из 60 атомов углерода. К нему крепится краситель, который поглощает солнечный свет и отдает получившуюся энергию фуллерену. Но возникает проблема: если не упорядочить такие супрамолекулы, ток между ними будет протекать с трудом, а со временем и вовсе затухнет.

Ученые предложили такое решение: закрепили супрамолекулы на основе фуллеренов и красителя на спирали ДНК. Так движения электронов становятся упорядоченными, а электрический ток не затухает.

Как это применять: исследователи не обещают, что в скором времени на всех крышах появятся солнечные батареи из ДНК, но развивать это направление планируют. По их прогнозам, технология будет дешевле, прочнее и долговечнее, чем солнечные батареи на основе кремния.

Респираторы с солнечными батареями

Берлинский изобретатель Хайнц Кнупске превратил респиратор в устройство, генерирующее электроэнергию. По сути, это привычная для нас маска, на поверхности которой закреплена маленькая солнечная батарея.

Схематично респиратор с солнечной батареей выглядит так (Фото: photovoltaik.eu)

Как это применять: батарея вырабатывает энергию, которой хватает для подзарядки телефона или часов. В начале 2021 года в Китае уже наладили серийное производство «солнечных» масок и отправили первую партию в Европу.

Солнечные паруса

В 2019 году Планетарное общество развернуло парус LightSail 2 на одной из ракет от SpaceX, и он успешно прошел испытания.

LightSail 2 во время развертывания (Фото: The Planetary Society)

Солнечный парус — почти то же самое, что и обычный парус на кораблях. Только в движение его приводит не ветер, а солнечная энергия — поток заряженных частиц, которые выделяет Солнце. Если поймать этот поток энергии, можно долгое время путешествовать в космосе по заданному маршруту, а топливо для этого не понадобится.

Как это применять: используя наработки Планетарного общества, в 2021 году NASA с помощью паруса планирует долететь до Луны, а затем отправиться к околоземному астероиду 1991 VG.

«Бесконечная» энергия из воздуха

В 2020 году ученые из Массачусетского университета создали Air-gen — генератор, который создает электричество с помощью натурального белка и влаги из воздуха.

Графическое изображение пленки из белковых нанопроводов, вырабатывающих электричество с помощью влаги из атмосферы (Фото: UMass Amherst / Yao and Lovley labs)

С помощью протеобактерий Geobacter ученые выращивают белок, который может проводить ток. Из него делают пленку толщиной менее 10 микрон — в несколько раз тоньше, чем человеческий волос — и помещают между двумя электродами. Белок забирает влагу из воздуха и за счет тонких пор создает ток между электродами.

Лучшие результаты Air-gen показывает при влажности в 45%, но справляется и в засушливых регионах вроде Сахары. Генератор не зависит от погодных условий и работает даже в помещении.

Как это применять: пока мощности Air-gen хватает только для питания мелкой электроники. В скором времени ученые разработают версию для мобильных телефонов и смарт-часов, чтобы те никогда не разряжались. А если у исследователей получится совместить Air-gen с краской для стен, в домах появится бесконечный источник электроэнергии.

Электричество из дерева

Если сжать древесину, а потом вернуть в исходное состояние, она вырабатывает электрическое напряжение — правда, очень низкое. Ученые из Швейцарии провели несколько экспериментов и в 2021 году сумели превратить древесину в мини-генератор.

Исследователи изменили химический состав древесины. Они поместили ее в смесь перекиси водорода и уксусной кислоты, растворили один из компонентов древесной коры — лигнин — и оставили только целлюлозу. В результате древесина превратилась в «губку», которая после сжатия самостоятельно возвращается в исходную форму. По словам ученых, такая губка генерирует электрическое напряжение в 85 раз выше, чем обычное дерево.

Так выглядит древесина после растворения лигнина (Фото: САУ Nano / Empa)

Как это применять: пока исследователи проводят испытания получившегося материала. Они уже выяснили, что энергии 30 деревянных брусков длиной 1,5 см хватит для питания ЖК-дисплея.

Жидкое топливо из солнечной энергии

Сейчас электричество получают с помощью сжигания органического топлива, например угля и природного газа. У этого способа есть две проблемы: органическое топливо вредит экологии и когда-нибудь закончится. Это заставляет ученых искать замену органике.

С 2001 года китайские ученые пытались преобразовать солнечную энергию в жидкое топливо. Спустя 20 лет у них это получилось.

Исследователям удалось получить жидкий продукт с минимумом примесей — содержание метанола в нем достигает 99,5%. Для этого потребовалось три шага:

  • превратить свет, полученный с помощью солнечных батарей, в энергию;
  • с помощью этого электричества разложить воду на водород и кислород;
  • соединить водород и оксид углерода и получить метанол.

Чтобы получить нужное количество солнечного света, исследователи используют целые фермы солнечных батарей

Как это применять: в отличие от нефти и угля, это топливо сгорает чисто. Если у Китая получится сделать производство жидкого метанола массовым, углекислого газа в атмосфере станет намного меньше — на долю Китая приходится около 29% мировых выбросов.

Альтернативные источники энергии: что надо знать

«Зеленую» энергию выбирают страны, города, компании и граждане. Рассказываем, как возобновляемые источники переходят из категории альтернативных в основные, как они развиваются в России и мире и какое будущее их ждет

Что такое альтернативные источники энергии

Возобновляемую энергию получают из устойчивых источников, таких как гидроэнергия, энергия ветра, солнечная энергия, геотермальная энергия, биомасса и энергия приливов и отливов. В отличие от ископаемых видов топлива — например, нефти, природного газа, угля и урановой руды, эти источники энергии не истощаются, поэтому их называют возобновляемыми. Только за 2019 год по всему миру установлено объектов возобновляемых источников энергии (ВИЭ) общей мощностью 200 ГВт.

Доля источников энергии в мировом потреблении (Фото: REN21)

Полная версия отчета Renewables 2020 в формате PDF (см. стр. 32)

Виды альтернативных источников энергии

1. Солнечная энергия

Солнце — главный источник энергии на Земле, ведь около 173 ПВт (или 173 млн ГВт) солнечной энергии попадает на нашу планету ежегодно, а это более чем в 10 тыс. раз превышает общемировые потребности в энергии. Фотоэлектрические модули на крыше или на открытых территориях преобразуют солнечный свет в электрическую энергию с помощью полупроводников — в основном, кремния. Солнечные коллекторы вырабатывают тепло для отопления и производства горячей воды, а также для кондиционирования воздуха.

Солнечные панели могут вырабатывать энергию и в пасмурную погоду, и даже в снегопад. Для наибольшей эффективности их стоит устанавливать под определенным углом — чем дальше от экватора, тем больше угол установки панелей.

2. Энергия ветра

Использование ветра в качестве движущей силы — давняя традиция. Ветряные мельницы использовались для помола муки, лесопильных работ) и в качестве насосной или водоподъемной станции. Современные ветрогенераторы вырабатывают электроэнергию за счет энергии ветра. Сначала они превращают кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию.

Ветроэнергетика является одной из самых быстроразвивающихся технологий возобновляемой энергетики. По последним данным IRENA, за последние два десятилетия мировые мощности по производству энергии ветра на суше и на море выросли почти в 75 раз — с 7,5 ГВт в 1997 году до примерно 564 ГВт к 2018 году.

3. Энергия воды

Еще в древнем Египте и Римской империи энергия воды использовалась для привода рабочих машин, в том числе мельниц. В средние века водяные мельницы применялись в Европе на лесопильных и целлюлозно-бумажных предприятиях. С конца XIX века энергию воды активно используют для получения электроэнергии.

4. Геотермальная энергия

Геотермальная энергия использует тепло Земли для производства электричества. Температура недр позволяет нагревать верхние слои Земли и подземные водоемы. Извлекают геотермальную энергию грунта с помощью мелких скважин — это не требует больших капиталовложений. Особенно эффективна в регионах, где горячие источники расположены недалеко к поверхности земной коры.

5. Биоэнергетика

Биоэнергетика универсальна. Тепло, электричество и топливо могут производиться из твердой, жидкой и газообразной биомассы. При этом в качестве возобновляемого сырья используются отходы растительного и животного происхождения.

6. Энергия приливов и отливов

Приливы и волны — еще один способ получения энергии. Они заставляют вращаться генератор, который и отвечает за выработку электричества. Таким образом для получения электроэнергии волновые электростанции используют гидродинамическую энергию, то есть энергию, перепад давления и разницу температур у морских волн. Исследования в этой области еще ведутся, но специалисты уже подсчитали — только побережье Европы может ежегодно генерировать энергии в объеме более 280 ТВт·ч, что составляет половину энергопотребления Германии.

Как разные страны мира выполняют планы по энергопереходу

Страны по всему миру поставили себе амбициозные задачи по переходу на возобновляемую энергию. Цели стали частью и Парижского соглашения — к 2030 году решения с нулевым выбросом углерода могут быть конкурентоспособными в секторах, на которые приходится более 70% глобальных выбросов. Сделать это планируется за счет энергетического перехода — процесса замены угольной экономики возобновляемой энергетикой. В 2020 году, несмотря на пандемию и экономическую рецессию, многие города, страны и компании продолжали объявлять или осуществлять планы по декарбонизации.

Ожидается, что в 2021 году Индия внесет самый большой вклад в развитие возобновляемой энергетики. Здесь планируют запустить ряд ветряных и солнечных проектов.

В Евросоюзе также прогнозируется скачок в приросте мощностей в 2021 году. Здесь даже в условиях пандемии не забывают о Green Deal — крупнейшей в истории ЕС коррекции экономического курса. Цель проекта — сформировать в ЕС углеродно-нейтральное пространство к 2030 году. Для этого планируется сократить на 40% объем выбросов парниковых газов от уровня 1990 года и увеличить долю энергии из возобновляемых источников до 32% в общей структуре энергопотребления. Как посчитала Еврокомиссия, достичь этих задач можно будет с помощью ежегодных инвестиций в размере €260 млрд. Доля ВИЭ в энергосистеме ЕС также постоянно растет. Так, около 40% электроэнергии в первом полугодии 2020 года в ЕС было произведено из возобновляемых источников.

Пока же в лидерах инвестиций в развитие возобновляемой энергетики — Китай, США, Япония и Великобритания. С тех пор, как BloombergNEF начал отслеживать эти данные, глобальные инвестиции в ветровую и солнечную энергетику, биотопливо, биомассу и отходы, малую гидроэлектроэнергетику увеличились почти на порядок. В годовом выражении вложения в чистую энергию выросли с $33 млрд до более чем $300 млрд за 20 лет.

Китай за десять лет стал главным производителем оборудования для возобновляемой энергетики. В первую очередь, речь идет о солнечных панелях. Семь из десяти крупнейших мировых производителей солнечных батарей — это китайские компании. В целом развитие технологий удешевило стоимость строительства новых объектов ВИЭ. Это приближает планы Китая стать углеродно нейтральным к 2060 году.

Ставка на солнце и уголь: два лица энергетики Китая

Серьезных шагов в сторону энергоперехода ожидают и от президента США Джо Байдена. Он не только вернул страну в Парижское соглашение, но и заявил о том, что намерен добиться чистых выбросов парниковых газов и перехода на 100% экологичной энергии к 2050 году.

Также к 2050 году планируют использовать только ВИЭ Япония, Южная Корея, Новая Зеландия и Великобритания. Прошедший 2020 год уже стал самым экологичным для энергосистемы Великобритании со времен промышленной революции. Страна целых 67 дней смогла обходиться без угля. От традиционных источников энергии Британия планирует отказаться уже к 2025 году.

Активно развиваются ВИЭ в Испании — по прогнозам, сектор только солнечной энергетики в стране будет расти примерно вдвое быстрее, чем в Германии.

В 2020 году Шотландия получила 97% электроэнергии из возобновляемых источников. С помощью произведенной «зеленой» энергии получилось обеспечить электронужды более чем 7 млн домохозяйств. Шотландия планирует стать углеродной нейтральной уже к 2030 году.

Этот же год выбран временем полного отказа от традиционной энергетики для Австрии, а Саудовская Аравия запланировала к 2030 году получать 50% электроэнергии от ВИЭ.

Национальные цели по доле ВИЭ среди источников энергии (Фото: REN21)

Полная версия отчета Renewables 2020 в формате PDF (см. стр. 57)

Геотермальная энергия в Рейкьявике и солнечные батареи для Берлина

Отдельные города по всему миру также стремятся стать климатически нейтральными. По данным CDP, из более чем 570 городов мира, по которым ведется статистика, более 100 получают по крайней мере 70% электроэнергии из возобновляемых источников — энергии воды, геотермальной, солнечной и ветровой энергии.

В списке присутствуют такие города, как Окленд, Найроби, Осло, Сиэтл, Ванкувер, Рейкьявик, Порту, Базель, Богота и другие.

Например, Берлингтон (штат Вермонт, США) уже получает 100% электроэнергии от ветра, солнца, воды и биомассы. Вся электроэнергия Рейкьявика производится за счет гидроэлектростанций и геотермальных источников. К 2040 году весь общественный и личный транспорт столицы должен стать свободным от ископаемого топлива.

100% энергии из возобновляемых источников для швейцарского Базеля обеспечивает собственная энергоснабжающая компания. Большая часть электроэнергии поступает от гидроэнергетики и 10% — от ветра. В мае 2017 года Швейцария проголосовала за постепенный отказ от атомной энергетики в пользу ВИЭ.

Мировые столицы также не остаются в стороне. Например, Сенат Берлина утвердил план мероприятий по развитию солнечной энергетики в столице Германии «Masterplan Solarcity». В соответствии с общей стратегией развития города Берлин должен стать климатически нейтральным к 2050 году. В конце 2018 года в Берлине работали солнечных электростанций, которые покрывали 0,7% потребления электроэнергии, к 2050 году 25% энергопотребления города будут обеспечиваться за счет солнечной энергетики.

«Мы продвигаем расширение возобновляемых источников энергии в Берлине. Сейчас на рассмотрении Сената столицы находятся два законопроекта. Закон о солнечной энергии обязывает владельцев частных домов устанавливать солнечные системы на крышах. Законопроект Администрации по окружающей среде и климату сделает использование солнечной энергии в общественных зданиях обязательным уже в 2023 году. Это радикально сократит выбросы CO2 в Берлине», — рассказала руководитель фракции «Зеленые» в берлинском Сенате Зильке Гебель.

Как бизнес формирует положительный имидж, инвестируя в ВИЭ

Компании по всему миру также создают стратегии и определяют «зеленые» цели, которых они хотят достичь в течение определенного периода времени. Появилось осознание: нужно действовать ответственно и подавать экологичный пример потребителям. Конечно, использование ВИЭ может не только помочь в формировании положительного имиджа для компаний, но и снизить затраты на электроэнергию.

Полная версия отчета Renewables 2019 в формате PDF (см. стр. 47)

Так, новые серверы Facebook, а также компания General Motors будут получать энергию от солнечной электростанции. Ее строят в штате Кентукки в рамках масштабной программы Green Invest.

IKEA запланировала производить больше электроэнергии на основе возобновляемых источников, чем она потребляет, к 2030 году. В 14 странах на магазинах размещены 920 тыс. солнечных панелей, а также более 530 ветряных турбин. Ingka, материнская компания IKEA, инвестировала около $2,8 млрд в различные проекты ВИЭ и стала владельцем 1,7 ГВт мощностей. Она также продолжит вкладывать средства в строительство ветропарков и солнечных электростанций.

Химический концерн BASF будет постепенно переходить на возобновляемые источники энергии, а также планирует инвестировать в ветропарки.

Компания Intel получает энергию от ветра, солнца, воды и биомассы. С 2012 года Intel инвестировал $185 млн в 2 000 проектов по энергосбережению, а 100% электроэнергии, потребляемой корпорацией в США и ЕС, поступает из ВИЭ.

Apple также ставит перед собой цель стать углеродно нейтральной. Она приобрела несколько солнечных ферм, обеспечивая устойчивую энергию для своих центров обработки данных. С 2018 года все розничные магазины, офисы и центры обработки данных Apple работают на 100% возобновляемой энергии.

Microsoft ежегодно использует более 1,3 млрд. кВт·ч «зеленой» энергии при разработке ПО, работы центров обработки данных и производства. Компания обязалась сократить выбросы углекислого газа на 75% к 2030 году.

10 альтернативных источников энергии, о которых вы ничего не знали

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.

Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.

Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.

«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу. 

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.

Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.

Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.

Энергия из тепла человека

Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Такой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.

Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.

Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства. 

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.

Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.

«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.

Смотреть далее: 10 самых красивых ветряных электростанций мира

Альтернативные источники энергии: почему они нужны всем

МОСКВА, 19 дек — ПРАЙМ. Использовать возобновляемые источники энергии (ВИЭ) человечество стало раньше, чем научилось добывать уголь, нефть и газ. Однако со временем потребление энергии росло — человеку индустриального общества требовалось уже в 100 раз больше энергии, чем в первобытную эпоху. И тогда обеспечить стабильную поставку таких мощностей стало возможным благодаря сжиганию ископаемого топлива. 

Сейчас человечество снова задумалось об использовании альтернативных источников энергии, так как запасы нефти и газа исчерпаемы, а их использование наносит большой вред окружающей среде, но уже на совершенно другом уровне. Ведь перемолоть муку на ветряной мельнице или обеспечить электроэнергией целый город с помощью ветрогенераторов — задачи разного масштаба. 

К основным видам ВИЭ сегодня относят гидроэнергетику, ветроэнергетику, гелиоэнергетику. В некоторых местах можно развивать волновую и геотермальную энергетику.

САМЫЕ РАСПРОСТРАНЕННЫЕ ВИЭ

Гидроэнергетика — самый распространенный способ добычи энергии из неисчерпаемого источника, теоретический потенциал которого оценивается в 30-40 ТВт·ч в год. Для ее работы необходимо построить плотину, разместить турбины, которые будет крутить вода. Явным преимуществом является стабильность выработки энергии и возможность ее контролировать, изменяя скорость потока воды. Среди недостатков — резкое изменение уровня воды в искусственных водохранилищах, нарушение нерестового цикла рыб и снижение количества кислорода в воде, что вредит флоре и фауне водоема.

Хитрости бизнеса. Как офшоры помогают компаниям экономить на налогах
 

Еще один перспективный источник — ветроэнергетика. Для добычи энергии таким способом необходимо установить специальные турбины, которые будет вращать ветер, за счет чего будет вырабатываться электричество. Ветряные турбины легко и дешево обслуживать, они не занимают много места, вращаются на высоте от 100 м, то есть, под ними можно, например, вести сельскохозяйственную деятельность. 

Иногда ветроэлектростанции (ВЭС) строят прямо в море. Такой проект в 2017 году разработали Дания, Нидерланды и Германия. Они собираются к 2050 году соорудить в море остров площадью 6 кв. км и разместить на нем турбины. Планируется, что такая станция сможет вырабатывать до 30 ГВт·ч в год энергии, а в перспективе — до 100 ГВт·ч в год. 

Однако у этого источника дешевой и чистой энергии есть несколько существенных недостатков — нестабильность и зависимость от места размещения. Ветер дует не везде и не всегда. А в местах, где ветер дует часто и с большой силой, как правило, не располагаются населенные пункты. Это повышает расходы на строительство линий электропередач и транспортировку энергии. Поэтому ветроэнергетика хороша именно как дополнительный источник энергии.

Альтернатива ВЭС — солнечные электростанции (СЭС), которые могут работать по нескольким принципам. В одном случае с помощью сфокусированных солнечных лучей нагревают резервуар с водой (температура пара в нем может доходить до 7000С), в другом — используются фотобатареи. Второй тип гораздо проще соорудить, устанавливать фотоэлементы можно практически везде, а стоимость их продолжает снижаться с развитием технологии производства. 

Что такое валютные войны и зачем их ведут

Главными недостатками СЭС является большая зависимость от места расположения, времени суток и сезона. Например, станция не будет вырабатывать энергию ночью, значительно меньше — в зимнее время года. Полностью обеспечить себя электричеством с помощью СЭС могут даже не все африканские страны. Поэтому солнечная энергетика на данном этапе тоже может служить только в качестве вспомогательного источника. 

КАК ИСПОЛЬЗУЮТ ДРУГИЕ ИСТОЧНИКИ ЭНЕРГИИ

В волновой энергетике используются специальные модули, которые качаются на волнах и таким образом приводят в действие специальные поршни. Потенциал этого вида ВИЭ оценивают более чем в 2 ТВт·ч в год. Волновые электростанции защищают берега и набережные от разрушения, уменьшают воздействие на опоры и мосты. При правильной установке они не вредят окружающей среде, к тому же практически незаметны в море.

Среди недостатков — нестабильность (то есть станция вырабатывает меньше энергии во время штиля), шум, незаметность для водного транспорта, из-за чего необходимо дополнительно устанавливать сигнальные элементы. 

В некоторых местах устанавливают геотермальные станции (ГеоТЭС). Общий потенциал геотермальной энергии оценивается в 47 ТВт·ч в год, что соответствует выработке примерно 50 тысяч АЭС, но сейчас технологии позволяют получить доступ только к 2% от него — 840 ГВт·ч в год. Чтобы это сделать, роют две скважины, по одной из них подается вода, которая, нагреваясь от тепла земли, превращается в пар. Затем пар по трубе направляется в турбины. На разных этапах происходит его очистка от примесей. 

Главное преимущество геотермальной энергетики — стабильность, которую не могут обеспечить многие ВИЭ, и компактность, что удобно для районов со сложным рельефом. С другой стороны, вода, которая проходит через скважины, несет большое количество тяжелых металлов и других вредных веществ. При неправильной эксплуатации станции или при возникновении чрезвычайной ситуации, попадание в атмосферу и в почву этих веществ, может привести к экологической катастрофе локального масштаба. 

Кроме того, стоимость энергии ГеоТЭС выше, чем у ВЭС и СЭС, а мощность довольно невысокая.

Основная проблема практически всех перечисленных выше источников заключается в их нестабильности. Современные аккумуляторы не позволяют накапливать такое количество энергии, чтобы без потерь мощности использовать ее в ночное время или во время штиля. Один из вариантов — во время пиковых нагрузок поднимать воду в верхнюю часть водохранилища и потом во время затишья использовать ее для выработки энергии на ГЭС. 

Зарабатываем и делимся: популярно о дивидендах

АЛЬТЕРНАТИВНАЯ ЭНЕРГИЯ В РОССИИ И В МИРЕ

На данный момент использование ВИЭ активно развивается в Европе, где страны вынуждены закупать топливо для работы традиционных электростанций. Но, по мнению некоторых экспертов, в развитии альтернативной энергетики заинтересованы и государства, чья экономика зависит от экспорта нефти и газа. Ведь если в некоторых регионах использовать ВИЭ вместо газа, это топливное сырье можно будет отправить на экспорт. 

Тем не менее, в России этот сектор энергетики развивается очень медленно. По данным аналитической компании Enerdata, в Норвегии около 97% электроэнергии добывается из альтернативных источников с учетом гидроэнергетики, около 80% — в Новой Зеландии и Бразилии. В Европе 30-40% энергии ВИЭ вырабатывается в Германии, Италии, Испании и Великобритании. В России этот показатель составляет всего 17,2%, из них доля СЭС и ВЭС — менее 1%.

преобразование движений ветвей деревьев в источник энергии — Магистерская программа «Прототипирование городов будущего» — Национальный исследовательский университет «Высшая школа экономики»

Выпускник международной магистерской программы ВШУ «Прототипирование городов будущего» Александр Алтенков посвятил свой проект альтернативным источникам энергии. Исследование сделано под руководством архитектора и ведущего эксперта Шухов Лаб Елены Митрофановой.

Энергия в природе

Согласно Стивену Шавиро (2012), в природе задействованы непрерывные потоки энергии. Эта энергия не возникает и не исчезает, а только переходит из одного состояния в другое (первый закон термодинамики). Это также означает, что энергия постоянно потребляется или рассеивается при уменьшении градиентов и увеличении энтропии (второй закон термодинамики).

Новые технологии и современный культурный контекст позволяют ученым, изобретателям и художникам вторгаться в непрерывный цикл преобразования энергии, чтобы использовать этот ресурс для различных нужд.

Анемокинетика

Проект Александра Алтенкова предлагает один из новых подходов к вторжению в вышеупомянутый цикл. А именно, исследует потенциал производства электроэнергии с помощью повторяющихся колебательных движений ветвей деревьев.

В результате разработки электрической цепи и конструкции прототипа, а также испытаний прототипа в естественных условиях был получен результат, что каждое движение ветви дерева давало постоянный ток 0,1 Ампер и 3,6 Вольт и длительностью 200 миллисекунд.

Это означает, что для того, чтобы зарядить батарею ёмкостью 600 мАч, потребуется 43000 циклов движений ветвей или же 6 часов. Наблюдения и треккинг движений ветвей показали, что ветви диаметром около 9 мм, расположенные на высоте около 2,5 метров при скорости ветра 3 м/с, характеризуются средней амплитудой колебаний, равной до 45 мм.

Ветровой поток создает колебательные движения ветви (F). В этот момент благодаря гибкости пьезодиска, к которому прикреплен стержень, в самой дальней его точке возникает инерция (p), которая умножается на момент силы (r), деформирует пьезодиск, который в свою очередь генерирует электрический заряд.

 

Проектное предложение подразумевает использование такого типа энергии для создания автономной навигации в природных парках. Однако спектр возможного применения данной технологии зависит от масштаба и количества электрогенераторов «Анемокинетика».

ВИЭ стали в 2020 году главным источником электричества в ЕС, у газа выросла доля | Экономика в Германии и мире: новости и аналитика | DW

В электроэнергетике Европейского Союза произошла смена лидера: крупнейшим производителем электричества стала возобновляемая энергетика. В 2020 году 27 стран Евросоюза впервые получили больше электроэнергии из возобновляемых источников, чем из ископаемых. Доля угля, газа и нефти снизилась до 37%, тогда как ветер, солнце, гидроэнергия и биомасса обеспечили 38% суммарной генерации в ЕС, увеличив объемы производства на 10%.

Ветер и солнце обеспечили пятую часть всей электроэнергии в ЕС

К таким выводам пришли два аналитических центра, специализирующихся на вопросах энергетики и глобального энергетического перехода, — британский Ember и немецкий Agora Energiewende. В совместном докладе, опубликованном 25 января, они подчеркивают, что достигнут «важный рубеж при переходе Европы на чистую энергию». Это уже пятое исследование электроэнергетики ЕС, проведенное двумя организациями.

Титульный лист доклада Ember и Agora Energiewende

Возобновляемые источники энергии (ВИЭ) вышли в лидеры благодаря продолжающемуся быстрому росту ветряной и солнечной энергетики, увеличивших в 2020 году генерацию, несмотря на экономический кризис, соответственно на 9% и 15%. Вместе они обеспечили в прошлом году 19% (почти пятую часть!) всего электричества в ЕС: доля ветра составила 14%, солнца — 5%. Объемы производства в гидроэнергетике остались неизменными, развитие биоэнергетики застопорилось, отмечается в докладе. Добавим, что в Германии доля ВИЭ в прошлом году впервые превысила 50%.

Рост выработки электроэнергии с помощью ВИЭ произошел в ЕС в прошлом году в условиях снижения спроса на электричество на 4%, вызванного пандемией коронавируса и рецессией. Одновременно продолжилось стремительное сокращение производства электроэнергии на угольных электростанциях. За один только 2020 год оно упало на 20%, а по сравнению с 2015 годом снизилось наполовину. В результате доля каменного и бурого угля в генерации электроэнергии в ЕС уменьшилась до 13%.

Доля природного газа в электроэнергетике ЕС достигла 20 процентов

На этом фоне относительно немного — на 4% сократилось производство электроэнергии из природного газа. В докладе указывается, что удержанию позиций способствовали низкие цены на газ и удорожание сертификатов на выбросы CO2 в атмосферу. Это стимулировало энергетические компании активнее использовать голубое топливо: оно выделяет при сжигании значительно меньше парниковых газов, чем уголь.

Несмотря на некоторое сокращение потребления газа в прошлогодних специфических условиях, спрос на него по сравнению с 2015 годом увеличился на 14%, в результате доля газа достигла 20%, указывается в докладе. Получается, что в настоящий момент в Евросоюзе из газа вырабатывается приблизительно столько же электричества, что и с помощью ветра и солнца.

На рекордные 10% упало в 2020 году производство электроэнергии на атомных электростанциях. «Это был самый большой спад с 1990 года и, возможно, за всю историю. Он был даже больше, чем в 2011 году, когда Германия закрыла атомные станции после Фукусимы», — отмечают авторы доклада и объясняют это проблемами на АЭС во Франции и Бельгии, а также закрытием энергоблоков в Швеции и Германии.   

У европейского рынка угля нет перспектив

Доклад Ember и Agora Energiewende в очередной раз подтвердил бесперспективность европейского рынка для российских экспортеров угля – и, соответственно, для железнодорожных и морских перевозок, обслуживающих поставки этого энергоносителя в западном направлении. Потребление энергетического угля падало в 2020 году почти во всех странах ЕС, отмечается в докладе. Особо упоминаются Нидерланды, Греция и Испания, где процесс отказа от угля ускоряется благодаря успешному развитию ветряной и солнечной энергетики.

Отметим, что большинство стран ЕС намерены прекратить использование угля в электроэнергетике к 2030 году. В Германии это должно произойти, согласно принятому закону, самое позднее в 2038 году, однако уже в 2020 году производство электричества на немецких угольных электростанциях сократилось даже несколько больше, чем в среднем по ЕС — на 22%, указывается в докладе. Крупнейшим поставщиком угля в ФРГ является Россия.

«Газпром» конкурирует в Европе с ВИЭ и альтернативными поставщиками

Куда более благоприятными выглядят перспективы для российских экспортеров газа, причем как трубопроводного («Газпром»), так и сжиженного («Новатэк»). Этот энергоноситель увеличивает свою долю на европейском рынке электроэнергии, вместе с ВИЭ вытесняя уголь. В то же время возобновляемая энергетика становится для газа и его поставщиков все более серьезным конкурентом. 

Строительство трубопровода TAP в Греции. В конце 2020 года он вошел в строй

Одной из стран, увеличивших в прошлом году производство электроэнергии на газовых электростанциях, были Нидерланды, говорится в докладе. Эта страна получает российский газ по действующему трубопроводу «Северный поток» и имеет также мощности для приема сжиженного природного газа (СПГ) из России. В то же время именно в Нидерландах в прошлом году наблюдался самый большой рост выработки электроэнергии с помощью ветра и солнца, составивший 40%, подсчитали Ember и Agora Energiewende.

В Польше и Греции газовая генерация в прошлом году тоже выросла. Однако Польша намерена с 2023 года полностью отказаться от поставок «Газпрома» и для этого прокладывает сейчас газопровод из Норвегии Baltic Pipe. А в Грецию, получающую российское голубое топливо по «Турецкому потоку», с этого года поступает и азербайджанский газ из вошедшего в строй газопровода TAP. Так что увеличение доли природного газа в электроэнергетике ЕС вовсе не означает, что это автоматически приведет к увеличению закупок голубого топлива в России.

Смотрите также:

  • Альтернативные ландшафты Германии

    Дисен-ам-Аммерзе (Бавария) • На прошлой июльской неделе мы опубликовали этот снимок из Баварии в нашей рубрике «Кадр за кадром» — причем, руководствуясь чисто эстетическими соображениями: не смогли пройти мимо столь живописного ландшафта. Публикация этого пейзажа с солнечными батареями вызвала оживленное обсуждение в соцсетях — о пользе и вреде возобновляемых источников энергии.

  • Альтернативные ландшафты Германии

    Лемвердер (Нижней Саксония) • Поэтому сегодня продолжим тему солнечных панелей и ветряков на немецких просторах. На возобновляемые источники в Германии уже приходится более 40 процентов всего объема вырабатываемой электроэнергии.

  • Альтернативные ландшафты Германии

    Ульм (Баден-Вюртемберг) • При этом официальная немецкая статистика в этих данных учитывает энергию ветра, солнца, воды, а также получаемую разными путями из биомассы и органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Якобсдорф (Бранденбург) • В 2018 году на наземные (оншорные) и морские (офшорные) ветроэнергетические установки и парки в Германии пришлась почти половина всего объема произведенной возобновляемой энергии — 41 % и 8 % соответственно.

  • Альтернативные ландшафты Германии

    Пайц (Бранденбург) • Доля солнечных электростанций в этом возобновляемом энергетическом «коктейле» достигла 20 %.

  • Альтернативные ландшафты Германии

    Юнде (Нижняя Саксония) • Ровно столько же, то есть 20 % пришлось на использование биомассы в качестве альтернативного источника электрической энергии. Еще три процента дает использование органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Хаймбах (Северный Рейн — Вестфалия) • Оставшиеся семь процентов возобновляемой энергии приходятся на ГЭС. Возможности для строительства гидроэлектростанций в Германии ограничены, но используются эти ресурсы уже очень давно. Эту электростанцию в регионе Айфель построили в 1905 году. Оснащенная современными турбинами, она исправно работает до сих пор.

  • Альтернативные ландшафты Германии

    Халлиг Хооге (Шлезвиг-Гольштейн) • Для полноты картины приведем расклад по всем источникам в Германии за 2018 год: АЭС — 13,3 %, бурый уголь — 24,1 %, каменный уголь — 14,0 %, природный газ — 7,4 %, ГЭС — 3,2 %, ветер — 20,2%, солнце — 8,5 %, биомасса — 8,3 %.

  • Альтернативные ландшафты Германии

    Гарцвайлер (Северный Рейн — Вестфалия) • В 2038 году в Германии намерены полностью отказаться от сжигания бурого угля для получения электроэнергии. Последний атомный реактор, согласно решению федерального правительства, должны вывести из эксплуатации в 2022 году. В прошлом году на АЭС и бурый уголь пришлось более 37 %, которые необходимо будет чем-то замещать.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • По данным на конец 2018 года в Германии насчитывалось более 29 тысяч наземных ветроэнергетических турбин. В прибрежных морских водах Германии расположено еще около 1350 ветряков, однако более четырех десятков из них еще не были подключены в энергетическую сеть.

  • Альтернативные ландшафты Германии

    Северное море (Шлезвиг-Гольштейн) • Серьезную проблему представляет необходимость строительства новых энергетических трасс для транспортировки энергии из северных регионов, где ветер дует чаще и сильнее (здесь много таких турбин), к потребителям в западные и южные части Германии.

  • Альтернативные ландшафты Германии

    Лебус (Бранденбург) • Эти планы вызывают протесты жителей в тех густонаселенных регионах, по которым линии электропередач должны проходить. В некоторых местах люди требуют убирать высоковольтные ЛЭП под землю.

  • Альтернативные ландшафты Германии

    Рюген (Мекленбург — Передняя Померания) • Планы установки новых ветроэнергетических турбин в разных регионах все чаще наталкиваются в Германии на сопротивление со стороны населения. Соответствующие судебные иски часто имеют успех, что уже заметно сказывается на годовых показателях роста отрасли — тем более, что подходящие места становится находить все труднее.

  • Альтернативные ландшафты Германии

    Вормс (Рейнланд-Пфальц) • Согласно данным службы Deutsche WindGuard, в 2018 году в Германии было введено в эксплуатацию всего 743 новых ветряка. При этом предыдущий 2017 год оказался рекордным в истории развития этого вида возобновляемой энергии в ФРГ: почти 1849 новых установок.

  • Альтернативные ландшафты Германии

    Дассов (Мекленбург — Передняя Померания) • Всего в Германии сейчас насчитывается около тысячи гражданских инициатив, выступающих против строительства новых ветряков. Их сторонники считают, что эти установки разрушают жизненное пространство птиц и летучих мышей, уродуют ландшафты, а инфразвук и прочий постоянный шум этих установок вредит здоровью людей, живущих по соседству.

  • Альтернативные ландшафты Германии

    Восточная Фризия (Нижняя Саксония) • Эти инициативы требуют, в частности, в качестве альтернативы рассматривать газовые и паровые электростанции, повышать эффективность угольных станций, а также пересмотреть решение парламента и правительства Германии об отказе от атомной энергии.

  • Альтернативные ландшафты Германии

    Зауэрланд (Северный Рейн — Вестфалия) • Представители отрасли обычно указывают на недоказанность негативного влияния инфразвука на здоровье. Что касается гибели птиц из-за ветровых установок, специалисты называют разные цифры, максимум — до 200 тысяч в год в целом по Германии. Для сравнения: в результате столкновений со стеклами окон и фасадов погибает около 18 миллионов птиц в год.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • Летучих мышей гибнет более 100 тысяч в год (по некоторым оценкам, втрое больше) — не только от столкновений с лопастями, но и из-за травм, получаемых в результате завихрений воздуха, когда они пролетают рядом. Много гибнет во время сезонной миграции. Эксперты требуют учитывать эти факторы — в частности, отключать ветряки в часы особой активности летучих мышей.

  • Альтернативные ландшафты Германии

    Бедбург-Хау (Северный Рейн — Вестфалия) • Правила выбора мест для ветряков регулируются земельными законами. Например, в Северном Рейне — Вестфалии минимальное расстояние до жилых построек составляет 1500 метров, в Тюрингии — 750 метров. В Баварии это расстояние вычисляется по формуле «Высота установки х 10», то есть, например, два километра между жилыми зданиями и двухсотметровым ветряком.

  • Альтернативные ландшафты Германии

    Ренцов (Мекленбург — Передняя Померания) • Дискуссии о развитии возобновляемых источников энергии часто ведутся в Германии эмоционально и будут продолжаться в обозримом будущем. Чтобы повысить готовность населения видеть в окрестностях такие установки, предлагается, в частности, отчислять дополнительную часть доходов конкретным регионам на различные нужные и полезные для местных жителей проекты.

    Автор: Максим Нелюбин


 

Росатом Госкорпорация «Росатом» ядерные технологии атомная энергетика АЭС ядерная медицина

Росатом Госкорпорация «Росатом» ядерные технологии атомная энергетика АЭС ядерная медицина

На АЭС происходит три взаимных преобразования форм энергии

Ядерная энергия

переходит в тепловую

Тепловая энергия

переходит в механическую

Механическая энергия

преобразуется в электрическую

РЕАКТОР

1. Ядерная энергия переходит в тепловую

Основой станции является реактор — конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.

ПАРОГЕНЕРАТОР

2. Тепловая энергия переходит в механическую

Тепло отводится из активной зоны реактора теплоносителем — жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе.

ЭЛЕКТРОГЕНЕРАТОР

3. Механическая энергия преобразуется в электрическую

Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.

Основным элементом реактора является активная зона(1). Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.

Есть также второе здание, где размещается турбинный зал(2): парогенераторы, сама турбина. Далее по технологической цепочке следуют конденсаторы и высоковольтные линии электропередач, уходящие за пределы площадки станции.

На территории находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями(3) (бетонная башня, сужающаяся кверху), прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.

В настоящее время в России действует 4 АЭС с одноконтурными реакторами

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.

В настоящее время в России действует 6 АЭС с двухконтурными реакторами

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.

В настоящее время в России действует 1 АЭС с трехконтурным реактором

В настоящее время в России действует 4 АЭС с одноконтурными реакторами

В настоящее время в России действует 6 АЭС с двухконтурными реакторами

В настоящее время в России действует 1 АЭС с трехконтурными реакторами

Выбрать язык:

Русский / English

Следите за нами:

Следите за нами:

Этот сайт использует cookies. Продолжая работу с сайтом, Вы выражаете своё согласие на обработку Ваших персональных данных. Отключить cookies Вы можете в настройках своего браузера. Подробнее

СОГЛАСЕН

О нас — Source Power Company

Винсент Палмьери, управляющий директор Source Power Company, имеет 24-летний опыт работы в энергетической отрасли. Он спроектировал, управлял и возглавил высокопроизводительные команды в банковском деле, трейдинге, энергосервисной компании («ЭСКО») и коммунальных службах, охватывающих как физические, так и финансовые рынки нефти, природного газа и электроэнергии. Винсент успешно руководил организациями через режимы запуска и роста, последовательно оправдывая или превосходя ожидания акционеров.Он проповедует постоянную интеграцию возобновляемых источников энергии в нашу повседневную жизнь и твердо верит в энергетическую революцию, в которой устойчивость будет двигать рынки.

Винсент накопил и овладел различными наборами навыков и компетенций, включая критическое мышление, управление проектами и изменениями, стратегический и тактический анализ, оценку рисков и передовые методы работы, позволяющие ему эффективно руководить. Винсент, известный как мотивирующий лидер, который способствует достижению измеримых финансовых результатов, помогает своим командам добиваться успеха.

До того, как присоединиться к руководящей команде Source Power, Винсент занимал должность генерального директора East Coast Power & Gas, где он помог преобразовать единый семейный бизнес в регионального игрока на 15 рынках, где продажи росли на 100% каждый год, а выручка приближалась к 400 миллионам долларов. . Он был советником по контролю корпоративных рисков / рыночным риском в Hess Corporation, юристом Goldman Sachs, заместителем директора Fortis Energy, менеджером PSEG Energy Resources & Trade LLC и координатором поставок в MX Energy.Винсент начал свою карьеру в энергетике в качестве операционного аналитика в AIG Energy Group, которая позже стала Sempra Energy Trading.

Винсент имеет степень бакалавра делового администрирования Университета Пейс. Он имеет сертификаты в области совершенствования процессов, управления проектами, основ лидерства от Harvard Business Review и наставничества. Он получил награду «Бизнесмен года в Бронксе в 2015 году» в компании East Coast Power & Gas и премию «Управление проектами в 2012 году» в компании Hess Corporation.Винсент является активным наставником в программе поощрения выпускников своей альма-матер. Винсент — давний поклонник Mets, Jets и Rangers. Своим самым большим достижением он считает незавершенную работу — воспитание двух детей школьного возраста.

Электроэнергия в США — Управление энергетической информации США (EIA)

Электроэнергия в США производится (вырабатывается) с использованием различных источников энергии и технологий

Соединенные Штаты используют множество различных источников энергии и технологий для производства электроэнергии.Источники и технологии менялись со временем, и некоторые из них используются чаще, чем другие.

Три основных категории энергии для производства электроэнергии — это ископаемое топливо (уголь, природный газ и нефть), ядерная энергия и возобновляемые источники энергии. Большая часть электроэнергии вырабатывается паровыми турбинами с использованием ископаемого топлива, ядерной энергии, биомассы, геотермальной и солнечной тепловой энергии. Другие основные технологии производства электроэнергии включают газовые турбины, гидротурбины, ветряные турбины и солнечные фотоэлектрические установки.

Нажмите для увеличения

Ископаемое топливо — крупнейший источник энергии для производства электроэнергии

Природный газ был крупнейшим источником — около 40% — выработки электроэнергии в США в 2020 году. Природный газ используется в паровых турбинах и газовых турбинах для выработки электроэнергии.

Уголь

был третьим по величине источником энергии для производства электроэнергии в США в 2020 году — около 19%. Почти все угольные электростанции используют паровые турбины.Несколько угольных электростанций преобразуют уголь в газ для использования в газовой турбине для выработки электроэнергии.

Нефть была источником менее 1% выработки электроэнергии в США в 2020 году. Остаточное жидкое топливо и нефтяной кокс используются в паровых турбинах. Дистиллятное или дизельное топливо используется в дизельных генераторах. Остаточное жидкое топливо и дистилляты также можно сжигать в газовых турбинах.

Ядерная энергия обеспечивает пятую часть электроэнергии США

Ядерная энергия была источником около 20% U.S. Производство электроэнергии в 2020 году. Атомные электростанции используют паровые турбины для производства электроэнергии за счет ядерного деления.

Возобновляемые источники энергии обеспечивают растущую долю электроэнергии в США

Многие возобновляемые источники энергии используются для выработки электроэнергии и составили около 20% от общего объема производства электроэнергии в США в 2020 году.

Гидроэлектростанции произвели около 7,3% от общего объема производства электроэнергии в США и около 37% электроэнергии из возобновляемых источников энергии в 2020 году. 1 Гидроэлектростанции используют проточную воду для вращения турбины, соединенной с генератором.

Энергия ветра была источником около 8,4% от общего объема производства электроэнергии в США и около 43% электроэнергии из возобновляемых источников энергии в 2020 году. Ветровые турбины преобразуют энергию ветра в электричество.

Биомасса была источником около 1,4% от общего объема производства электроэнергии в США в 2020 году. Биомасса сжигается непосредственно на пароэлектрических электростанциях или может быть преобразована в газ, который можно сжигать в парогенераторах, газовых турбинах или внутреннем сгорании. двигатели-генераторы.

Солнечная энергия обеспечила около 2,3% всей электроэнергии США в 2020 году. Фотоэлектрическая (PV) и солнечно-тепловая энергия — два основных типа технологий производства солнечной электроэнергии. Преобразование PV производит электричество непосредственно из солнечного света в фотоэлектрических элементах. В большинстве гелиотермических систем для выработки электроэнергии используются паровые турбины.

Геотермальные электростанции произвели около 0,5% от общего объема производства электроэнергии в США в 2020 году. Геотермальные электростанции используют паровые турбины для выработки электроэнергии.

1 Включая обычные гидроэлектростанции.

Последнее обновление: 18 марта 2021 г.

Производство, мощность и продажа электроэнергии в США

  • Генерация — это показатель выработки электроэнергии с течением времени. Большинство электростанций используют часть производимой электроэнергии для работы электростанции.
  • Мощность — это максимальный уровень электроэнергии (электричества), которую электростанция может подавать в определенный момент времени при определенных условиях.
  • Продажи — это количество электроэнергии, проданной потребителям за определенный период времени, и на них приходится большая часть потребления электроэнергии в США.

Вырабатывается больше электроэнергии, чем продается, потому что некоторая часть энергии теряется (в виде тепла) при передаче и распределении электроэнергии. Кроме того, некоторые потребители электроэнергии вырабатывают электроэнергию и используют большую часть или всю ее, и количество, которое они используют, называется прямого использования . К этим потребителям относятся промышленные, производственные, коммерческие и институциональные предприятия, а также домовладельцы, у которых есть собственные генераторы электроэнергии.Соединенные Штаты также экспортируют и импортируют часть электроэнергии в Канаду и Мексику и из них. Общее потребление электроэнергии в США конечными потребителями равно розничным продажам электроэнергии в США плюс прямое использование электроэнергии.

  • Шкала коммунальных услуг включает производство электроэнергии и мощность генерирующих блоков (генераторов), расположенных на электростанциях, общая генерирующая мощность которых составляет не менее одного мегаватта (МВт).
  • Малая шкала включает генераторы с генерирующей мощностью менее 1 МВт, которые обычно находятся в местах потребления электроэнергии или поблизости от них.Большинство солнечных фотоэлектрических систем, установленных на крышах зданий, представляют собой небольшие системы.
  • Мегаватт (МВт) = 1000 кВт; мегаватт-час (МВтч) = 1000 кВтч
  • ГВт (ГВт) = 1000 МВт; гигаватт-час (ГВтч) = 1000 МВтч

Нажмите для увеличения

Производство электроэнергии

В 2020 году чистая выработка электроэнергии генераторами коммунальных предприятий в США составила около 4 009 миллиардов киловатт-часов (кВтч) (или около 4 триллионов кВтч).По оценкам EIA, дополнительные 41,7 миллиарда кВтч (или около 0,04 триллиона кВтч) были произведены с помощью небольших солнечных фотоэлектрических (PV) систем.

В 2020 году около 60% выработки электроэнергии коммунальными предприятиями США было произведено из ископаемых видов топлива (угля, природного газа и нефти), около 20% — за счет ядерной энергии и около 20% — из возобновляемых источников энергии.

  • природный газ 40%
  • уголь 19%
  • ядерная 20%
    • негидроэлектрические возобновляемые источники энергии 13%
    • гидроэлектростанция7%
  • Нефть и прочее 1%

Электроэнергетическая мощность

Чтобы обеспечить стабильную поставку электроэнергии потребителям, операторам электроэнергетической системы или сети , требовать от электростанций производить и размещать в сети необходимое количество электроэнергии в любой момент, чтобы мгновенно удовлетворить и сбалансировать спрос на электроэнергию. .

  • Генераторы базовой нагрузки обычно полностью или частично удовлетворяют минимальную или базовую потребность (нагрузку) в электросети. Генератор базовой нагрузки работает непрерывно, вырабатывая электричество с почти постоянной скоростью в течение большей части дня. Атомные электростанции обычно работают в режиме базовой нагрузки из-за их низких затрат на топливо и технических ограничений на работу в зависимости от нагрузки. Геотермальные установки и установки, работающие на биомассе, также часто работают с базовой нагрузкой из-за их низких затрат на топливо.Многие крупные гидроэлектростанции, несколько угольных электростанций и все большее количество генераторов, работающих на природном газе, особенно в комбинированных энергетических установках, также обеспечивают мощность базовой нагрузки.
  • Генераторы пиковой нагрузки помогают удовлетворить спрос на электроэнергию, когда спрос наивысший или пиковый, например, ближе к вечеру и когда потребление электроэнергии для кондиционирования воздуха и отопления увеличивается в жаркую и холодную погоду соответственно. Эти так называемые пиковые установки обычно представляют собой генераторы, работающие на природном газе или нефти.В общем, эти генераторы относительно неэффективны и дороги в эксплуатации, но обеспечивают полноценное обслуживание в периоды пикового спроса. В некоторых случаях гидроаккумулирующие гидроэлектростанции и обычные гидроэлектростанции также поддерживают работу сети, обеспечивая электроэнергию в периоды пикового спроса.
  • Блоки генерации промежуточной нагрузки составляют крупнейший сектор генерации и обеспечивают работу в зависимости от нагрузки между базовой нагрузкой и пиковым режимом работы. Профиль спроса меняется со временем, и промежуточные источники в целом технически и экономически подходят для отслеживания изменений нагрузки.Многие источники энергии и технологии используются в промежуточных операциях. Установки комбинированного цикла, работающие на природном газе, которые в настоящее время вырабатывают больше электроэнергии, чем любая другая технология, обычно работают как промежуточные источники.

Дополнительные категории электрогенераторов включают

  • Периодические генераторы возобновляемых ресурсов , работающие на ветровой и солнечной энергии, которые вырабатывают электроэнергию только тогда, когда эти ресурсы доступны (то есть, когда ветрено или солнечно).Когда эти генераторы работают, они имеют тенденцию уменьшать количество электроэнергии, требуемой от других генераторов для обеспечения электросети.
  • Системы / объекты накопления электроэнергии , включая гидроаккумулирующие накопители, солнечно-тепловые накопители, батареи, маховики и системы сжатого воздуха. Эти системы обычно используют (или покупают) и хранят электроэнергию, которая генерируется в периоды непикового спроса на электроэнергию (когда цены на электроэнергию относительно низкие), и они обеспечивают (или продают) сохраненную электроэнергию в периоды высокого или пикового спроса на электроэнергию (когда цены на электроэнергию относительно высоки).Некоторые объекты используют электроэнергию, произведенную с помощью периодически возобновляемых источников энергии (ветра и солнца), когда доступность возобновляемых ресурсов высока, и обеспечивают накопленную электроэнергию, когда возобновляемых источников энергии мало или они недоступны. Негидроаккумулирующие системы также могут оказывать вспомогательные услуги электросети. Приложения для хранения энергии по своей природе потребляют больше электроэнергии, чем обеспечивают. В гидроаккумулирующих системах для перекачки воды в водохранилища используется больше электроэнергии, чем в системах накопления воды, а в негидроаккумулирующих системах наблюдаются потери при преобразовании и хранении энергии.Таким образом, склады электроэнергии имеют отрицательный чистый отрицательный баланс выработки электроэнергии. Общее поколение обеспечивает лучший индикатор уровня активности технологий хранения и приводится в выпусках данных отчета EIA-923 Power Plant Operation Report.
  • Распределенные генераторы подключены к электросети, но в основном они обеспечивают часть или всю потребность в электроэнергии отдельных зданий или сооружений. Иногда эти системы могут вырабатывать больше электроэнергии, чем потребляет объект, и в этом случае излишки электроэнергии отправляются в сеть.Большинство небольших солнечных фотоэлектрических систем представляют собой распределенные генераторы.

В конце 2020 года в Соединенных Штатах было 1117 475 МВт — или около 1,12 миллиарда киловатт (кВт) — общей производственной мощности коммунальных предприятий и около 27 724 МВт — или почти 0,03 миллиарда кВт — малых солнечных фотоэлектрических установок. генерирующая мощность.

На генерирующие установки, работающие в основном на природном газе, приходится самая большая доля генерирующих мощностей коммунальных предприятий в Соединенных Штатах.

  • природный газ 43%
  • уголь 20%
    • негидроэлектрические 16%
    • гидроэлектростанция 9%
  • ядерная 9%
  • Нефть 3%
  • прочие источники 0,5%

Существует три категории генерирующих мощностей. Паспортная мощность , определяемая производителем генератора, представляет собой максимальную выработку электроэнергии генерирующим агрегатом без превышения установленных температурных ограничений. Чистая летняя мощность и Чистая зимняя мощность — это максимальная мгновенная электрическая нагрузка, которую генератор может поддерживать летом или зимой, соответственно. Эти значения могут отличаться из-за сезонных колебаний температуры охлаждающей жидкости генератора (воды или окружающего воздуха). В большинстве своих отчетов по электроэнергии EIA указывает мощность производства электроэнергии как чистую летнюю мощность.

Источники энергии для СШАпроизводство электроэнергии

Состав источников энергии для производства электроэнергии в США со временем изменился, особенно в последние годы. На природный газ и возобновляемые источники энергии приходится все большая доля производства электроэнергии в США, в то время как выработка электроэнергии на угле снизилась. В 1990 году на угольные электростанции приходилось около 42% от общей мощности по выработке электроэнергии коммунальными предприятиями США и около 52% от общей выработки электроэнергии. К концу 2020 года доля угля в генерирующих мощностях составляла 20%, а доля угля в общем объеме производства электроэнергии коммунальными предприятиями составляла 19%.За тот же период доля генерирующих мощностей, работающих на природном газе, увеличилась с 17% в 1990 году до 43% в 2020 году, а их доля в производстве электроэнергии более чем утроилась с 12% в 1990 году до 40% в 2020 году.

Большинство атомных и гидроэлектростанций в США были построены до 1990 года. Доля ядерной энергии в общем объеме производства электроэнергии в США с 1990 года стабильно составляла около 20%. Производство электроэнергии за счет гидроэлектроэнергии, исторически являвшейся крупнейшим источником общего годового производства возобновляемой электроэнергии в масштабах коммунальных предприятий (до 2019), колеблется из года в год из-за режима осадков.

Общее производство электроэнергии в США за счет негидро возобновляемых источников энергии увеличивается

Производство электроэнергии из возобновляемых источников, помимо гидроэнергетики, в последние годы неуклонно росло, в основном из-за увеличения ветровой и солнечной генерирующих мощностей. С 2014 года общий годовой объем производства электроэнергии из негидро возобновляемых источников коммунальных услуг превышает объем производства гидроэлектроэнергии.

Доля энергии ветра в общих генерирующих мощностях коммунальных предприятий в США выросла с 0.2% в 1990 г. до почти 11% в 2020 г., а его доля в общем годовом производстве электроэнергии коммунальными предприятиями выросла с менее 1% в 1990 г. до примерно 8% в 2020 г.

Несмотря на свою относительно небольшую долю в общей мощности и выработке электроэнергии в США, мощность и выработка солнечной электроэнергии значительно выросли за последние годы. Мощность производства солнечной электроэнергии в коммунальном масштабе выросла с 314 МВт (или 314 000 кВт) в 1990 году до примерно 47 848 МВт (или около 48 миллионов кВт) в конце 2020 года, из которых около 96% приходились на солнечные фотоэлектрические системы и 4% — на солнечную. теплоэлектрические системы.Доля солнечной энергии в общем объеме выработки электроэнергии коммунальными предприятиями США в 2020 году составила около 2,3% по сравнению с менее 0,1% в 1990 году. Кроме того, по оценкам EIA, в конце 2020 года было 27 724 МВт малых солнечных фотоэлектрических генераторов. мощность, а выработка электроэнергии от малых фотоэлектрических систем составила около 42 миллиардов кВтч.

Количество малых распределенных солнечных фотоэлектрических (PV) систем, таких как те, что устанавливаются на крышах зданий, значительно выросло в Соединенных Штатах за последние несколько лет.Оценки малых солнечных фотоэлектрических мощностей и генерации по штатам и секторам включены в ежемесячный отчет Electric Power Monthly . По состоянию на конец 2020 года почти 38% от общего объема малых солнечных фотоэлектрических генерирующих мощностей США приходилось на Калифорнию.

Различные факторы влияют на сочетание источников энергии для производства электроэнергии

  • Падение цен на природный газ
  • Государственные требования по увеличению использования возобновляемых источников энергии
  • Наличие государственных и других финансовых стимулов для создания новых возобновляемых мощностей
  • Федеральные правила выбросов загрязняющих веществ в атмосферу для электростанций
  • Снижение спроса на электроэнергию
  • Может добавляться с меньшими приращениями для удовлетворения требований к генерирующей мощности сети
  • Может быстрее реагировать на изменения почасовой потребности в электроэнергии
  • Обычно меньше затрат на соблюдение экологических норм

Розничная торговля электроэнергией

U.S. Розничные продажи электроэнергии конечным потребителям составили около 3664 млрд кВтч или 3,7 трлн кВтч в 2020 году, что на 147 млрд кВтч меньше, чем в 2019 году. Розничные продажи включают чистый импорт (импорт минус экспорт) электроэнергии из Канады и Мексики. .

  • жилая 1462 млрд кВтч 50%
  • коммерческие 1,276 млрд кВтч 45%
  • промышленные 920 млрд кВтч 35%
  • транспорт 7 млрд кВтч 0,2%

Кто продает электроэнергию?

Есть две основные категории поставщиков электроэнергии: поставщиков полного спектра услуг , которые продают комплексные электрические услуги — энергия (электричество) и доставка конечным пользователям, и других поставщиков .

Поставщики полного спектра услуг могут вырабатывать электроэнергию на собственных электростанциях и продавать электроэнергию своим клиентам, а также продавать часть электроэнергии поставщикам других типов. Они, в свою очередь, могут покупать электроэнергию у других поставщиков полного спектра услуг или у независимых производителей электроэнергии, которую они продают своим клиентам. Существует четыре основных типа поставщиков полного спектра услуг:

  • Коммунальные предприятия, принадлежащие инвестору — это электроэнергетические компании, акции которых обращаются на бирже.
  • Государственные учреждения включают муниципалитеты, органы государственной власти и муниципальные органы сбыта.
  • Федеральные субъекты либо принадлежат федеральному правительству, либо финансируются им.
  • Кооперативы — это электроэнергетические компании, принадлежащие членам кооператива и управляемые ими.

Другие поставщики продают и продают электроэнергию клиентам поставщиков полного спектра услуг или предоставляют потребителям только услуги по доставке электроэнергии.В основном они включают продавцов электроэнергии, которые работают в штатах, где есть выбор потребителей для выбора поставщиков электроэнергии. Поставщики полного спектра услуг поставляют электроэнергию для продавцов электроэнергии потребителям. Существуют также прямые сделки с электроэнергией от независимых производителей электроэнергии к (обычно крупным) потребителям электроэнергии.

  • ЖКХ, принадлежащие инвестору 57%
  • государственных и федеральных организаций 16%
  • кооперативов 12%
  • другие провайдеры 16%

Помимо продажи конечным потребителям, электроэнергия также часто продается на оптовых рынках или по двусторонним контрактам.

Последнее обновление: 18 марта 2021 г.

California Instruments i-iX Series II


IX Series II представляет новое поколение источников питания переменного и постоянного тока, которые удовлетворяют растущие требования к испытательному оборудованию для выполнения большего количества функций с меньшими затратами. Комбинируя гибкий источник питания переменного / постоянного тока с высокопроизводительным анализатором мощности, системы iX Series II способны обрабатывать сложные приложения, для которых традиционно требовалось несколько приборов.

Изящный интегрированный подход iX Series II позволяет избежать путаницы в кабелях, что обычно встречается в тестовых системах переменного тока. I / iX Series II монтируется в стойку с корпусом 4U. Все соединения выполняются внутри, и необходимость во внешних цифровых мультиметрах, анализаторе гармоник мощности и токовых шунтах или клещах полностью устранена. Используя современный цифровой сигнальный процессор в сочетании с прецизионными аналого-цифровыми преобразователями высокого разрешения, iX Series II обеспечивает большую точность и разрешение, чем можно найти в некоторых специализированных анализаторах гармонической мощности.Поскольку многие компоненты в iX Series II используются совместно источником переменного / постоянного тока и анализатором мощности, общая стоимость интегрированной системы меньше типичной стоимости многоблочной системы.

Для менее требовательных приложений серия Compact iX обеспечивает такие же выходные и переходные характеристики, как и серия iX Series II, а также базовые измерения.

Особенности и преимущества
Основные характеристики

  • От 3000 ВА до 15000 ВА переменного тока на выходе
  • Сочетает в себе источник переменного / постоянного тока и анализатор мощности
  • Гармонический анализ напряжения и тока
  • Программируемый импеданс
  • Режимы вывода переменного, постоянного и переменного + постоянного тока
  • Несколько конфигураций шасси
  • Генерация мощных переходных процессов на выходе
  • Возможность высокого пик-фактора
  • Генерация сигналов произвольной формы
  • МЭК 61000-3-2 и МЭК 61000-3-3

Простые в использовании элементы управления
И iX Series II, и i Series II управляются микропроцессором и могут управляться с простой в использовании клавиатуры на передней панели.Функции логически сгруппированы и доступны непосредственно с клавиатуры. Это устраняет необходимость поиска по различным уровням меню и / или программных клавиш. Большая ручка аналогового управления может использоваться для быстрого изменения выходных параметров. Эта ручка управляется алгоритмом динамического изменения скорости, который сочетает в себе преимущества точного управления небольшими изменениями параметров с быстрым сканированием всего диапазона.

Приложения
Обладая точной регулировкой мощности и точностью, источники переменного и постоянного тока iX Series II подходят для многих областей применения при проверке мощности переменного и постоянного тока.IX также обеспечивает высокую нагрузочную способность, много- или однофазный режимы вывода, а также измерения встроенного анализатора мощности. Дополнительные функции, включая моделирование линейных искажений (LDS), генерацию сигналов произвольной формы и программируемое выходное сопротивление, удовлетворяют требованиям к качеству продукции и испытаниям на соответствие нормативным требованиям.

Оценка и тестирование продукции
От производителей электронного оборудования и приборов все чаще требуется проводить полную оценку и тестирование своей продукции в широком диапазоне условий входной линии.Встроенная возможность генерации переходных процессов на выходе и обратного измерения обеспечивает удобство простой в использовании и интегрированной испытательной системы.

Авионика
Обладая диапазоном выходной частоты до 1000 Гц и до 150 VRMS, iX Series II хорошо подходит для аэрокосмических приложений. Ключевыми требованиями в этих приложениях являются точное регулирование частоты и точное регулирование нагрузки. Стандартный интерфейс управления IEEE-488 и командный язык SCPI обеспечивают легкую интеграцию в существующие системы ATE.Поскольку iX Series II может устранить необходимость в нескольких дополнительных единицах испытательного оборудования и занимает всего 7 дюймов в стойке (4U), экономя как затраты, так и пространство. Для ускорения системной интеграции доступны драйверы инструментов для популярных сред программирования, таких как National Instruments LabView, DO-160, ABD-0100, MIL-STD-704A-F и Boeing 7E73B-0147.

Регулирующее тестирование
По мере того, как правительства стремятся обеспечить соблюдение стандартов качества продукции, все большее число производителей становится обязательным испытание на соответствие нормативным требованиям.IX Series II разработан в соответствии с требованиями к источникам переменного тока для использования в испытаниях на соответствие Euronorm EN 61000. Для тестирования мерцания можно использовать возможность программируемого выходного импеданса 3001iX, 5001iX и 15003iX для создания необходимого опорного импеданса IEC 725.

Конфигурации Multi-Box

Для приложений с высокой мощностью два или три шасси 5001i / iX могут быть объединены для обеспечения одно- или трехфазного питания от 10 до 15 кВА.

Трехфазную конфигурацию 9003iX, 15003iX или 15003i можно заказать с опцией MODE-iX.Эта опция позволяет автоматически переключаться между однофазным или трехфазным выходным режимом. В однофазном режиме весь ток поступает на фазу A. Опция MODE-iX переключает выход всех трех усилителей 5001i / iX на один выходной разъем. Без опции MODE-iX системы 15003i / iX настроены на трехфазный режим работы.

Высокий коэффициент амплитуды
Благодаря коэффициенту амплитуды до 5: 1 источник переменного тока i / iX Series II может легко управлять сложными нелинейными нагрузками. Поскольку во многих современных продуктах используются импульсные источники питания, они имеют тенденцию к высоким повторяющимся пиковым токам.5001iX может выдавать до 110 ампер повторяющегося пикового тока (низкий диапазон) для работы с такими нагрузками.

Дистанционное управление
Стандартные интерфейсы дистанционного управления IEEE-488 и RS232C позволяют программировать все функции прибора с внешнего компьютера. Для программирования используется популярный командный протокол SCPI. Для облегчения системной интеграции i / iX Series II доступны драйверы для нескольких популярных сред программирования КИПиА.

Программное обеспечение для управления приборами
Программное обеспечение для управления приборами Windows® поставляется с iX и i Series II.Это программное обеспечение обеспечивает легкий доступ к возможностям источников питания без необходимости разработки какого-либо специального кода. В этой программе с графическим интерфейсом доступны следующие функции:

  • Управление выходом в устойчивом состоянии (все параметры)
  • Создание, запуск, сохранение, перезагрузка и печать переходных программ
  • Создание и сохранение гармонических сигналов [только iX]
  • Создание и сохранение сигналов произвольной формы [только iX]
  • Загрузка данных с цифрового запоминающего осциллографа [только iX]
  • Измерьте и зарегистрируйте стандартные измерения
  • Захват и отображение сигналов выходного напряжения и тока [только iX]
  • Измерение, отображение, печать и регистрация гармоник напряжения и тока измерения [только iX]
  • Выполните программы тестирования IEC61000-4-11, IEC61000-4-14 и IEC61000-4-28
  • Отображение трафика шины IEEE-488 или RS232C между источником переменного тока и помочь вам развить свой собственные тестовые программы.

Аккумулятор как источник питания

Существуют разные типы аккумуляторных батарей. Самый распространенный тип — это свинцово-кислотные аккумуляторы. Менее известна никель-кадмиевая (NiCad) батарея, которую все еще можно найти в старых системах аварийного питания. Из-за высокого напряжения заряда, необходимого для никель-кадмиевых аккумуляторов, и того факта, что они очень вредны для окружающей среды, эти аккумуляторы не подходят для использования на борту судна или автомобиля / грузовика.

Принцип работы свинцово-кислотного аккумулятора

Батарея — это устройство, которое хранит электроэнергию в форме химической энергии. При необходимости энергия снова высвобождается в виде электроэнергии для потребителей постоянного тока, таких как осветительные приборы и стартеры. Батарея состоит из нескольких гальванических ячеек с напряжением 2 вольта каждый. В 12-вольтовой батарее шесть ячеек соединены последовательно и помещены в один корпус. Для достижения 24 В последовательно соединены две 12-вольтовые батареи.Каждая ячейка имеет положительные окисленные свинцовые пластины и отрицательные свинцовые металлические пластины, а также электролит, состоящий из воды и серной кислоты. Во время разряда оксид свинца на свинцовых пластинах превращается в свинец. Содержание кислоты уменьшается, поскольку для этого процесса требуется серная кислота.

Для подзарядки аккумулятора необходимо подключить внешний источник питания — например, зарядное устройство, генератор или солнечную панель — с напряжением около 2,4 В на элемент. Затем сульфат свинца снова превратится в свинец и оксид свинца, и содержание серной кислоты возрастет.Для напряжения заряда установлены ограничения для предотвращения выделения чрезмерного количества водорода. Например, при зарядном напряжении более 2,4 В на элемент выделяется много газообразного водорода, который может образовывать взрывоопасную смесь с кислородом воздуха.

Верхний предел напряжения заряда для батареи 12 В составляет 14,4 В, а соответствующее значение для батареи 24 В составляет 28,8 В при 20 ° C. Взаимосвязь между степенью заряда аккумулятора и удельным весом смеси вода / серная кислота выглядит следующим образом:


Батареи разных типов — по толщине и количеству пластин на элемент — соответствуют разным приложениям.Максимальный ток, который может подаваться, определяется общей поверхностью пластины. Количество раз, которое можно разряжать и заряжать аккумулятор — количество циклов — зависит от толщины пластин. Батарея может состоять из множества тонких пластин или нескольких толстых.

Стартерная аккумуляторная батарея

Стартерная батарея имеет много тонких пластин на элемент, что приводит к большой общей поверхности пластин. Таким образом, этот тип батареи подходит для передачи высокого уровня тока в течение короткого периода времени.Количество раз, когда стартерная аккумуляторная батарея может быть сильно разряжена, ограничено примерно 50-80 раз. Но поскольку запуск двигателя использует только небольшую часть запасенной энергии (около 0,01%), батареи хватает на многие годы. Этот тип батареи обычно не подходит для циклического использования.

Литий-ионный аккумулятор

До недавнего времени литий-ионные батареи были в основном доступны в виде заряжаемых батарей небольшой емкости, что сделало их популярными для использования в мобильных телефонах и ноутбуках.Mastervolt предлагает литий-ионные батареи большой емкости. Наши литий-ионные батареи обладают высокой плотностью энергии и идеально подходят для циклических приложений. По сравнению с традиционными свинцово-кислотными аккумуляторами литий-ионные аккумуляторы обеспечивают экономию до 70% по объему и весу, а количество циклов зарядки в три раза выше, чем у полутяговых свинцово-кислотных аккумуляторов. Дополнительным преимуществом является то, что литий-ионные батареи могут обеспечивать постоянную емкость независимо от подключенной нагрузки. Доступная емкость свинцово-кислотного аккумулятора уменьшается при более высоких токах разряда.Литий-ионные батареи могут быть разряжены до 80%, не влияя на срок их службы, в то время как свинцово-кислотные батареи более подвержены глубокому разряду.

Работает дольше

По сравнению с традиционными открытыми или свинцово-кислотными аккумуляторами литий-ионные аккумуляторы предлагают еще больше преимуществ, таких как гораздо большая удельная мощность и более длительный срок службы. А поскольку литий — самый легкий металл, литий-ионные батареи также более легкие. Их также можно заряжать в любое время, в то время как никель-кадмиевые батареи требуют полной разрядки для оптимальной работы и предотвращения эффекта памяти.Кроме того, литий-ионные батареи можно заряжать очень высоким током, до 100% емкости, что обеспечивает очень короткое время зарядки и отсутствие эффекта памяти.

Система управления батареями

Литий-ионные батареи

Mastervolt оснащены системой управления батареями. Система сохраняет все отдельные ячейки идеально сбалансированными, что приводит к увеличению емкости и увеличению срока службы.

Де полутяговый аккумулятор

Полутяговая батарея имеет меньшее количество, но более толстые пластины в каждой ячейке.Эти батареи обеспечивают относительно более низкий пусковой ток, но могут разряжаться чаще и в большей степени (от 200 до 600 полных циклов). Этот тип батареи очень подходит для совместной работы стартерной и служебной батареи.

Залитая тяговая батарея

(Mastervolt не имеет в своем портфеле аккумуляторов данного типа)

У этого типа батарей еще меньше, но очень толстых, плоских или цилиндрических пластин. Поэтому его можно разряжать много раз и достаточно полностью (1000-1500 полных циклов).Вот почему залитые тяговые батареи часто используются в вилочных погрузчиках и небольшом электрическом оборудовании, таком как промышленные очистительные машины. Но затопленные тяговые батареи требуют особого метода зарядки. Поскольку эти батареи в основном высокие, они чувствительны к накоплению серной кислоты на дне аккумуляторного контейнера. Это явление называется расслоением и возникает из-за того, что серная кислота плотнее воды. Содержание кислоты увеличивается в нижней части батареи, местами усиливая коррозию пластин, и уменьшается в верхней части, снижая емкость.

Аккумулятор разряжается неравномерно, что значительно сокращает срок его службы. Для того, чтобы снова равномерно распределить кислоту, аккумулятор необходимо целенаправленно перегрузить из-за чрезмерного напряжения. При этом образуется большое количество газообразного водорода, который образует опасную смесь с кислородом воздуха. Напряжение, необходимое для перезарядки этих батарей, составляет около 2,7 В на элемент, или 16,2 В для системы 12 В и 32,4 В для системы 24 В. Эти высокие уровни напряжения чрезвычайно опасны для подключенного оборудования, а большое количество выделяемого газа делает эти батареи непригодными для использования на судах и транспортных средствах, за исключением силовых установок.

<< Назад к обзору

Трехфазный источник питания переменного тока

{{vm.category.shortDescription}}

{{vm.products.pagination.totalItemCount}} {{‘Items’.toLowerCase ()}} {{vm.noResults? «Ничего не найдено по запросу»: «результаты по запросу»}}

{{vm.query}} {{vm.noResults? «Не найдено результатов для»: «результатов для»}} {{vm.query}} в {{vm.searchCategory.shortDescription || vm.filterCategory.shortDescription}}
Описание {{section.nameDisplay}} Наличие Прейскурантная цена Ед. / М.

{{продукт.erpNumber}} MFG #: {{product.manufacturerItem}} Моя часть №: {{product.customerName}}

{{vm.attributeValueForSection (раздел, продукт)}}

По ценам звоните: (800) 950-3457

{{продукт.unitOfMeasureDescription || product.unitOfMeasureDisplay}}

К сожалению, ваш поиск не дал результатов.

К сожалению, товаров не найдено.

Вы достигли максимального количества элементов (6).

«Сравните» или удалите элементы.

× Вы не можете выбрать более 3 атрибутов.

({{vm.productsToCompare.length}}) {{vm.productsToCompare.length> 1? ‘Items’: ‘Item’}}

Базовая синхронизация и параллельное подключение источников питания

Подключение источников питания при большой разнице фаз может привести к сильным пусковым токам. При наличии индуктивных нагрузок эти токи электрически и механически воздействуют на оборудование и могут привести к:
  • Электрическое повреждение электрических и электронных компонентов
  • механические повреждения вращающегося механического оборудования, такого как двигатели, генераторы, электродвигатели, а также оборудования, которое они питают
  • ложное срабатывание устройств максимальной токовой защиты
По этим причинам необходимо учитывать разницу фаз при включении альтернативных источников питания.

Подходы к управлению разностью фазовых углов

При передаче смешанных или резистивных нагрузок с использованием безобрывного переключателя фазовые сдвиги могут не требовать дальнейшего рассмотрения. Однако при наличии значительных индуктивных нагрузок или нагрузок двигателя необходимо учитывать разность фазовых углов. Доступны два подхода.

Для переключения передачи можно использовать In-Phase Monitoring , чтобы гарантировать, что соединение происходит только тогда, когда разность фаз находится в допустимых пределах.При синфазном мониторинге контроллеры безобрывного переключателя пассивно позволяют источникам питания переключаться в сторону синхронности, а затем инициируют переключение, так что соединение завершается, когда разность фаз становится допустимой. Для большинства приложений передачи нагрузки максимально допустимая разница составляет 60 градусов.

Параллельное подключение источников осуществляется распределительным устройством и обычно требует большей мощности. Подобно синфазному контролю, распределительное устройство должно учитывать разницу фаз при подключении источников питания, таких как два больших генератора с высокоинерционными нагрузками.Здесь необходимо более строго контролировать разность фазового угла, обычно в пределах 5 градусов.

В отличие от синфазного мониторинга, решения для параллельной работы активно управляют элементами управления двигателем. Они могут использоваться для приведения источников питания в синхронное состояние и для уменьшения разницы фазовых углов, а также необходимы для поддержания синхронизации до тех пор, пока каждый генератор не будет больше нужен.

Сводка

Синхронизация фокусируется на относительной разнице частот между подключаемым оборудованием и необходима при переключении нагрузок между источниками питания.Безобрывные переключатели могут гарантировать надежное переключение нагрузки без чрезмерных переходных процессов за счет подключения к альтернативным источникам питания только в том случае, если допустимая разница в частоте и напряжении. При наличии индуктивной нагрузки или нагрузки двигателя синхронный мониторинг может использоваться для включения источников питания, когда они переходят в синхронность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *