Генератор на реке своими руками: Как самому сделать мини-ГЭС?

Содержание

Минигидроэлектростанции — пример возобновляемых источников энергии

В одном из сел на Алтае местные жители, однажды, в выходной день, встали как вкопанные у привычной дороге от дома до реки. Что-то невиданное доселе поразило их воображение: еще вчера река была себе «ничего особенного». Бежит водичка себе и бежит, никого не трогает. А тут… То ли ночью, то ли с первыми лучами солнца, пока в деревне спали, некие пришельцы установили колесо с лопастями поперек водного потока и теперь вот длиннющий провод тянется в сторону деревни.

Когда бабушка Софья Аркадьевна предположила, что ночью прилетали «пришельцы в тарелках», умный мужик, работающий на лесопилке, сразу отсек данную экзотическую версию. Если то были пришельцы, то почему у них такое ржавое и кривоватое оборудование? Действительно, в потоки реки уходили лопасти кривые, сам корпус сооружения из металла выглядел пошарпанным, кое-где ржавым, и все это имело явное земное происхождение. «Не летают пришельцы на таких ржавых консервных банках! У них звездолеты, сделанные своими щупальцами имеются!» – логично заключил мужик.

Провод от сооружения вел в дом местного изобретателя Николая Петровича. Этот человек слыл по деревне странным, но ученым, ибо всегда что-то мастерил в мини-мастерской. Что-то «варил», стучал молотками, пилил, то есть работал руками. Двое сыновей ему всегда помогали. «Опять наш Петрович чего-то надумал!» — заключил умный сотрудник лесопилки.

Выяснилось, что по первой зорьке изобретатель установил в реку поперек потока колесо с лопастями. На изготовление чудо-колеса ушло немного времени, гидропривод, старый электрический мини-генератор, пару подшипников и неказистое б\у колесо. Что же за чудо-юдо аппарат встал на пути привычного речного потока? Ответ: простейшая гидроэлектростанция, придуманная и собранная своими руками. Да еще сыновья помогли, как обычно. Но даже мини размер колеса несколько пугал жителей: что-то тут нечисто!

Мини гидроэлектростанция. Причины роста популярности

Небольшая гидроэлектростанция не является таким уж сложнейшим сооружением. Напротив, состав необходимого оборудования, принцип работы ее незамысловаты. Чем проще механизм, тем дольше он, как правило, служит, и наоборот, сложные приборы ломаются куда чаще, а починить их своими руками непросто. В нашем случае изобретатель использует силу водного потока обычной быстрой алтайской реки, энергия воды передается на лопасти мини-турбины, затем на гидропривод и на генератор. Вот уже мы и получаем электроэнергию.

С каждым годом заветные киловатты стоят для конечного потребителя все дороже и дороже. Вот поэтому некоторые рачительные хозяева домов стали присматриваться к альтернативным способам получения электрического тока. Кто-то ставит генераторы на дизеле, если имеет выход на дешевую солярку. Кто- то использует энергию ветра, а кто-то, кто живет на быстрой воде, догадался пустить в дело небольшую гидроэлектростанцию.

С чего начать?

Мы уже упомянули о необходимости быстрой воды рядом с домом для того, чтобы использовать небольшую гидроэлектростанцию. Своими лопастями она будет захватывать речной поток, давать людям свет. Сейчас в России не проблема купить подобную продукцию, из Китая например. Есть в ограниченной продаже и отечественные мини-образцы. Но с чего следует начать? Нужно знать скорость потока. Рек в России великое множество, но далеко не везде можно будет установить гидроэлектростанцию для своего дома.

Существуют специальные приборчики для измерения скорости потока, но чаще всего у обычного человека, не специалиста, этой машинки нет. Не беда! На помощь придет обычная смекалка и математика со своими точными вычислениями.

Отмеряем десять метров по течению реки вверх. Ставим метки. Дальше нам потребуется секундомер (есть сейчас почти в каждом телефоне), помощник (подойдёт даже «сопливый» пацан\девчонка), да кусочек деревяшки. Просим помощника взять в руки кусочек деревяшки (отломать заранее от доски щепку) и пройти вверх по реке до отметки. Сами становитесь где-то посередине, говорите помощнику опустить деревяшку в воду ровно на уровне верхней метки в 10 метров. По вашей команде «Отпускай!» помощник выпускает щепку, а вы тут же включаете секундомер.

Деревяшка плывет по течению реки вниз, вы ее сопровождаете. Руками крепко держите секундомер и когда деревяшка достигает нижней отметки пути в 10 метров, нажимаете «отбой» отсчета. Щепка плывет себе дальше, она своим примером оказала нам содействие в научном эксперименте, а у вас теперь есть нужные данные для математических расчетов: 10 метров делим на то количество секунд, которое показал секундомер. В итоге и получаем искомую СКОРОСТЬ потока.

Тут уж как повезет. Но если скорость потока менее 1 метра\сек., то игра не стоит свеч. Конечно, есть пути, как увеличить скорость и использовать энергию падающей воды, но для этого придется создавать своими руками мини-плотину, перекрывать поток, а это уже большие затраты и, мягко скажем, недовольство соседей, да и живности в самой реке. Надо помнить, что вода – среда агрессивная, и подвергает коррозии и разрушению любой металл. Так что чем больше оборудования используется, тем дороже выйдет гидроэлектростанция. А значит, придется чаще ремонт делать собственными руками или звать специалистов со стороны, да и сама энергия выйдет дорогой.

Варианты миниГЭС

Как же тогда быть? Как использовать течение реки без масштабных вложений? Тогда нам нужен обычный проточный аппарат. В настоящее время разработано четыре типа компактных гидроэлектростанций, не требующих перекрывания рек.

Пропеллер

У Карлосона мини-пропеллер был на спине, и он прекрасно справлялся со своими обязанностями. Поправит толстячок своими небольшими руками свой костюмчик, и летит на крышу. Пропеллер – как разновидность гидроэлектростанции — тоже хорошо работает и представляет собой вертикальный ротор, с лопастями в два сантиметра примерно. Если увеличить ширину лопастей, то сопротивление возрастет, и нужная скорость вращения не будет достигнута.

Ротор помещают под воду. Пропеллер рассчитан на скорость воды в реке до 2 метра/секунду. Гидроэлектростанция на основе пропеллера – одна из доступнейших разновидностей альтернативной гидроэнергетики в условиях личного домохозяйства. Однако, нужно помнить, что своими пусть и небольшими «руками – лопастями» пропеллер может нанести вред животному миру реки.

Дардье — ротор

Этот ротор также помещается под воду, но на сей раз используется сила разности давлений на различных его лопастях. Рельеф ротора Дардье сложен, вода его обтекает по-особому, за счет этого и происходит его вращение. Жорж Дардье — французский изобретатель, он и изобрел этот аппарат. Изготовить ротор Дардье сложнее, чем пропеллер, но зато он выдает довольно высокую мощность.

Гирлянда

Небольшая гидроэлектростанция с гирляндой – это не новогодняя шутка, хотя скоро Новый Год. Гирлянда в нашем случае — длинный трос, с нанизанными на него роторами. Вся конструкция опускается в поток воды полностью, и роторы начинают крутиться. При этом они же вращают сам трос, который с одного конца закреплен в подшипнике, а с другого подсоединен к генератору. Вот вам и электричество.

Но есть и минус: гирлянда перекрывает всю реку, с одного ее берега до другого, а значит, может покалечить ребенка, к примеру, если тот полезет руками в воду в поисках красивого камешка. Гирляндная гидроэлектростанция весьма опасна! Место ее размещения желательно как то обозначить, огородить.

Водяное колесо

Здесь мы говорим о мини — варианте электростанции, использующей энергию проточной воды. Именно такое колесо и установил Николай Петрович из Алтая в начале нашего повествования. Колесо не утопают под воду полностью, оно возвышается над ней, а лопасти погружены частично, до половины. Сооружение ставится поперёк течения и за счет энергии потока колесо вращается, оно соединено с мини – генератором и… Вот вам и электричество! Сделать такое водное колесо своими руками не столь сложно.

В целом у данного типа гидроэлектростанций небольшого размера для бытовых нужд имеется хорошее будущее. Небольшие габариты и относительная легкость развертывания позволят использовать их почти везде, где есть река и достаточный по силе водный поток. Эти аппараты способны давать чуть ли не бесплатное электричество для конечного потребителя. Однако, пока массового производства таких гидроэлектростанций в РФ не налажено, хотя интерес к ним все возрастает и возрастает.

М. Берсенев

Сорокалетний житель одного из районов северного Таджикистана изобрел Мини-ГЭС. Теперь 20 дворов получают электричество бесплатно:

Как сделать мини ГЭС своими руками | Энергия рек — ГЭС

Альтернативные энергетические технологии уверенно набирают обороты по всему миру. И причин тому несколько. Прежде всего, альтернативная энергетика направлена на использование возобновляемых источников энергии, таких как солнце, ветер, тепло недр, волновая энергия и других, для производства электрической энергии. Помимо неисчерпаемости, альтернативные виды энергии наиболее часто обладают вторым существенным плюсом – они не несут опасности для окружающей среды, что просто необходимо с учетом современной экологии на планете.

Несмотря на то, что ветряные генераторы и солнечные панели уже давно украшают ландшафты различных стран, для многих людей альтернативные энергетические технологии остаются чем-то фантастическим и футуристическим. Вместе с тем, в основе большинства альтернативных технологий лежит самая что ни есть обычная электротехника, с успехом используемая в промышленности и быту вот уже больше века. Это в свою очередь может говорить о том, что для повторения современных энергетических технологий не обязательно иметь профильное образование и специальное оборудование: достаточно только умелых рук, головы на плечах и смекалки. С успехом подтверждают данное предположение многие умельцы, которые собственноручно конструируют производительные энергетические установки. К сожалению, бум альтернативной энергетики еще не достиг просторов постсоветского пространства, поэтому воплощения «кулибинской» идеи в наших краях единичны. Однако в Америки дела обстоят несколько иначе – любительские энергетические сооружения пользуются там большой популярностью, ведь они позволяют экономить значительные финансовые средства, которые обычно забирают платежи за электрическую энергию.

Одной из таких непрофессиональных энергетических установок является проект миниатюрной гидроэлектростанции, автором которого является изобретательный американец. Подобную электростанцию могут без особенных сложностей построить все те, чей дом расположен неподалеку от реки, причем у самого автора проекта на все работы ушло всего три дня. Стоит, однако, отметить, что без дополнительных знаний и базового технического оснащения это была бы отнюдь не простая задача.

На начальном этапе было решено подготовить железные уголки и нарезать листы железа под нужные размеры. Далее из вышедшего из строя генератора от фирмы Cummins Onan были изготовлены диски, которые будут использованы для колеса турбины. Сам электрический генератор изготавливался из двух тормозных роторов по одиннадцать дюймов. Также была использована ступица колеса, которую позаимствовали со старого Доджа.

Следующий этап создания технической части миниатюрной гидроэлектростанции предусматривал создание лопастей турбины. Для этого были использованы четырехдюймовые трубы из стали, которые необходимо было разрезать на четыре части.

Далее конструктор занялся изготовлением точного шаблона двенадцатидюймовых колес, на который были нанесены метки необходимых отверстий, а также места для лопастей в количестве шестнадцати штук. Использование такого подхода позволит обеспечить высокую точность изготовления, в результате чего изготовленные колеса будут строго соответствовать размерам используемой ступицы. Шаблон был надежно прикреплен к диску турбины, после чего были аккуратно высверлены все необходимые для закрепления лопастей отверстия. Как видно из приведенных фотографий, сверление выполнялось на специализированном станке. Если же вы решите сверлить отверстия в более домашних условиях, рекомендуется проявить максимум концентрации, ведь от точности операций на данном этапе зависит эффективность всей установки. Самое время вспомнить дедовский метод: «семь раз отмерь, один раз отрежь».

После сверления необходимых отверстий, диски были соединены стальными прутами, размер которых составлял десять дюймов (приведенные размеры намеренно оставлены в неметрических единицах измерения, дабы статья максимально соответствовала оригиналу). Прутья были установлены таким образом, чтобы не создавать помех в последующих производственных процессах, в частности для приваривания лопастей.

Очень важно знать свойства используемых материалов. Так в данном конкретном случае, поверхность диска была очищена от слоя защиты на основе цинка, несмотря на то, что оный предохраняет деталь от коррозионного воздействия. Это связано с тем, что при использовании гальванизированной сварки, цинк начал бы выделять токсичный газ, создавая тем самым реальную опасность для здоровья конструктора.

В полученном изделии решено было сделать четырехдюймовое отверстие для того, чтобы облегчить монтаж электрического генератора, и для того, чтобы имелась возможность доступа до внутреннего наполнения турбины с неподключенной к генератору стороны.

Для усиления приливного водного потока к турбине, к подающей воду трубе была присоединена специальная насадка, выполненная из согнутого листа металла, размер которого составлял один дюймы в длину и десять дюймов в ширину.

После проделанных манипуляций можно было приступать непосредственно к соединению готовых частей миниатюрной гидроэлектростанции, что и было сделано. Когда все было готово, взору конструктора открылась будущая турбина. Труба с оригинальной насадкой была закреплена к турбине под строго выдержанным углом в сорок пять градусов, а саму турбину предварительно надели на втулку. Такой подход позволил конструктору заниматься необходимой регулировкой используемых деталей. Установленная труба может совершать движение во всех четырех направлениях, в то время как турбина, равно как и будущий генератор, могут быть отклонены лишь вперед-назад.

Собственно, турбина практически полностью готова к использованию. Настал черед изготовления самой важной, а для многих и самой сложной, детали миниатюрной гидроэлектростанции – электрического генератора. Электрические генераторы уже долгое время используются человечеством, поэтому они бывают различных видов, которые обеспечивают различную эффективность производства электрической энергии и могут применяться в тех или иных случаях. Американский конструктор применил следующий подход: из проволоки с номером семнадцать был изготовлен статор, представляющий собой девять одинаковых колец, на каждое из которых было плотно друг другу намотано сто двадцать пять витков. Далее от статора было отведено шесть жил, а сам статор был помещен в специальный кожух. В результате его толщина составила половину дюйма, а диаметр – четырнадцать дюймов. Следует отдельно отметить, что поддержания статора в чистоте и обеспечения его эффективной бесперебойной работы категорически необходимо использовать защитный кожух. В противном случае установленные магниты могут притягивать к себе песок.

Далее американский конструктор приступил к изготовлению роторов, которые на своих краях имели двенадцать магнитов одинакового размера (один дюйм на два дюйма и на полдюйма). Соединение ротора и статора было выполнено с использованием смеси полиэстера и стекловолокна. В результате, собственно, и получился сам генератор.

Созданный генератор был закреплен с одной стороны турбины. Со свободной стороны электрического генератора к нему был прикреплен преобразователь, помещенный в специальный кожух из алюминия. Его предназначение, как вы уже, наверное, сами догадались, преобразование полученного трехфазного переменного тока в постоянный электрический ток. Согласно проведенным измерениям, мощность установки составила двенадцать с половиной ватт при тридцати восьми оборотах в минуту.

Ближайший к турбине ротор оснащен тремя специальными отверстиями, которые позволяют осуществлять контроль расстояния между всеми роторами, что в свою очередь означает контроль скорости работы электрического генератора, сделанного своими руками.

Заключительный этап изготовления небольшой ГЭС своими руками подразумевал доводку устройства – конструктором была произведена очистка полученного генератора от загрязнений и удаление ржавчины. После этого все поверхности были грунтованы и тщательно окрашены, поскольку миниатюрная гидроэлектростанция будет использоваться в условиях экстремальной влажности. Проведенные операции в значительной мере способствовали качественному улучшению внешнего вида установки, практически подведя ее по данному показателю под уровень промышленных аналогов. Ну что же, установка полностью готова и можно произвести ее установку и испытания в реальных условиях.

В случае американского конструктора, неподалеку от его дома протекал ручей, откуда по трехфутовой трубе, диаметр которой составляет четыре дюйма, вода была направлена к изготовленному своими руками генератору.

Последним штрихом установки миниатюрной гидроэлектростанции была регуляция угла наклона подачи воды, после чего турбина была запущена. Проведенные измерения показали, что средняя скорость вращения турбины немного превышает сто десять оборотов в минуту. В результате такого вращения турбина обеспечивает ток в два ампера (очевидно по используемой в Соединенных Штатах Америки линии сто двадцать вольт).

И полученная эффективность не предел – увеличить объем производимой установкой энергии можно за счет более точной регулировки угла наклона питающей трубы, а также вариацией расположения роторов электрического генератора относительно друг друга.

Big future for small hydro

Одно из наиболее перспективных направлений в развитии нетрадиционной энергетики в России — освоение энергии небольших водотоков с помощью микро- и мини-ГЭС. Это связано, прежде всего, со сравнительной простотой их строительства и эксплуатации, а также с большим энергетическим потенциалом малых рек.

Свободный ресурс

К малой гидроэнергетике принято относить гидроэнергетические объекты разного типа с установленной мощностью менее 25 МВт, в том числе совсем небольшие — микроГЭС мощностью от 3 до 100 кВт. Использование гидроэлектростанций таких мощностей для нашей страны — далеко не новое явление: в 1950-1960-х гг. в СССР действовало более шести тысяч подобных станции. Сегодня же в России их насчитывается всего несколько сотен, что явно меньше наших возможностей и потребностей.

Принципиально важно отметить, что в малой гидроэнергетике нет необходимости строить крупные гидротехнические сооружения и затапливать большие территории водохранилищами. Маленькая станция может быть установлена практически на любой реке или даже ручье, что особенно актуально для России, где зоны децентрализованного энергоснабжения охватывают более 70% территории страны, на которой проживают около 20 млн человек. Мини-ГЭС может применяться для энергоснабжения дачных посёлков, фермерских хозяйств, хуторов, а также небольших производств в труднодоступных районах — там, где строить и содержать электрические сети невыгодно.

Серийная ковшовая микротурбина на основе колеса Пелтона

Основные ресурсы малой гидроэнергетики России сосредоточены в горных районах республик Северного Кавказа, в Ставропольском и Краснодарском краях, на Среднем Урале, в Южной Сибири, Прибайкалье и на Дальнем Востоке.

Виды станций

Конструкция типовой малой ГЭС базируется на гидроагрегате, который включает в себя турбину, водозаборное устройство и элементы управления. В зависимости от того, какие гидроресурсы задействованы малыми гидростанциями, их делят на несколько категорий:

  • русловые или приплотинные с небольшими искусственными водохранилищами;
  • основанные на существующих перепадах уровней воды;
  • использующие энергию свободного течения рек.

По величине напора выделяют низконапорные (Н 75 м) малые гидроэлектростанции.

Спецтурбины

Как и на крупных станциях, на малых ГЭС, используются пропеллерные, радиально-осевые и ковшовые турбины (более подробно о них см. «Энерговектор» № 5/2014 г.) соответствующих размеров и модификаций. Чаще применяются пропеллерные турбины и турбины Френсиса.

Мини-ГЭС устраивают непосредственно в потоке воды или на небольших водохранилищах, которые не могут обеспечить достаточного регулирования стока. Отсюда одна из основных проблем эксплуатации малых ГЭС — непостоянный расход воды. В период зимней и летней межени сток реки минимален, тогда как во время весеннего половодья объём воды может быть достаточно большим. По этой причине турбины, используемые на мини-ГЭС, должны быть способны работать как при минимальном, так и при максимальном стоке с наибольшей производительностью.

Такая микроГЭС способна полностью обеспечивать
электричеством небольшой частный дом

Таким свойством обладают, например, радиальные двухкамерные проточные турбины системы Ossberger производства одноимённой немецкой компании. Стандартное соотношение размеров камер — 1:2. Малая камера предназначена для низких расходов, большая камера открывается при средних расходах (при этом малая камера закрывается). Обе камеры работают при полном расходе. В результате поток воды величиной 12-100% от расчётного максимума используется с наибольшей эффективностью (КПД более 80%), причём турбина запускается при расходе всего 6%.

Существует множество типов конструкций малых ГЭС, проектируемых с учётом различных условий применения. Конечно, охватить их все в этой статье не удастся, поэтому остановимся на некоторых оригинальных разработках.

Гирлянды и рукава

Советский инженер Б. С. Блинов изобрёл и в 1950-1960-х годах впервые применил гирляндные ГЭС для малых рек и рукавные ГЭС для малых рек и ручьёв с дебитом воды более 50 л/с. Гирляндная мини-ГЭС состоит из лёгких турбин - гидровингроторов, нанизанных в виде гирлянды на трос, который переброшен через реку. Один конец троса закреплён за ось в опорном подшипнике, второй — за ротор генератора. Трос в этом случае играет роль своеобразного вала, вращение которого передаётся к генератору. Одна гирлянда турбин (энергоблок) обеспечивает мощность от нескольких десятков ватт до 5-15 кВт. Такие энергоблоки можно объединять, заставляя их работать на общую нагрузку и повышая тем самым мощность гидростанции.

Труба рукавной микроГЭС укладывается по склону
вдоль водотока

Для устройства рукавной микроГЭС на реке или ручье строится небольшая плотина, к отверстию в которой прикрепляется труба-шланг, уложенная вниз по склону вдоль водотока до электрогенератора. Перепад высот от плотины до генератора должен быть не менее 4-5 м. Вход в «рукав» располагают так, чтобы захватить среднюю, самую быструю, часть течения реки, и воду по сужающемуся каналу подводят к турбинам. Установленная мощность такой станции может варьироваться от 1 до 100 кВт. В 70-х годах прошлого века гидроагрегаты для рукавных микроГЭС выпускались серийно на предприятиях сельхозмашиностроения.

Водоворот энергии

Интересную конструкцию для малых ГЭС в 2003 г. запатентовал изобретатель из Австрии Франц Цотлётерер. Он назвал свой проект «Технический водоворот», а мини-ГЭС - «Водоворотно-гравитационной станцией».

Водоворотно-гравитационная мини-ГЭС не повредит рыбе

При строительстве станции Цотлётерера часть воды из водотока отводится в бетонный канал, проложенный вдоль береговой линии. Канал завершается бетонным цилиндром, внизу которого выполнено выпускное отверстие с жёлобом-отводом. Вода поступает в цилиндр по касательной и, подчиняясь силе гравитации, стремится вниз, закручиваясь по спирали. В центре находится турбина, её то и раскручивает водоворот (средняя скорость вращения турбины — 30 об./мин.). На водоворотной мини-ГЭС, построенной на ручье с перепадом высоты в 1,3 м и работающей при расходе воды 0,9 м3/с, мощность достигает 9,5 кВт, выработка за год — порядка 35000 кВт/ч. В такой мини-ГЭС КПД доходит до 74%.

Водоворотно-гравитационная ГЭС отличается от станций других видов особенно бережным отношением к биоресурсам реки: скорость вращения турбины всегда остаётся достаточно низкой, и для рыбы лопасти рабочего колеса турбины не представляют опасности. К тому же лопасти воду не рассекают, а поворачиваются вместе с потоком. Ещё один экологический плюс этого проекта — хорошая аэрация воды и перемешивание в водовороте разного рода загрязнителей. Всё это способствует более интенсивной жизнедеятельности микроорганизмов, которые естественным образом очищают воду.

Речные звёзды

В 2008 г. компания Bourne Energy (Калифорния) разработала генераторные установки RiverStar («Речная звезда») для устройства мини-ГЭС на небольших реках. RiverStar представляет собой капсулу с поплавком для фиксации ротора на требуемой глубине, ориентируемым глубинным стабилизатором, крыльчаткой, генератором с блоком преобразователя напряжения.

Модули RiverStar удерживаются на месте стальными тросами

Модули RiverStar удерживаются на месте стальными тросами, натянутыми под водой поперёк течения реки, поэтому они не нуждаются в установке плотин, якорей и проведении каких-либо дополнительных работ на речном дне. Параллельно тросам на берег выходят кабели, по которым, собственно, и идёт электроэнергия. Мощность одного модуля при скорости течения реки 7,4 км/ч составляет 50 кВт. Генераторные установки RiverStar можно устанавливать блоками по несколько штук для увеличения мощности.

Мини-ГАЭС

В середине прошлого века британский изобретатель Элвин Смит предложил оригинальную конструкцию волновой малой гидроаккумулирующей электростанции. В основе установки — два поплавка, способных двигаться друг относительно друга. Верхний раскачивается волнами, нижний соединён с морским дном с помощью цепи и якоря. Предусмотрена автоматическая подстройка высоты положения верхнего поплавка в зависимости от уровня моря, который постоянно меняется из-за приливов и отливов, с помощью телескопической трубы, раздвигающейся и складывающейся под действием сил Архимеда и тяжести. Между поплавками находится «насосная станция» (цилиндр с поршнем двойного действия, который качает воду при движении вниз и вверх). Она подаёт воду на сушу, в горы. В горах устраивают бассейн, в котором вода накапливается и в часы пиковых нагрузок выпускается обратно в море, по пути вращая водяную турбину.

Установка способна поднимать морскую воду на высоту до 200 м и вырабатывать мощность 0,25 МВт.

* * *

Природные условия в России весьма благоприятны для развития малой гидроэнергетики, а при современном уровне доступности информации и всевозможных материалов умельцы могут сделать мини-ГЭС даже своими руками, была бы подходящая река или ручей. Поэтому у малых ГЭС как альтернативных источников энергии, есть все шансы вновь широко распространиться в нашей стране.

Источник: Энерговектор

Гидрогенератор своими руками или самодельная гидроэлектростанция. Домашняя гидроэлектростанция, сделанная своими руками. Как сделать мини-ГЭС из велосипеда

Если у Вашего жилища протекает река или даже небольшой ручей, то с помощью самодельной мини ГЭС Вы можете получить бесплатную электроэнергию. Возможно это будет не очень большое пополнение бюджета, но осознание того, что у Вас есть своя собственная электроэнергия — стоит гораздо дороже. Ну а если, например на даче, нет центрального электроснабжения — то даже небольшие мощности электроэнергии будут просто необходимы. И так, для создания самодельной гидроэлектростанции необходимо как минимум два условия — наличие водяного ресурса и желание.

Если и то и другое присутствует, то то первое, что нужно сделать – это измерить скорость потока реки. Сделать это очень просто — бросаете в реку веточку и замерьте время, в течении которого она проплывет 10 метров. Поделив метры на секунды, вы получите скорость течения в м/с. Если скорость меньше 1 м/с, то продуктивной мини ГЭС не получится. В этом случае можно попробовать увеличить скорость потока искусственно заузив русло или сделав небольшую плотину, если имеете дело с не большим ручьем.

Для ориентира, можно использовать соотношение между скоростью потока в м/с и мощностью снимаемой электроэнергии с вала винта в кВт (диаметр винта 1 метр). Данные экспериментальные, в реальности полученная мощность зависит от многих факторов, но для оценки подойдет.Так:

0.5 м/с – 0.03 кВт,
0.7 м/с – 0.07 кВт,
1 м/с – 0.14 кВт,
1.5 м/с – 0.31 кВт,
2 м/с – 0.55 кВт,
2.5 м/с – 0.86 кВт,
3 м/с -1.24 кВт,
4 м/с – 2.2 кВт и т.д.

Мощность самодельной мини ГЭС пропорциональна кубу скорости потока. Как уже указывалось, если скорость течения недостаточная, попробуйте ее искусственно увеличить, если это конечно возможно.

Типы мини-ГЭС

Существует несколько основных вариантов самодельных мини гидроэлектростанций.

Водяное колесо

Это колесо с лопастями, установленное перпендикулярно поверхности воды. Колесо погружено в поток меньше чем наполовину. Вода давит на лопасти и вращает колесо. Существуют также колеса-турбины со специальными лопатками, оптимизированными под струю жидкости. Но это достаточно сложные конструкции скорее заводского, чем самодельного изготовления.

Ротор Дарье

Это ротор с вертикальной осью вращения, используемый для генерации электрической энергии. Вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета. Эта конструкция была запатентована Жорж Жан-Мари Дарье, французским авиационным инженером в 1931 году. Также часто используется в конструкциях ветрогенераторов.

Гирляндная ГЭС

Гидроэлектростанция состоит из легких турбин — гидровингроторов, нанизанных и жестко закрепленными в виде гирлянды на тросе, переброшенном через реку. Один конец троса закрепляется в опорном подшипнике, второй — вращает ротор генератора. Трос в этом случае играет роль своеобразного вала, вращательное движение которого передается к генератору. Поток воды вращает роторы, роторы вращают трос.

Пропеллер

Также заимствован из конструкций ветровых электростанций, такой себе «подводный ветряк» с вертикальным ротором. В отличие от воздушного, подводный пропеллер имеет лопасти минимальной ширины. Для воды достаточно ширины лопасти всего в 2 см. При такой ширине будет минимальное сопротивление и максимальная скорость вращения. Такая ширина лопастей выбиралась для скорости потока 0.8-2 метра в секунду. При больших скоростях, возможно, оптимальны другие размеры. Пропеллер движется не за счет давления воды, а за счет возникновения подъемной силы. Так же как крыло самолета. Лопасти пропеллера движутся поперек потока, а не увлекаются потоком в направлении течения.

Преимущества и недостатки различных систем самодельной мини ГЭС

Недостатки гирляндной ГЭС очевидны: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД. Гирляндная ГЭС – это своего рода небольшая плотина. Целесообразно использовать в безлюдных, удаленных местах с соответствующими предупредительными знаками. Возможно потребуется разрешение властей и экологов. Второй вариант — небольшой ручей у Вас в огороде.
Ротор Дарье — сложен в расчете и изготовлении. В начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока — это плюс.

Наибольшее распространение при построении самодельных гидроэлектростанций получили схемы пропеллера и водяного колеса. Так как эти варианты сравнительно просты в изготовлении, требуют минимальных расчетов и реализуются при минимальных затратах, имеют высокий КПД, просты в настройке и эксплуатации.

Если у Вас нет водяного энергоресурса можете самостоятельно сделать домашнюю ветроэлектростанцию .

П

ример простейшей мини-ГЭС

Простейшую гидроэлектростанцию можно быстро соорудить из обычного велосипеда с динамкой для велофары. Из оцинкованного железа или не толстого листового алюминия надо заготовить несколько лопастей (2-3). Лопасти должны быть длиной от обода колеса до втулки, а шириной 2-4 см. Эти лопасти устанавливаются между спицами любым подручным способом или заранее заготовленными креплениями.
Если вы используете две лопасти, то установите их напротив друг друга. Если захотите добавить большее количество лопастей, то разделите окружность колеса на число лопастей и установите их через равные промежутки. С глубиной погружения колеса с лопастями в воду можете поэкспериментировать. Обычно его погружают от одной трети до половины.
Вариант походной ветроэлектростанции рассматривался ранее.

Такая микро ГЭС не занимает много места и отлично послужит велотуристам — главное наличие ручья или речушки — что обычно и есть в месте разбивки лагеря. Мини ГЭС из велосипеда сможет освещать палатку и заряжать сотовые телефоны или другие гаджеты.

Сила водного потока – это возобновляемый природный ресурс, использование которого позволит получать практически бесплатное электричество, сэкономить на коммунальных услугах или решить проблему с подзарядкой техники.

Если рядом с вашим домом протекает ручей или река, гидроэлектростанция своими руками из подручных материалов – реальный выход из положения. Но прежде рассмотрим, какие могут быть варианты мини-ГЭС и как они работают.

Гидроэлектростанции непромышленного назначения

Гидроэлектростанции – это сооружения, способные преобразовать энергию движения воды в электричество. Это могут быть плотины на больших реках, вырабатывающие от десятка до нескольких сотен магаватт или мини-ГЭС с максимальной мощностью в 100 кВт, которых вполне достаточно для нужд частного дома. Вот о последних и узнаем подробней.

Гирляндная станция с гидровинтами

Конструкция состоит из цепи роторов, закрепленных на гибком стальном тросе, перетянутом поперек реки. Сам трос исполняет роль вращательного вала, один конец которого фиксируется на опорном подшипнике, а второй – активирует вал генератора.

Каждый гидроротор «гирлянды» способен вырабатывать около 2 кВт энергии, правда, скорость водного потока для этого должна быть не менее 2,5 метров в секунду, а глубина водоема не превышать 1,5 м.

Принцип действия гирляндной ГЭС прост: напор воды раскручивает гидровинты, а те вращают трос и заставляют генератор вырабатывать энергию

Гирляндные станции с успехом использовались еще в середине прошлого века, но роль винтов тогда играли самодельные пропеллеры и даже консервные банки. Сегодня же производители предлагают несколько видов роторов для различных условий эксплуатации. Они комплектуются лопастями разного размера, изготовленными из листового металла, и позволяют получить максимальный КПД от работы станции.

Но хотя в изготовлении этот гидрогенератор достаточно прост, его эксплуатация предполагает ряд специальных условий, не всегда осуществимых в реальной жизни. Такие сооружения перегораживают русло реки, и вряд ли соседи по берегу, не говоря уже о представителях экологических служб, разрешат использовать энергию потока для ваших целей.

Кроме того, в зимний период установку использовать можно только на незамерзающих водоемах, а в условиях сурового климата – консервировать или демонтировать. Поэтому гирляндные станции возводятся временно и преимущественно в безлюдной местности (например, около летних пастбищ).


Роторные станции мощностью от 1 до 15 кВт/час вырабатывают до 9,3 МВт за месяц и позволяют самостоятельно решить проблему с электрификацией в регионах, отдаленных от централизованных магистралей

Современный аналог гирляндной установки – погружные или наплывные рамные станции с поперечными роторами. В отличие от своей гирляндной предшественницы, эти конструкции не перегораживают всю реку, а задействуют только часть русла, причем установить их можно на понтоне/плоте или вовсе опустить на дно водоема.

Вертикальный ротор Дарье

Ротор Дарье – устройство турбины, которое получило название в честь своего изобретателя в 1931 г. Система состоит из нескольких аэродинамических лопастей, зафиксированных на радиальных балках, и работает за счет перепада давления по принципу «подъемного крыла», который широко задействован в кораблестроительстве и авиации.

Хотя такие установки больше используются для создания ветрогенераторов, они могут работать и с водой. Но в этом случае нужны точные расчеты, чтобы подобрать толщину и ширину лопастей в соответствии с силой водного потока.


Ротор Дарье напоминает «ветряк», только установленный под водой, причем работать он может вне зависимости от сезонных колебаний скорости потока

Для создания локальных гидростанций вертикальные роторы используется редко. Несмотря на неплохие показатели КПД и кажущуюся простоту конструкции, оборудование достаточно сложное в эксплуатации, так как перед началом работу систему нужно «раскрутить», зато и остановить запущенную станцию сможет только замерзание водоема. Поэтому используется ротор Дарье преимущественно на промышленных предприятиях.

Подводный пропеллер-«ветряк»

По сути, это самый простой воздушный ветряк, только устанавливается он под водой. Размеры лопастей, чтобы обеспечить максимальную скорость вращения и минимум сопротивления, рассчитываются в зависимости от силы движения потока. Например, если скорость течения не превышает 2 м/сек, то ширина лопасти должна быть в пределах 2-3 см.


Подводный пропеллер несложно сделать своими руками, но он подходит только для глубоких и быстрых рек – на мелком водоеме вращающиеся лопасти могут нанести травмы рыбакам, купальщикам, водоплавающим птицам и животным

Такой ветряк устанавливается «навстречу» потоку, но его лопасти работают не за счет давления водного напора, а благодаря возникновению подъемной силы (по принципу самолетного крыла или винта корабля).

Водяное колесо с лопастями

Водяное колесо – один из простейших вариантов гидравлического двигателя, известный еще со времен Римской Империи. Эффективность его работы во многом зависит от типа источника, на котором его установили.


Подливное колесо может вращаться только благодаря скорости потока, а наливное – с помощью напора и веса воды, ниспадающей сверху на лопасти

В зависимости от глубины и русла водотока можно установить различные типы колес:

  • Подливные (или нижнебойные) – подойдут для мелководных рек с быстрым течением.
  • Среднебойные – располагаются в руслах с природными каскадами так, чтобы поток попадал приблизительно на середину вращающегося барабана.
  • Наливные (или верхнебойные) – устанавливаются под плотиной, трубой или в нижней части естественного порога, чтобы ниспадающая вода продолжила путь через вершину колеса.

Но принцип работы у всех вариантов один и тот же: вода попадает на лопасти и приводит в действие колесо, которое заставляет вращаться генератор для миниэлектростанции.

Производители гидрооборудования предлагают готовые турбины, лопасти которых специально адаптированы под определенную скорость водного потока. Но домашние умельцы изготавливают барабанные конструкции по старинке – из подручных материалов.

Обустройство собственной гидростанции – один из самых бюджетных и экологичных способов обеспечения энергетическими ресурсами дачи, фермерского хозяйства или туристической базы

Возможно, отсутствие оптимизации отразится на показателях КПД, зато себестоимость самодельного оборудования обойдется в разы дешевле покупного аналога. Поэтому водяное колесо наиболее популярный вариант для организации собственной мини-ГЭС.

Условия для установки гидроэлектростанции

Несмотря на заманчивую дешевизну энергии, вырабатываемую гидрогенератором, важно учесть особенности водного источника, ресурсы которого вы планируете задействовать для собственных нужд. Ведь далеко не каждый водоток подойдет для эксплуатации мини-ГЭС, тем более круглогодичной, поэтому не помешает иметь в резерве возможность подключения к централизованной магистрали.

Несколько «за» и «против»

Основные плюсы индивидуальной гидроэлектростанции очевидны: недорогое оборудование, которое вырабатывает дешевое электричество, да еще и природе не вредит (в отличие от плотин, перекрывающих ток реки). Хотя абсолютно безопасной систему назвать нельзя – все-таки вращающиеся элементы турбин могут нанести травмы жителям подводного мира и даже людям.

Чтобы предупредить несчастные случаи, гидростанцию нужно оградить, а если система полностью скрыта водой – установить на берегу предупреждающий знак

Преимущества мини-ГЭС:

  1. В отличие от других «бесплатных» энергоисточников (солнечных батарей, ветрогенераторов), гидросистемы могут работать вне зависимости от времени суток и погоды. Единственное, что может им помешать – замерзание водоема.
  2. Для установки гидрогенератора необязательно наличие большой реки – те же водяные колеса с успехом можно использовать даже в мелких (но быстрых!) ручьях.
  3. Установки не выделяют вредных веществ, не загрязняют воду и работают практически бесшумно.
  4. Для монтажа мини-ГЭС мощностью до 100 кВт не нужно оформлять разрешительную документацию (хотя все зависит от местных властей и типа установки).
  5. Избыток электричества можно продавать в соседние дома.

Что касается недостатков – серьезной помехой для продуктивной эксплуатации оборудования может стать недостаточная сила течения. В этом случае придется возводить вспомогательные сооружения, что сопряжено с дополнительными затратами.

Измерение силы водного потока

Первое, что нужно сделать, чтобы задуматься о виде и способе монтажа станции – измерить скорость водного потока на облюбованном источнике. Самый простой способ – опустить на стремнину любой легкий предмет (например, теннисный мячик, кусок пенопласта или рыбацкий поплавок) и засечь секундомером время, за которое он проплывет расстояние до какого-нибудь ориентира. Стандартная дистанция для «заплыва» — 10 метров.


Если водоем находится далековато от дома, можно построить отводной канал или трубопровод, и заодно и позаботиться о перепадах высоты

Теперь нужно пройденное расстояние в метрах разделить на количество секунд – это и будет скорость течения. Но если полученное значение будет меньше 1 м/сек, потребуется возвести искусственные сооружения, чтобы ускорить поток перепадами высот. Это реально осуществить с помощью разборной плотины или неширокой сливной трубы. Но без хорошего течения от идеи с гидростанцией придется отказаться.

Изготовление ГЭС на основе водяного колеса

Разумеется, собрать «на коленке» и возвести махину, предназначенную для обслуживания предприятия или населенного пункта даже из десятка домов – идея из области фантастики. Но соорудить своими руками мини-ГЭС для экономии электричества – вполне реально. Причем задействовать можно как готовые комплектующие, так и подручные материалы.

Поэтому рассмотрим пошагово изготовление наиболее простого сооружения – водяного колеса.

Необходимые материалы и инструменты

Чтобы сделать своими руками мини-ГЭС, нужно подготовить сварочный аппарат, болгарку, дрель и набор вспомогательных инструментов — молоток, отвертку, линейку.

Из материалов понадобятся:

  • Уголки и листовой металл толщиной не менее 5 мм.
  • Трубы из ПВХ или оцинкованной стали для изготовления лопастей.
  • Генератор (можно использовать готовый покупной или сделать самому, как в данном примере).
  • Тормозные диски.
  • Вал и подшипники.
  • Фанера.
  • Полистироловая смола для заливки ротора и статора.
  • Медный провод на 15 мм для самодельного генератора.
  • Неодимовые магниты.

Учтите, что конструкция колеса будет постоянно контактировать с водой, поэтому металлические и деревянные элементы необходимо выбирать с защитой от влаги (или позаботится об их пропитке и покраске самостоятельно). В идеале, фанеру можно заменить пластиком, но деревянные детали проще достать и придать им нужную форму.

Сборка колеса и изготовление сопла

Основой для самого колеса могут стать два стальных диска одинакового диаметра (если есть возможность достать стальной барабан от кабеля – отлично, это намного ускорит процесс сборки).

Но если металла в подручных материалах не нашлось, можно вырезать круги и из водостойкой фанеры, хотя прочность и срок службы даже обработанного дерева не сравнится со сталью. Затем на одном из дисков нужно прорезать круглое отверстие под установку генератора.

После этого изготавливаются лопасти, а их понадобится не меньше 16 шт. Для этого оцинкованные трубы разрезаются вдоль на две или четыре части (зависит от диаметра). Затем места резки и саму поверхность лопастей нужно отшлифовать, чтобы уменьшить потери энергии при трении.


Лопасти устанавливаются под наклоном примерно в 40-45 градусов – это поможет увеличить площадь поверхности, на которую будет воздействовать сила потока

Расстояние между двумя боковыми дисками должно быть максимально приближено к длине лопастей. Чтобы наметить место для расположения будущих ступиц, рекомендуется сделать шаблон из фанеры, на котором будет обозначено место для каждой детали и отверстия для фиксации колеса к генератору. Готовую разметку можно прикрепить на внешней стороне одного из дисков.

Затем круги устанавливаются параллельно друг к другу с помощью стержней со сплошной резьбой, а лопасти привариваются или фиксируются болтами в нужных позициях. Барабан будет вращаться на подшипниках, а в качестве опоры используется рама из уголков или труб небольшого диаметра.


Сопло предназначено для водных источников каскадного типа – такая установка позволит использовать энергию потока по максимуму. Изготавливается этот вспомогательный элемент путем выгибания листового металла с последующей сваркой швов, а после насаживается на трубу.

Однако если в вашей местности протекает равнинная река без порогов и других высотных препятствий, в этой детали нет необходимости.


Важно, чтобы ширина выходного отверстия сопла соответствовала ширине самого колеса, иначе часть потока будет идти «вхолостую», не попадая на лопасти

Теперь колесо нужно насадить на ось и установить на подпорку из сваренных или скрепленных болтами уголков. Осталось сделать генератор (или установить готовый) и можно отправляться к реке.

Генератор своими руками

Для изготовления самодельного генератора нужно сделать обмотку и заливку статора, для чего понадобятся катушки со 125-ю витками медной проволоки на каждой. После их соединения вся конструкция заливается полиэстеровой смолой.


Каждая фаза состоит из трех последовательно прикрепленных мотков, поэтому соединение можно сделать в форме звезды или треугольника с несколькими наружными выводами

Теперь нужно подготовить фанерный шаблон, совпадающий по размерам с тормозным диском. На деревянном кольце выполняется разметка и делаются прорези для установки магнитов (в данном случае использовались неодимовые магниты толщиной 1,3 см, шириной 2,5 см и длиной 5 см). Затем полученный ротор также заливается смолой, а после просушки — присоединяется к барабану колеса.

Водяное колесо с ротором из тормозных дисков и генератором из мотков медной проволоки — окрашенное, презентабельное и готовое к эксплуатации

Последним монтируется алюминиевый кожух с амперметром, закрывающий выпрямители. Задача этих элементов – преобразовывать трехфазный ток в постоянный.


После установки колеса в поток небольшой речки с каскадом или отводной трубой, можно рассчитывать на производительность мини-ГЭС в 1,9А * 12В при 110 оборотах за минуту

Чтобы в колесо не попадали листья, песок и другой мусор, принесенный с потоком, желательно поставить перед устройством защитную сетку.

Также можно поэкспериментировать с зазорами между магнитами и катушками с увеличенным количеством витков для увеличения КПД гидростанции.

Полезное видео по теме

Пример работающей гидроустановки с самодельным генератором на базе трехфазного двигателя:

Мини-ГЭС, сконструированная по принципу водяного колеса:

Станция на основе велосипедного колеса – интересный вариант решения проблемы с энергообеспечением на отдыхе вдали от цивилизации:

Как видите, построить водяную миниэлектростанцию своими руками не так уж и сложно. Но так как большинство расчетов и параметров для ее комплектующих определяется «на глазок», следует быть готовым к возможным поломкам и сопутствующим затратам.

Если вы чувствуете нехватку знаний и опыта в данной сфере, стоит довериться специалистам, которые выполнят все необходимые расчеты, посоветуют оптимальное для вашего случая оборудование и качественно произведут его установку.

sovet-ingenera.com

Мини-гидроэлектростанции для частного дома, дачи

Регулярный рост цен на электроэнергию заставляет многих задумываться над вопросом альтернативных источников получения электричества. Одно из лучших решений в данном случае – гидроэлектростанция. Поиски решения данного вопроса касаются не только масштабов страны. Все чаще можно увидеть мини-гидроэлектростанции для дома (дачи). Затраты в таком случае будут только на строительство и техническое обслуживание. Минус подобного сооружения в том, что его возведение возможно только в определенных условиях. Необходимо наличие водяного потока. К тому же возведение данной конструкции у себя во дворе требует разрешения местных органов власти.

Схема мини-гидроэлектростанции

Принцип работы гидроэлектростанции для дома достаточно прост. Схема сооружения выглядит следующим образом. На турбину падает вода, заставляя вращаться лопасти. Они, в свою очередь, за счет крутящего момента или перепада давления приводят в движение гидропривод. От него передается полученная мощность на электрогенератор, который и вырабатывает электричество.

В настоящее время схема ГЭС чаще всего укомплектовывается системой управления. Это позволяет конструкции работать в автоматическом режиме. В случае необходимости (к примеру, аварии) имеется возможность перехода на ручное управление.

Разновидности мини-ГЭС

Стоит понимать, что мини-гидроэлектростанции позволяют получать не более трех тысяч киловатт. Это максимальная мощность подобного сооружения. Точное значение будет зависеть от типа ГЭС и конструкции используемого оборудования.

В зависимости от вида водяного потока выделяют следующие типы станций:

  • Русловые, характерные для равнин. Они устанавливаются на реках с несильным потоком.
  • Стационарные используют энергию водных рек с быстрым потоком воды.
  • ГЭС, устанавливающиеся в местах перепада водного потока. Встречаются чаще всего в промышленных организациях.
  • Мобильные, которые строятся с применением армированного рукава.

Для строительства ГЭС достаточно даже небольшого ручья, протекающего по участку. Владельцы домов с центральным водоснабжением не должны отчаиваться.

Одной из американских компаний разработана станция, которую можно встраивать в водоснабжающую систему дома. В водопровод встраивается турбина маленьких размеров, которая приходит в движение за счет потока воды, двигающегося самотеком. Это снижает скорость потока воды, но снижает себестоимость электроэнергии. К тому же данная установка полностью безопасна.

Устраиваются даже мини-гидроэлектростанции в канализационной трубе. Но их строительство требует создания определенных условий. Вода по трубе должна стекать естественным образом за счет уклона. Второе требование – диаметр трубы должен быть подходящим для устройства оборудования. А это невозможно сделать в отдельно стоящем доме.

Классификация мини-ГЭС

Мини-гидроэлектростанции (дома, в которых они используются, в большинстве относятся к частному сектору) чаще всего относятся к одному из следующих типов, которые различаются принципом работы:

  • Водяное колесо – традиционный тип, который наиболее прост в исполнении.
  • Пропеллер. Используют в тех случаях, когда река имеет русло шириной более десяти метров.
  • Гирлянда устанавливается на реках с несильным потоком. Для усиления скорости течения воды используют дополнительные сооружения.
  • Ротор Дарье устанавливается обычно на промышленных предприятиях.

Распространенность этих вариантов обусловлена тем, что они не требуют строительства плотины.

Водяное колесо

Это классический вид ГЭС, который наиболее популярен для частного сектора. Мини-гидроэлектростанции данного типа представляют собой большое колесо, способное вращаться. Его лопасти опускаются в воду. Вся остальная часть конструкции находится над руслом, заставляя двигаться весь механизм. Мощность передается через гидропривод генератору, вырабатывающему ток.

Пропеллерная станция

На раме в вертикальном положении располагается ротор и подводный ветряк, опускаемый под воду. Ветряк имеет лопасти, которые вращаются под воздействием потока воды. Лучшее сопротивление оказывают лопасти шириной два сантиметра (при быстром потоке, скорость которого, тем не менее, не превышает двух метров в секунду).

В данном случае лопасти приводятся в движение за счет возникающей подъемной силы, а не за счет давления воды. Причем направление движения лопастей перпендикулярно направлению течения потока. Этот процесс похож на работу ветровых электростанций, только работает под водой.

Гирляндная ГЭС

Данного типа мини-гидроэлектростанции представляют собой трос, натянутый над руслом и закрепленный в опорном подшипнике. На нем в виде гирлянды навешены и жестко закреплены турбины небольшого размера и веса (гидровингроторы). Они состоят из двух полуцилиндров. За счет совмещения осей при опускании в воду в них создается крутящий момент. Это приводит к тому, что трос изгибается, натягивается и начинает вращаться. В данной ситуации трос можно сравнивать с валом, который служит для передачи мощности. Один из концов троса соединен с редуктором. На него и передается мощность от вращения троса и гидровингроторов.

Повысить мощность станции поможет наличие нескольких «гирлянд». Их можно соединить между собой. Даже это не сильно повышает КПД данной ГЭС. Это один из минусов подобного сооружения.

Еще один недостаток данного вида – создаваемая им опасность для окружающих. Подобного рода станции допустимо использовать только в безлюдных местах. Наличие предупредительных знаков обязательно.

Ротор Дарье

Мини-гидроэлектростанция для частного дома данного вида названа так в честь ее разработчика — Жоржа Дарье. Запатентована данная конструкция была еще в 1931 году. Представляет собой ротор, на котором находятся лопасти. Для каждой из лопастей в индивидуальном порядке подбираются нужные параметры. Ротор опускается под воду в вертикальном положении. Лопасти вращаются за счет перепада давления, возникающего под действием протекания по их поверхности воды. Этот процесс подобен подъемной силе, заставляющей самолеты взлетать.

Данный вид ГЭС имеет хороший показатель КПД. Втрое преимущество – направление потока не имеет значение.

Из недостатков данного вида электростанций можно выделить сложную конструкцию и непростой монтаж.

Преимущества мини-ГЭС

Независимо от вида конструкции мини-гидроэлектростанции обладают рядом преимуществ:

  • Экологически безопасны, не вырабатывают вредных для атмосферы веществ.
  • Процесс получения электричества проходит без образования шума.
  • Вода остается чистой.
  • Электричество вырабатывается постоянно, вне зависимости от времени суток или погодных условий.
  • Для обустройства станции достаточно даже небольшого ручья.
  • Излишек электроэнергии можно продать соседям.
  • Не нужно много разрешающей документации.

Мини-гидроэлектростанция своими руками

Построить водяную станцию для получения электроэнергии можно самостоятельно. Для частного дома достаточно двадцати киловатт в сутки. С таким значением справится даже мини-ГЭС, собранная своими руками. Но при этом следует помнить, что данный процесс характеризуется рядом особенностей:

  • Точные расчеты провести достаточно трудно.
  • Размеры, толщина элементов выбирается «на глаз», только опытным путем.
  • Самодельные сооружения не имеют защитных элементов, что приводит к частым поломкам и связанным с этим затратам.

Поэтому если нет опыта и определенных знаний в данной сфере, лучше отказаться от идеи подобного рода. Дешевле может оказаться приобретение уже готовой станции.

Если все же решаетесь делать все своими руками, то начинать необходимо с измерения скорости потока воды в реке. Ведь от этого зависит мощность, которую можно получить. Если скорость будет меньше одного метра в секунду, то строительство мини-гидроэлектростанции в данном месте не оправдает себя.

Еще один этап, который нельзя опускать – это расчеты. Необходимо тщательно рассчитать размер затрат, которые уйдут на строительство станции. В результате может оказаться, что гидроэлектростанция – не лучший вариант. Тогда стоит обратить внимание на другие виды альтернативной электроэнергии.

Мини-гидроэлектростанция может стать оптимальным решением в вопросе экономии затрат на электроэнергию. Для ее строительства необходимо наличие реки недалеко от дома. В зависимости от желаемых характеристик можно подобрать подходящий вариант ГЭС. При правильном подходе выполнить подобное сооружение можно даже своими руками.

fb.ru

Бесплатное электричество — мини ГЭС своими руками

Если у Вашего жилища протекает река или даже небольшой ручей, то с помощью самодельной мини ГЭС Вы можете получить бесплатную электроэнергию. Возможно это будет не очень большое пополнение бюджета, но осознание того, что у Вас есть своя собственная электроэнергия — стоит гораздо дороже. Ну а если, например на даче, нет центрального электроснабжения — то даже небольшие мощности электроэнергии будут просто необходимы. И так, для создания самодельной гидроэлектростанции необходимо как минимум два условия — наличие водяного ресурса и желание.

Если и то и другое присутствует, то то первое, что нужно сделать – это измерить скорость потока реки. Сделать это очень просто — бросаете в реку веточку и замерьте время, в течении которого она проплывет 10 метров. Поделив метры на секунды, вы получите скорость течения в м/с. Если скорость меньше 1 м/с, то продуктивной мини ГЭС не получится. В этом случае можно попробовать увеличить скорость потока искусственно заузив русло или сделав небольшую плотину, если имеете дело с не большим ручьем.

Для ориентира, можно использовать соотношение между скоростью потока в м/с и мощностью снимаемой электроэнергии с вала винта в кВт (диаметр винта 1 метр). Данные экспериментальные, в реальности полученная мощность зависит от многих факторов, но для оценки подойдет.Так:

0.5 м/с – 0.03 кВт,0.7 м/с – 0.07 кВт,1 м/с – 0.14 кВт,1.5 м/с – 0.31 кВт, 2 м/с – 0.55 кВт, 2.5 м/с – 0.86 кВт,3 м/с -1.24 кВт, 4 м/с – 2.2 кВт и т.д.

Мощность самодельной мини ГЭС пропорциональна кубу скорости потока. Как уже указывалось, если скорость течения недостаточная, попробуйте ее искусственно увеличить, если это конечно возможно.

Типы мини-ГЭС

Существует несколько основных вариантов самодельных мини гидроэлектростанций.

Водяное колесо

Это колесо с лопастями, установленное перпендикулярно поверхности воды. Колесо погружено в поток меньше чем наполовину. Вода давит на лопасти и вращает колесо. Существуют также колеса-турбины со специальными лопатками, оптимизированными под струю жидкости. Но это достаточно сложные конструкции скорее заводского, чем самодельного изготовления.

Ротор Дарье

Это ротор с вертикальной осью вращения, используемый для генерации электрической энергии. Вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета. Эта конструкция была запатентована Жорж Жан-Мари Дарье, французским авиационным инженером в 1931 году. Также часто используется в конструкциях ветрогенераторов.

Гирляндная ГЭС

Гидроэлектростанция состоит из легких турбин — гидровингроторов, нанизанных и жестко закрепленными в виде гирлянды на тросе, переброшенном через реку. Один конец троса закрепляется в опорном подшипнике, второй — вращает ротор генератора. Трос в этом случае играет роль своеобразного вала, вращательное движение которого передается к генератору. Поток воды вращает роторы, роторы вращают трос.

Пропеллер

Также заимствован из конструкций ветровых электростанций, такой себе «подводный ветряк» с вертикальным ротором. В отличие от воздушного, подводный пропеллер имеет лопасти минимальной ширины. Для воды достаточно ширины лопасти всего в 2 см. При такой ширине будет минимальное сопротивление и максимальная скорость вращения. Такая ширина лопастей выбиралась для скорости потока 0.8-2 метра в секунду. При больших скоростях, возможно, оптимальны другие размеры. Пропеллер движется не за счет давления воды, а за счет возникновения подъемной силы. Так же как крыло самолета. Лопасти пропеллера движутся поперек потока, а не увлекаются потоком в направлении течения.

Преимущества и недостатки различных систем самодельной мини ГЭС

Недостатки гирляндной ГЭС очевидны: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД. Гирляндная ГЭС – это своего рода небольшая плотина. Целесообразно использовать в безлюдных, удаленных местах с соответствующими предупредительными знаками. Возможно потребуется разрешение властей и экологов. Второй вариант — небольшой ручей у Вас в огороде. Ротор Дарье — сложен в расчете и изготовлении. В начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока — это плюс.

Наибольшее распространение при построении самодельных гидроэлектростанций получили схемы пропеллера и водяного колеса. Так как эти варианты сравнительно просты в изготовлении, требуют минимальных расчетов и реализуются при минимальных затратах, имеют высокий КПД, просты в настройке и эксплуатации.

Если у Вас нет водяного энергоресурса можете самостоятельно сделать домашнюю ветроэлектростанцию.

Пример простейшей мини-ГЭС

Простейшую гидроэлектростанцию можно быстро соорудить из обычного велосипеда с динамкой для велофары. Из оцинкованного железа или не толстого листового алюминия надо заготовить несколько лопастей (2-3). Лопасти должны быть длиной от обода колеса до втулки, а шириной 2-4 см. Эти лопасти устанавливаются между спицами любым подручным способом или заранее заготовленными креплениями. Если вы используете две лопасти, то установите их напротив друг друга. Если захотите добавить большее количество лопастей, то разделите окружность колеса на число лопастей и установите их через равные промежутки. С глубиной погружения колеса с лопастями в воду можете поэкспериментировать. Обычно его погружают от одной трети до половины. Вариант походной ветроэлектростанции рассматривался ранее.

Такая микро ГЭС не занимает много места и отлично послужит велотуристам — главное наличие ручья или речушки — что обычно и есть в месте разбивки лагеря. Мини ГЭС из велосипеда сможет освещать палатку и заряжать сотовые телефоны или другие гаджеты.

bazila.net

Гидроэлектростанция своими руками на приусадебном участке

Самодельная мини гидроэлектростанция, сделанная своими руками: фото с описанием, а также несколько видео где показана работа мини ГЭС.

У автора возле придомового участка протекает небольшой ручей, это натолкнуло его на мысль о постройке мини гидроэлектростанции чтобы иметь возможность получить дополнительную электроэнергию для освещения дома и работы маломощных бытовых приборов.

Турбина была изготовлена самостоятельно из влагостойкой фанеры толщиной 13 мм.

В результате получилось колесо диаметром 1200 мм и шириной 600 мм, конструкцию дополнительно покрыли водоотталкивающим покрытием.

Крепление под турбину сделано из дубового бруса, вся установка закреплена анкерами к бетонному основанию, отлитому на дне ручья.

В этой самодельной мини ГЭС использован генератор Wind blue Power Permanent Magnet Generator, он способен вырабатывать 12 V уже при 130 оборотах в минуту. Обычный автомобильный генератор сюда не подходит, так как выдает 12 V более чем на 1000 об/мин. Крутящий момент передаётся из турбины на генератор цепной передачей.

По началу турбина вращалась не достаточно быстро и автор решил сделать под запрудой дополнительную ступень, на которой вода собиралась в узкое жерло и с большей силой падала на лопасти колеса.

К генератору подключена пара автомобильных аккумуляторов 12V по 110А и инвертор.

Выходная мощность мини гидроэлектростанции — 50 Вт, на пике выдает до 500 Вт.

На мой взгляд, задумка неплохая, установку можно усовершенствовать, конечно её мощности не хватит для полноценного энергоснабжения дома, но как дополнительный источник бесплатного электричества вполне подойдёт.

Колесо турбина для генератора.

Самодельная мини ГЭС в работе.

Видео: турбина гидроэлектростанции при полной нагрузке.

Популярные самоделки из этой рубрики

Бензогенератор своими руками…

Солнечное зарядное устройство для телефона своими…

Как сделать вертикальный ветрогенератор…

Как подключить солнечную батарею…

Как сделать лопасти для ветрогенератора…

Солнечные коллекторы для дома…

Солнечный коллектор из бутылок…

Тепловая мини электростанция: генератор на элемент…

Ветрогенератор своими руками…

Солнечный коллектор из банок: чертежи, фото…

Как сделать ветрогенератор: фото, видео…

Как сделать солнечную батарею для зарядки телефона…

sam-stroitel.com

Мини-ГЭС своими руками — это реально?

Поскольку тарифы на электроэнергию в последнее время начали расти, все большую актуальность среди населения приобретают возобновляемые источники электроэнергии, позволяющие получать электричество практически бесплатно. Среди известных человечеству подобных источников стоит выделить солнечные батареи, ветрогенераторы, а также домашние гидроэлектростанции. Но последние являются достаточно сложными, ведь работать им приходится в очень агрессивных условиях. Хотя это вовсе не говорит, что мини-ГЭС своими руками соорудить невозможно.

Чтобы сделать все правильно и качественно, главное – подобрать правильные материалы. Они должны обеспечивать максимальную долговечность работы станции. Создаваемые своими руками домашние гидрогенераторы, мощность которых сравнима с аналогичной у солнечных батарей и ветряков, могут производить гораздо больший объем энергии. Но хотя от материалов и зависит многое, на них все не заканчивается.

Разновидности мини-гидроэлектростанций

Существует большое количество разнообразных вариаций мини-ГЭС, каждая из которых имеет свои преимущества, особенности и недостатки. Выделяют следующие виды этих устройств:

  • гирляндную;
  • пропеллерную;
  • ротор Дарье;
  • водяное колесо с лопастями.

Гирляндная ГЭС состоит из троса, на котором закреплены роторы. Такой трос перетягивают через реку и погружают в воду. Поток воды в реке начинает вращать роторы, которые в свою очередь крутят трос, на одном конце которого расположен подшипник, а на втором – генератор.

Следующий вид – это водяное колесо с лопастями. Его устанавливают перпендикулярно водной глади, погружая меньше чем наполовину. Поскольку поток воды воздействует на колесо, оно вращается, и заставляет крутиться генератор для мини-ГЭС, на котором закреплено это колесо.


Классическое водяное колесо — хорошо забытое старое

Что касается пропеллерной ГЭС, то представляет она собой ветряк, расположенный под водой с вертикальным ротором. Ширина лопастей у такого ветряка не превышает 2 сантиметров. Подобной ширины для воды хватает, ведь именно такой номинал позволяет производить максимальное количество электроэнергии при минимальном сопротивлении. Правда, эта ширина оптимальна только для скорости потока до 2 метров в секунду.

Что касается других условий, то параметры лопастей ротора рассчитывают отдельно. А ротор Дарье является вертикально расположенным ротором, действует который по принципу перепада давления. Все происходит аналогично с крылом самолета, на который воздействует подъемная сила.

Преимущества и недостатки

Если рассматривать гирляндную ГЭС, то у нее имеется ряд очевидных недочетов. Во-первых, длинный трос, используемый в конструкции, представляет опасность для окружающих. Также большую опасность представляют скрытые под водой роторы. Ну а вдобавок, стоит отметить низкие показатели КПД и большую материалоемкость.

Что касается недостатков ротора Дарье, то чтобы устройство начало вырабатывать электроэнергию, его нужно предварительно раскрутить. Правда, при этом отбор мощности производится прямо над водой, так что как бы ни изменился поток воды, генератор будет вырабатывать электричество.

Все вышеперечисленное является факторами, которые делают более популярными гидротурбину для мини-ГЭС и водяные колеса. Если рассматривать ручное сооружение подобных устройств, то они не так уж и сложны. А в добавок, при минимальных затратах такие мини-ГЭС способны выдавать максимальные показатели КПД. Так что критерии популярности очевидны.

С чего начинать строительство

Возведение мини-ГЭС своими руками стоит начинать с измерения скоростных показателей течения рек. Это делается очень просто: достаточно отметить вверх по течению расстояние в 10 метров, взять в руки секундомер, бросить щепку в воду, и засечь время, за которое она пройдет отмеренную дистанцию.

В конечном итоге, если 10 метров разделить на количество затраченных секунд, получится скорость реки в метрах в секунду. Стоит учитывать, что нет толку сооружать мини-ГЭС в местах, в которых скорость потока не превышает 1 м/с.


Если водоем находится далеко, можно соорудить обходной канал

Если нужно разобраться, как делают мини-ГЭС в местности, где небольшая скорость реки, то можно попытаться добиться увеличения потока путем организации перепада высот. Сделать это можно через установку сливной трубы в водоем. При этом диаметр трубы будет непосредственно влиять на скорость потока воды. Чем меньше будет диаметр, тем быстрее будет течение.

Подобный подход позволяет организовать мини-ГЭС даже в том случае, если возле дома будет проходить небольшой ручеек. То есть на нем организовывается разборная плотина, ниже которой производится монтаж непосредственно мини-гидроэлектростанции для питания дома и бытовых приборов.

energomir.biz

Генератор воды из воздуха » Полезные самоделки

Устройство, принцип действия генератора водыГенератор воды представляет собой пирамидальный каркас с влагопоглощающим наполнителем. Пирамидальный каркас образован четырьмя стойками поз. 3, приваренными к основанию поз. 4 , выполненного из металлического уголка. В пространство между уголками основания вварена металлическая сетка поз. 15: снизу к основанию при помощи накладок поз. 6 крепится полиэтиленовый поддон поз. 5 с отверстием посередине. Внутреннее пространство сетчатого каркаса плотно (но без деформации стенок) заполняется влагопоглощающим материалом. Снаружи на пирамидальный каркас надевается прозрачный купол поз. 1, который фиксируется при помощи четырех растяжек поз. 8 и амортизатора поз. 14.

Генератор воды имеет два рабочих цикла: поглощение влаги из воздуха наполнителем; выпаривание влаги из наполнителя с последующей ее конденсацией на стенках купола. С заходом солнца прозрачный купол поднимают, чтобы обеспечить доступ воздуха к наполнителю; наполнитель поглощает влагу всю ночь. Утром купол опускается и герметизируется амортизатором; солнце выпаривает влагу из наполнителя, пар собирается в верхней части пирамиды, конденсат стекает по стенкам купола на поддон и через отверстие в нем наполняет водой подставленную емкость.

Изготовление Генератора водыПодготовку к изготовлению генератора воды начинают со сбора наполнителя. В качестве наполнителя используются обрезки газетной бумаги; бумагу от газет нужно брать свободную от типографского шрифта во избежание засорения получаемой воды соединениями свинца. Работа по сбору бумаги займет немало времени, вот за это время изготавливаются остальные элементы генератора воды. Основание сваривается из металлических уголков с размерами полок 35х35 мм, снизу к нему привариваются четыре опоры поз. 10 из таких же уголков и восемь кронштейнов поз. 13. Кронштейны соединяются между собой стальными прутками поз. 17 длиной 930 мм; диаметр 10 мм. Сверху на полки уголков приваривается металлическая сетка с размером ячеек 15х15 мм. диаметр проволоки сетки 1,5-2 мм. Из стальной ленты вырезаются четыре накладки поз. 6. По отверстиям в накладках сверлятся отверстия диаметром 4,5 мм в уголках основания и нарезается резьба под винты ВМ 5. Затем основание устанавливают на место определенное для ГВ на садовом участке, огороде и т.д. Место нужно выбирать так, чтобы ГВ не затенялся деревьями и постройками.

После выбора места опоры основания фиксируется в земле цементным раствором. Допускается к опорам приварить опорные пятаки диаметром 100 мм из стального листа толщиной 2 мм. После этого в углы квадрата основания привариваются поочередно четыре стойки таким образом, чтобы участки стоек длиной 30 мм оказались в центре основания на высоте примерно 1,5 м. Стойки усиливаются поперечинами, которые привариваются к стойкам изнутри.

Материал поперечин такой же как у стоек. Затем из полиэтиленовой пленки толщиной 1 мм вырезается поддон поз. 5; края поддона, которые окажутся под накладками, подворачивают для усиления места крепления. В центре поддона вырезают круглое отверстие диаметром 70 мм — для стока воды. Края отверстий также можно усилить путем приваривания дополнительной накладки из полиэтилена. Далее производят фиксацию на стойках сетчатого каркаса, представляющего собой мелкоячеистую рыболовную сеть с размером ячеек 15х15 мм. Сеть подвязывается к стойкам и краям поддона из металлической сетки при помощи х/б тесьмы так, чтобы сеть была туго натянута между стоек. Желательно также подвязать сеть и к поперечинам, поделив внутренний объем пирамиды на два отсека. Перед подвязкой сети к передней стойке, отсеки (начиная с верхнего) получившегося сетчатого каркаса плотно заполняется скомканными обрезками газетной бумаги. Заполнение производить так, чтобы не оставалось свободного места внутри пирамиды и выступание сетчатых стенок было минимальным. Затем приступают к изготовлению прозрачного купола. Он выполнен из полиэтиленовой пленки, раскрой которой производится согласно чертежа поз. 1 и сваривается паяльником по плоскостям А, А1. Шов выполнять без перегрева, чтобы полиэтилен не становился ломким в месте сварки. Для предотвращения нарушения целостности купола в вершине пирамиды ее накрывают своеобразной полиэтиленовой «шапочкой» — фрагмент В по чертежу поз. 1. Затем, предварительно надев фрагмент В на пирамиду, аккуратно надевают на каркас купол. Расправив купол, сваривают между собой края плоскостей С: получается своеобразная «юбочка». Из резиновой трубки изготавливается кольцо поз. 9, которое надевается на пирамиду. К кольцу привязывают четыре растяжки с крюками поз. 11. Низ прозрачного купола («юбочка») плотно прижимается к уголкам основания амортизатором. Амортизатор — кольцо из резиновой ленты длиной 5000 мм, шириной 50 мм изготовлен из резинового бинта. При отсутствии полиэтилена нужной площади для купола, его сваривают из нескольких фрагментов полиэтилена. Для сварки полиэтилена рекомендуется воспользоваться паяльником мощностью 40-65 Вт, в жале которого сделана проточка, в проточке на оси зафиксирован металлический диск толщиной 3-5 мм.

Эксплуатация генератора водыС заходом солнца прозрачный купол подворачивают до уровня поперечин и фиксируют в таком положении растяжками, надев крюки на прутки поз. 17. За ночь бумага вберет в себя влагу и, утром купол опускают, фиксируя его нижний край на основании амортизатором. За день солнце раскалит пирамиду, влага из бумаги испарится, пар по мере остывания конденсируется на стенках в воду, которая стекает вниз. Воду набирают, подставив какую-либо емкость под отверстие в полиэтиленовом поддоне. С заходом солнца цикл повторяют. Бумагу в ГВ рекомендуется менять каждый сезон, на зиму купол нужно хранить в помещении. Также рекомендуется менять купол после потери прозрачности его стенок. Во время эксплуатации необходимо следить за целостностью купола.

www.freeseller.ru

Как сделать мини-ГЭС своими руками / Устойчивые изделия и конструкц…

Если недалеко от вашего дома есть небольшая речка, вы можете использовать такой генератор для получения чистой энергии. Это схему разработал один американский рационализатор и собрал мини-ГЭС всего за три дня.

В связи с постоянным удорожанием углеводных энергоносителей, специалисты обращают все большее внимание на преимущества, которые дает использование электроэнергии, полученной более экономным способом. Одним из самых экономных и экологически чистых…

В связи с постоянным удорожанием углеводных энергоносителей, специалисты обращают все большее внимание на преимущества, которые дает использование электроэнергии, полученной более экономным способом. Одним из самых экономных и экологически чистых способов получения электроэнергии является гидроэлектростанция для дома, затраты на которую сводятся к первичному строительству и техническому обслуживанию оборудования. Но не каждая местность имеет природные возможности для строительства подобных сооружений, для которых необходим мощный водный поток и большой перепад высот, создаваемых плотиной, в этом случае на помощь энергетикам приходят мини ГЭС.

Принцип работы и мини ГЭС

Принцип работы этого оборудования достаточно прост, что добавляет ему надежности. Водный поток, попадая на лопасти турбины, вращает гидропривод, сопряженный с электрогенератором, который и обеспечивает выработку электроэнергии под управлением контролирующей системы.
Современные мини ГЭС оборудованы системой управления, дающей возможность осуществлять работу в автоматическом режиме с мгновенным переходом на ручное управление в случае возникновения аварийной ситуации. Многоуровневая система защиты позволяет избежать перегрузок оборудования при изменении внешних условий. Конструкция станций позволяет минимизировать проведение строительных работ во время установки необходимого оборудования.

Разновидности мини ГЭС

Мини гидроэлектростанция – это оборудование мощностью от 1 до 3000 кВт, которое включает в себя водозаборное устройство (турбину), генерирующий энергоблок и систему управления оборудованием.
В зависимости от используемых водных ресурсов мини ГЭС делятся на несколько категорий:

  • русловые станции, использующие энергию небольших рек с организованными водохранилищами. Применяются в основном на равнинной местности;
  • стационарные станции, использующие энергию быстрого течения при эксплуатации горных рек;
  • станции, использующие перепады водного потока на промышленных предприятиях;
  • мобильные станции, использующие для организации потока армированные рукава.

Согласно ожидаемому напору водного потока проектируется соответствие гидроагрегата и его турбины мощности электрогенерирующего блока для обеспечения необходимой частоты вращения генератора и облегчения создания необходимой частоты тока.

Для различных условий работы мини ГЭС разработаны соответствующие конструкции турбин:

  • при большом напоре водяного потока более 60 м применяют радиально-осевые и ковшовые турбины;
  • при средней интенсивности потока 25 — 60 м хорошо зарекомендовали себя турбины поворотно-лопастной и радиально-осевой конструкции;
  • на низконапорных потоках выгодней использовать поворотно-лопастные и пропеллерные конструкции, помещенные в железобетонные камеры.

Видео домашней гидроэлектростанции сделанной своими руками

Особенности подключения мини ГЭС

Устройство этого оборудования позволяет подключать станции непосредственно к сети электроснабжения, в этом случае используется синхронный генератор. Для создания локальной сети используют асинхронный агрегат, который комплектуется блоком балластной нагрузки, необходимой для рассеивания избыточной мощности во избежание выхода из строя систем подачи электроэнергии и скачкообразных изменений основных параметров сети.

Преимущества и недостатки мини ГЭС

К преимуществам работы подобных систем можно отнести:

  • экологическую безопасность оборудования и отсутствие необходимости затопления больших площадей;
  • низкую стоимость получаемой электроэнергии, которая в разы дешевле вырабатываемой на ТЭС;
  • простоту и надежность применяемого оборудования и возможность его работы в автономном режиме;
  • неисчерпаемость используемого природного ресурса

К недостаткам относятся:

  • перебои в электроснабжении определенных регионов при выходе оборудования из строя, с случае использования мини ГЭС, как локального источника. Это компенсируется наличием аварийного источника энергоснабжения, подключаемого автоматически;
  • слабая производственная и ремонтная база этой отрасли энергообеспечения в нашей стране.

Экология потребления.Наука и техника:Создаваемые своими руками домашние гидрогенераторы по мощности сравнимы с солнечными батареями и ветряками, но производят гораздо больший объем электроэнергии.

Поскольку тарифы на электроэнергию в последнее время начали расти, все большую актуальность среди населения приобретают возобновляемые источники электроэнергии, позволяющие получать электричество практически бесплатно. Среди известных человечеству подобных источников стоит выделить солнечные батареи, ветрогенераторы, а также домашние гидроэлектростанции. Но последние являются достаточно сложными, ведь работать им приходится в очень агрессивных условиях. Хотя это вовсе не говорит, что мини-ГЭС своими руками соорудить невозможно.

Чтобы сделать все правильно и качественно, главное – подобрать правильные материалы. Они должны обеспечивать максимальную долговечность работы станции. Создаваемые своими руками домашние гидрогенераторы, мощность которых сравнима с аналогичной у солнечных батарей и ветряков, могут производить гораздо больший объем энергии. Но хотя от материалов и зависит многое, на них все не заканчивается.

РАЗНОВИДНОСТИ МИНИ-ГИДРОЭЛЕКТРОСТАНЦИЙ

Существует большое количество разнообразных вариаций мини-ГЭС, каждая из которых имеет свои преимущества, особенности и недостатки. Выделяют следующие виды этих устройств:

  • гирляндную;
  • пропеллерную;
  • ротор Дарье;
  • водяное колесо с лопастями.

Гирляндная ГЭС состоит из троса, на котором закреплены роторы. Такой трос перетягивают через реку и погружают в воду. Поток воды в реке начинает вращать роторы, которые в свою очередь крутят трос, на одном конце которого расположен подшипник, а на втором – генератор.

Следующий вид – это водяное колесо с лопастями. Его устанавливают перпендикулярно водной глади, погружая меньше чем наполовину. Поскольку поток воды воздействует на колесо, оно вращается, и заставляет крутиться генератор для мини-ГЭС, на котором закреплено это колесо.


Что касается пропеллерной ГЭС, то представляет она собой ветряк, расположенный под водой с вертикальным ротором. Ширина лопастей у такого ветряка не превышает 2 сантиметров. Подобной ширины для воды хватает, ведь именно такой номинал позволяет производить максимальное количество электроэнергии при минимальном сопротивлении. Правда, эта ширина оптимальна только для скорости потока до 2 метров в секунду.

Что касается других условий, то параметры лопастей ротора рассчитывают отдельно. А ротор Дарье является вертикально расположенным ротором, действует который по принципу перепада давления. Все происходит аналогично с крылом самолета, на который воздействует подъемная сила.

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ


Если рассматривать гирляндную ГЭС, то у нее имеется ряд очевидных недочетов. Во-первых, длинный трос, используемый в конструкции, представляет опасность для окружающих. Также большую опасность представляют скрытые под водой роторы. Ну а вдобавок, стоит отметить низкие показатели КПД и большую материалоемкость.

Что касается недостатков ротора Дарье, то чтобы устройство начало вырабатывать электроэнергию, его нужно предварительно раскрутить. Правда, при этом отбор мощности производится прямо над водой, так что как бы ни изменился поток воды, генератор будет вырабатывать электричество.

Все вышеперечисленное является факторами, которые делают более популярными гидротурбину для мини-ГЭС и водяные колеса. Если рассматривать ручное сооружение подобных устройств, то они не так уж и сложны. А в добавок, при минимальных затратах такие мини-ГЭС способны выдавать максимальные показатели КПД. Так что критерии популярности очевидны.

С ЧЕГО НАЧИНАТЬ СТРОИТЕЛЬСТВО

Возведение мини-ГЭС своими руками стоит начинать с измерения скоростных показателей течения рек. Это делается очень просто: достаточно отметить вверх по течению расстояние в 10 метров, взять в руки секундомер, бросить щепку в воду, и засечь время, за которое она пройдет отмеренную дистанцию.

В конечном итоге, если 10 метров разделить на количество затраченных секунд, получится скорость реки в метрах в секунду. Стоит учитывать, что нет толку сооружать мини-ГЭС в местах, в которых скорость потока не превышает 1 м/с.


Если нужно разобраться, как делают мини-ГЭС в местности, где небольшая скорость реки, то можно попытаться добиться увеличения потока путем организации перепада высот. Сделать это можно через установку сливной трубы в водоем. При этом диаметр трубы будет непосредственно влиять на скорость потока воды. Чем меньше будет диаметр, тем быстрее будет течение.

Подобный подход позволяет организовать мини-ГЭС даже в том случае, если возле дома будет проходить небольшой ручеек. То есть на нем организовывается разборная плотина, ниже которой производится монтаж непосредственно мини-гидроэлектростанции для питания дома и бытовых приборов. опубликовано

Сила водного потока – это возобновляемый природный ресурс, позволяющий получать практически бесплатное электричество. Подаренная природой энергия предоставит возможность сэкономить на коммунальных услугах и решить проблему с подзарядкой техники.

Если рядом с вашим домом протекает ручей или река, ими стоит воспользоваться. Они смогут обеспечить электроэнергией участок и дом. А уж если построена гидроэлектростанция своими руками, экономический эффект возрастает в разы.

В представленной статье детально описаны технологии изготовления частных гидротехнических сооружений. Мы рассказали о том, что потребуется для устройства системы и подключения ее к потребителям. У нас вы узнаете о всех вариантах миниатюрных поставщиков энергии, собранных из подручных материалов.

Гидроэлектростанции – это сооружения, способные преобразовать энергию движения воды в электричество. пока активно эксплуатируются только на Западе. На территории нашей страны эта перспективная отрасль лишь делает первые робкие шаги.

Галерея изображений

 

4.2. Создаем гидроэлектростанции своими руками

Самодельная ГЭС без плотины

Рассмотрим конструкцию: на длинном стальном тросе, перекинутом с одного берега речки на другой, укреплена гирлянда гидророторов. Поток воды вращает их, а вместе с ними и трос. Если соединить конец троса с генератором постоянного тока, генератор начнет вырабатывать электричество. А если к тросу присоединить вал насоса, он будет еще и качать воду на приусадебный участок, огород, бахчу рис. 4.4.

Рис. 4.4. Электростанция на гидророторах

Мощность такой самодельной «ГЭС» зависит не только от скорости течения реки, но и от числа гидророторов, их размеров. Следовательно, присоединяя к тросу дополнительные пары гидророторов, мы можем пропорционально ее увеличивать.

В данном случае рассмотрен движитель, который будет вращать генератор от легкового автомобиля. Напряжение, вырабатываемое генератором, — 12 В, а мощность — до 150 Вт.

Готовимся к постройке гидростанции. Прежде чем приступать к постройке гидростанции, подберите генератор. Заготовьте материалы: трос, доски, кровельное железо, стальной пруток и полосы.

 Совет.

Заранее подберите место, где будет установлена электростанция. Желательно, чтобы это был прямой участок реки с чистыми, не заросшими кустарником берегами.

На выбранном участке длиной 15–20 м наметьте два поперечных створа и, пользуясь поплавком, например, щепкой, определите скорость течения. Бросьте поплавок в воду немного выше верхнего створа и по секундомеру отсчитайте время, за которое плавок проплывет расстояние от верхнего створа до нижнего.

Бросая поплавок на разное расстояние от берега, сделайте несколько таких замеров. А потом подсчитайте среднюю скорость течения реки. Если она не меньше 0,8 м/с, смело приступайте к строительству.

Длину троса вам подскажет ширина реки. Все остальные узлы и детали даны на рис. 4.4. Подробности см. на http://www.audens.ru/ или в приложении к журналу «Юный техник» № 6 — 1982 г.

Каждый гидроротор состоит из двух полуцилиндров, ограниченных дисками и смещенных относительно друг друга. Гидророторы попарно прикреплены к тросу. В каждой паре один гидроротор повернут относительно другого на угол 90°. Это сделано для того, чтобы получить равномерное вращение каждой пары, иначе трос будет закручиваться рывками. Трос все время растянут и в таком положении передает вращение на генератор, находящийся на берегу.

Береговые опоры — это доски и короткие бревна, врытые в грунт и связанные между собой стальными полосами (рис. 4.4). На одном берегу на такой опоре устанавливают генератор с редуктором (см. левую половину рисунка), а на другом — свободную опору с упорным подшипником и крюком, которые позволяют тросу вращаться.

Конец троса, идущий к генератору, перекинут через ролик и закреплен. Ролик крепится к выходному валу редуктора тоже крюком.

Установленная поперек течения речки гирлянда держится на поверхности, почти не выступая над ней.

Когда нужно снять гирлянду, вынимают чеку из отверстия в крюке и снимают узел упорного подшипника вместе с концом троса. Снятую гирлянду укладывают по течению речки вблизи от берега.

 Внимание.

Во избежание несчастного случая необходимо помнить, что в момент снятия гирлянды с крюка трос раскручен не полностью. Только через 20–30 с после сброса гирлянды его можно брать в руки.

Изготовление деталей и узлов самодельной ГЭС. Трос играет роль гибкого вала. Он металлический, диаметром 10 мм. Его длина должна быть процентов на 10–15 больше ширины речки. Трос должен иметь законцовки: на одну опирается упорный подшипник, установленный на свободной опоре, через вторую на трос надеваются гидророторы. Обе законцовки пропаиваются оловом или твердым припоем.

Начинать следует с конца троса, через который надеваются гидророторы. Прежде всего, покрепче стяните его тремя витками стальной проволоки диаметром 0,2–0,5 мм, чтобы он не расплелся. Прежде чем пролудить конец троса, опустите его в бутыль с паяльной кислотой (соляная кислота, травленная цинком), а затем — в тигель с расплавленным оловом.

 Внимание.

Работу проводите в защитных очках и фартуке.

Операцию повторите 2–3 раза, пока не образуется сплошная пленка припоя. Лишь после этого снимите витки проволоки и конец опилите до диаметра троса. Наконечник закруглите, чтобы его было удобнее продевать через диски гидророторов.

Под второй конец троса на токарном станке выточите втулку, внутренний диаметр которой равен диаметру троса, а толщина стенки — 1,5–2,5 мм. Вставьте во втулку стальной стержень, и в таком виде зажмите в тисках. Заостренным концом молотка короткими, но не сильными ударами отогните борта втулки на 45°. Затем наденьте ее на конец троса и, чтобы она пока не мешала, продвиньте немного вперед. Каждую проволочку троса на длине 20 мм согните вдвое и пролудите. Трос готов.

Узел упорного подшипника состоит из обоймы, подшипника и крепежной скобы. Обойму подшипника лучше изготовить из водопроводной трубы, внутренний диаметр которой равен диаметру упорного подшипника. Длина отрезка трубы 135 мм. С одного конца заложите в нее оправку, равную внутреннему диаметру трубы, и на наковальне или на толстой плите ударами молотка сплющите (лучше предварительно трубу разогреть докрасна). Затем просверлите отверстия диаметром 12,5 и диаметром 4,2 мм и закруглите края напильником. Упорные подшипники подберите готовые, от старых авто- или сельскохозяйственных машин.

Крепежную скобу сделайте из стальной проволоки диаметром 6 мм. Разрежьте ее на куски длиной по 60 мм и запилите концы. Потом плашкой нарежьте резьбу М6 на длину 10 мм. Полученный стержень согните — скоба готова. Скобу упорного подшипника делают так же.

Порядок сборки. Наденьте на трос подшипник и продвиньте его до упора (до втулки). Вложите его в обойму и скрепите крепежной скобой. Чтобы в подшипник не попадал песок, между ним и скобой проложите фетровую прокладку.

Гидроротор состоит из пар дисков и полуцилиндров, изготовленных из кровельного железа толщиной 0,5–0,8 мм. Начнем с того, как делать диски. На листе кровельного железа прочертите окружности. По рискам ножницами по металлу аккуратно вырежьте заготовки, а потом, чтобы увеличить жесткость и, кроме того, не порезаться, согните в два приема края заготовок. Сначала под прямым углом заготовка станет похожей на крышку от коробки из-под гуталина. Затем в тисках отогните борта молотком полностью. Получится утолщенная кромка.

Вырезать прямоугольные заготовки для полуцилиндров не составит труда. Дополнительную прочность им придадут стальные спицы диаметром 3 мм, которые надо закатать в края. Как это делается, показано на http://www.audens.ru/ или в приложении к журналу «Юный техник» № 6 — 1982 г. Кроме того, боковые края заготовок надрежьте до штриховых линий и согните на оправке под углом 90°. А потом на круглом полене 0 80—100 мм согните заготовки в полуцилиндры.

Полуцилиндры и диски скрепите между собой заклепками, винтами или точечной сваркой. Гидророторы готовы. Но прежде чем надевать их на трос, сделайте прорезные накладки и скобы.

Прорезная-накладка — это диск, диаметр которого меньше диаметра диска ротора. Изготовление накладок аналогично изготовлению дисков. Все заготовки должны иметь центральное отверстие, через которое проходит трос, и паз для скоб. Чтобы получить паз, сначала расширьте половину центрального отверстия готовой заготовки полукруглым напильником до окружности 0 16 мм, а потом сделайте в дисках пропилы длиной 18 мм.

Но так как обычное ножовочное полотно в такое отверстие не пройдет, сточите его на наждаке под ширину 15 мм. Ширину паза расширьте надфилем до размера 2,8 мм.

Скобы 70×40 мм вырежьте из стальной полосы толщиной 2,5 мм. Вдоль продольной оси каждая скоба должна иметь полукруглый паз глубиной 4 мм. Чтобы его было проще сделать, нагрейте заготовку на огне до красного каления, положите на тиски и через накладку ударами молотка осадите металл до требуемой глубины.

Соединение гидророторов. Гидроротор со скобой входит в вырез накладки. В каждой паре, напоминаем, один из гидророторов должен быть развернут на 90°. Трос жестко притянут болтовой дужкой к стягивающей скобе. Осевое перемещение прицепного гидроротора ограничено мягкой проволокой, которая одной стороной продета в дужку; а второй закреплена на шайбе. Такое соединение обеспечивает передачу мощности с гидророторов на трос, а также необходимую свободу при перемещении одного гидроротора относительно другого.

Крюки изготовьте из стального прутка диаметром 16 мм. Прежде чем сгибать заготовку, нагрейте ее. В крюке ролика просверлите отверстие диаметром 2 мм под шплинт; в крюке упорного подшипника — диаметром 4,2 мм под чеку.

Ролик выточите на токарном станке или склепайте из трех дисков — одного толщиной 10 мм и двух других — по 3 мм. Материал — сталь, латунь.

Кол выстругайте из твердого дерева и набейте на него стальные кольца — отрезки трубы с внутренним диаметром 28 мм. Вместо деревянного кола можете взять отрезки стальных труб, вбив в них заглушки с наконечниками, как показано на рис. 4.4.

Устройство передачи. Трос должен вращаться со скоростью 3–4 оборота в секунду. Генератор же может вырабатывать электрический ток при 1000–1500 оборотах в минуту. Чтобы получить такую частоту вращения на генераторе, нужен повышающий редуктор с передаточным отношением от 5 до 10. Его можно сделать самим или приобрести в магазине.

Практические советы. Вы изготовили детали, собрали узлы и, наконец, установили их на береговых опорах. Через реку перекинули трос с гидророторами — электростанция начала вырабатывать электрическую энергию. Немного, всего 150 Вт, но и этого количества вполне хватит, чтобы в полный накал горело несколько лампочек, рассчитанных на рабочее напряжение 12 В. А вот как быть, если вам потребуется мощность в несколько раз большая, например, для питания насоса с электрическим приводом? Тогда можно собрать несколько таких электростанций. Разумеется, на воде гирлянды следует установить параллельно и на некотором отдалении друг от друга. Также параллельно подсоедините проводники от генераторов к линии электропередачи.

Гирляндная миниГЭС с турбинно-тросовым гидроприводом своими руками

Рассмотрим конструкцию простой тросовой гирляндной миниГЭС с турбинно-тросовым гидроприводом, который вращается от потока течения реки. Ее предложил академик, д.т.н. Дудышев В. Д. на http://energyftiture.ru/mini-ges-svoimi-rukami. На рис. 4.5 показана, упрощенная конструкция такой минигидроэлектростанции.

В качестве гидроколес (роторов) в тросовом гидроприводе миниГЭС можно использовать несколько «крыльчаток», изготовленных из тонкого металлического листа, диаметром около полуметра, по типу детской игрушки — пропеллера из квадратного листа бумаги. В качестве гибкого вала целесообразно использовать обычный стальной трос диаметром 10–15 мм.

Рис. 4.5. Минигидроэлектростанция

Ориентировочные расчеты показывают, что от такой тросовой ГЭС, можно получить с одного гидроколеса до 1,5–2,0 кВт, при течении реки около 2,5 м/с!

Если опоры с подшипниками и электрогенератором установить на дно реки, и подшипники с генератором поднять выше уровня реки, а все это сооружение разместить по оси течения, то результат, практически будет тот же. Эта схема целесообразно применяется для очень «узких речек», но с глубиной более 0,5 м. Тепловую энергию в такой ГЭС можно получить путем подключения электронагревателей к электрогенератору.

Роторы гирляндной ГЭС, как правило, располагаются в ядре потока (на 0,2 глубины от поверхности летом и 0,5 глубины от поверхности льда зимой). Глубина реки в месте установки гирляндной ГЭС не превышает 1,5 м. При глубине реки более 1,5 м вполне возможно использовать роторы, расположенные в два ряда.

Речная электростанция

Речную электростанцию (РЭС) создал и описал Рогозин М. Н. (http://www.rosinmn.ru/gidro)

Устройство. Речная электростанция (рис. 4.6) содержит корпус цилиндрической формы с размещенной внутри его гидротурбиной. Корпус с гидравлическим аккумулятором неподвижно установлен в земляном или бетонном основании. Гидротурбина посредством вала кинематически связана с электрогенератором. Речная электростанция также содержит водозаборник в форме корытообразной прямоугольной призмы, который снабжен шлюзовым отсеком (шлюзом) и обводным каналом — водоводом, содержащим не менее двух магистралей цилиндрической формы, сопряженных с соплами эллипсообразной формы.

Рис. 4.6. Схема речной электростанции

Корпус РЭС выполнен цилиндрической формы из высокопрочного, устойчивого к химическим средствам материала, например из чугуна, железобетона, керметных материалов. Диаметр корпуса выбирается с учетом требуемых гидроэнергетических параметров водяного потока, размеров гидротурбины, величины номинальной мощности. РЭС и может составлять величину 2—10 м.

Водозаборник РЭС представляет корытообразную прямоугольную призму. Он выполнен из устойчивого к химическим средам материала, например, из железобетона, синтетических полимеров. Его габариты зависят от размеров реки, на которой он устанавливается.

В его центральной стене, на которую воздействует речной поток, установлен шлюз стандартной конструкции. Шлюз обеспечивает сброс лишней воды весной во время половодий и в момент сильных дождей.

В нижней части центральной стены размещен водовод, нижняя стенка которого размещена на уровне дна водозаборника. Водовод в сечении по ширине выполнен замкнутым эллипсообразным с неизменным сечением и горизонтальным расположением большой оси эллипса, изготовлен из железобетона или синтетики и снабжен со стороны центральной стены водозаборника фильтром — защитной сеткой (на фигурах не показано). Толщина дна, боковых стен и центральной стены водозаборника зависят от его размеров и составляют от 0,5 до 1 м. Водовод неизменной эллиптической формы и сечения расчленяется на магистрали цилиндрической формы, число которых не менее двух.

Площадь сечения и длина вывода зависят от глубины речного потока, его ширины, мощности РЭС. Большая ось эллиптического сечения у центральной стены составляет 10–30 м, а малая ось — 2…6 м. Длина эллиптической части водовода составляет 0,2–0,5∙l, где l — общая длина водовода с магистралью и соплом.

Длина расчлененных магистралей зависит от места расположения корпуса РЭС и составляет 0,2–0,4/. Магистрали сопрягаются с соплами, выполненными эллипсообразной формы и сужающимися по пологой экспоненте.

В корпусе РЭС в зоне размещения лопаток гидротурбины по образующей размещены тангенциально сопла магистралей, которые сдвинуты друг относительно друга в плоскости образующей на одинаковые расстояния или угла а = 180°, 120°, 90°, 45° и установлены большой осью эллиптического сечения вертикально. Экспоненциальное сечение сопл и вертикальная установка их большой осью в корпусе РЭС обеспечивает максимальное повышение гидродинамических свойств водяного потока и скорости его течения.

Сопла эллиптического сечения сужаются по пологой экспоненте, являются продолжением зоны гидродинамического ускорения речной воды, их длина составляет 5—15 м, а их большая эллиптическая ось равна 0,5–3 м. Экспоненциальное сужение сопла может быть заменено коническим сужением.

Корпус РЭС нижним основанием сопряжен с гидравлическим аккумулятором, верхняя часть корпуса которого выполнена в виде усеченного пустотелого конуса и сопряжена большим основанием со второй своей частью в форме полусферического пустотелого тела вращения.

Такая конструкция гидравлического аккумулятора воспринимает вращение создаваемого соплами потока и образует маховик, что обеспечивает оптимальное вращение водяного потока на требуемых оборотах, его резкое ускорение вверх без затухания вращательного движения водяного потока в корпусе РЭС. Гидравлический аккумулятор также выполнен из прочного, устойчивого к агрессивным средам материала. Соотношение конической и сферической частей гидравлического аккумулятора составляет 3:1–1:1. Корпус РЭС смонтирован с гидротурбиной на земляном или бетонном основании вертикально.

Водовод со стороны водозаборника сопряжен внутренней стороной с центральной стеной водозаборника овальной кривой для получения оптимального коэффициента истечения m на уровне m = 0,9. Аналогично наружные кромки сопл выполнены полукруглыми.

Гидротурбина стандартного типа с вертикальным расположением лопастей размещена вертикально в верхней части корпуса РЭС на подшипниках-опорах требуемых габаритов и мощности. На шейке вала гидротурбины может быть размещен гидравлический метатель (на рис. 4.7 не показан), который выполнен в виде сегнерового колеса. Это дополнительно повышает крутящий момент на валу гидротурбины, то есть ее мощность. Выше гидротурбины на корпусе РЭС размещены выпускные сопла, выше уровня речной воды, через которые осуществляется слив прошедшего через гидротурбину водяного потока в сливной канал.

Электрогенератор смонтирован на верхнем сечении корпуса и выбран стандартной формы на заданную мощность. Для обеспечения нормальной скорости вращения ротора электрогенератора он может содержать редуктор, связанный с валом гидротурбины.

Работа речной электростанции. Речная электростанция работает следующим образом (рис. 4.7). При размещении РЭС на малой реке с достаточно высокими берегами в водозаборнике накапливается уровень речной воды и создается по уровню водовода водяной напор. Вследствие тангенциального размещения сопел происходит преобразование поступательного движения водяного потока в цилиндрическом корпусе. Получив от гидравлического аккумулятора вращательно-поступательные движения, вращающийся водяной поток в цилиндрическом корпусе воздействует на лопатки гидротурбины, заставляя ее вращаться с заданной скоростью.

Рис. 4.7. Сечение корпуса и водовода ГЭС

Вал гидротурбины приводит во вращение ротор электрогенератора с требуемой скоростью, которая при необходимости корректируется редуктором.

Происходит непрерывная выработка электрической энергии электрогенератором. Избытки накопленной в водозаборнике речной воды по сверхдопустимому уровню непрерывно отводятся шлюзом в продолжение русла реки.

В результате того, что корпус РЭС цилиндрической формы смонтирован вертикально, снабжен гидравлическим аккумулятором в виде пустотелого конуса, сопряженного большим основанием с пустотелой замкнутой полусферой. При этом водовод содержит не более двух магистралей цилиндрической формы, сопряженных с соплами эллипсообразной формы и сужающимися по пологой экспоненте. Следует отметить, что сопла размещены концентрично по корпусу и расположены тангенциально по вертикали большей эллиптической осью, решается поставленная техническая задача.

В сравнении с прототипами и аналогами упрощается конструкция речной электростанции, повышается ее КПД, оптимально используется энергия малых рек.

Созданная речная электростанция, ширина водозаборника которой составляет 20 м, высота 3 м, диаметр магистралей до 2 м и большая ось эллиптического сечения сопел составила 1,5 м, позволяет генерировать энергию 300–800 кВт. При этом ее КПД больше чем в 1,5 раза превышает КПД речных электростанций-аналогов.

Гидроэнергетика нового поколения — Энергетика и промышленность России — № 17 (301) сентябрь 2016 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 17 (301) сентябрь 2016 года

Их применение будет не только новаторским, но и достаточно эффективным.

Из основных возобновляемых источников энергии – водного, воздушного (ветрового) и солнечного – первый был и будет самым надежным, эффективным, доступным, дешевым. Генерация на его основе будет развиваться активнее, особенно в кризисных ситуациях. Два остальных возобновляемых источника (солнце и воздух) могут быть дополнением к гидроэнергетике нового типа при комбинированных энергокомплексах типа гидро-гелио-пневмоЭС. По отдельности сегодня их разработка технически сложна и дорогостояща, малодоступна для рядового потребителя в отдаленных от центра территориях.

Использование воды

Океаны, моря, реки и другие водоемы занимают большую часть планеты. Вода содержит в себе колоссальную энергию, даже если взять только кинетическую энергию движущейся воды, то есть течения, приливы, силу волн, естественные или искусственные потоки. Энергию рек люди стали использовать давно, начиная с водяных мельниц (деревянных норий, 5000 лет назад в Сирии) и кончая гигантскими гидроэлектростанциями ХХ века.

В ХХI веке появились новые технологии использования малых потоков рек (с расходом от 3‑5 м3 /сек для малых плотинных ГЭС). Появляются уже гидроустановки, получающие электроэнергию от сверхмалых потоков (низкопотенциальных, от 20 литров /сек), с большими возможностями по мощностям (до 100 кВт) и от искусственно созданных потоков, так называемых «кинетических гидроколец» (эти установки, по аналогии с механическими типами кинетических колец, мы назвали «гидроколлайдерами»).

Появляется и генерация энергии с помощью комбинированных систем в стоячих водоемах или в искусственных бассейнах. Технология позволит обеспечить потребителя почти в любой отдаленности от центральных энергосистем. Главное в этой технологии регенерации энергии – это использование динамики потоков или гидроимпульсов.

Создается новая энергетика – «индивидуальная», где генерация и потребление максимально сближены и обеспечивают потребителя и соседей собственной энергией по схеме взаимовыручки, в отличие от традиционных видов генерации, энергию которых надо доставлять через сотни километров.

Если рационально использовать гидроресурсы, то потенциал гидроэнергетики, особенно малой, без плотин и микро-ГЭС, к 2030 году может превысить 70 процентов от общей энергетики. Простота и доступность индивидуальной энергетики, в т. ч. и микро-ГЭС, снизит потребление энергии ветра и солнца как неудобные и чрезмерно затратные для общего пользования, а уж зависимость от топливной энергетики и подавно резко уменьшится.

В использовании течений морей, приливов и силы волн человечество пока делает робкие шаги, хотя многие страны буквально тонут в мировом океане.

Надо эффективно и рационально использовать возможности воды, а не создавать гидросистемы, заранее обрекая полученную энергию на дороговизну. Имеются в виду каскады плотин на реках и затопление земель.

Неосуществленный проект

В России у изобретателей появляются щадящие технологии использования силы рек и моря, есть проекты, которые позволят получать энергию даже после сноса плотин и спуска водохранилищ.

Страны ЕС намерены использовать ветроэнергетический потенциал Северного моря. Девять европейских стран, включая Нидерланды, Норвегию и Швецию, подписали программу действий по укреплению энергетического сотрудничества в Северном море. Они будут вести сотрудничество в следующих направлениях: планирование и использование морского пространства; создание электросетей, способных принять большое количество энергии от ветровых электростанций; обмен информацией; признание энергетических стандартов друг друга, – что позволит с минимальными затратами использовать богатый ветроэнергетический потенциал региона Северного моря.
Эффективней было бы использовать водный потенциал перечисленных стран и уже попутно – ветровой.

Например, был один из оригинальных проектов, предложенный в начале 80-х годов ХХ века испанским инженером Феликсом Канью и незаслуженно забытый: строительство донной ж /б плотины для подводной ГЭС в северной части Гибралтарского пролива.
Океанологи определили, что вдоль марокканского побережья из Атлантического океана в Средиземное море «вливается» поверхностным течением около 100  000 м3 воды в секунду, а у берегов Испании в океан движется придонный поток в обратном направлении.
Энергию этой мощной донной реки и предложил использовать Феликс Канью, для этого надо было построить железобетонную плотину, в пропускных арках которой должны были разместиться электрогенераторы горизонтального типа. Но стройка века не состоялась из‑за сложности возведения подводной бетонной плотины, хотя гидротурбины, говорят, уже были созданы фирмами Англии. Несмотря на сложность и дороговизну строительства, донные морские плотины гораздо экологичнее и эффективнее, чем речные поперечные гравитационные, т. к. не требуют подпора воды, затопления земель и строительства пропускных шлюзов.

Варианты донной плотины

Хотя европейские энергетические фирмы и охладели к крупным подводным плотинам из‑за сложности и дороговизны их возведения, но если предлагаемые новые современные технологии их возведения снизят цену наполовину, то, возможно, некоторые потребители (страны) обратят внимание на эти сооружения, т. к. по мощности донные плотинные ГЭС не будут уступать речным гидроэлектростанциям или целым каскадам речных ГЭС и в то же время не отнимают места на суше.

Автор позволит себе предложить свои варианты донной морской плотины, на его взгляд, более технологичные и экономичные, а значит, реальные в осуществлении.

Подобные плотины можно возводить всюду, где есть постоянные донные течения, даже на течении Гольфстрим, у берегов Флориды, в проливе Лаперуза (скорость течения 4,5 м /сек), в проливах Англии и Шотландии, Кореи и Японии, где скорости от 3 м /сек.

Так как проект Ф. Канью был предложен для Испании, то и рассмотрим вариант именно для этого региона. Вдоль южного побережья средиземноморской Испании, от Гибралтара и далее на восток, необходимо выбрать благоприятное дно, примерно около 1‑1,5 километра в море от берега с оптимальными глубинами до 20‑35 метров, с донным течением не менее 2 м /сек.

Под защитой искусственной дамбы у берега можно создать искусственную бухту (по той же технологии, что и плотину), где разместятся вспомогательные суда, причалы, полигоны для изготовления необходимых форм и размеров ж /б конструкций, а временная гидро-гелио-ветростанция (предложенная тоже авторами) или малая ГАЭС с импульсными турбинами может дать необходимую энергию для нужд строительства, сборочным цехам и жилым поселениям.

В акватории этой искусственной бухты и начинается монтаж самой плотины, уходящей в глубину от берега, при соблюдении некоторых условий. Возможно, будет необходимо возвести на конце будущей плотины маяк. Если плотина (по одному из вариантов) будет «притоплена» на 7‑8 метров, то маяк определит, где могут проходить маломерные суда и где крупные корабли, а если по гребень плотины выше уровня моря (другой вариант), то он тем более необходим. Маяк устанавливается на искусственном острове, сооруженном из железобетонных колец диаметром от 6 до 12 метров с анкеровкой в дно.

Кольца изготовляются по той же технологии, что и ячеистые контейнеры для тела плотины (методом пневмонабрызга, «мокрый торкрет»). От маяка и идет подготовка ложа будущей плотины по дуге, вогнутой по течению.

Для монтажа плотины пустотелыми конструкциями не обязательно использовать сложные специальные плавсредства. Доставка с берегового полигона ячеистых конструкций может осуществляться с помощью специальных понтонов, а монтаж ведется плавучими кранами, причем транспортировка и засыпка установленных ячеистых конструкций скальным грунтом и подводное бетонирование также могут осуществляться с помощью тех же понтонов, оборудованных бункерами с трубчатыми транспортерами (хоботами), что намного удешевит работы.

Пролив бетоном скального наполнителя и стыков конструкций может также осуществляться с барж бетононасосами. Глубина до 35 метров способствует использованию для контроля легких водолазов и специальных монтажных батискафов.

Во время монтажа в тело плотины по ярусам вставляются специальные блоки с горизонтальными цилиндрическими отверстиями, куда затем монтируются гидротурбины с электрогенераторами.

Для электрогенераторов с гидротурбинами блоки изготовляются отдельно на полигоне. Энергоблок может устанавливаться уже в собранном виде под водой, а если генераторы еще не готовы, то энергоблоки могут монтироваться уже после создания плотины, в пустые ячейки блоков с помощью монтажных батискафов.

Удобно будет, если размеры всех блоков будут, например, равны 2 × 2 × 4 метра, а блоки с генераторами представляют заданных размеров кубы с продольными отверстиями, со специальными пазами и крепежом для монтажа и фиксации сборных энергоблоков. Изгибающаяся в плане форма донной плотины увеличит подпор воды. Увеличится скорость направляемого в отверстия потока и повысится КПД генераторов.

При указанных примерных размерах плотины в ней могут разместиться от 300 до 500 генераторов при мощности одного генератора в 100 кВт, но генераторы могут быть и более мощные, все зависит от силы течения и возможностей строительных фирм.

В случае отказа работы генератора он просто извлекается из бетонного блока с помощью подводного монтажного батискафа и заменяется другим.

Если конфигурация берега Испании позволит построить не одну подобную плотину, то наверняка проблема с недостатком электроэнергии уменьшится или решится полностью, без строительства АЭС, солнечных и ветроэлектростанций. Причем – как для Испании, так и для соседних стран (с помощью экспорта энергии).

Использование нефтяных платформ

Если все‑таки условий для строительства таких конструкций не будет, то автор предлагает оригинальную конструкцию облегченной плотины-«моста», в просветы опор которой помещаются горизонтально-лопастные гидротурбины с вертикальной осью вращения. Такая подводная ГЭС должна быть не меньше по мощности, но пока об этом судить рано, так как это пионерское решение и нигде еще не применялось. На базе горизонтально-лопастных гидротурбин могут создаваться одиночные энергоустановки на морских платформах, в комбинации с ветроагрегатами нового поколения. Здесь могут использоваться списанные или запрещенные нефтяные платформы. Грубый расчет говорит, что одна нефтяная платформа может дать количество энергии, равное четверти выдаваемой Саяно-Шушенской ГЭС. На базе такой энергетики можно строить аквагорода, особенно у тех стран, где есть недостаток земель и большая зависимость от экспорта топлива.
Строительство традиционных ветроэлектростанций на суше уже считается не столь экологичным. Сейчас их стремятся выносить в море, подальше от берега, на искусственные острова, что сильно удорожает вырабатываемую энергию (нужны линии электропередачи).

Донные плотинные ГЭС и автономные донные и плавающие энергоблоки гораздо безопасней и дешевле. Для Испании, имеющей береговую протяженность около 4000 километров, нет необходимости засорять поля традиционными «ветряками» и покрывать гектары земель солнечными батареями, энергия которых почти в четыре раза дороже. Комбинированные системы типа гидро-гелио-пневмоЭС могут решить энергетическую проблему любой страны (условно один метр берега моря или другого водоема, может дать 1‑2 кВт /сек энергии). В нашем проекте солнце и воздух (ветер) являются только стартером и поддержкой работы донных ГЭС морского базирования.

Вернемся к поверхностному течению у берегов Марокко. Грех не использовать и его, при условии если «толщина» скоростного потока не менее полутора-двух метров, а скорость течения не менее 2‑2,5 м / сек. Один поперечный квадратный метр здесь содержит от 30 кВт / сек; при больших скоростях (от 3,5‑4 м / сек) мощность потока доходит до 80 кВт / сек.

ГЭС для поверхностных течений

Авторы могут предложить гидродвигатель и конструкцию ГЭС для условий поверхностных течений, в т. ч. для приливов и отливов (любой глубины, от 1 метра). Единственное условие: в тех местах, где будут помещены гидроустановки, использующие поверхностные потоки, судоходство невозможно, так как ГЭС использует горизонтально расположенные лопасти гидро­двигателя, плавающего или притопленного типа, но для фауны моря они совершенно безопасны. Эта же схема гидротурбин отлично приспособлена к будущим приливным электростанциям (ПЭС нового поколения), не требующих перегораживающих плотин или барьеров, использующих только динамику прилива и отлива.

В отличие от подводных мачтовых ГЭС фирмы «Marine Curent Turbines» (водяные мельницы) и фирмы «SMO Hydrovision» (ГЭС-перевертыши), где лопасти вращаются в вертикальной плоскости, и требуют глубину минимум в 20 метров, предлагаемые ГЭС используют максимально набегающий поток, при любом направлении течения, с глубиной потока от 1,5 метров и выше. Кроме того, эта схема гидротурбин, при некоторой доработке, может использовать волновую энергию моря, там, где волны постоянны по высоте и времени, особенно на мелководье.

Гидростанции поверхностных течений могут быть одиночно плавающие, якорного типа, или стационарные, опирающиеся на дно (виде кольцевого столба диаметром до 12 метров, заполненного скальным грунтом) и с добрым десятком генераторов в машинном помещении, размещенном выше поверхности моря, или в виде «подводного корабля», стоящего на якорях в поверхностном или в погруженном состоянии, и имеющего возможность менять позицию в зависимости от условий течений или ледового состояния.

Для последнего варианта можно использовать списанные подвод­ные лодки или утилизированные ж / д цистерны, но можно и изготавливать на верфях специальные цилиндрические понтоны, заполненные соответствующим оборудованием и отбуксированные к месту эксплуатации. Мощность подобных гироэнергетических комплексов ограничена только количеством генераторов и силой поверхностного потока в море или в реке. Они могут заполнять опустевшие верфи (например, в Хорватии), легко масштабируются, увеличивая общую мощность до огромных размеров.

Вообще, странам, почти полностью омываемым морями, имеющим огромный гидроэнергетический потенциал, странно жаловаться на недостаток энергии.

Гидростанции поверхностных течений могут быть одиночно плавающие, на якорных стоянках или на платформах, которые, развиваясь, могут создавать пространственные конструкции, аквагорода.

Альтернатива гидрогигантам

Предложенные подводные «плотинные» ГЭС, автономные кассетные донные гидроэлектростанции, приливные ГЭС нового поколения, гидроаккумулирующие станции прибрежного базирования и ГЭС для поверхностных течений со временем найдут применение и в России: на Дальнем Востоке, в северных морях и на глубоких местах сибирских рек.

Даже подо льдом – со льда удобней вести ремонт и монтаж донных блоков. Здесь особенно рационально использовать автономные донные энергетические кассетные блоки и плавающие ГЭС на базе подводных лодок или оборудованных цистерн.

Подсчитано, что только 0,1 процента энергии морей может обеспечить 15 миллиардов человек дешевой энергией, без топлива и экзотических генераций.

А если прибавить энергию ветра, солнца и др. безопасную, то цифра «потребителей» увеличится на порядок, надо только помочь изобретателям превратить свои разработки в реальные изделия.

Энергию воды, солнца и ветра не надо добывать, перевозить, перерабатывать, она всюду в избытке, вокруг нас.

Предлагаемый проект – альтернатива гигантским плотинам, перегораживающим реки, и малой плотинной гидроэнергетике. Можно, кстати, строить вдоль рек (есть проект), продольные береговые «плотины» с искусственными быстротоками, которые не требуют затопления земель, так как используют только необходимый для гидротурбин нового поколения динамический расход воды, чем сохраняют судоходство и естественное существование рыбного поголовья.

ГЭС с горизонтальнолопастными турбинами, под мостовыми пролетами, комбинированные с ветровыми турбинами-трансформерами по краям моста, могут найти применение на сибирских реках и на Дальнем Востоке.

Также предлагается защищать берега рек, со слабыми грунтами и с опасными разливами, специальными ж /б цилиндрами с заполнением их местным инертным материалом, а в некоторых блоках размещать особой конструкции гидродвигатели с выдвижными лопастями (гидротурбины-трансформеры).

Эти стенки из «трубчатого шпунта» создают защиту берегов на слабых грунтах, ликвидируют или ослабляют разрушения от разливов и затоплений и дают электро­энергию, сравнимую с существующими малыми плотинными ГЭС. Они могут разместиться по всему руслу реки.
Если защитить, например, наиболее опасные части рек Эльбы и Дуная подобными энергоблоками, то меньше было бы неприятностей от ежегодных разливов, да еще и дополнительно получалась бы электроэнергия, которая окупала бы ежегодные затраты на защиту и восстановление аварийных береговых откосов и сооружений.

Новаторство для возобновляемой энергетики

Сейчас имеются десятки разработок для малой гидроэнергетики (в том числе и в нашем коллективе). Но не секрет, что бесплотинные малые ГЭС на реках, даже на водопадах и донных течениях пока почти не востребованы.

Они дешевле, быстровозводимы, просты в эксплуатации и используют широкий диапазон глубин рек, от 0,15 метра и выше, при единственном условии, что скорость течения должна быть не менее 0,8 м / сек. Но есть разработки мини-ГЭС, действующих даже в «стоячих» водах озер, в искусственно созданных водоемах – так называемые пневмо-ГЭС.

Такие энергокомплексы могут размещаться даже на крышах промышленных зданий, в технических этажах или подвалах. Представьте – индивидуальная ГЭС и тепловая станция на крыше или в подвале здания!

Россия может стать «двигателем» в развитии автономного энергоснабжения высотных сооружений, использующих ВИЭ. Можно не только проектировать и разрабатывать новые конструкции, но и изготовлять их варианты, обеспечивая индивидуальными и автономными типами энерго­установок.

Уже сейчас некоторые высотные здания пытаются обеспечить энергетикой солнечных батарей и традиционных ветроустановок, но для этого часто приходится подгонять архитектуру сооружения под конструкции.

Здесь и могут пригодиться комбинированные системы энергообеспечения, типа гидро-гелио-пневмоЭС, где сравнительно «небольшие» площади солнечных батарей и нетрадиционные типы ветроустановок являются «стартерами» работы ГЭС (нового типа), размещенных на технических этажах или крышах.

Спрос на чистую индивидуальную энергию будет огромен, учитывая нынешнее увлечение высотными зданиями. Создание энергетической компании для «высоток» необходимо уже сейчас – для этого нужно только желание архитекторов сотрудничать с новаторами в области энергетики.

Устройства, предлагаемые авторами, компактны, просты и автономны. Конструкции универсальны, т. е. могут эксплуатироваться и в малых речках, глубиной потока от 0,15 метра, и в больших потоках любой глубины, а также при морских приливах и отливах. Кроме того, испытываются мини-ГЭС типа «гидроколлайдеров», которые могут использовать быстротоки горных рек или работать вообще без естественных речных потоков и даже вдали от них на большом расстоянии. Подобные «гидроколлайдеры» с успехом могут заменить уголь и мазут на тепловых станциях.

Интерес могут представлять также автономные ГЭС, работающие на энергии взрывной волны, используя любые утилизированные взрывчатые вещества или газовое топливо.

Молодежный творческий коллектив – «iзобретатель» из МГУ природообустройства может предоставить свои разработки по этой теме и другим темам в малой гидроэнергетике.

Бесплотинные мини-ГЭС своими руками — Статьи об энергетике

Услышав аббревиатуру ГЭС (гидроэлектростанция) большинство людей представляют себе огромные дамбы с мощными турбинами для преобразования энергии воды в электрическую. Однако известны и достаточно небольшие мини-ГЭС, установив которые на близлежащем водоеме можно обеспечить электрической энергией свой дачный домик. О таких мини-ГЭС и поговорим в данной статье.

1 Тросовая (гирляндная) мини-ГЭС.

Тросовая мини-ГЭС предназначена для установки на небольшую реку. Внешний вид такой мини-ГЭС приведен на рисунке 1.

Рисунок 1

Принцип действия тросовой мини-ГЭС следующий: гидроколеса (крыльчатки из металлического листа), размещенные непосредственно в воде, приводят в действие электрический генератор, посредствам гибкого троса (рисунок 2).

Рисунок 2

Для установки тросовой мини-ГЭС необходимо, чтобы глубина реки была более 0,5 м. При глубине более 1,5 м гидроколеса можно устанавливать в два яруса.

2 Свободнопоточная мини-ГЭС с ротором Савониуса.

Свободнопоточные мини-ГЭС подходят для установки на небольших и неглубоких реках. Принцип действия таких гидроустановок основан на преобразовании кинетической энергии текущей воды. Мощность установки определяется следующим выражением:

Формула 1

Для установки свободнопоточной мини-ГЭС для начала необходимо определить энергетический потенциал реки в месте установки, так как скорости на разных участках реки различны. Для этого необходимо измерить время движения поплавка на заданном участке реки, а затем рассчитать скорость реки. В зависимости от времени года скорость реки будет изменяться, поэтому для расчетов стоит применять усредненное значение скорости реки за год.

Для изготовления активной части гидроустановки можно воспользоваться конструкцией роторов Савониуса (рисунок 3). Наиболее простым вариантом является ротор Савониуса торцевой конструкции. Для передачи крутящего момента применяются промежуточные трансмиссии.

Рисунок 3

Частота вращения такого ротора определяется выражением:

[size=17]

f=48V/3,14D (об/мин)

Особенностью мини-ГЭС является то, что они выдают электрическую энергию в сеть потребителя постоянно, в отличие от ветроустановок или солнечных батарей. Поэтому для всей системы электроснабжения не требуется установка емких аккумуляторных батарей. Главная задача аккумуляторов в системах мини-ГЭС – покрывать пиковую нагрузку.

А теперь рассмотрим конструкции свободнопоточных мини-ГЭС. Первая — полустационарная свободнопоточная мини-ГЭС с горизонтальным расположением двух соосных, развёрнутых относительно друг друга на 90° и жёстко связанных роторов Савониуса поперечного типа (рисунок 4). Установка, за исключением верхней части рамы с электрическим генератором, погружается в воду поперек водотоку.

Рисунок 4

В качестве опорной рамы используется прямоугольный деревянный каркас. Все металлические элементы каркаса должны быть изготовлены из нержавеющей стали. На рабочем валу жестко закреплены два ротора. Лопасти гидроколес изготавливаются из кровельного железа. В качестве подшипников можно использовать самодельные деревянные подшипники (рисунок 5).

Рисунок 5

Еще один вариант изготовления свободнопоточной мини-ГЭС — Мини-ГЭС с вертикальным расположением роторов торцевого типа (рисунок 6). Основой для такой гидроустановки служит стальной стержень, длина которого определяется характером дна реки. На рабочем валу размещают два ротора Савониуса со смещением на 90 градусов. Это позволит повысить эффективность работы установки.

Рисунок 6

3 Самодельная мини-ГЭС для малых рек без платины (рисунок 7).

Принцип действия мини-ГЭС для рек без платины: электрический генератор приводится в действие системой из коленчатых валов и штанг, закрепленных на раме. Коленчатые валы соединены штангами, к которым прикреплены лопатки, погруженные в воду. Лопатки под действием воды перемещаются, а вмести с ними и штанги, которые и проворачивают коленчатые валы.

Рисунок 7

Мощность всей гидроустановки определяется не только скоростью течения реки, но и числом и площадью лопаток. Ниже приведены основные размеры для мини-ГЭС с максимальной мощностью 150 ВТ и выходным напряжением генератора 12В.

Рисунок 8

Коленчатые валы для гидроустановки изготавливают из цельного стального прута диаметром 16—20 мм. Штанги делают из деревянных реек, лопатки — из теса или кровельного железа.

4 Беcплотинные мини-ГЭС.

Рисунок 9

Конструкция таких гидроустановок приведена ниже.

Рисунок 10

Рисунок 11

Принцип действия аналогичен рассмотренной ранее установке: лопатки под напором воды перемещаются в продольном направлении. Лопатки перемещают штанги, которые соединяются с кривошипом. На валу с кривошипом установлен шкив, соединенный с генератором.

Английская пара построила мини-гидроэлектростанцию ​​на своем заднем дворе, используя скромную реку и 1000-летнюю мельницу. — Кварц

Сомерсет, Англия — Еще в 2002 году Рэйчел Фейлден и Энтони Баттерсби получили шанс купить руины. Они раскупили его. Всего в нескольких шагах от их дома, он стоял на водном пути, проходящем через их сад в сельской местности недалеко от Бата, на западе Англии. Что особенно важно, они имели в виду то, что раньше она использовалась — мельница. Не говоря уже о том, что здание было без крыши и уменьшено до нескольких стен.

За выходные, проведенные вдали от дома, муж и жена, чья повседневная работа включает помощь в улучшении здравоохранения в развивающихся странах, пришли к идее восстановить некогда работавшей оболочки в гидроэнергетическом проекте, вырабатывая электроэнергию из течения реки. Это казалось очевидным: «Была эта мельница, которая была построена для того, чтобы использовать энергию реки, и она больше этого не делала», — сказал Баттерсби, который учился на архитектора и жил в доме у Теллисфорда Милл на реке. Практически всю жизнь.

Четырнадцать лет спустя их проект мощностью 55 киловатт запущен и работает, обеспечивая электроэнергией их дом и местные офисы , а также обеспечивающий удобный источник дохода благодаря излишкам электроэнергии , которые они могут продавать в национальном масштабе. сетка. Это означало огромные затраты времени и денег, запутанные бюрократические баталии и — возможно, прежде всего — стойкую веру в то, что это была хорошая идея с самого начала.

Будучи пионерами малых гидроэлектростанций в Великобритании, Фейлден и Баттерсби также проложили путь для других и доказали, что использование реки в качестве источника энергии для деревни возможно, даже если это непросто.По данным благотворительного фонда Renewable Energy Foundation, в Великобритании сейчас 598 малых гидроэнергетических проектов. Их размеры варьируются от крошечных двухкиловаттных установок до более четырех мегаватт для одной шотландской схемы. Это включает в себя несколько других на реке Фром и несколько переоборудованных мельниц.

Найдите реку

Тысячу лет назад англосаксы, люди германских и других племен, населявших Великобританию , , умели использовать энергию реки в этом месте.

Саксы построили эту оригинальную каменную плотину (вверху) в нескольких сотнях метров выше по течению от мельницы Теллисфорда, вынуждая скопление воды в «напор», который создавал давление, которое приводило в движение колеса мельницы, поворачивая камни, которые шли на землю. зерно в муку. Спустя столетия его использовали при производстве шерстяной ткани, а еще позже — для измельчения ткани для использования в качестве набивочного материала. В планах пары — впервые вырабатывать электричество на заброшенной фабрике.

Кварц

Турбина 1895 года.

Гидроэнергетические схемы делятся на две категории: так называемый высокий напор, когда вода, падающая с высоты, приводит в движение турбину за счет кинетической энергии; и низкий напор, где разница в давлении — это ключ . Фейлден и Баттерсби, желая максимизировать количество производимой электроэнергии, решили не восстанавливать турбину 19 века, которая все еще находилась в разрушенной конструкции, и вместо этого выбрали новую турбину Каплана .

Tellisford — это схема с низким напором.Разница в давлении между входной и выходной сторонами установки компенсируется формованием лопаток турбины таким образом, чтобы расстояние по одной стороне лопатки было больше, чем по другой. Вода, текущая по длинной стороне лезвия, должна двигаться быстрее, чем вода, проходящая по короткой стороне; разница в скорости толкает лопасти. Эта кинетическая энергия преобразуется в электрическую с помощью генератора.

Плыть вверх по течению

Построить эту штуку было чрезвычайно сложно и трудоемко.Пара провела первый год проекта, углубляясь в дно — саксонский канал, по которому вода из реки перекачивалась через мельницу. В течение второго года они выкапывали камни из отводов, чтобы использованная вода беспрепятственно стекала вниз по течению.

Прежде чем можно было начать строительство самой мельницы — на территории, охраняемой законами о наследии, — они должны были тщательно составить планы по сохранению существующих стен. Они собрали данные, чтобы установить расход воды в течение года.На каждом этапе процесса рытья, строительства плотины, откачки и устранения утечек они должны были соответствовать строгим экологическим стандартам.

Кварц

Рэйчел Фейлден возле переоборудованной мельницы.

Фейлден вспоминает годы тяжелого труда с ироничным смехом: «А потом, когда оно затопило, работу пришлось прекратить, и нужно было вытаскивать щуку из отстойника», — говорит она, имея в виду местную рыбу, которую часто нужно было спасать. насосная система. «Все это было очень практично».

Это обошлось паре примерно в 500 000 фунтов стерлингов (764 000 долларов США), которые они профинансировали за счет капитала, привлеченного от продажи бывшего лондонского дома Фейлдена, и ссуд.Однажды, через много лет, они надеются выйти на уровень безубыточности.

Нападение бюрократов

Те, кто живет на водоеме в Великобритании, имеют «прибрежные» права на разумное использование ручья или озера на своей земле. Но коммерческое использование реки требует более сложных разрешений. В начале 2000-х, когда возобновляемая энергия в ее современном виде только зарождалась, правительственные органы Великобритании, включая национальные и местные агентства по планированию, энергетике и окружающей среде, только начинали понимать новые требования.

Фейлден и Баттерсби описывают процесс, который длился годами и включал запутанное общение, горы бумажной работы, длительные задержки в принятии решений и изменения режима субсидий.

«Бюрократия для нас — это самый большой риск», — сказал Фейлден, вспоминая случай, когда им внезапно отказали в разрешении на продолжение проекта, хотя он уже шел полным ходом. (Это решение впоследствии было отменено.) Некоторые неудачи были кратковременными, например, когда Агентство по окружающей среде Великобритании настояло на том, чтобы в конструкцию турбины были включены «угряные трубы», чтобы предотвратить попадание угрей и молодых угрей в механизм.Остальные были дорогими. В 2015 году неожиданная отмена субсидии, Свидетельства об освобождении от уплаты налогов, сократила их годовой доход на 9%.

Но это их не остановило. Сегодня Теллисфорд получает доход в размере 27 000 фунтов стерлингов в год, включая государственную субсидию, которая продлится 20 лет.

«Мы знали, что это долгосрочный проект. Мы знали, что, как только это будет сделано, эта штука проработает как минимум 50, если не 100 лет », — говорит Фейлден. «Так что же между 15 годами до безубыточности или 17 годами до безубыточности? В долгосрочной перспективе это вряд ли имеет значение.Так что, если вы войдете в него с такой роскошью, что вам не придется никому платить дивиденды, у вас есть возможность пойти на риск ».

Вы не одиноки

Опыт пары помог сгладить путь для тех, кто пришел после первых последователей. Они получили грант на помощь в создании сети проектов по всей стране, которые, как они надеются, скоро будут запущены. В отчете Британской гидроэнергетической ассоциации за 2010 год было определено более 1600 возможных участков.

«Есть столько же разных способов, сколько и сайтов, — сказал Баттерсби.

Во время норманнского завоевания Британии в 1066 году, которое предшествует Теллисфорду Милл, на реках Великобритании насчитывалось более 5000 мельниц. Сегодня постепенно все больше и больше людей возвращаются к старым путям, на этот раз с помощью новых технологий.

Малая гидроэнергетика для гидроэнергетики

Малая гидроэнергетика для гидроэнергетики Статья Учебники по альтернативной энергии 20.06.2010 10.11.2021 Учебники по альтернативным источникам энергии

Малая гидроэнергетика для дома

Как правило, малая гидроэнергетика является важным источником энергии с множеством преимуществ по сравнению с другими формами возобновляемой энергии, если они спроектированы и правильно установлены.Кинетическая энергия движущейся воды доступна 24 часа в сутки, малых гидроэлектростанций. Системы могут использовать эту бесплатную энергию, обеспечивая недорогой и надежный источник «зеленого электричества».

Как правило, все, что вам нужно для системы «малой гидроэнергетики», — это ручей или река с достаточным количеством воды, протекающей через нее с нужным объемом или давлением, которая может питать водяную турбину, подключенную к генератору, который будет обеспечивать электроэнергией ваш дом. . Так же, как вы можете с солнечной энергией или возобновляемой системой энергии ветра, вы также можете спроектировать небольшую гидроэнергетическую систему, которая либо подключена к сети, либо подключена к сети с резервным аккумулятором, либо автономна.

Но что мы подразумеваем под «малой гидроэнергетикой». Маломасштабные гидроэнергетические системы — это уменьшенные версии гораздо более крупных гидроэлектростанций, которые мы видим, используя большие плотины и водохранилища для снабжения энергией миллионов людей. В зависимости от физического размера, высоты напора и генерирующей мощности малые гидроэлектростанции можно разделить на малые, мини- и микромасштабные гидроэлектростанции следующим образом:

  • Малая гидроэнергетика: это схема, которая вырабатывает электрическую мощность от 100 кВт. (киловатт) и 1 МВт (мегаватт), подавая эту генерируемую мощность непосредственно в коммунальную сеть или как часть большой автономной схемы, питающей более одного домохозяйства.
  • Mini Scale Hydro Power: это схема, которая вырабатывает мощность от 5 кВт до 100 кВт, подавая ее непосредственно в энергосистему или как часть системы зарядки аккумулятора или автономной системы с питанием от переменного тока.
  • Micro Scale Hydro Power: обычно это классификация небольшой самодельной русловой схемы, в которой используются конструкции генератора постоянного тока для выработки электроэнергии от нескольких сотен ватт до 5 кВт в составе автономной системы зарядки аккумуляторов. .

Малая гидроэнергетика

Малые гидроэнергетические системы , а также мини-гидросистемы или Micro Hydro Systems могут быть спроектированы с использованием водяных колес или импульсной турбины.

Генерирующий потенциал конкретного участка будет зависеть от количества потока воды, доступного напора, который, в свою очередь, зависит от условий и местоположения участка, а также от характеристик осадков на участке.

При достаточном напоре и потоке малые гидроэлектростанции могут приводиться в движение непосредственно из реки или ручья, что называется «русловой» системой, встроенной в или на берегу реки или ручья, без необходимости перекрывать, отклонять или изменять поток воды любым способом.Сделать их самым дешевым решением для выработки электроэнергии.

В русловой гидросистеме поток воды не изменяется, поэтому минимальный расход воды должен быть таким же или выше, чем предлагаемая выходная мощность турбины, чтобы обеспечить максимальную эффективность. В результате затраты, связанные с русловой схемой, намного ниже и оказывают меньшее воздействие на окружающую среду, чем другие малые гидроэлектростанции. Недостатком является то, что расход воды меняется в течение года, и система не может хранить энергию воды.

Разработка электрических схем малой гидроэнергетики, в которых используется небольшая плотина или плотина, водохранилище (водохранилище) или требуется отвод речного стока через туннели или каналы, требует гораздо большего использования воды в целом, а также более сложные строительные и наземные инженерные работы в соответствии с высотой площадки, не говоря уже о воздействии на окружающую среду, которое пропорционально размеру схемы.

Однако система водохранилища или система с высоким напором имеет гораздо более высокий потенциал выработки электроэнергии, чем у гораздо меньшей схемы русла реки из-за увеличенного объема и скорости пригодной для использования воды, что компенсирует большие капитальные вложения, но затраты можно снизить с помощью простой конструкции и практичных, легко возводимых строительных и механических работ.

Сколько энергии может извлекать малая гидроэнергетическая конструкция

Водяные колеса и водяные турбины отлично подходят для любой маломасштабной гидроэнергетической схемы, поскольку они извлекают кинетическую энергию из движущейся воды и преобразуют эту энергию в механическую энергию, которая приводит в движение электрический генератор, производящий выходная мощность.

Максимальное количество электроэнергии, которое может быть получено от реки или ручья текущей воды, зависит от количества энергии в текущей воде в этой конкретной точке.Когда вода движется, гидроэлектрическая система преобразует эту кинетическую входную мощность в электрическую выходную мощность.

Чтобы определить энергетический потенциал воды, текущей в реке или ручье, необходимо определить как расход воды, проходящей через точку в заданное время, так и высоту вертикального напора, через которую вода должна упасть. . Теоретическая мощность в воде может быть рассчитана следующим образом:

Мощность (P) = расход (Q) x напор (H) x сила тяжести (г) x плотность воды (ρ)

Где Q в м 3 / с, H в метрах и g — гравитационная постоянная, 9.81 м / с 2 и ρ — плотность воды, 1000 кг / м 3 или 1,0 кг / литр.

Тогда мы можем видеть, что максимальная теоретическая мощность, доступная в воде, пропорциональна произведению «Напор на расход», поскольку сила тяжести на воде и плотность воды всегда постоянны. Следовательно, P = 1,0 x 9,81 x Q x H (кВт).

Но водяная турбина не идеальна, и часть входной мощности теряется внутри турбины из-за трения и других подобных недостатков.Большинство современных гидротурбин имеют КПД от 80 до 95%, в зависимости от типа, реакция или импульс , поэтому эффективная мощность малой гидроэнергетической системы может быть выражена как:

Доступная мощность от гидросистемы

Где: η (eta) — коэффициент полезного действия турбины или водяного колеса.

Пример малой гидроэнергетики №1

Небольшой ручей падает на 20 метров вниз по склону горы, производя поток воды 500 литров в минуту мимо фиксированной точки.Сколько энергии может вырабатывать малая гидроэлектростанция в киловаттах, если используемый тип водяной турбины имеет максимальный КПД (η) 85%.

Приведены данные: напор = 20 м, расход = 500 л / мин, КПД = 0,85 и сила тяжести = 9,81 м / с 2 . Но сначала мы должны преобразовать расход воды 500 литров в минуту в 3 м / сек.

1000 литров равны 1 м 3 , поэтому 500 литров равны 0,5 м 3 . Одна минута равна 60 секундам, затем расход равен 0.5 м 3 в минуту равно 0,00833 м 3 в секунду.

Сейчас 1,4 кВт может показаться немного, но это эквивалентно более 12 000 кВт · ч (1,4 x 24 x 365) бесплатной гидроэлектроэнергии в год. Поскольку мощность пропорциональна произведению «Напор на расход», увеличение любого из этих двух факторов и / или эффективности гидросистемы приведет к увеличению вырабатываемой мощности. Тем не менее, годовое производство электроэнергии зависит от того, будет ли доступное водоснабжение достаточно постоянным в течение года.

Компоненты схемы малой гидроэлектростанции

Типичная схема малой гидроэлектростанции требует наличия ручья, водозаборной системы для отвода воды, канала или канала, называемого напорной трубой для отвода отводимой воды, водяной турбины или водяное колесо для преобразования кинетической энергии воды во вращательную механическую энергию и электрический генератор для преобразования этой вращательной энергии от колеса в электричество.

Хотя фактические компоненты будут отличаться для каждой схемы малой гидроэлектростанции, тип выбранной схемы будет определять необходимость строительства водосливной перегородки, плотины или форбека, что в конечном итоге будет зависеть от имеющегося «статического напора» воды. и показана типичная схема малой гидроэнергетики.

Если вы не уверены в географическом окружении, приобретение карты местности для съемки местности позволит вам получить представление о величине напора, доступного от реки до турбины, путем измерения деталей контуров на карте.

Схемы с низким напором до 20 метров (65 футов) позволяют использовать ряд вариантов гидроэнергетики от одиночной пластиковой водопроводной трубы до желоба, спускающегося по склону от водозабора над струей воды непосредственно на турбину (вероятно, в стиле Пелтона), с турбиной, вращающей генератор.

Тогда маломасштабные гидроэнергетические системы состоят из канала, трубопровода или напорного трубопровода (напорного трубопровода), по которому поступает вода. Турбина или водяное колесо преобразует энергию текущей воды в энергию вращения, а генератор переменного тока или генератор преобразует энергию вращения в электричество.

Малые гидрогенераторы

Помимо строительных работ, одна из самых сложных частей проектирования небольшой, мини- или микрогидросистемы для производства электроэнергии — это выбор правильного генератора для совместной работы с водяной турбиной или водяным колесом.Вообще говоря, водяные колеса вращаются с меньшей скоростью, чем водяные турбины, поэтому, если выбран высокоскоростной генератор, то может потребоваться коробка передач или шкив, использующий ремень или замену.

Существует множество готовых к продаже электрических машин, и все они имеют свои преимущества и недостатки, но генераторы с постоянными магнитами, безусловно, являются наиболее популярным выбором для успешных проектов малых гидроэлектростанций.

Малые гидрогенераторы постоянного тока — они имеют размер от нескольких сотен ватт до более 3000 ватт и могут использоваться для зарядки батарейных блоков для хранения электроэнергии, вырабатываемой системой, аналогично зарядке автомобильного аккумулятора.Самый распространенный тип генератора постоянного тока с постоянными магнитами (PMDC) — Dynamo . Динамо-машины — хороший выбор для новичков в гидроэнергетике, поскольку они большие, тяжелые и, как правило, имеют очень хорошие подшипники на валу шкива.

Динамо-машины для грузовиков или автобусов старого образца лучше подходят для водяных колес, поскольку они предназначены для выработки необходимого напряжения и тока на более низких скоростях с упором на эффективность, а не на максимальную мощность. Кроме того, большинство динамо-машин для автобусов и грузовиков могут генерировать мощность до 500 Вт при 24 В, чего более чем достаточно для зарядки аккумуляторов и питания фонарей для небольшой гидросистемы низкого напряжения.

Если батареи включены в конструкцию малой гидроэнергетики, они должны быть расположены как можно ближе к генератору, поскольку может быть трудно передавать энергию низкого напряжения по кабелям на большие расстояния. Кроме того, маломасштабные гидрогенераторы всегда вырабатывают энергию при включении, даже если батареи полностью заряжены, тогда требуется фиктивная резистивная нагрузка, такая как электрический пожарный элемент, для поглощения и рассеивания этой избыточной мощности. Эта фиктивная резистивная нагрузка может рассеивать много энергии и потенциально может сильно нагреваться, поэтому ее следует размещать так, чтобы к ней нельзя было прикоснуться.

Автомобильные генераторы также являются еще одним популярным выбором среди многих мастеров, которые делают сами для низковольтных турбогенераторов, однако они требуют высоких скоростей вращения и не всегда очень эффективны. Автомобильные генераторы переменного тока также требуют внешнего источника питания для питания электромагнитов, создающих магнитное поле.

Автомобильные генераторы переменного тока ограничивают собственный ток с помощью встроенной схемы регулятора. Это предотвращает перезарядку подключенных аккумуляторов генератором. Однако автомобильный генератор переменного тока никогда не должен подключаться к батарее задним ходом или запускать генератор на высоких оборотах без подключенной батареи, поскольку выходное напряжение поднимется до высоких уровней (намного больше 12 вольт) и разрушит внутренний выпрямитель.

Во многих системах постоянного тока также используются выпрямители для преобразования электроэнергии постоянного тока низкого напряжения (DC), производимой системой, в электрическую сеть переменного тока напряжением 120 или 240 вольт для бытовых приборов и телевизоров, работающих от электроэнергии переменного тока.

Генераторы постоянного тока

могут подавать питание в подключенную к сети систему через инвертор и стабилизатор мощности, но для постоянно подключенной к сети системы лучше установить гидрогенератор переменного тока.

Малые гидрогенераторы переменного тока — используются для схем, подключенных к сети, и могут быть однофазными или трехфазными машинами.Гидрогенераторы переменного тока имеют мощность от 500 Вт до 10 кВт при использовании высокоскоростных синхронных или асинхронных машин. Гидрогенераторы переменного тока постоянно подключены к системе электропроводки дома, питая нагрузки напрямую. Система должна включать стабилизатор мощности, чтобы обеспечить постоянный выход в энергосистему с правильным напряжением и частотой независимо от скорости турбины.

Если вам посчастливилось жить рядом с рекой или ручьем, инвестиции в малую гидроэнергетическую систему могут снизить вашу потребность в ископаемом топливе, что поможет снизить загрязнение воздуха.При проектировании гидроэнергетической системы следует учитывать множество факторов, но с правильным участком и оборудованием, тщательным планированием и вниманием к местным законам и требуемым разрешениям маломасштабные гидроэнергетические системы могут предоставить вам чистые, надежные и обслуживаемые бесплатный источник энергии на долгие годы вперед.

Помимо преимуществ, связанных с продажей собственной генерируемой бесплатной электроэнергии обратно местной коммунальной компании, подключенные к сети гидроэлектрические системы будут поставлять дополнительную мощность, которая вам нужна, когда ваша гидроэнергетическая система не может удовлетворить все ваши потребности в электроэнергии.

Для получения дополнительной информации о Small Scale Hydro Power и о том, как использовать двигатели в качестве генераторов для выработки собственной электроэнергии с использованием энергии воды, или получить дополнительную информацию о гидроэнергетике о различных доступных малых гидроэнергетических системах, или изучить преимущества и недостатки гидроэнергетики, затем щелкните здесь, чтобы заказать копию на Amazon сегодня и узнать, как использовать электродвигатели в качестве генераторов в составе вашей собственной гидрогенерирующей системы.

Лидеры продаж маломасштабной гидроэнергетики

Эта интеллектуальная турбина может привести в действие ваш дом

Среди всех источников возобновляемой энергии вода является постоянным и предсказуемым источником.

Компания Idénergie из Квебека использует речную турбину для преобразования этой природной энергии в электричество. Он обеспечивает постоянную энергию 24 часа в сутки для удовлетворения потребностей в электроэнергии, производя от 4 до 12 кВтч / день в зависимости от скорости воды.

[Источник изображения: Idenergie]

Как это работает?

Турбина должна быть установлена ​​в мелкой реке с глубиной воды не менее 2 футов (60 см). Скорость воды должна составлять от 1 м / с до 3 м / с для достижения наилучших результатов.Максимальное расстояние между рекой и конечным местом расположения электростанции не должно превышать 1 км.

Поскольку течение реки позволяет вращать турбины, активируется безвальный водонепроницаемый генератор. Этот новый тип электрического генератора очень эффективен при низких скоростях.

Турбина преобразует кинетическую энергию в электричество с помощью встроенного интеллектуального двунаправленного преобразователя. Этот преобразователь дистанционного мониторинга имеет дополнительные функции, такие как режим самозапуска, непрерывная оптимизация мощности и аварийный тормоз.

Преобразованная энергия через электрический кабель накапливается в батарее. Инвертор преобразует постоянный ток (24-48 В постоянного тока) в переменный (120 В переменного тока) для питания электрических устройств. Однако производство энергии зависит от скорости воды. Следовательно, чем сильнее ток, тем выше производство электроэнергии.

[Источник изображения: Idenergie]

Характеристики:

Простая установка — Для установки вам понадобятся три человека и руководство по установке.Пользователям не нужны краны, строительные работы или дорогостоящие дополнительные услуги. Однако Idenergie рекомендует получить сертифицированный установщик, который установит для вас всю установку.

Portable — Оборудование, поставляемое по всему миру, поставляется в виде набора разобранных деталей, которые можно легко собрать с помощью ключей-шестигранников.

Работа в сети — Обеспечьте развитие небольшого сообщества. На одном блоке аккумуляторов создайте мини-ферму турбин, соединив несколько турбин вместе для большей мощности.Это идеальная система для стран с наиболее дождливыми местами, таких как Муссон в Индии и Юго-Восточной Азии.

Экологичность — Чтобы свести к минимуму воздействие на водных животных и естественную среду обитания, турбина изготовлена ​​из благородных металлов, таких как алюминий. Использованные водонепроницаемые материалы подлежат вторичной переработке.

Сохранить — При максимальной мощности речная турбина вырабатывает энергию, эквивалентную энергии, производимой 12 солнечными панелями, тем самым снижая 50% эксплуатационных расходов.

Почему энергия воды?

Согласно World Energy Outlook (WEO), около 1,2 миллиарда человек (16 процентов населения мира) не имеют доступа к электричеству. Многие страдают от низкого качества снабжения, особенно 95 процентов людей из сельских районов Африки к югу от Сахары и развивающихся стран Азии. Большая часть нашей электроэнергии поступает от угольных, атомных и других невозобновляемых электростанций, которые наносят серьезный ущерб окружающей среде, загрязняя воздух, землю и воду. Возобновляемая энергия — альтернатива ископаемому топливу, которое является естественным и теоретически неисчерпаемым источником энергии, таким как биомасса, солнечная, ветровая, приливная, волновая и гидроэлектрическая энергия.Однако главный недостаток возобновляемых источников энергии — надежность энергоснабжения. Источники питания возобновляемых источников энергии в значительной степени зависят от погоды: дождя, ветра, солнца и т.д. Безопасность генератора | Little River Electric Cooperative

Если вы планируете использовать портативный генератор, вот некоторые важные меры предосторожности:

  1. Внимательно прочтите все инструкции и следуйте рекомендациям производителя.
  2. Никогда не запускайте генератор в помещении или в гараже. Генераторы следует запускать только в хорошо проветриваемом помещении. Генераторы, работающие на бензине, производят окись углерода, и пары могут быть смертельными при отсутствии соответствующей вентиляции.
  3. Подключайте приборы непосредственно к генератору с помощью прочных заземленных удлинителей.
  4. Убедитесь, что удлинители не изношены и не изношены.
  5. Ограничьте электрическую нагрузку на генератор до не более рекомендованной мощности.
  6. Не подключайте электрогенератор непосредственно к главному блоку предохранителей или монтажной панели дома.
  7. Используйте генератор только при необходимости.
  8. Выключайте генератор на ночь, когда вы спите и когда вас нет дома.
  9. Если у вас есть какие-либо вопросы о том, как правильно использовать портативный электрогенератор, обратитесь за помощью к производителю или лицензированному электрику.

Правильное подключение генератора жизненно важно

Для подключения генератора к основной электросети вашего дома требуются услуги лицензированного электрика.Сообщите об этом компании Little River Electric Cooperative, прежде чем подключать генератор к сети вашего дома.

В конечном счете, если вы лицензированный электрик, единственный приемлемый способ подключения генератора к электрической системе вашего дома — это двухполюсный двухпозиционный переключатель.

Этот переключатель отключает вашу электрическую систему от линий электропередачи Little River и:

  • Исключает возможность передачи электроэнергии вашим генератором на линию кооператива, что чрезвычайно опасно и потенциально смертельно для наших линейных монтажников, работающих на линии. который должен быть обесточен.
  • Исключите возможность разрешения возобновления подачи электроэнергии от Little River для выхода из строя неправильно подключенного генератора при восстановлении электроснабжения.

Переносной генератор может быть мощным инструментом во время отключения электроэнергии или стихийного бедствия, но он также может быть опасным — даже смертельным — при неправильной установке и эксплуатации.

Как генератор водяного колеса может дать вам бесплатную энергию вне сети

Солнечные панели для жилых помещений привлекают всеобщее внимание по простой причине — солнечный свет попадает на всех.Но есть не менее экологичный метод производства электроэнергии, которому не уделяют столько внимания: генератор водяного колеса. Если вы живете на сельском участке земли с рекой или ручьем, вы можете частично снабдить свой дом гидроэлектроэнергией.

Думаете о строительстве собственной мини-плотины Гувера на заднем дворе? Вот что вам следует знать перед тем, как начать.

Как работает генератор водяного колеса

Генераторы с водяным колесом по сути работают так же, как ветряные турбины, но они используют проточную воду вместо ветра.Вода проходит через водяное колесо, заставляя его вращаться. Ось колеса соединена с динамо-машиной, которая превращает кинетическую энергию в электричество, которое может использовать ваш дом.

Типы водяных колес

Есть несколько различных типов водяных колес, но обычно вы найдете один из трех, приводящий в действие жилой дом. Какой из них вы выберете, будет зависеть от вашего источника воды, сложности вашего генератора с водяным колесом и ваших потребностей в энергии.

Колесо недостаточной выстрела

Подвесное колесо — самый простой и старый тип колеса.Как следует из названия, он работает, просто позволяя воде течь под колесом. Он не очень эффективно превращает поток воды в энергию, но его простота конструкции и использования делает его самым популярным.

Колесо для груди

В колесе для груди вода ударяет по колесу вокруг его центра. Эти колеса более эффективны, чем колеса с недостаточным вылетом, потому что они частично используют силу тяжести для движения.

Колесо перебега

В колесах с овершотом используется вода, текущая из верхней части колеса.Хотя эту систему сложнее построить, она намного эффективнее. Поскольку сила тяжести тянет воду по всей длине колеса, она способна выжать максимум из каждой капли. Это означает, что колесо с перерегулированием может генерировать значительную мощность, если оно использует водный путь, который не является очень быстрым или мощным.

С инженерной точки зрения колеса с овершотом — одни из самых сложных в изготовлении. Они часто требуют строительства плотины, пруда и водных путей.

Сколько воды он может произвести?

Выработка электроэнергии зависит от нескольких факторов, включая мощность потока и размер вашего колеса или турбины.

Чтобы получить приблизительную оценку, вы можете использовать следующую формулу: 0,004 x Q x V x H x C = произведенные киловатты.

Вот что означает эта формула:

  • «V» — скорость водяного потока в секунду
  • «Q» — вес воды (объем в секунду x вместимость ведер)
  • «H» — это разница высот между гонкой головы (где вода попадает в колесо) и гонкой по следу (где вода выходит из колеса)
  • «C» — постоянная эффективности

Константа эффективности указывает на то, насколько эффективно ваше колесо превращает воду в энергию.В 18 веке английский инженер Джон Смитон подсчитал, что водяные колеса с недокусом имеют КПД около 22%, а водяные колеса с перерегулированием — на 63%. Если вы не уверены в своей константе эффективности, вы можете получить приблизительное значение, установив «C» равным 50%.

Строительство водяного колеса

Если вы хорошо разбираетесь в инструментах и ​​любите делать все своими руками, вы можете создать свой собственный. Вы можете покупать планы, но вы также можете построить свое колесо, используя бесплатные онлайн-планы. Вы можете купить необходимое оборудование в любом хозяйственном магазине, а кинетическую динамо-машину можно приобрести в Интернете.

Если вам повезет, в вашем районе может оказаться мастер водяного колеса. Например, Спенсер Бойд из waterwheelplace.com живет за пределами мегаполиса Атланты, штат Джорджия, и конструирует водяные колеса на заказ. Вы даже можете получить один из них.

Однако вы также можете нанять местного мастера, который умеет обращаться с деревом, чтобы он построил его для вас. Спросить у кого-то, кто никогда не строил водяное колесо, всегда немного рискованно, но поскольку они просто построены из дерева, тот, кто имеет опыт строительства, должен уметь хорошо работать.

Micro Hydro Power — за и против

Малая микрогидроэнергетика в большинстве случаев является одновременно эффективным и надежным видом энергии. Однако есть определенные недостатки, которые следует учитывать при строительстве малой гидроэнергетической системы. Крайне важно понимать потенциальные выгоды от использования энергии, а также ограничения гидроэнергетики. Есть несколько распространенных заблуждений о микрогидроэнергетике, которые необходимо устранить. При правильных исследованиях и навыках микрогидроэнергетика может стать отличным методом использования возобновляемых источников энергии из небольших ручьев.В этой статье будет предпринята попытка обрисовать некоторые преимущества и недостатки малых водяных турбин.

Micro Hydro Pros — Преимущества

Эффективный источник энергии

Для выработки электричества с помощью микрогидроэлектростанции требуется лишь небольшой поток (всего два галлона в минуту) или падение с высоты до двух футов. Электричество может быть доставлено на расстояние до места, где оно используется.

Надежный источник электроэнергии

Hydro обеспечивает непрерывное снабжение электроэнергией по сравнению с другими маломасштабными возобновляемыми технологиями.Пик энергии приходится на зимние месяцы, когда требуется большое количество электроэнергии.

Резервуар не требуется

Считается, что

Microhydro функционирует как «русловая» система, что означает, что вода, проходящая через генератор, направляется обратно в ручей с относительно небольшим воздействием на окружающую среду.

Экономичное энергетическое решение

Строительство малой гидроэнергетической системы может стоить от 1000 до 20 000 долларов, в зависимости от требований к электросети и местоположения.Плата за обслуживание относительно невелика по сравнению с другими технологиями.

Энергия для развивающихся стран

Благодаря низкой стоимости, универсальности и долговечности микрогидроэлектростанций развивающиеся страны могут производить и внедрять технологию, которая поможет обеспечить столь необходимую электроэнергию небольшие общины и деревни.

Интеграция с местной электросетью

Если ваш объект производит большое количество избыточной энергии, некоторые энергетические компании выкупят у вас избыток электроэнергии.У вас также есть возможность дополнить свой уровень микромощности потреблением от электросети.

Micro Hydro Cons — Недостатки

Требуются подходящие характеристики площадки

Для того, чтобы в полной мере использовать электрический потенциал небольших ручьев, необходимо подходящее место. Факторы, которые следует учитывать: расстояние от источника питания до места, где требуется энергия, размер потока (включая скорость потока, мощность и падение) и баланс компонентов системы — инвертор, батареи, контроллер, линия передачи и трубопроводы.

Расширение энергии невозможно

Размер и поток малых потоков могут ограничивать будущее расширение сайта по мере увеличения потребности в мощности.

Маломощный в летние месяцы

Во многих местах размер потока будет колебаться в зависимости от сезона. В летние месяцы, вероятно, будет меньше потока и, следовательно, меньшая выходная мощность. Для обеспечения адекватных потребностей в энергии потребуются предварительное планирование и исследования.

Воздействие на окружающую среду

Экологическое воздействие малых гидроэлектростанций минимально; однако до начала строительства необходимо принять во внимание воздействие на окружающую среду низкого уровня.Вода из ручья будет отводиться от части ручья, и необходимо проявлять надлежащую осторожность, чтобы не допустить разрушительного воздействия на местную экологию или гражданскую инфраструктуру.

Заблуждения — Мифы о гидроэнергетике

Небольшие потоки не обеспечивают достаточной силы для выработки энергии

Правда: Выход энергии зависит от двух основных факторов: потока воды (сколько воды проходит через систему) и падения (или напора), то есть расстояния по вертикали, на которое вода будет падать через водяную турбину.

Требуется большой резервуар для воды

Правда: Большинству малых гидросистем требуется очень небольшой резервуар или совсем его не требуется для питания турбин. Эти системы широко известны как «русловые», что означает, что вода будет течь прямо через генератор и обратно в ручей. Это оказывает минимальное воздействие на окружающую среду на местную экосистему.

Гидрогенераторы нанесут вред местной экосистеме

Правда: Тщательное проектирование необходимо для обеспечения минимального воздействия системы на местную экологию.Это может привести к небольшому энергосбережению, но это гарантирует, что проект не повлияет на местные рыбные запасы. Агентство по окружающей среде требует, чтобы уровни водотока поддерживались на определенном уровне, чтобы поддерживать жизнь внутри. Поскольку в процессе генерации нет потерь воды, эти требования могут быть легко выполнены.

Микро-гидроэлектроэнергия ненадежна

Правда: Технологические достижения (например, необслуживаемое водозаборное оборудование и твердотельное электрическое оборудование) гарантируют, что эти системы зачастую более надежны в отдаленных районах.Часто эти системы более надежны, чем местная электросеть.

Электроэнергия вырабатывается низкого качества

Правда: Если используется новейшее электронное оборудование управления, инверторы и генераторы переменного тока, полученный источник питания потенциально может быть более качественным, чем основная электрическая сеть.

Гидроэнергия бесплатная

Правда: Разработка и обслуживание микроэнергетики может быть дорогостоящим. Есть фиксированные расходы на техническое обслуживание.Эти затраты варьируются в зависимости от местоположения объекта и требований к материалам.

Ресурсы микрогидро

Общая микрогидро-информация от пикотурбины

Они предлагают планы, книги и наборы для обучения по возобновляемым источникам энергии и домашних проектов. Проекты доступны в виде бесплатных загружаемых самостоятельных планов, а также в виде наборов, включающих все материалы за умеренную плату. Возьмите несколько труднодоступных книг о самодельных возобновляемых источниках энергии и классических книгах о возобновляемых источниках энергии.

Справочник Microhydro

Интернет-каталог информации о системах микрогидрогенераторов и турбинах.

Дискуссионная группа по микрогидро

Эта дискуссионная группа Yahoo фокусируется на технических и нетехнических аспектах схем речной микрогидроэнергетики.

Калькулятор микрогидроэнергии (и др.)

Калькулятор выработки энергии, который упрощает выполнение всех расчетов, необходимых для определения потенциального микрогидроресурса как в существующей, так и в новой системе.

Веб-портал Microhydro

Веб-портал Microhydro является отправной точкой для получения информации, связанной с микрогидроэнергетикой.

Гидроэлектростанция Мурхед-Вэлли

Thompson and Howe Energy Systems представляет несколько интересных примеров микрогидравлических систем.

Другая мощность

Otherpower — это крупный информационный ресурс с большим разнообразием примеров самодельных малых возобновляемых источников энергии; включая множество микрогидро проектов.

Как работают ручные генераторы | HowStuffWorks

Использовать ручные генераторы довольно просто.Некоторые туристические гаджеты действительно имеют встроенные генераторы. Например, гаджеты со встроенными ручными генераторами, которые люди обычно используют в походах, включают радио и свет, который можно использовать для сигнализации, если вам нужна помощь. Оба этих устройства могут работать от обычных батарей большую часть времени, но если вы застряли с разряженными батареями, ручная рукоятка сбоку позволяет включить его достаточно, чтобы настроиться на прогноз погоды или использовать свет. Вам не нужно беспокоиться о подключении генератора к чему-либо, потому что все работает внутри.

Другие ручные генераторы предназначены для использования с определенным устройством, например с сотовым телефоном определенной марки. Генератор представляет собой небольшой гаджет с ручкой. Специальный разъем позволяет подключить его к телефону. Вы просто поворачиваете рукоятку, чтобы начать зарядку аккумуляторов телефона. В то время как генерируемое напряжение будет варьироваться в зависимости от того, как быстро вы поворачиваете рукоятку, встроенные регуляторы напряжения будут поддерживать постоянный ток. Чем дольше вы проворачиваете, тем больше мощности вырабатываете. Как правило, нескольких минут запуска достаточно, чтобы быстро позвонить в службу экстренной помощи.

Некоторые генераторы с ручным приводом более универсальны. Вместо того, чтобы подключаться к одному конкретному устройству, они имеют либо электрические провода, либо розетку типа прикуривателя, либо общую электрическую розетку. Затем вы можете подключить или подключить любое устройство к генератору, чтобы дать ему питание. Не каждое устройство будет работать с ручным генератором — будут работать только те, которые потребляют ток и напряжение, выдаваемые генератором. Генераторы обычно выдают мощность постоянного тока (DC), но у некоторых есть внутренние инверторы, которые преобразуют ее в мощность переменного тока (AC).Ручной генератор обычно может выдавать до 6 вольт, хотя некоторые из них имеют зубчатые передачи, которые увеличивают частоту проворачивания коленчатого вала и могут генерировать более высокие напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *