Электричество своими руками: Как получить бесплатное электричество (мы нашли четыре способа)
Электричество из земли своими руками: 4 способа (ВИДЕО)
Необходимость постоянного сжигания топлива для получения электроэнергии приводит к поискам способов удешевления этого процесса, а порой и создания теорий о возможности выработки халявного электричества. Подобные идеи не новы, так как их выдвигали еще знаменитые умы прошлого, стоявшие на заре зарождения массового использования электрических приборов.
Поэтому современные генераторы свободной энергии уже никого не удивляют, бесплатную электроэнергию предлагают получать самыми невероятными способами. Сегодня мы рассмотрим такой способ, как электричество из земли, насколько это реально и какие теории существуют в целом.
Мифы и реальность
Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса. С теоретической точки зрения, если разместить один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если пропорционально увеличить расстояние до 1000 м, то и уровень напряжения должен увеличиться в два раза.
Однако на практике все получается далеко не так складно:
- Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
- Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
- В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе.
Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.
Что можно попробовать сделать?
Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.
Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа. Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.
Схема по Белоусову
Название метода произошло от фамилии ученого, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:
Рис. 1. Схема получения электричества по Белоусову- Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте. Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
- Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
- Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.
Из земли и нулевого провода
Этот способ получения электричества из земли основан на том, что нулевой проводник в системах с глухозаземленной нейтралью у частного потребителя имеет значительное удаление от контура подстанции или КТП. Изначально проверьте, существует ли разность потенциалов между нулевым проводом и контуром заземления. Как правило, вольтметр покажет разность потенциалов в 10 – 20В. Это не большая разность потенциалов, но ее также можно использовать. Тем более что его можно запросто повысить при помощи обычного трансформатора до нужного номинала.
Рис. 2. Между нулем и землейЧтобы добывать электричество вам понадобится обзавестись собственным контуром заземления, если такового еще нет на вашем участке. Более детальную информацию о процессе изготовления вы можете почерпнуть из соответствующей статьи на сайте — https://www.asutpp.ru/kontur-zazemleniya.html. Заметьте, несмотря на использование системы центрального электроснабжения, приборы учета не будут принимать в учет это напряжение, поэтому его можно считать бесплатным.
Стержни из цинка и меди (гальванический способ)
Рис.3. Стержни из цинка и медиВ таком методе получения электричества из земли используется тот же способ, что и в обычной батарейке. Здесь источником электроэнергии выступает химическая реакция, которая возникает при взаимодействии металлических электродов с природным электролитом. Однако мощность этого природного генератора электричества и разность потенциалов будет зависеть от ряда факторов:
- Габаритных размеров – длины, поперечного сечения и площади взаимодействия с грунтом. Чем больше площадь, тем большую добычу электричества можно осуществить таким методом.
- Глубина расположения – чем глубже разместить электроды, тем больше электричества будет собираться по всей высоте металла.
- Состав грунта – химическая составляющая любого электролита будет определять проводимость электрического тока, способность генерации электрического заряда и т.д. Поэтому наличие тех или иных солей, концентрации определенных элементов и станет основным отличием для естественного электролита на поверхности планеты.
Для практической реализации данного метода получения бесплатной энергии возьмите пару электродов из разных металлов, составляющих гальваническую пару. Наиболее популярным вариантом являются медь и цинк. Погрузите медный провод в грунт, а затем отступите от него на 25 – 30 см и погрузите в грунт цинковый электрод. Для лучшего эффекта землю между ними необходимо залить крепким раствором обычной пищевой соли.
Чтобы оценить результат эксперимента подождите минут 10 – 15, а затем подключите к выводам земляной батареи вольтметр. Как правило, вы получите напряжение от 1 до 3В, в зависимости от глубины залегания электродов и типа почвы показатели могут отличаться. Это конечно не много, но для питания светодиода или другого слаботочного прибора будет вполне достаточно. Со временем солевой раствор впитается и его действие начнет ослабевать, поэтому и ресурс электричества на выходе также снизится.
Если вы проделываете эти манипуляции для постоянного использования гальванического элемента, питающего какую-либо электрическую установку, то будет рациональным попробовать забивать электроды в разных местах на земельном участке. А после выбрать наиболее выгодный вариант. Если напряжения от пары штырей будет слишком малым, то нужно забить несколько и подключить их последовательно. Но помните, постоянное подливание растворенной соли сделает почву непригодной для выращивания сельскохозяйственных и декоративных культур.
Потенциал между крышей и землей
Такой метод получения электричества из земли возможен для домов с металлической крышей. Вам понадобится подключить один электрод к металлической пластине, которая представляет собой единую конструкцию или антенну. А второй подвести к проводу заземления, который соединяется с общим контуром, при его отсутствии можете просто вбить штырь в землю. Крыша здания обязательно должна быть изолирована от земли.
Рис. 4. Потенциал между крышей и землейЧем большую площадь занимает металлическая антенна и чем выше она расположена, тем большее напряжение вы получите. Как правило, в частном секторе удается сгенерировать электричество в 1 – 2 В, поэтому метод носит скорее экспериментальный, чем практический характер. Так как ни поднимать вверх, ни расширять площадь крыши ради нескольких вольт электричества будет нецелесообразно.
Из рассмотренных выше методов видно, что в земле присутствует как огромные запасы статического электричества, так и большой потенциал других видов энергии, которую можно поставить на службу человеку. Для этого нет нужды сжигать топливо, однако не один из способов не дает возможности запитать мощный прибор.
Поэтому куда выгоднее в качестве альтернативных источников получения электричества использовать те же солнечные батареи или ветрогенераторы. Дальнейшее изучение методов генерации электричества из земли может принести более продуктивные результаты, но сегодня мы можем довольствоваться лишь энергией ради эксперимента.
Электричество из земли своими руками: схема, видео, идеи
Вопросами бесплатного получения электроэнергии задавалось множество хороших инженеров, таких как Никола Тесла, так и толпы лжеученных, которых ждало лишь разоблачение. Результатом их работы является целый ряд схем и способов получения энергии из альтернативных источников. Реально действующих установок или опытов, которые могут нести практическую пользу немного. В этой статье мы рассмотрим, как можно получить электричество из земли.
Возможно ли это?
Прежде чем рассмотреть технологические схемы и ответить на вопрос «как взять электроэнергию из почвы?», давайте разберемся насколько это реально.
Считается, что в земле очень много энергии и, если сделать установку – вы вечно будете бесплатно ей пользоваться. Это не так, ведь чтобы получить энергию нужен определенный участок земли и металлические штыри, которые вы в неё установите. Но штыри будут окисляться и рано или поздно приём энергии закончится. Кроме того, её количество зависит от состава и качества самой почвы.
Чтобы добиться хорошей мощности нужен очень большой участок земли, поэтому в большинстве случаев энергии, полученной из земли, достаточно для включения пары светодиодов или небольшой лампочки.
Из этого следует, что энергию из земли получить можно, но использовать её как альтернативу электросетям вряд ли получится.
Электричество из нуля и заземлителя
Этот способ подходит для жителей частных домов, если у них есть заземляющий контур. Знаете ли вы, что между заземлителем и нулевым проводом часто наблюдается разность потенциалов в 10-20 Вольт? Это значит, что их можно использовать бесплатно. Повысить их вы можете с помощью трансформатора.
Энергия потребленная таким образом счётчиком учитываться не будет. Такое напряжение можно определить либо вольтметром, либо подключив между этими двумя проводами низковольтную лампочку типа тех, что устанавливают в габариты или приборные панели автомобилей.
Важно! Не перепутайте фазу с нулём – это опасно!
Стоит отметить, что в качестве заземлителя используется отдельное устройство из металлических штырей, вбитых на глубину более 1 метра. Трубопровод в большинстве случаев не даст хорошего результата. Подробнее про заземление в частном доме вы можете узнать из нашей отдельной статьи.
Потенциал между крышей и землей
Этот метод также требует вбить в землю металлический штырь, к нему подключается провод. Второй провод подключается к металлической крыше. Так вы получите пару Вольт. Ток от такой схемы будет ничтожно мал и не факт, что его хватит для включения одного светодиода.
Гальванический элемент
Следующий способ – простая химия. Это самый реальный и понятный способ получения электричества из земли в домашних условиях. Для этого нужны медные и цинковые электроды. В их роли могут выступать пластины, штыри, гвозди. Если медь распространена – с цинком могут возникнуть проблемы, поэтому легче найти оцинкованное железо.
Нужно забить ваши электроды в землю на одинаковом расстоянии друг от друга. Допустим 1 метр в глубину и 0,5 метра между электродами. В таком случае медь будет катодом, а цинк – анодом. Напряжение такого элемента может составлять порядка 1-1,1 Вольта. Это значит, чтобы получить из земли электричество напряжением в 12 вольт нужно забить 12 таких электродов и соединить их последовательно.
Решающим фактором в такой батарее является площадь электродов, от этого зависит и сила тока, ровно, как и от того, что находится между ними. Для того, чтобы батарея выдавала ток – земля должна быть влажной, для этого её можно полить, иногда цинковый электрод заливают раствором соли или щёлочи. Для повышения токовой отдачи можно забить больше электродов и соединить их параллельно. Таким образом устроены все современные батареи и аккумуляторы.
На схеме ниже вы видите еще одну интересную реализацию такой батареи из медных труб и оцинкованных стержней.
Однако с течением времени электроды разрушаться и батарея постепенно прекратит свою работу.
Метод получения электричества по Белоусову
Валерий Белоусов много лет изучает молнии и защиту от них. Он является автором книг о бесплатной энергии и разработал ряд решений, чтобы получить электричество из земли.
На схеме вы можете видеть два условных обозначения заземления. Здесь один из них – это заземлитель, а второй, рядом с которым буква «А» – ноль бытовой электросети. На следующем видео демонстрируется работа такой установки и описываются результаты, полученные с её помощью:
Полученной энергии достаточно чтобы запитать светодиодную лампу на 220 Вольт малой мощности. Такой способ удобно использовать на даче, он может быть легко воспроизведён в домашних условиях.
Получение бесплатного электричества из земли своими руками возможно. Но говорить о практическом применении и подключении мощных потребителей сложно. Холодильник вы так не запустите. На сегодняшний день единственным хорошо изученным источником электроэнергии из недр земли являются природные ресурсы, такие как уголь, газ, топливо для атомных электростанций и т.д.
Наверняка вы не знаете:
Автономное электричество для дачи. Способы обустройства и их преимущества
Частые перебои с подачей электроэнергии или невозможность обеспечить дачу бесперебойным электроснабжением, заставляют задуматься над вопросом использования альтернативной электроэнергией. Существующие варианты имеют свои сильные и слабые стороны. Подробнее об этом можно прочитать в статье.
Оглавление:
- Способы организации автономного электричества для дачи
- Солнечные батареи для дачи
- Ветряк для дачи своими руками
- Топливные генераторы для дачи
- Зеленая система для дачи
- Самодельная электростанция для дачи
Способы организации автономного электричества для дачи
Очень многие собственники дач и частных домов не хотели бы зависеть от центрального электрического обеспечения по многим причинам. Это и высокая стоимость электричества, и перебои с подачей, частые поломки трансформаторов и зависимость устаревшего оборудования от погодных условий. По этим причинам все чаще владельцы дач задумываются об автономном электроснабжении. Перед установкой одной из автономных систем необходимо все проанализировать, рассчитать объемы потребления электричества в доме. Необходимо произвести замены осветительных приборов на более экономичные. После этого принимают решение о подборе вида автономного обеспечения.
Когда централизованное энергоснабжение не подходит по каким-либо причинам, есть смысл рассмотреть варианты автономного. Среди автономных источников снабжения электричеством можно выделить следующие:
- солнечные панели;
- ветроэлектрические установки;
- топливные генераторные установки;
- гидроэлектростанции.
Перед тем, как решить, на какой системе остановить свой выбор, следует внимательно ознакомиться с достоинствами и недостатками каждой.
Солнечные батареи для дачи
Для экономии средств можно использовать альтернативный вариант, который является дешевле — преобразование энергии Солнца в электричество. Солнечная батарея в таком случае – преобразователь.
Солнечные батареи — генератор постоянного тока, к ним подсоединены инверторы, преобразующие постоянный ток в переменный. Соединенные параллельно и последовательно они дают ток и напряжение. Это дает возможность солнечной батарее работать бесперебойно. Диоды не позволяют батарее разряжаться или перегреваться. Аккумуляторы сохраняют энергию, резистор контролирует заряд, предотвращая использование избыточной мощности.
Базовый комплект солнечной батареи представлен:
- специальная панель;
- контроллер заряда;
- аккумуляторные батареи;
- инвертор.
Основные преимущества использования солнечных батарей в следующем:
- практичность и долговечность службы;
- никаких дополнительный затрат в период эксплуатации;
- расходуется нескончаемый природный запас;
- минимум технического обслуживания;
- высокий показатель коэффициента полезного действия;
- работа в бесшумном режиме;
- безопасность для природы.
Есть детали, которые ставят приоритетность использования солнечных батарей под сомнение:
- зависимость от погоды, а именно солнечного света;
- немалая стоимость конструкции;
- инженерные навыки при установке.
Существуют разные виды солнечных батарей:
- из монокристалического кремния — очень надежны, с долгим сроком эксплуатации, но из-за особых свойств достаточно дороги, по сравнению с другими видами батарей;
- из мультикристалического кремния — достаточно долгий срок службы, около тридцати лет, с хорошими показателями коэффициента полезного действия;
- из поликристалического кремния — средний срок службы, коэффициент полезного действия ниже, чем у предыдущих видов;
- тонкопленочные батареи — недорогие, для местностей с пасмурной погодой и небольшим количеством солнечных дней, в основе батареи лежит специальная светопоглощающая пленка;
- из аморфного кремния — показатели коэффициента полезного действия невысокие, но в основе батарей лежат фотоэлектрические преобразователи, позволяющие добывать недорогую электроэнергию;
- из теллурида кадмия — благодаря пленочной технологии коэффициент полезного действия достаточно высокий, цена ниже, чем у батарей из кремния.
Батареи бывают:
- маломощные — обеспечивают работу основных бытовых приборов и освещение дома;
- универсальные — дополнительно к освещению отопление большей части дома;
- высокомощные — покрывают все расходы потребления электричества и тепла.
Солнечные батареи применяются в различных сферах и отраслях:
- подача света в жилых помещений и общественных организаций;
- обеспечение энергией различного оборудования;
- освещение улиц;
- космическая отрасль;
- автомобильная отрасль.
Позитивным явлением в использовании солнечных батарей при обеспечении жилища теплом следующее:
- не требуется сжигание дров, угля, брикетов и это дает возможность существенно сэкономить деньги и не загрязнять окружающую среду;
- такой способ отопления не станет причиной возгорания;
- батареи способны функционировать и при незначительном поступлении солнечного света;
- конструкция независима от энергосистемы;
- система автоматизирована.
Оправдана ли установка солнечных батарей для частного дома или дачи? Как показывают наблюдения и отзывы пользователей, да. Особенно если они установлены в местности с преобладанием солнечной погоды. В период насыщенного солнца расходы на отопление и освещение можно покрыть полностью, в зимний период около восьмидесяти процентов энергии покрывается за счет энергии солнца. Экономия электричества на даче позволяет экономить бюджет.
Ветряк для дачи своими руками
Существует несколько вариантов ветряков:
- горизонтальный;
- вертикальный;
- турбина.
Они имеют различия и сходства, положительные и отрицательные стороны, но принцип работы одинаковый для всех — преобразование энергии ветра в электричество, накопление в аккумуляторах и использование для потребностей.
Правильно расположенный ветряк дает возможность получать энергию ветра независимо от направления, важна только его скорость.
Принцип работы ветряка для дачи не сложный. Ветер дует на лопасти, к ротару прикреплен генератор, в его обмотке генерируется электрический ток. Он накапливается в аккумуляторах и позволяет питать электроприборы. Иногда устанавливается комплект и з ветрогенератора и солнечной панели.
В состав ветряка входит:
- ротор;
- редуктор;
- защитный чехол;
- хвостовая лопасть;
- аккумулятор накопления энергии;
- преобразователь напряжения;
- инвертор.
Положительные стороны в использовании ветрогенератора для дома:
- материальные затраты только на профилактику оборудования;
- отлаженная работа ветровой станции не требует контроля и вмешательства;
- почти по всей территории страны возможна продуктивная работа ветряка;
- невысокий износ деталей.
Отрицательные стороны в использовании ветряка:
- высокий уровень шума работающего прибора;
- требует установки громоотвода;
- необходимо заземление;
- обязательная установка сигнальной лампочки;
- вероятность повреждения частей ветряка при сильных ураганных ветрах.
Самый распространенный вид ветряных установок-горизонтальный. Его несложно изготовить в домашних условиях и коэффициент полезного действия этого ветряка достаточно высок. Минусом конструкции есть необходимость скорости ветра выше пяти метров за секунду для его работы.
Как показывает опыт и отзывы пользователей альтернативного энергообеспечения, ветрогенераторы перспективны и позволяют частично или полностью покрыть затраты в использовании энергии.
Топливные генераторы для дачи
Топливные генераторы могут помочь решить ряд вопросов, связанных со следующими обстоятельствами:
- подача электричества для освещения жилища в ночное время;
- для функционирования бытовой техники;
- закачка воды из скважины или полив участка.
Это очень актуально для домов, отрезанных от системы электропитания после ураганов, в результате поломок и обесточивания при различных чрезвычайных ситуациях. Можно долгое время просидеть в ожидании восстановительных работ, а можно включить генератор и продолжить заниматься своими делами. Генератор обеспечивает бесперебойную подачу электроэнергии. Генераторы отличаются своими основными характеристиками, но имеют одинаковую конструкцию.
Преимущества использования генераторов в следующем:
- гарантия результата — электричество;
- компактные размеры и легкость переноски;
- простота эксплуатации;
- экономичность — энергия вырабатываемая аппаратом дешевле покупаемой у государства.
Основные виды генераторов:
- бензиновый;
- дизельный.
По типу работы выделяют:
- синхронный генератор;
- асинхронный генератор.
Проживание на территории дачного участка без электричества в настоящее время невозможно. Чтобы не остаться в самый неподходящий момент без электричества, можно использовать генератор.
Зеленая система для дачи
Если вас категорически не устраивают счета за отопление, электроэнергию или вы живете вдали от цивилизации, а протянуть электричество очень затратно- пришло время задуматься об автономном электрообеспечении. В Украине известная компания «Зеленая система» предлагает начинать использовать природные источники. Специалисты компании помогут спроектировать, рассчитать и подобрать оптимальную систему именно для вас.
Зеленый тариф — тариф на электроэнергию от частных лиц и за этот излишек государство платит частнику. На деле получается, что аккумулированная энергия солнца формируется в избытке, излишек поступает в общую сеть, в итоге частное лицо получает прибыль. Оформить все нужно правильно, для этого необходимо:
- купить, установить солнечную батарею;
- предоставить письма- уведомления и схему присоединения;
- согласовать схему в Облэнерго;
- оформить счет на оплату услуг;
- запустить панель в течение пяти дней после прохождения оплаты;
- оформить акт — договор купли — продажи электричества.
Самодельная электростанция для дачи
При удаленности от источников электропитания приходится самостоятельно придумывать варианты сооружения домашней электростанции. В основу этих конструкций чаще всего ложатся источники поступления альтернативной энергии: ветер, солнце, вода. Купить фабричный экземпляр электростанции иногда очень дорого и не всегда предлагаемые варианты удовлетворяют покупателя. В таком случае следует принять во внимание вариант самостоятельного изготовления станций по выработке электроэнергии.
Для создания ветряной электростанции своими руками следует создать ветродвигательную систему, подсоединить генератор и активизировать систему накопления энергии. Для домашней станции по выработке энергии целесообразнее использовать варианты с горизонтальным или вертикальным роторным вращением. Систему с вертикальным вращением проще сконструировать: вал, к которому крепятся параллельные лопасти. Для лопасти подходят материалы из листового железа. Их следует изогнуть в форме дуги, прикрепить к валу. Иногда используется дополнительный механизм по изменению угла лопастей в процессе работы, благодаря чему регулируется воздушное сопротивление. Это помогает избежать разрушения ветряка при наличии очень сильного ветра. Схема автономного энергосбережения поможет построить конструкцию правильно.
Самодельная солнечная электростанция представляет соединение солнечной батареи непосредственно с системой аккумулирования и расходования электричества. Самым дорогостоящим в данной конструкции являются солнечные панели. Необходимо правильно соединить части станции, защитить солнечные элементы, поместив конструкцию в специальный отсек. Станцию следует установить в самом подходящем месте, где энергия солнечного света будет максимальной.
Основное достоинство водяной электростанции – независимость выработки энергии от погодных условий, как с солнечной и ветровой электростанцией. Получение энергии воды – стабильно. Но все равно следует установить систему накопления выработанной энергии. Для построения конструкции необходимо приобрести такие части:
- лопастная установка;
- электрический генератор;
- соединитель.
В качестве генератора можно использовать вал автомобиля. В конце статьи можно посмотреть видео о том, как самостоятельно обеспечить электроснабжение дачи.
Неэффективная подача электроэнергии, перебои напряжения, частые поломки трансформаторов или отключение электричества больше не будет проблемой при наличии домашней электростанции альтернативного электроснабжения. Изучив плюсы и минусы каждого виды конструкций, можно принять решение о целесообразности установки какого-либо прибора для аккумулирования энергии из природных источников.
Бесплатное электричество своими руками [инструкции+схемы]
Счет за электричество – неминуемая статья расходов для любого современного человека. Централизованное электроснабжение постоянно дорожает, но потребление электричества с каждым годом все равно растет. Особенно остро эта проблема стоит для майнеров, ведь, как известно, добыча криптовалюты требует значительного количества электроэнергиии, в связи с чем счета на ее оплату могут превышать прибыль от майнинга. При таких условиях стоит обратить внимание на то, что практически все природные ресурсы могут быть использованы для преобразования в электричество. Даже в воздухе присутствует статическое электричество, осталось только найти методы им воспользоваться.
Где взять бесплатное электричество?
Добыть электричество можно практически «из всего». Единственное условие: необходим проводник и разница потенциалов. Ученые и практики постоянно ищут новые альтернативные источники энергии, которые будут бесплатными. Следует уточнить, что под бесплатными подразумевается отсутствие платы за централизованное энергоснабжение, но само оборудование и его установка все же стоит средств. Правда, такие вложения с лихвой окупаются впоследствии.
На данный момент бесплатная электроэнергия добывается из трех альтернативных источников:
Методика получения электричества | Особенности выработки энергии |
---|---|
Солнечная энергия | Требует установки солнечных батарей или коллектора из стеклянных трубок. В первом случае электричество будет вырабатываться благодаря постоянному движению электронов под воздействием солнечных лучей внутри батареи, во втором — электричество будет преобразовано из тепла от нагрева. |
Ветряная энергия | При ветре лопасти ветряка начнут активно вращаться, вырабатывая электричество, которое может сразу поставляться в аккумулятор или сеть. |
Геотермальная энергия | Метод заключается в получении тепла из глубины грунта и его последующей переработки в электроэнергию. Для этого пробуривают скважину и устанавливают зонд с теплоносителем, который будет забирать часть постоянного тепла, существующего в глубине почвы. |
Такие методы используются как обычными потребителями, так и в широких масштабах. Например, огромные геотермальные станции установлены в Исландии и вырабатывают сотни МВт.
Как сделать бесплатное электричество дома?
Бесплатное электричество в квартире должно быть мощным и постоянным, поэтому для полного обеспечения потребления потребуется мощная установка. Первым делом следует определить наиболее подходящий метод. Так, для солнечных регионов рекомендуется установка солнечных батарей. Если солнечной энергии недостаточно, тогда следует использовать ветряные или геотермальные электростанции. Последний метод особенно подходит для регионов, расположенных в относительной близости к вулканическим зонам.
Определившись с методом получения энергии, следует также позаботиться о безопасности и сохранности электроприборов. Для этого домашняя электростанция должна быть подключена к сети через инвертор и стабилизатор напряжения для обеспечения подачи тока без резких скачков. Стоит также учитывать, что альтернативные источники достаточно капризны к погодным условиям. При отсутствии соответствующих климатических условий выработка электроэнергии остановится или будет недостаточной. Поэтому следует обзавестись также мощными аккумуляторами для накопления на случай отсутствия выработки.
Готовые установки альтернативных электростанций широко представлены на рынке. Правда, их стоимость достаточно высока, но, в среднем, все они окупаются за период от 2 до 5 лет. Сэкономить можно, приобретая не готовую установку, а ее комплектующие, а затем уже самостоятельно спроектировать и подключить электростанцию.
Как получить бесплатное электричество на даче?
Подключение к централизованной системе энергоснабжения – проблематичный процесс, и часто дачи остаются без света долгое время. Здесь может помочь установка дизельного генератора или альтернативные способы добычи.
На дачах зачастую нет такого огромного количества электроприборов, как в квартирах. Соответственно, потребление электроэнергии значительно меньше. Для начала следует определить преимущественный период времени, который будет проводиться в помещении. Так, для летних дачников подойдут солнечные коллекторы и батареи, для остальных – ветряные методы.
Питать отдельные электроприборы или освещать помещение можно, собирая электроэнергию от заземления. Схема для получения бесплатного электричества: ноль — нагрузка — земля. Напряжение внутри дома подается через фазовый и нулевой проводник. Включив в эту схему третий проводник нагрузки к нулю, в него будет направлено от 12Вт до 15Вт, которые не будут фиксироваться приборами учета. Для такой схемы обязательно нужно позаботиться о надежном заземлении. Ноль и земля не несут опасности удара током.
Бесплатное электричество из земли
Почва – благоприятная среда для извлечения электричества. В грунте присутствуют три среды:
- влажность — капли воды;
- твердость — минералы;
- газообразность — воздух между минералами и водой.
Кроме того, в почве постоянно проходят электрические процессы, так как ее основной гумусовый комплекс представляет собой систему, на внешней оболочке которой формируется отрицательный заряд, а на внутренней – положительный, что влечет за собой постоянное притягивание положительно заряженных электронов к отрицательным.
Метод похож на тот, что используется в обычных батарейках. Для получения электричества из земли следует погрузить в грунт на глубину полуметра два электрода. Один медный, второй из оцинкованного железа. Расстояние между электродами должно быть примерно 25 см. Грунт между проводниками заливается солевым раствором, а к проводникам подключаются провода, на одном будет положительный заряд, на втором отрицательный.
В практических условиях выходная мощность такой установки составит приблизительно 3Вт. Мощность заряда также зависит от состава грунта. Конечно, такой мощности недостаточно для того, чтоб обеспечить энергоснабжение в частном доме, но установку можно усилить, изменяя размер электродов или последовательно соединив между собой необходимое количество. Проведя первый опыт, можно примерно просчитать, сколько понадобится таких установок, чтоб обеспечить 1 кВт, а далее рассчитать необходимое количество на основе среднего потребления в сутки.
Как добыть бесплатное электричество из воздуха?
Впервые о получении электричества из воздуха заговорил Никола Тесла. Опыты ученого доказали, что между основанием и поднятой металлической пластиной существует статическое электричество, которое можно накапливать. К тому же воздух в современном мире постоянно подвергается дополнительной ионизации за счет функционирования множества электросетей.
Почва может выступать основанием для механизма добычи электроэнергии из воздуха. Металлическую пластину размещают на проводнике. Она должна быть размещена выше других рядом стоящих объектов. Выходы от проводника подключают к аккумулятору, в котором будет накапливаться статическое электричество.
Бесплатное электричество от ЛЭП
Линии электропередач пропускают по своим проводам огромное количество электричества. Вокруг провода, в котором идет ток, создается электромагнитное поле. Таким образом, если поместить под ЛЭП кабель, то на его концах образуется электрический ток, точную мощность которого можно просчитать, зная, какой мощности ток передается по кабелю.
Еще одним способом является создание трансформатора вблизи линий электропередач. Трансформатор можно создать при помощи медной проволоки и стержня, используя метод первичной и вторичной обмотки. Выходная мощность тока в таком случае зависит от объема и мощности трансформатора.
Стоит учесть, что такая система получения бесплатного электричества является незаконной, хоть в ней и отсутствует фактическое незаконное подключение к сети. Дело в том, что такое вклинивание в систему электроснабжения наносит ущерб ее мощности.
Бесплатное электричество из сетевого фильтра
Многие искатели бесплатного электричества наверняка находили в Интернете версии о том, что удлинитель может стать источником нескончаемой свободной энергии, образовывая замкнутую цепь. Для этого следует взять сетевой фильтр с длиной провода не менее трех метров. Из кабеля сложить катушку, диаметром не более 30 см, подключить к розетке потребителя электроэнергии, изолировать все свободные отверстия, оставив только еще одну розетку для вилки самого удлинителя.
Далее сетевому фильтру необходимо дать изначальный заряд. Легче всего это сделать, подключив удлинитель к функционирующей сети, а затем за доли секунды замкнуть в себе. Бесплатное электричество из удлинителя подойдет для питания осветительных приборов, но мощность свободной энергии в такой сети слишком мала для чего-то большего. А сам метод достаточно спорный.
Бесплатное электричество из магнитов
Магнит излучает магнитное поле и, как следствие, его можно использовать для добычи бесплатного электричества. Для этого следует обмотать магнит медной проволокой, образуя маленький трансформатор, разместив который вблизи электромагнитного поля, можно получать бесплатную энергию. Мощность электроэнергии в таком случае зависит от размера магнита, количества обмоток и мощности электромагнитного поля.
Как использовать бесплатное электричество?
Решив заменить централизованное энергоснабжение на альтернативные источники, следует учитывать все необходимые меры безопасности. Во избежание резких перепадов напряжения электрический ток к приборам должен подаваться через стабилизаторы напряжения. Обязательно стоит обратить внимание на опасности каждого метода. Так, погружение электродов в почву подразумевает последующую заливку почвы соленым раствором, что сделает ее непригодной для дальнейшего роста растений, а системы накопления статического электричества из воздуха могут привлекать молнии.
Электричество не только полезно, но и опасно. Неправильная фазировка может привести к ударам тока, а короткое замыкание в сети — к пожарам. Обеспечение дома электричеством в домашних условиях нужно начинать с детального изучения методов и законов физики.
Следует учитывать, что большинство методов не дают стабильной мощности и зависят от многих факторов, в том числе и погодных условий, предугадать которые невозможно. Поэтому энергию рекомендуется накапливать в аккумуляторах, а на всякий случай еще и иметь запасной вид электрообеспечения.
Прогноз на будущее
Уже сейчас альтернативные источники энергии широко используются. Львиная доля потребления электричества приходится на домашние электроприборы и освещение. Заменив их питание с централизованного на альтернативное, можно существенно экономить. Особое внимание на альтернативные источники электроснабжения стоит обратить майнерам, так как майнинг на централизованном энергоснабжении способен забирать до 50% прибыли, в то время как добыча на бесплатном электропитании будет приносить чистый доход.
Все больше домов переходит на питание от солнечных батарей или ветряных электростанций. Такие методы дают намного меньше мощности, но являются экологически чистыми источниками энергии, которые не наносят вреда окружающей среде. Конструируются также и промышленные альтернативные электростанции.
В дальнейшем эта сфера будет только дополняться новыми методами и улучшенными аналогами.
Заключение
Добыть электроэнергию можно даже из воздуха, но для покрытия всех нужд потребления необходимо спроектировать целую систему альтернативной выработки энергии. Можно пойти легким путем и купить уже готовые солнечные батареи или ветряные станции, а можно приложить усилия и собрать собственную электростанцию. Сейчас бесплатное электричество – не до конца изведанная сфера и открывает массу возможностей для самостоятельных экспериментов.
Электричество из земли своими руками: схема для дома
Из года в год стоимость электроэнергии в наших домах и квартирах растет, что заставляет большинство людей задуматься об ее экономии. Но есть и такие, что пытаются всеми возможными способами добыть хоть немного бесплатной энергии, например, электричество из земли. Поскольку число этих людей неуклонно растет, есть смысл рассмотреть вопрос подробнее, что и будет сделано в данной статье.
Мифы и реальность
На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.
Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.
Для справки. Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.
Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.
Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.
Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.
Электричество от двух стержней
Данный способ основан совсем на другой теории и никакого отношения к магнитному или электрическому полю Земли не имеет. А теория эта – о взаимодействии гальванических пар в солевом растворе. Если взять два стержня из разных металлов, погрузить их в такой раствор (электролит), то на концах появится разница потенциалов. Ее величина зависит от многих факторов: состава, насыщенности и температуры электролита, размеров электродов, глубины погружения и так далее.
Такое получение электричества возможно и через землю. Берем 2 стержня из разных металлов, образующих так называемую гальваническую пару: алюминиевый и медный. Погружаем их в землю на глубину ориентировочно полметра, расстояние между электродами соблюдаем небольшое, хватит 20—30 см. Участок земли между ними обильно поливаем солевым раствором и спустя 5—10 мин производим измерение электронным вольтметром. Показания прибора могут быть разными, но в лучшем случае вы получите 3 В.
Примечание. Показания вольтметра зависят от влажности почвы, ее природного солесодержания, размеров стержней и глубины их погружения.
В действительности все просто, получившееся бесплатное электричество – это результат взаимодействия гальванической пары, при котором влажная земля служила электролитом, принцип похож на работу солевой батарейки. Реальный эксперимент о разнице потенциалов на электродах, забитых в землю, можно посмотреть на видео:
Электричество от земли и нулевого провода
Данное явление тоже возникает не от магнитного поля Земли, а вследствие того, что часть тока «стекает» через заземление в часы наибольшего потребления электроэнергии. Большинству пользователей известно, что напряжение для дома подается через 2 проводника: фазный и нулевой. Если имеется третий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Этот факт можно зафиксировать, включив меж контактами нагрузку в виде лампочки на 12 В. И что характерно, проходящий из земли на «ноль» ток абсолютно не фиксируется приборами учета.
Воспользоваться таким бесплатным напряжением в квартире затруднительно, поскольку надежного заземления там не найти, трубопроводы таковым считаться не могут. А вот в частном доме, где априори должен быть заземляющий контур, электричество получить можно. Для подключения применяется простая схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже приспособились сглаживать колебания тока трансформатором и присоединять подходящую нагрузку.
Внимание! Не идите на поводу у «добрых» советчиков, предлагающих вместо нулевого проводника использовать фазный! Дело в том, что при подобном подключении фаза и земля дадут вам 220 В, но прикасаться к заземляющей шине смертельно опасно. Особенно это касается «умельцев», проделывающих подобные вещи в квартирах, присоединяя нагрузку к фазе и батарее. Они создают опасность поражения током для всех соседей.
Заключение
Извлекать электроэнергию из магнитного поля планеты своими руками – нереально. Описанные выше способы – другое дело, но их практическая ценность невелика. Разве что заряжать телефон во время похода, но тогда придется тащить с собой металлические трубы. Касаемо второго способа надо отметить, что напряжение между землей и нулем появляется далеко не всегда, а если и есть, то очень нестабильно. Прочие методы требуют большого количества меди и алюминия при неизвестном результате, о чем честно предупреждает автор установки, изображенной на рисунке:
для дома, квартиры, дачи своими руками
Электричество — неотъемлемая часть нашей жизни. Электрическая энергия прочно вошла в повседневную жизнь, и даже направляясь в путешествие или приобретя дом, участок, в самом глухом уголке нашей обширной страны, человек одной из первых задач, требующей решения, ставит – обеспечение себя электричеством.
Для дома
Содержание статьи
У обладателя загородного дома, даже в случае наличия традиционной системы электроснабжения, иногда появляется желание снизить расходы на оплату счетов за потребленную электрическую энергию.
Некоторые застройщики создают полностью автономную систему и становятся независимым от поставщиков электричества. Особенно актуальна такая система электроснабжения для удаленных мест, где отсутствую стационарные сети электроснабжения.
В настоящее время, благодаря развитию техники и технологий, широкое распространение получили установки, использующие в своей работе, альтернативные источники энергии, такие как: энергия солнца, ветра, воды и биотопливо.
При производстве своего электричества, используемого для электроснабжения дома, могут быть использованы все выше приведенные источники энергии.
Энергия солнца
При выборе установок, источником получения электрической энергии, в которых является солнечная энергия, необходимо знать особенности места расположения, которые определяют количество солнечных дней в году.
Современный двигатель Стирлинга — Также можно рассматривать как способ получить свое электричество — КПД системы до 34%!
Устройствами, служащими для преобразования энергии солнца в электрическую энергию, являются солнечные панели (батареи), которые, в зависимости от требуемой мощности, объединяются в группы.
Состоят панели из фотоэлементов, помещенных в общий корпус. Принцип действия основан на свойствах фотоэлементов создавать разность потенциалов между своими слоями, при воздействии солнечного света.
Солнечные панели – основной элемент солнечных электростанций, в состав которых, кроме них входят следующие элементы:
- Аккумуляторная батарея (блок батарей) – являющаяся накопителем электрической энергии.
- Контроллер – электронное устройство, отвечающее за процессом заряда-разряда аккумуляторной батареи.
- Инвертор – также электронное устройство, преобразующее постоянный электрический ток, накопленный в батарее, в переменный, напряжением 220 В.
- Аппараты защиты и устройства автоматики, а также соединительные провода.
В качестве дополнительного оборудования, для повышения КПД солнечных электростанций, используются солнечные трекеры – устройства, позволяющие определять положение панелей в пространстве, в соответствии с месторасположением солнца.
Энергия ветра
При выборе источника альтернативной энергии, которым будет ветер, также необходимо знать, какие ветра и какой силы, дуют в месте установки оборудования.
Устройствами, преобразующими энергию ветра, в электрическую энергию, являются ветровые генераторы. Данные технические устройства различаются по мощности, производительности, условиям монтажа и конструкции, от которой зависят все перечисленные ранее показатели.
Ветровые генераторы бывают:
- С горизонтальной осью вращения — ось ротора и ведущая ось расположены параллельно поверхности земли.
Бывают однолопастные, двухлопастные, трехлопастные и много лопастные, с количеством лопастей до 50 штук. - С вертикальной осью вращения – ось вращения расположена вертикально по отношению к поверхности земли. Данные устройства различаются по технической конструкции: с ротором Савоуниса, с ротором Дарье, с геликоидный ротором, с многолопастным ротором и с ортогональным ротором.
- Ветрогенератор – парус.
У всех перечисленных устройств есть свои достоинства и недостатки, поэтому выбор всегда за пользователем, который можно сделать на основании критериев выбора и индивидуальными потребностями.
Энергия воды
Живя за городом и имея рядом небольшую реку, ручей или иной водоем, можно воспользоваться энергией воды, для того, чтобы получить свое электричество.
В этом случае необходимо построить индивидуальную микро – ГЭС.
Оборудование для подобных установок выпускается различной мощности, и даже не большой ручей, способен обеспечить потребности дома в электрической энергии.
Микро – ГЭС разливаются по:
- Типу: плотинные, деривационные, плотинно-деривационные и свободно-поточные.
- Принципу работы: принцип «водяного колеса», конструкция в виде гирлянды, с использованием ротора Дарье и с использованием принципа пропеллера.
- Мощности установок и условиям монтажа оборудования.
Каждый тип микро – ГЭС и принцип ее работы, имеют свои плюсы и минусы, которые
определяют выбор оборудования и возможность использования в том или ином
конкретном случае.
Биотопливо
Живя бок о бок с живой природой, всегда есть возможность изготовить установку по получению биотоплива. Биотопливо бывает: твердое, жидкое и газообразное.
Твердое топливо (обычные дрова) и жидкое, требующее специального оборудования для производства, в качестве источников электрической энергии, рассматривать не целесообразно, а вот газообразное – можно.
Газообразное биотопливо – это биогаз, получаемый в результате брожения веществ растительного или животного происхождения, которые всегда имеются в домашнем хозяйстве.
Процесс брожения происходит под воздействием бактерий, в герметично закрытой емкости. Полученный таким образом газ, направляется на сжигание. При сжигании газа, в парогенераторе образуется достаточное количество пара, чтобы вращать паровую турбину, соединенную с электрическим генератором, вырабатывающим электрический ток.
Энергия земли
На территории нашей страны, есть места, где продолжается активность в глубинных слоях нашей планеты (в поверхности земли). В таких регионах, в качестве альтернативного источника электрической энергии, можно использовать энергию земли.
В зависимости от источника, который отдает свое тепло, такую энергию подразделяют на:
- Петротермальную — источник энергии являются слои земли, обладающие высокой температурой;
- Гидротермальную — источником энергии являются подземные воды.
Энергия земли, в виде пара, подается на паровую турбину, которая соединяется с электрическим генератором, вырабатывающим электрический ток.
В случае индивидуального использования, возможен лишь способ использования прямого действия, когда пар поступает непосредственно из поверхности земли.
Иные варианты, не прямой и смешанный методы, можно применять лишь при промышленных способах переработки энергии.
Все, рассмотренные выше, варианты использования альтернативных источников энергии для производства своего электричества, доступны для пользователей, при создании необходимых условий для их эксплуатации.
Для создания независимых систем электроснабжения, лучше использовать несколько альтернативных источников энергии одновременно, чтобы компенсировать возможные затруднения каждого способа получения электричества в отдельности.
Достаточно широко, при автономном электроснабжении домов, используется схема ветровой генератор + солнечная электростанция.
Для квартиры
В случае возникновения желания, создать систему независимого электроснабжения отдельно взятой квартиры, в многоквартирном доме, невозможно использовать такие источники как: биотопливо, энергия земли, энергия воды, да и энергию ветра, также использовать затруднительно.
Единственным источником энергии, который можно использовать для получения своего электричества, в условиях отдельной квартиры, без создания неудобств для соседей – является использование энергии солнца.
Промышленностью выпускаются комплекты солнечных электростанций не большой мощности, которые вполне можно разместить в условиях квартиры. Солнечные панели, в этом случае, размещаются на крыше многоквартирного дома или наружном фасаде, в случае его размещения с южной стороны дома.
Комплект солнечной электростанции, не большой мощности, состоит из тех же элементов, что и при электроснабжении дома, разница лишь в количестве солнечных панелей и аккумуляторных батарей.
Варианты для дачи
При необходимости создания независимого электроснабжения дачи, вариант использования солнечной электростанции, также наиболее приемлем. В этом случае, при сезонном характере использования оборудования, можно законсервировать устройства или вывести их из работы, на период отсутствия необходимости в эксплуатации.
Вариант строительства ветрового генератора, также вполне доступен и оправдан. Потому как понеся, некоторые разовые финансовые расходы, в дальнейшем можно, в зависимости от потребности, получать свое электричество.
Вариант применения схемы «ветровой генератор + солнечная электростанция», в этом случае, также актуален, и позволяет создать полностью автономную и надежную схему электроснабжения.
Как сделать своими руками
Комплекты оборудования, о котором было написано выше, стоят достаточно дорого, поэтому у людей творческих, с инженерной смекалкой, иногда появляются мысли о том, а как изготовить то или иное устройство своими руками.
Для того, чтобы сделать агрегат, способный производить электрическую энергию, с использованием альтернативных источников энергии, необходимо:
- Иметь начальные знания в электротехнике и устройстве электрических сетей;
- Обладать навыками работы с ручным механическим и электрическим инструментом;
- Уметь работать с паяльником;
- Иметь свободное время и главное – желание, создать свое собственное устройство, способное вырабатывать электричество.
Если, в качестве источника энергии, выбрать солнечные лучи, то необходимо изготовить приемную панель – солнечную батарею. Для этого можно пойти несколькими путями, это:
- Приобрести фотоэлементы и выполнить их соединение, определенным образом (выполняется методом пайки). Изготовить корпус панели, в соответствии с размерами собранного приемника, в который и поместить фотоэлементы.
При таком варианте изготовления, можно изготовить достаточно эффективное устройство, которое сможет обеспечить электрической энергией небольшую дачу, используемую не продолжительное время. - При малой мощности нагрузки, когда необходимо зарядить сотовый телефон или иное электронное устройство, можно изготовить солнечную панель из бывших в употреблении диодов или транзисторов.
- При использовании транзисторов — у транзисторов отрезаются крышки и сами транзисторы соединяются последовательно. Транзисторы помещаются в отдельный корпус, к их концам припаиваются выводы. Работа устройства осуществляется при попадании солнечных лучей на «p-n» переход транзисторов.
- При использовании диодов – их потребуется большое количество и электронная плата, которая используется в качестве подложки. Верхняя часть диодов срезается и используя паяльник, кристалл достается из корпуса. Кристаллы паяются последовательно, на подложке, в отдельные блоки. Блоки соединяются между собой параллельно.
- Аккумуляторы и электронные устройства (контроллер заряда и инвертор), в случае необходимости их установки, лучше всего приобрести, хотя при желании, электронные устройства, также могут быть изготовлены самостоятельно.
Если в качестве источника энергии выбрать ветер, воду, биотопливо и энергию земли, то изготовление технических устройств, способных вырабатывать свое электричество, также возможно.
Ветрогенератор из комнатного вентилятора
Простейший ветровой генератор можно изготовить из обычного бытового вентилятора.
Для этого потребуется небольшой генератор от автотехники или двигатель-генератор, которые необходимо закрепить на стойке комнатного вентилятора. Для этого можно использовать любую пластиковую емкость, внутрь которой и помещается преобразующее устройство. Кромке этого, в емкость помещается диодный мост, к которому присоединяются провода, которые выводятся на наружную поверхность емкости.
На вал генератора (двигателя-генератора) одеваются лопасти вентилятора, а к пластиковой емкости крепится хвостовик, который можно изготовить из подручных материалов (пластик, фанера, оргстекло и т.д.).
Вся собранная конструкция помещается на стойку вентилятора, для этого можно использовать обрезок пластиковой или иной легкой трубы, диаметром несколько меньшим, чем отверстие в стойке. Это позволит конструкции вращаться вокруг своей оси, в зависимости от направления ветра.
Крепление деталей и узлов проверяется, при необходимости выполняется их укрепление. К выведенным проводам подсоединяется нагрузка. Устройство готово к работе.
Свое электричество и своя вода
Живя за городом, и имея рядом со своим домом или дачей, небольшую речку или ручей, всегда можно обеспечить себя не только водой, но и своим электричеством.
Конечно можно приобрести комплект микро – ГЭС, которое достаточно широко представлены на отечественном рынке, но можно изготовить подобное устройство и своими руками.
Конструкция может быть простой или сложной, все зависит от потребности в электрической энергии, а также от вида водоема, т.е. способности воды создавать напор в заданном направлении.
Для изготовления простейшей конструкции потребуется автомобильный генератор, велосипедное или иное колесо, пара шкивов разного диаметра или звездочек, а также металлический профиль (уголок), какой есть в наличии.
Из металлического профиля изготавливается конструкция крепления колеса и генератора. Колесо можно расположить параллельно или перпендикулярно плоскости воды, это зависит от вида водоема. На колесе крепятся лопасти, изготавливаемые из металла, пластика, фанеры или иного материала. На ось колеса крепится шкив (звездочка) большего диаметра.
Монтируется генератор, на его вал крепится шкив (звездочка) меньшего диаметра. Шкивы соединяются посредством ременной передачи, звездочки – посредством цепи. К выводам генератора подсоединяются провода. Колесо помещается в воду. Установка готова к работе.
Особенности установки и эксплуатации автономных источников
Для того, чтобы установить на своем загородном участке, даче или в квартире, альтернативный источник получения электрической энергии, не требуется получение каких — либо разрешений и согласований. Это право каждого пользователя, определять для себя самостоятельно, каким способом обеспечивать себя и своих близких электричеством.
Тем не менее, при строительстве устройств, обладающих большой мощностью, необходимо учитывать факторы, влияющие на окружающую среду и проживающих рядом соседей.
Так при использовании:
- Энергии солнца – при размещении большого количества солнечных панелей, потребуются значительные площади, в связи с чем, возможно потребуется оформлять документы на дополнительные земельные участки.
- Энергии ветра – необходимо учитывать, что ветровые генераторы, в процессе работы, издают шум, что может негативно отразиться на окружающих.
- Энергии воды – в случае устройства плотины, выводится из эксплуатации определенное количество земли, что необходимо учитывать при строительстве.
- Биотопливо – при производстве газообразного вида данного источника энергии, запах, является постоянной составляющей процесса производства. Это необходимо учитывать при создании данного способа производства электрической энергии.
Кроме того, что нет запретов на установку оборудования производящего электрическую энергию с использованием альтернативных источников, так существует еще и закон, в соответствии с которым, каждый гражданин, выполнивший монтаж оборудования мощностью до 30,0 кВт, и получающий избыточную электрическую энергию, которую сам не может использовать – имеет право ее продавать сторонним потребителям. Это право получило название «Зеленый тариф».
видео, методы и возможности в домашних условиях, альтернативы
Современное общество не мыслит себя без определённых достижений науки, среди которых электричество занимает особое место. Практически во всех сферах нашей жизни присутствует эта чудесная и ценная энергия. Но как она добывается, знают далеко не многие. А тем более — можно ли получить бесплатное электричество своими руками. Видео, которого предостаточно на просторах всемирной сети, примеры умельцев и научные данные говорят, что это вполне реально.
Реальность бесплатной электроэнергии
Каждый нет-нет да задумывается не только об экономии, но и о чём-то бесплатном. Люди вообще любят что-либо получить на халяву. Но основной вопрос на сегодня, можно ли получить бесплатно электроэнергию. Ведь если мыслить глобально, то скольким приходится человечеству жертвовать, чтобы получить лишний киловатт электричества. А ведь природа не терпит столь жестокого обращения с собой и постоянно напоминает, что следует быть осторожнее, дабы остаться в живых человеческому виду.
В погоне за прибылью человек не особо задумывается о пользе для окружающей среды и уж совсем забывает об альтернативных источниках энергии. А их существует достаточно, чтобы изменить нынешнее положение вещей в лучшую сторону. Ведь используя халявную энергию, которую без труда можно конвертировать в электричество, последнее может стать для человека бесплатным. Ну, или почти бесплатным.
И рассматривая, как получить электричество в домашних условиях, сразу всплывают в памяти самые простые и доступные методы. Хотя для их осуществления и потребуются некоторые средства, в результате само электричество не будет стоить пользователю ни копейки. Причём таких методов не один, и не два, что позволяет выбрать наиболее приемлемый в конкретных условиях способ добычи бесплатной электроэнергии.
Добыча электричества из земли
Так уж получается, что если знать хотя бы немного строение почвы и основы электрики, можно понять, как получить электроэнергию из самой земли-матушки. А всё дело в том, что почва в своей структуре объединяет твёрдую, жидкую и газообразную среду. И именно это необходимо для успешного извлечения электричества, так как позволяет найти разность потенциалов, что в результате и приводит к успешному результату.
Таким образом, почва является своего рода электростанцией, в которой постоянно находится электричество. А если учесть тот факт, что через заземления ток истекает в землю и там концентрируется, то обходить стороной подобную возможность просто кощунственно.
Используя подобные знания, умельцы, как правило, предпочитают получать электричество из земли тремя способами:
- Нулевой провод — нагрузка — почва.
- Цинковый и медный электрод.
- Потенциал между крышей и землёй.
Стоит рассмотреть каждый из методов более подробно, чтобы лучше стало понятно, о чём речь.
Нулевой провод — нагрузка — почва: подразумевает под собой использование третьего проводника, который соединяет заземлённый проводник и нулевой контакт, что позволяет получить ток напряжением 10−20 вольт. А этого вполне хватит для подключения нескольких лампочек. Хотя если немного поэкспериментировать, то можно получить и куда большее напряжение.
Цинковый и медный электрод используют для добычи электричества из грунта в изолированном пространстве. В такой почве ничего расти не будет, так как она перенасыщена солями. Берётся цинковый или железный прут и вставляется в землю. А также берут аналогичный прут из меди и тоже вставляют в почву на небольшом расстоянии.
В результате почва будет выполнять функцию электролита, а стержни образуют разницу потенциалов. Как итог, цинковый прут будет отрицательным электродом, а медный — положительным. А подобная система будет выдавать всего около 3 вольт. Но опять же, если немного поколдовать со схемой, то вполне можно полученное напряжение неплохо увеличить.
Потенциал между крышей и землёй в те же 3 вольта можно «словить», если крыша будет железной, а в земле установить ферритовые пластины. Если увеличивать размер пластин или расстояние между ними и крышей, то значение напряжения можно увеличить.
Довольно странно, но заводских приспособлений для получения электричества из земли почему-то нет. Но самостоятельно сделать любой из способов можно даже без каких-то особых затрат. Это, конечно, хорошо.
Но стоит учитывать, что электричество довольно опасно, поэтому любые работы лучше проводить вместе со специалистом. Или призвать такого при запуске системы.
Электроток из воздуха
Вот уж мечта многих получать халявное электричество своими руками из воздуха. Но как оказывается, не всё так просто. Хотя существует множество способов получить электричество из окружающей среды, сделать это не всегда просто. И несколько способов, которые стоит знать:
- Электрический потенциал способен накапливаться, поэтому придуманы грозовые батареи, которые такую способность используют.
- Хорошо многим известные ветрогенераторы способны силу ветра преобразовывать в электричество.
- Использование ионизатора.
- Малоизвестный генератор тороидального электричества, придуманный Стивеном Марком.
- Бестопливный энергоисточник Капанадзе.
Ветрогенераторы успешно используются во многих странах. Существуют целые поля, заставленные такими вентиляторами. Подобные системы способны обеспечить электричеством даже завод. Но существует довольно значительный минус — из-за непредсказуемости ветра невозможно точно сказать, сколько будет выработано и сколько накоплено электроэнергии, что вызывает определённые сложности.
Грозовые батареи названы так потому, что способны накапливать потенциал из электрических разрядов, а попросту из молний. Несмотря на кажущуюся эффективность, такие системы трудно предсказуемы, как и сами молнии. Да и создать самостоятельно подобную конструкцию скорее опасно, чем сложно. Ведь они притягивают молнии до 2000 вольт, что смертельно опасно.
Тороидальный генератор С. Марка, устройство, которое вполне можно собрать в домашних условиях, оно способно питать множество домашнего оборудования. Состоит оно из трёх катушек, которые образуют резонансные частоты и магнитные вихри, что позволяет образовываться электрическому току.
Генератор Капанадзе придуман грузинским изобретателем на основе трансформатора Тесла. Это отличный пример новейших технологий, когда для запуска необходимо лишь подключить аккумулятор, после чего полученный импульс заставляет работать генератор и производить электричество в прямом смысле из воздуха. К сожалению, данное изобретение не разглашается, поэтому каких-либо схем нет.
Солнце как источник энергии
Как же можно обделить вниманием столь мощный энергоисточник, как солнце. И, конечно, многие слышали о возможности получать электричество от солнечных батарей. Более того, кто-то даже пользовался калькуляторами и другой мелкой электроникой на солнечных батарейках. Но вопрос стоит о том, можно ли таким образом обеспечить электричеством дом.
Если посмотреть на опыт европейских любителей дармовщинки, то подобная затея вполне себе реализуема. Правда, на сами солнечные батареи придётся потратить немалые средства. Но полученная экономия вполне окупит все затраты с избытком.
К тому же это экологично и безопасно как для человека, так и для окружающей среды. Солнечные батареи позволяют рассчитать количество энергии, которое можно получить, а также этого вполне хватит для обеспечения электричеством всего, даже большого, дома.
Хотя ряд минусов всё же есть. Работа подобных батарей зависит от Солнца, которое не всегда присутствует в нужном количестве. Так, в зимнее время или в сезон дождей могут возникать проблемы в работе.
В остальном это простой и эффективный источник неиссякаемой энергии.
Альтернативные и сомнительные методы
Многим известна история про незатейливого дачника, которому якобы удалось получить халявную электроэнергию из пирамид. Этот человек утверждает, что построенные им из фольги пирамиды и аккумулятор в качестве накопителя помогают освещать весь приусадебный участок. Хотя выглядит это маловероятным.
Другое же дело, когда исследования ведут учёные мужи. Здесь уже есть над чем задуматься. Так, проводятся опыты по получению электричества из продуктов жизнедеятельности растений, которые попадают в почву. Подобные опыты вполне можно проводить и в домашних условиях. Тем более что полученный ток не опасен для жизни.
В некоторых зарубежных странах, там, где есть вулканы, их энергию с успехом используют для добычи электроэнергии. Благодаря специальным установкам работают целые заводы. Ведь полученная энергия измеряется мегаваттами. Но особо интересно то, что добыть электричество своими руками подобным способом могут и рядовые граждане. К примеру, некоторые используют энергию тепла вулкана, которую совсем несложно трансформировать в электрическую.
Многие учёные бьются над поиском добычи альтернативных методов энергии. Начиная от использования процессов фотосинтеза и заканчивая энергиями Земли и солнечными ветрами. Ведь в век, когда электроэнергия особенно востребована, это как нельзя кстати. А имея интерес и некоторые знания, каждый может внести свой вклад в изучение получения халявной энергии.
Ветряк своими руками — Возобновляемая энергия
Может быть, вы живете на лодке, отдыхаете в уединенной хижине или живете вне сети, как я. Или, может быть, вы просто хотите снизить счет за электроэнергию. В любом случае, с помощью горстки недорогих и легких материалов, вы можете построить самодельный ветрогенератор, который сделает электричество вашим, пока дует ветер. Вы сможете осветить эту кладовую, включить электричество в свой сарай или использовать генератор, чтобы поддерживать все аккумуляторные батареи вашего автомобиля.
Электроэнергия для моей автономной кабины поступает от солнечной и ветровой энергии, хранящейся в группе из четырех 6-вольтовых батарей для гольф-каров, подключенных к 12-вольтовой системе. Контроллер заряда и аккумуляторная батарея предохраняют мою систему от недостаточной или чрезмерной зарядки. Весь шебанг обошелся мне меньше чем в 1000 долларов, и у меня есть освещение, вентиляторы, телевизор и стереосистема, холодильник и дискотечный шар, который поднимают для особых случаев.
Если вы можете поворачивать гаечный ключ и работать с электродрелью, вы можете построить этот простой генератор за два дня: один день на поиск деталей и один день на сборку компонентов.Четыре основных компонента включают автомобильный генератор переменного тока со встроенным регулятором напряжения, вентилятор и блок сцепления General Motors (GM) (я использовал один из двигателя GM 350 1988 года), опору или столб, на котором можно установить генератор (15 футы использованных 2-дюймовых трубок обошлись мне в 20 долларов) и металл для сборки кронштейна для крепления генератора на мачте или столбе. Если вы любитель Ford или Mopar, это нормально — просто убедитесь, что в вашем генераторе есть встроенный регулятор напряжения. Вам также понадобится электрический кабель или провода, чтобы подключить генератор к аккумуляторным батареям.Я использовал 3-жильный кабель 8-го калибра, украденный из масляного пятна. (И они сказали, что переход от ископаемого топлива к возобновляемым источникам энергии займет годы. Пфф!)
Узел муфты вентилятора к генератору
Лопасти ветрогенератора заменены на муфту вентилятора автомобиля. Чтобы прикрепить лопасти к генератору, вы можете приварить ступицу муфты вентилятора непосредственно к ступице генератора — просто убедитесь, что вентилятор точно совмещен с валом генератора.Кроме того, убедитесь, что разъемы для встроенных проводов генератора расположены в нижней части генератора. Если у вас нет доступа к сварочному аппарату, вы можете подключить муфту вентилятора к генератору, используя следующие материалы:
• Шайба 5/8 дюйма на 3 дюйма, толщина 3/16 дюйма
• Электродрель
• Метчик с резьбой 1/4 дюйма
• Сверло, соответствующее специальному метчику с резьбой
• (4) 1 / Болты от 4 дюймов на 1-1 / 2 дюйма до 2-1 / 2 дюйма с соответствующими гайками и стопорными шайбами
Создайте соединение, используя 3-дюймовую шайбу и четыре болта, которые будут скреплять вместе муфту вентилятора и генератор.Просверлите четыре отверстия в шайбе, чтобы они совпадали с отверстиями в муфте вентилятора, а затем нарежьте резьбу в отверстиях с помощью метчика на 1/4 дюйма. Вверните болты в отверстия. Чтобы определить длину болтов, которые вам понадобятся, поместите вентилятор на верхнюю часть генератора так, чтобы шкив вентилятора опирался на шкив генератора и оба вала были на одной линии. Измерьте длину по двум валам от задней части вентилятора генератора до задней части ступицы муфты вентилятора. Используйте эту длину для болтов. Отвинтите гайку шкива генератора и снимите шкив и небольшой вентилятор.Наденьте соединение, которое вы сделали из шайбы и четырех болтов на вал генератора, так, чтобы болты были направлены в сторону от генератора. Затем снова прикрепите вентилятор генератора и гайку к валу, не снимая шкив. Большая гайка удерживает соединение на месте. Присоедините узел муфты вентилятора к болтам, которые теперь выступают из генератора, и затяните гайки с установленными стопорными шайбами.
Кронштейн в сборе для установки генератораЕсли у вас есть сварщик, сделать кронштейн несложно.Я использовал 1-дюймовую квадратную трубку для всех частей кронштейна и кусок 1-дюймовой трубы длиной 2 фута для вращающегося стержня, который помещается внутри стойки. Если у вас нет сварщика, не бойтесь. Кронштейн в сборе может быть соединен с оцинкованной трубой 1/2 дюйма и фитингами. Вот список фитингов, которые вам, скорее всего, понадобятся:
• (5) тройников 1/2 дюйма
• (2) колена 1/2 дюйма
• (2) штуцера 1/2 дюйма на 12 дюймов
• (2) 1/2 дюйма- ниппели размером 6 дюймов
• (2) ниппели 1/2 дюйма на 1 1/2 дюйма
• (2) ниппели 1/2 дюйма на 2 дюйма
• (3) 1 / 2-дюймовые соски
Хвостовой плавник должен быть прикреплен к 12-дюймовому штуцеру в задней части кронштейна, чтобы вращать генератор и выровнять его с направлением ветра.Вы можете вырезать плавник высотой около 1 фута и длиной 2 фута из старого оловянного сайдинга или кровли с помощью ножниц или резака — лучше всего подойдет прямоугольный треугольник. Если вы используете гофрированный металл, обязательно обрезайте ребро так, чтобы гофры проходили горизонтально. После того, как плавник будет вырезан, положите его поверх одного из 12-дюймовых сосков и просверлите три пилотных отверстия через нижнюю часть хвостового плавника и сбоку от соска. Используйте три винта (подойдут стальные кровельные винты), чтобы прикрепить хвост к ниппелю.
Башня ветрогенератораЯ использовал старую башню телевизионной антенны высотой 20 футов вместе с трубой диаметром 2-1 / 2 дюйма для верхней части. Вам также потребуется приварить или закрепить болтами упор в верхней части мачты, который будет контактировать с упором на вашем узле кронштейна. Ограничители позволяют генератору вращаться только на 360 градусов по часовой стрелке или против часовой стрелки, поэтому ваш кабель не перекручивается вокруг мачты и мачты.
Соединение 2–3 / 8-дюймовых толстостенных металлических труб длиной от 10 до 20 футов (или высотой после возведения) создает хорошую башню после того, как ее прикрепят к зданию или другой прочной, стационарной конструкции.Убедитесь, что он надежен, и при необходимости рассмотрите возможность использования растяжек.
После того, как вы скрепили все компоненты генератора вместе и прикрепили к кронштейну в сборе, установите его на неустановленную мачту или опору. Вставьте трубу на кронштейне генератора в опору или верх башни. Используйте две стальные шайбы, сложенные вместе, чтобы создать гладкую поверхность, которая будет служить опорой между генератором и башней. Присоедините положительный и отрицательный провода к генератору и закрепите их на кронштейне и вдоль опоры с помощью стяжек, тюков или изоленты.(На самом деле он не самодельный, если только на нем где-то не есть небольшая проволока и клейкая лента, не так ли?) Убедитесь, что провода достаточно провисают, чтобы ветрогенератор мог вращаться на 360 градусов.
Скорее всего, вам понадобится помощь, чтобы поставить башню и генератор в вертикальное положение, так как они будут довольно тяжелыми. Веревки и попутчик помогут, если вы поднимаетесь довольно высоко. Если в вашем районе всегда ветрено, вам нужно только подняться достаточно высоко над землей, чтобы движущиеся части находились над головой.Надежно закрепите башню на месте. Ветер может быть обманчиво сильным, поэтому не срезайте углы на этом этапе окончательной сборки. После того, как вы установили свой ветрогенератор, подключите провода к аккумуляторной батарее с контроллером заряда между ними, чтобы предотвратить недозаряд или перезарядку.
Теперь вы готовы зажигать свет, заводить джемы и исполнять те старые дискотечные трюки, которые, я знаю, вы копили на электрическую горку с семьей и друзьями.
Небольшой отказ от ответственности: создавайте и используйте на свой страх и риск.Мой генератор работает нормально, но вы несете ответственность за свою работу. Удачи и сил!
Роберт Д. Коупленд разводит и продает мясной скот травяного откорма и является владельцем автономного пансионата в Техасе под названием The Sunflower , в комплекте с коттеджами из соломенных тюков и глиняной штукатурки, свежих органических питание, обучение пермакультуре, семинары и многое другое!
Другие статьи о ветроэнергетике:
Энергия ветра — это полностью переработанное и обновленное издание руководства для частных лиц и предприятий, заинтересованных в установке небольших ветроэнергетических систем.Это практическое руководство, написанное для непрофессионала, дает точное и беспристрастное представление обо всех аспектах малых ветроэнергетических систем, в том числе:
- Опции ветроэнергетики и ветроэнергетики
- Способы оценки ветровых ресурсов на вашем участке
- Ветряные турбины и башни
- Инверторы и аккумуляторы
- Монтаж и обслуживание систем
- Стоимость и преимущества установки ветряной системы
Читатели получат знания, необходимые им для принятия мудрых решений при проектировании, покупке и установке небольших ветроэнергетических систем, а также для эффективного общения с установщиками ветряных систем, а также смогут помочь сделать наиболее разумный и экономичный выбор.Заказ в магазине новостей Матери-Земли или по телефону 800-456-6018.
Первоначально опубликовано: апрель / май 2017 г.
Электромотор своими руками — Школа AstroCamp
Электрогенераторы преобразуют механическую энергию в электрическую. Электродвигатель делает обратное: он преобразует электрическую энергию в физическое движение. Это преобразование возможно благодаря силе Лоренца .
Электричество — это просто движение электронов по петле, называемой цепью.Вы когда-нибудь замечали, как магниты могут отталкивать или притягивать предметы, не касаясь их? Когда цепь переносит электроны около магнита, магнитное поле толкает эти электроны в сторону.
Сила Лоренца наиболее велика, когда магнитное поле и токоведущий провод перпендикулярны друг другу. Электродвигатели используют это устройство для эффективного преобразования электрической энергии в механическое движение. В этом тоже легко убедиться! Все, что вам нужно, это магнитное поле и цепь, которая может свободно двигаться. В сегодняшнем эксперименте мы покажем силу Лоренца в действии с магнитом, батареей и отрезком провода.
Начните с установки отрицательного полюса батареи AA на сильный магнит. Магнитное поле, проверка; источник питания, проверьте. Придайте длине провода любую форму, которая может балансировать на положительном конце батареи, при этом касаясь магнита, образуя петлю из проводящих материалов. При наличии контура протекания электроны начинают двигаться, и вуаля! У вас есть ток, протекающий через магнитное поле. Ток и поле почти перпендикулярны друг другу в месте пересечения.Сила Лоренца отталкивает электроны и проводник, через который они проходят, в сторону.
Сформируйте провод так, чтобы он мог балансировать и вращаться на положительной клемме, а электромагнитный толчок вызывает вращение на время заряда аккумулятора. Электрическая энергия становится физическим движением. Поздравляем — вы только что создали мотор!
Автор: Скотт Альтон, Кэла Барри
Энергия Vanlife по бюджету: DIY Electrical Guide
Электроэнергия необходима для жизни в фургоне.Если вы переделываете свой собственный автофургон и не являетесь электриком, установка электрической системы может показаться сложной задачей. Но с небольшим образованием, подходящими инструментами и большим терпением можно сделать это самостоятельно.
Солнечная энергия — это самый популярный способ питания #vanlife, и он будет центральным в этом руководстве. Мы разберем компоненты, необходимые для полной электрической системы, и расскажем, как их установить.
Примечание редактора: Мы рекомендуем проконсультироваться с лицензированным электриком перед выполнением любых электромонтажных работ.
КОМПОНЕНТЫ СИСТЕМЫ
СОЛНЕЧНЫЕ ПАНЕЛИ
Что мы использовали: Две моно солнечные панели Renogy 100 Вт 12 В
Назначение: Ваши солнечные панели поглощают солнечный свет, преобразуют его в электричество и передают его в вашу электрическую система.
Солнечные панели на фургоне.
КОНТРОЛЛЕР ЗАРЯДАЧто мы использовали: 30A PWM Контроллер заряда Wanderer Li
Назначение: Контроллер заряда от солнечной батареи разработан для увеличения срока службы батареи и повышения производительности системы.Renogy Wanderer-Li использует зарядку с широтно-импульсной модуляцией (PWM), которая считается наиболее эффективным средством зарядки аккумулятора с постоянным напряжением. Короче говоря, он регулирует ток от солнечной батареи в соответствии с состоянием батареи и потребностями в подзарядке.
Примечание редактора: Мы установили стартовый комплект для солнечных батарей Renogy мощностью 200 Вт, 12 вольт, который включает в себя перечисленные выше панели и контроллер заряда, а также все необходимое монтажное и монтажное оборудование.
ДОМАШНИЙ АККУМУЛЯТОР
Что мы использовали: Renogy Deep Cycle AGM 12V 200AH
Назначение: Ваша батарея накапливает электроэнергию, создаваемую солнечной системой. Для жизни в автофургоне вам нужно хранить электричество при 12 В постоянного тока (постоянный ток), который будет эффективно питать все, что работает от постоянного тока, например фонари, вытяжной вентилятор, холодильники и розетки USB.
ИНВЕРТОР
Что мы использовали : Xantrex PROwatt SW 1000-ваттный инвертор
Назначение : Инвертор необходим для питания устройств 110 В переменного тока (переменного тока), таких как ноутбуки и другой электроники, требующей 3- зубчатая розетка.
ЧТО ДЕЛАТЬ ПРИ ВЫБОРЕ СОЛНЕЧНЫХ ПАНЕЛЕЙ
RIGID VS. ГИБКИЙ
Жесткие панели: Жесткие солнечные панели оснащены элементами, установленными под закаленным стеклом. Они более прочные и менее дорогие на ватт по сравнению с гибкими панелями. Они также разработаны для суровых погодных условий и легче целятся на солнце.
Гибкие панели: Гибкие солнечные панели состоят из плоских формованных элементов со слоем защитного пластика. Они легче, проще в установке, изгибаются до 30 градусов и, как правило, имеют более низкий профиль.Но они склонны к царапинам и имеют меньший срок службы, чем жесткие панели.
Что мы использовали: Жесткие панели
POLYCRYSTALLINE VS. МОНОКРИСТАЛЛИЧЕСКИЙ VS. AMORPHOUS
Поликристаллический: Более дешевый и больший на ватт
Монокристаллический: Более эффективный и компактный, более дорогой
Аморфный: Не рекомендуется для жилых автофургонов / автофургонов. Они менее эффективны, тяжелее и дороже в расчете на ватт.
Что мы использовали: Монокристаллические панели
ПРОВОДКА СЕРИИ VS. ПАРАЛЛЕЛЬНЫЙ
Серия : Последовательное подключение солнечных панелей означает подключение положительного (+) к отрицательному (-) зарядам для увеличения напряжения при сохранении силы тока. Преимущества этого в том, что это дешевле и проще разводить и не требует предохранителей.
Параллельный: Большинство контроллеров заряда ШИМ требуют параллельного подключения. Параллельная разводка лучше в определенных условиях затемнения, когда одна панель затемнена, а другая нет.Параллельная проводка позволяет получать полное напряжение от солнца с одной панели. Для параллельной проводки требуются предохранители большего размера и более дорогая проводка.
Что мы использовали: Параллельная проводка
Компоненты солнечной системы Renology
ЧТО ДЕЛАТЬ ПРИ ВЫБОРЕ АККУМУЛЯТОРА
ЗАЛИВНАЯ КИСЛОТА СВИНЦОВАЯ ПРОТИВ. ГЛУБОКИЙ ЦИКЛ AGM VS. LITHIUM ION
Свинцово-кислотные аккумуляторы : Эти батареи являются наиболее экономичными и оснащены самой старой технологией. Однако они требуют большего ухода и вентиляции, чем другие варианты.
AGM с глубоким циклом: Идеальный выбор для большинства фургонов. Аккумуляторы AGM можно часто разряжать и заряжать. Они хорошо держат заряд и требуют меньшего обслуживания, но имеют более короткий срок службы, чем варианты FLA или литиевые.
Литий-ионный (LiFePO4): Эти батареи можно разряжать и хранить пустыми без длительного повреждения. К недостаткам можно отнести высокую цену и невозможность взимать плату ниже нуля.
Что мы используем: d AGM аккумулятор глубокого разряда
Pro tip No.1: Подберите мощность солнечной панели в соответствии с емкостью аккумулятора в Ач. Например, мы соединили нашу солнечную батарею на 200 Вт с батареей на 200 Ач.
Совет № 2: Никогда не разряжайте аккумулятор полностью. Если ваша батарея опустится ниже 50 процентов, вы рискуете сократить срок ее службы и повредить ее. Итак, если ваше энергопотребление составляет около 100 Ач в день, вам понадобится батарея емкостью не менее 200 Ач.
ПРОЕКТИРОВАНИЕ ЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ
Наиболее важным при установке электрической системы является ее предварительное построение схемы.Каждая схема будет отличаться в зависимости от индивидуальных потребностей, но все они должны содержать некоторые универсальные элементы, включая предохранители, переключатели и точки заземления.
Необходимые дополнительные электрические компоненты: Судовой аккумуляторный кабель, многожильный провод 18AWG, морской провод 14AWG, кольцевые клеммы, разъединители, скрученные соединители, комплект для сращивания кабеля, выключатели, держатель предохранителя, предохранители
Необходимые инструменты: Электрика мультитул, отвертка с храповым механизмом Кляйна, изолента, аккумуляторная дрель
ЧТО ДУМАТЬ ПРИ РАЗРАБОТКЕ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ
Заземление и переключатели : «Заземление» в электрической системе фургона означает подключение к шасси автомобиля.Как правило, убедитесь, что вы заземлили аккумулятор и инвертор (если он используется). Вы также захотите включить переключатели между основными электрическими компонентами, чтобы вы могли легко отключить питание от различных источников в чрезвычайной ситуации. Мы установили выключатели для нашего основного источника питания, солнечных панелей и инвертора.
Схема электрических соединений
Предохранители и коробки предохранителей : Предохранители являются эффективными мерами безопасности в любой электрической системе. Предохранители предназначены для перегорания и разрыва электрической цепи при протекании слишком большого тока.Мы рекомендуем подключить все провода к автомобильному блоку предохранителей с помощью плоских предохранителей. Маркировка каждого компонента на блоке предохранителей поможет упорядочить вещи, особенно если вы собираетесь добавить в свою электрическую систему в будущем.
Совет для профессионалов: Проверьте в руководствах к инвертору, контроллеру заряда и аккумуляторам рекомендуемые производителем размеры предохранителей.
Необходимые навыки: Резка и опрессовка проводов. Мультитул электрика используется для обжима соединяющих их проводов.Мы рекомендуем использовать термоусадочные обжимные соединители из-за накопления влаги в фургонах. Обжимные термоусадочные соединители (в отличие от вариантов из ПВХ или нейлона) обеспечивают постоянное водонепроницаемое соединение.
УСТАНОВКА ЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ
Шаг 1: Установите и подключите солнечные панели
Pro совет: Не подключайте солнечные панели к контроллеру заряда, пока не подключите аккумулятор.
При параллельном подключении все положительные провода соединяются вместе, а все отрицательные провода — вместе.Вам нужно будет пропустить провод внутрь фургона, для чего нужно вырезать отверстие, чтобы провода могли пройти через крышу. Обязательно нанесите грунтовку, краску и прозрачный слой на просверленные отверстия, чтобы предотвратить коррозию. Чтобы кабели не натирали крышу, мы использовали защитную ленту, чтобы прикрепить их к нижней части солнечных панелей.
Мы заранее спланировали расположение наших панелей и использовали ленту 3M VHB на кронштейнах, чтобы приклеить их к крыше. В качестве альтернативы вы можете просверлить отверстия в крыше, но это намного труднее и ненужнее.Закройте все кронштейны и кабельные вводы герметиком Dicor для предотвращения попадания воды.
Шаг 2: Установите контроллер заряда
Контроллер заряда нужно установить внутри фургона, желательно в специально отведенном «электрическом шкафу». Убедитесь, что он легко доступен.
Совет для профессионалов: Оставьте несколько дюймов свободного пространства вокруг контроллера заряда для вентиляции.
Шаг 3. Подключите контроллер заряда к аккумулятору.
Проложите провод от положительной клеммы аккумулятора на контроллере заряда к одной стороне главного выключателя.Это позволяет при необходимости убить соединение с аккумулятором. С другой стороны переключателя подключите провод к встроенному держателю предохранителя. Предохранитель должен соответствовать текущему номиналу контроллера заряда. Чтобы замкнуть цепь, протяните провод с другой стороны держателя предохранителя к положительному полюсу аккумулятора. Затем подключите отрицательный провод от полюса аккумулятора к его эквиваленту на контроллере заряда.
Совет для профессионалов: Не отсоединяйте аккумулятор, когда солнечные панели подключены к контроллеру заряда.Всегда отключайте солнечные панели ПЕРВЫМ, когда вам нужно отключить электричество.
Шаг 4: Подключите солнечные панели к контроллеру заряда
Убедитесь, что положительный провод подключен к положительному, а отрицательный — к отрицательному.
Шаг 5: Подключите клеммы нагрузки к контроллеру заряда
Проложите провод от положительной клеммы на контроллере заряда к блоку плавких предохранителей, а затем проведите провод от отрицательной клеммы контроллера заряда к шине или к шине. отрицательное соединение на блоке предохранителей, если оно есть.
Шаг 6: Подключите фары, переключатели и вентиляторы
Ранее мы подключили наш вентилятор и фары к вспомогательной батарее, которая расположена под сиденьем водителя. Мы использовали провод калибра 18AWG для фонарей и провод калибра 14AWG для вентилятора. Эта подготовка сэкономила нам время, поскольку теперь все, что нам нужно было сделать, это соединить все вместе, чтобы работать от домашней батареи. Мы интегрировали диммер с возможностью управления отдельными наборами светодиодных фонарей, один спереди, а другой сзади.
Шаг 7: Подключите инвертор к батарее
Если вы интегрируете инвертор в свою электрическую систему, именно здесь вы должны подключить его к домашней батарее. Мы рекомендуем установить его в вашем электрическом шкафу — в идеале — не на земле. Мы встроили переключатель включения / выключения между аккумулятором и инвертором, чтобы отключить питание в случае аварии.
Совет для профессионалов: Используйте удлинитель с сетевым фильтром для тяжелых условий эксплуатации, если вам нужно больше, чем количество трехконтактных розеток, включенных в инвертор, в нашем случае два.
ДРУГИЕ СООБРАЖЕНИЯ
Зарядное устройство B2B или интеллектуальный изолятор батареи : Хотя мы еще не установили этот компонент, мы планируем его установить. Зарядное устройство B2B позволяет заряжать вашу систему от генератора, который вырабатывает много энергии, когда вы едете. Изолятор аккумулятора соединяет аккумулятор для досуга с существующей системой автомобиля (по сути, выполняет ту же функцию), но делает это менее эффективно, чем зарядное устройство B2B, поскольку не обеспечивает полной многоступенчатой зарядки. Все качественные зарядные устройства B2B гарантируют, что ваш стартерный аккумулятор не разряжается быстрее, чем его заряжает генератор.Мы планируем установить батарею Sterling Pro Batt Ultra в зарядное устройство.
Расчет электрической системы : расчет необходимой мощности зависит от того, какие компоненты вы планируете установить. Нам нужно запитать вентилятор, светодиодные лампы, инвертор и, наконец, холодильник. Другие компоненты, которым может потребоваться электроэнергия, включают обогреватели, вентиляторы для унитазов и водяные насосы. Ознакомьтесь с этим полезным ресурсом для расчета ваших потребностей в электроэнергии. Кроме того, эта таблица расчета электроэнергии полезна, если вы знаете количество ватт, потребляемых каждым компонентом, и можете оценить, сколько часов в день вы планируете использовать их.
Аманда Эллис 3 апреля 2019 г.
Солнечная энергия — удобный и надежный источник электричества в дороге. Вот обзор того, как установить комплект для солнечных батарей на автофургоне.
Электрооборудование 101 для домовладельца
Клинт К. Томас, эсквайр
Фотография Зои Томас
Электротехнические работы, как и все остальное в жизни, могут варьироваться от самых простых до очень сложных.Каждому домовладельцу, который занимается своими руками, полезно иметь хотя бы базовое представление об электромонтажных работах. В этой статье мы попытаемся раскрыть некоторые тайны, окружающие лабиринт проводки, который проходит по всему дому и заставляет все в нем работать одним щелчком переключателя.
Электроэнергия поступает в каждый дом через счетчик мощности, поставляемый местной коммунальной компанией, затем, в большинстве случаев, через главный автоматический выключатель на 200 ампер, а затем в домашнюю автоматическую коробку, часто еще называемую блоком предохранителей.Из коробки выключателя этот поток электричества распределяется по многочисленным цепям в разные части дома, сначала проходя через отдельные автоматические выключатели, которые служат защитным механизмом, предохраняющим систему от перегрузки. Электрическая система дома рассчитана на работу от 120 вольт, за исключением некоторых основных приборов, таких как электрическая сушилка для одежды, которая работает от 240 вольт.
Электропроводка бывает разного калибра или размера. Чем тяжелее калибр, т.е.е., чем толще медный провод, тем больше электрического тока он может пропускать без перегрева. Электрический провод и автоматические выключатели предназначены для работы в тандеме друг с другом, и каждый должен быть соответствующего размера. Например, электрический провод калибра 14/2 рассчитан на максимальный ток 15 ампер и не должен использоваться с любым автоматическим выключателем более 15 ампер. Проводка 12/2 калибра рассчитана на максимальный ток 20 ампер. Эти провода двух размеров являются стандартом, который сегодня используется в домах для большинства осветительных и настенных розеток.Опять же, для некоторых приборов, которые потребляют больше электроэнергии, и в соответствии с местными и государственными строительными нормами, необходимо использовать автоматические выключатели более тяжелого калибра и более высокого тока.
Электрический провод калибруется как дробовик. Чем меньше число, тем толще калибр провода. Проволока 12-го калибра тяжелее и выдерживает большую нагрузку, чем провод 14-го калибра, но на меньше, чем на , чем провод 10-го калибра, и выдерживает меньшую нагрузку, чем провод 10-го калибра.
Использование провода неправильного калибра с автоматическим выключателем неправильного размера может легко привести к возгоранию или неисправности электрической цепи.Например, если используется провод слишком малого калибра с разрывом на большой ток, он может перегреться и загореться задолго до того, как сработает автоматический выключатель. С другой стороны, если слишком большой калибр провода используется с выключателем с низким током, прерыватель может постоянно отключаться, нарушая цепь до того, как провод достигнет своей максимальной электрической нагрузки.
Крайне важно точно знать, какой калибр провода и какой амперный выключатель следует использовать для каждого конкретного случая. Это не та область, где можно гадать.Результатом таких догадок может стать пожар в доме или поражение электрическим током. Кроме того, в соответствии с применимыми строительными нормами и правилами существуют ограничения на количество розеток и / или светильников и т. Д., Которые может иметь конкретная цепь, и даже где они могут быть размещены или не размещены. Обязательно ознакомьтесь со своими местными и государственными строительными нормами, прежде чем начинать какие-либо работы с электричеством.
Стандартный бытовой электрический провод состоит из трех проводов: черного (горячий), белого (нейтраль) и неизолированной меди (заземления).
Типичный электрический провод для домашнего использования поставляется в изолированном рукаве и состоит из трех проводов.По черному проводу проходит электрический ток, поэтому его обычно называют «горячим» проводом. Есть белый провод, который является «нейтралью», и, наконец, голый медный провод, который является проводом заземления. Когда электрические провода соединяются вместе, черные провода должны быть соединены вместе, белые провода должны быть соединены с белыми проводами, а заземляющие провода должны быть соединены вместе. В противном случае схема не будет работать и приведет к электрическому «короткому замыканию».
Трехжильный электрический провод доступен для использования в приложениях, требующих дополнительного «горячего» провода, например, с трехпозиционным переключателем.Всего в трехпроводной схеме имеется четыре провода: белый нейтральный провод, неизолированный медный провод заземления, черный «горячий» провод и красный провод для второго «горячего» провода.
Используйте плоскогубцы для снятия изоляции с концов проводов. В приспособлениях для зачистки можно использовать провода различного калибра, чтобы обеспечить снятие изоляции с пластика без повреждения провода.
Простой детектор напряжения — это недорогой инструмент, который может обнаруживать провода под напряжением, чтобы гарантировать отключение питания перед работой с электрическими проводами.
Основные соединения
Прежде всего, всегда отключайте электропитание перед работой с какой-либо частью электрической системы.
Провода обычно соединяются с помощью гаек, которые классифицируются по калибру, чтобы соответствовать электрическим проводам.
Для таких применений, как подключение светильника, провода светильника присоединяются к проводам электропитания с помощью проволочных гаек. Как и сама проволока, гайки бывают разных размеров, чтобы соответствовать разным калибрам проволоки.Для подключения снимите изоляцию с концов проводов, удерживайте их между пальцами и закрутите гайку для проводов по часовой стрелке на концах.
При подключении электрического прибора соедините проводку, совместив цветные провода линии питания и приспособления, скрутив их вместе, а затем закрыв каждое соединение проволочной гайкой. У многих осветительных приборов нет черных и белых проводов, и в этом случае поищите ребро на оболочке проводов, чтобы определить нейтральный провод.
Выключатели света и настенные розетки имеют винты с обеих сторон для подключения проводов. Зеленые винты предназначены для заземляющих проводов, серебристые / нержавеющие винты — для белых нейтральных проводов, а винты латунного цвета — для черных «горячих» проводов.
Некоторые из наиболее распространенных проектов в области электрооборудования, с которыми сталкивается домовладелец, — это замена выключателей и розеток. Пристройка комнат или капитальный ремонт могут даже включать увеличение количества розеток в определенной области вашего дома.Таким образом, в данной статье будут рассмотрены самые основные электрические работы с использованием только однополюсных переключателей и оконечных розеток.
Электрический ток, передаваемый по проводу, можно прервать с помощью переключателя, который просто разрывает соединение между двумя горячими проводами.
Однополюсный выключатель света имеет два латунных винта с одной стороны для подключения черных проводов.
Выключатели света служат просто для того, чтобы прервать или «прервать» электрический ток в проводке, прежде чем он попадет в осветительную арматуру.Из-за этого прерывания потока свет выключается, а затем снова включается. Чтобы подключить выключатель, представьте себе провод, идущий от точки «горячего» соединения к коробке, в которой будет находиться выключатель света. Другой провод будет идти от этой коробки выключателя света к распределительной коробке, в которой находится осветительный прибор. Сам переключатель — это то, что соединит эти два провода и позволит электрическому току течь к свету или останавливаться на переключателе.
Проложите концы двух проводов в распределительной коробке, зачистите концы и затем соедините белые провода вместе с помощью гайки и заземляющие провода, закрепив их вокруг зеленого винта в нижней части переключателя.Каждый черный провод подсоединен к переключателю. К каждому латунному винту с правой стороны переключателя прикреплен один провод.
Настенные розетки — это еще одна область, которая может потребовать внимания домовладельца. В отличие от осветительных приборов, настенные розетки остаются «горячими», то есть в них всегда присутствует постоянный электрический ток. Это достигается за счет того, что розетки соединяются в ряд, как огни на рождественской елке. «Горячий» провод идет от автоматического выключателя или другой «горячей» распределительной коробки и ведет к первой розетке.Оттуда другой провод проходит от первой розетки ко второй розетке. Это продолжается до тех пор, пока не будет подключена вся комната или пока максимальное количество приборов не будет подключено к определенной цепи.
Розетки (вилки или розетки) подключаются в ряд, так сказать, путем прикрепления белых проводов к серебристым / металлическим винтам с одной стороны и соединения черных проводов с латунными винтами с другой стороны. Провод заземления подключается к зеленому винту внизу.
В отличие от светильника, настенные розетки остаются «горячими», то есть в них всегда присутствует постоянный электрический ток.
Розетки, также известные как розетки или вилки, подключаются в ряд, так сказать, путем прикрепления черных проводов к латунным винтам, белых проводов к серебряным винтам / винтам из нержавеющей стали и заземляющего провода к зеленому винту. внизу. Современные розетки называются «дуплексными розетками», потому что у них есть два винта с обеих сторон. Как следует из названия, они могут подавать электрический ток на один набор винтов, а затем направлять его через другой «дуплексный» набор винтов на другое приспособление.
Провода прикрепляются к розеткам и переключателям путем загибания конца в форме крючка. Я обычно делаю это, удерживая оголенную проволоку между плоскогубцами, а затем вращая запястье, чтобы образовать крючок в проволоке. Этот крючок легко обойдет винты с каждой стороны розетки и / или переключателя, чтобы обеспечить надежное соединение при затяжке.
Помните, что все электромонтажные работы в доме регулируются «юрисдикцией , имеющей полномочия». Большинство юрисдикций следуют стандартам, провозглашенным в Национальном электротехническом кодексе, но иногда изменяют эти стандарты в своих местных и государственных строительных нормах.Многие штаты и местные юрисдикции разрешают домовладельцам выполнять свои собственные электромонтажные работы, но некоторые этого не делают. Перед началом любых электромонтажных работ проконсультируйтесь с местными законами, постановлениями и местными строительными нормами. Кроме того, убедитесь, что вы знаете, что делаете. Если гипсокартон будет повешен неправильно, то на руках у вас будет просто бельмо на глазу. Если электромонтажные работы выполнены ненадлежащим образом, это может привести к возгоранию вашего дома или поражению электрическим током! Если сомневаетесь, не делайте этого.
Прочие электротехнические изделия
Рекомендуемые статьи
Легких проектов по электричеству для детей
Электричество и схемы — отличное развлечение для детей (а также учителей и родителей).Это собрание проектов по науке об электричестве и экспериментов, которые легко попробовать, и они очень интересны. Наблюдать за загоранием лампочки или светодиода, потому что схема работает, всегда кажется очень полезным, а бонус в том, что вы можете проявить столько творчества, сколько захотите! Создавайте дома, факелы, роботов и многое другое. Творческие возможности проекта STEM безграничны !!
В этих экспериментах с электричеством используется только батарея, поэтому они безопасны, если их контролирует взрослый.Помните, что электричество в сети очень опасно.
Пожалуйста, следите за детьми во время этих занятий.
Быстрый ремонт электричества и цепейЭлектрический ток — это поток заряда вокруг цепи , он может течь только в том случае, если цепь замкнута.
Батарея действует как насос, проталкивая электрический заряд по цепи. Мы называем это силовым напряжением. Чем выше напряжение , тем больше тока течет.
Вы можете увеличить напряжение, используя несколько батарей или батареи более высокого напряжения.
Какие материалы проводят электричество?
Металлы проводят электричество , поскольку позволяют электронам проходить через них. Электрический заряд — это поток электронов (отрицательно заряженных частиц).
Противоположность проводнику — изолятор. Изоляторы не пропускают через себя электрический заряд. Пластик, дерево и стекло — примеры изоляторов.
Что проводит электричество, кроме металлов?
Морская вода или домашний солевой раствор. В Teach Engineering есть инструкции для отличной батареи для соленой воды .
Графит — см. Нашу графитовую схему ниже.
Простые проекты по электричеству для детей
Есть ли у вас еще какие-нибудь идеи для проектов в области электричества?
Электроэнергетические проекты для детейУбейте энергетических вампиров в своем доме
Даже когда эти приборы выключены, они потребляют энергию.
«Вампирские» приборы потребляют электричество, даже когда они «выключены», переходя в режим ожидания. По данным Министерства энергетики, вампирские приборы и электроника составляют 10% энергии, потребляемой в среднем доме. Если включить все дома в США, это составит около 52 миллиардов кВтч в год или около 26 электростанций среднего размера.
Топ-5 энергетических вампиров
- Компьютеры и компьютерное оборудование (модемы, маршрутизаторы и т. Д.))
- Телевизоры с мгновенным включением (LED, LCD и обратная проекция). Практическое правило: большие экраны потребляют больше энергии
- Системы объемного звучания
- Боксы кабельного или спутникового телевидения
- Предметы домашнего обихода с часами (например, микроволновая печь, DVD-плеер и т. Д.)
Как определить энергетических вампиров
- Внешний источник питания
- Пульт дистанционного управления
- Непрерывный дисплей (включая светодиод), например часы
- Заряжает аккумуляторы
Как остановить энергетических вампиров?
- Отключайте электроприборы и электронику, особенно зарядные устройства для сотовых телефонов и игровые системы, когда они не используются.
- Используйте удлинители, которые отключат все подключенные к ним устройства (телевизоры, кабельные / спутниковые приставки и DVD-плееры) или электронику (все компьютерное оборудование).
- Выключайте маршрутизаторы, принтеры и другое периферийное компьютерное оборудование, когда оно не используется.
Сколько стоит вампирская техника?
Какой укус получают энергетические вампиры из вашего кошелька? Используйте калькулятор ниже, чтобы узнать.
Устройство | Ср. Годовое потребление в режиме ожидания (кВтч) | Ср. Годовая стоимость домохозяйства | Количество бытовой техники в вашем доме | Годовая стоимость устройства |
---|---|---|---|---|
Приставка кабельного / спутникового телевидения | 128 | 12 долларов США.85 | 012345 | 0,00 руб. |
Стерео | 128 | $ 12,85 | 012345 | 0,00 руб. |
Радиочасы | 18 | $ 1.81 | 012345 | 0,00 руб. |
DVD-плеер | 59 | $ 5.92 | 012345 | 0,00 руб. |
Компьютер | 16 | $ 1.61 | 012345 | 0,00 руб. |
Принтер | 70 | $ 7,03 | 012345 | 0,00 руб. |
Маршрутизаторы и модемы | 102 | 10 долларов США.24 | 012345 | 0,00 руб. |
Микроволновая печь | 26 | $ 2,61 | 012345 | 0,00 руб. |
Устройство открывания гаражных ворот | 24 | 2 доллара.41 | 012345 | 0,00 руб. |
52–65 дюймов Телевизор с обратной проекцией | 186 | $ 18,67 | 012345 | 0,00 руб. |
Плазменный телевизор 50 дюймов | 145 | 14 долларов США.56 | 012345 | 0,00 руб. |
ГОДОВЫЕ РАСХОДЫ НА ЭНЕРГИЮ ВАМПИРА | 0,00 руб. |
Наверх
Regresar al Principio
Электрооборудование DIY | Электробезопасность прежде всего
Не умирай для DIY
Знаете ли вы, что ошибки самоделки вызывают половину всех серьезных поражений электрическим током в домах Великобритании?
Почти 50% мужчин признают, что они считают, что они должны попытаться самостоятельно заняться домашним хозяйством и ремонтными работами или попросить помощника, прежде чем вызывать профессионала.
Но наше исследование показало, что почти половина всех серьезных поражений электрическим током вызвана попытками сделать это своими руками, при этом основные ошибки включают перерезание силовых проводов, сверление отверстий в проводке и ремонт электрических элементов, пока они еще включены.
Кроме того, в ходе опроса зарегистрированных электриков треть сказала, что они видели или принимали участие в устранении неисправностей, связанных с самоделкой, которые привели к пожарам, серьезному поражению электрическим током или значительным расходам на ремонт.
Онлайн-консультация?Многие люди сейчас обращаются к Google или YouTube в поисках советов по ремонту.Но вам нужно убедиться, что вы получаете рекомендации из авторитетного источника.
Наша кампания «Не умирай ради DIY» привлекает внимание к тому факту, что вы не всегда можете полагаться на информацию и советы, которые можно найти в Интернете.
Узнайте больше о нашей кампании «Не умирай ради DIY»
Пять основных советов по изготовлению электрики своими руками- Найдите кабели в стене. Распространенная ошибка DIY — это случайное просверливание, прибивание или ввинчивание чего-либо в кабели, спрятанные внутри ваших стен.Качественный детектор кабеля может помочь вам отследить проложенные кабели перед началом работы и избежать риска поражения электрическим током.
- Используйте УЗО (устройство защитного отключения). УЗО может спасти вашу жизнь, отключив питание в случае электрического сбоя, вызванного ошибкой, сделанной самодельной работой. Убедитесь, что он установлен в блок предохранителей (потребительский блок), и при необходимости используйте подключаемое УЗО.
- Отключите питание. Если вы выполняете какие-либо работы рядом с электропроводкой или источниками питания, по возможности отключите питание в блоке предохранителей и используйте инструменты с батарейным питанием.Чтобы убедиться, что питание отключено, прежде чем начинать работу своими руками, подключите прибор к розетке и попробуйте включить свет.
- Проверьте электроинструмент и следите за проводом. Перед использованием любого электроинструмента убедитесь, что шнур и вилка в хорошем состоянии. Если вы видите признаки повреждения (например, изношенные провода), отремонтируйте оборудование перед использованием. И всегда следите за кабелем питания, чтобы случайно не прорезать его и не споткнуться.
- Проконсультируйтесь с электриком.Лучший способ избежать проблем с электричеством в доме — обратиться за советом к профессионалу. Если вы не уверены, не делайте этого самостоятельно.
Если вам нужно выполнить какие-либо электромонтажные работы в вашем доме, лучший вариант — это найти компетентного специалиста, который сделает эту работу за вас.
Здесь легко найти дипломированного электрика.
Часть П Строительных нормЧасть P Строительных норм, нормативно-правовая база, охватывающая домовладельцев, которые выполняют работу в своих домах, гласит, что работа, которая считается более опасной, например, в ванной комнате или установка нового контура, должна выполняться или проверено и подписано дипломированным электриком.