Электричество из воздуха: Ученые придумали электростанцию, генерирующую ток из воздуха

Содержание

описание и схема устройства. Как добыть электричество в экстремальных условиях

ГлавнаяПолКак получить электричество из воздуха своими руками

описание и схема устройства. Как добыть электричество в экстремальных условиях

В 1729 году мир узнал, что на земле существуют материалы (в основном это металлы), которые могут пропускать через себя ток. Эти материалы стали именоваться проводниками. Были найдены и другие вещества (например янтарь, стекло, воск), которые не проводят ток которые стали именоваться изоляторами. Но применять электричество человечество смогло лишь в начале 17 века. Стало ясно, что ток может быть использован для получения тепла и света. Тогда же было установлено, что электричество — это поток небольших заряженных частиц — электронов. И каждый из них несет малый заряд энергии. Но когда собирается много электронов, заряд становится большим, вот тогда и появляется электрическое напряжение. Поэтому электричество может по проводам перемещаться на длинные расстояния.

Давайте рассмотрим одно занятное явление. Человек снимает свитер через голову и вдруг ни с того, ни сего раздается треск. Если раздеваться в темноте, то можете наблюдать, как этот треск сопровождается искрами. Это искрит и трещит одежда. Посмотрев внимательнее можно увидеть, что свитер прилегает к рубашке, которая еще была одета на теле. Таким образом, между вещами возникает ток. Его проявление на разных предметах приводит не только к притяжению, но и к отталкиванию. Это и есть действие электричества. Выходит, что человек в нынешнее время не может и шагу ступить без электричества.

Электричество из воды в домашних условиях

Эта труба может напор водопроводной воды превращать в электроэнергию, которую можно применять для домашних условий.

Для получения электричества требуется установить в трубу устройство, потом открыть вентиль. Вода после этого будет производить желаемую электроэнергию, двигая внутри устройства маленькие колесики.

Произведенная энергия накапливается в специальных лампах, которые устанавливаются после зарядки на свое место для целевого применения, при этом возможна регулировка яркости их свечения.

Этот метод может быть использован людьми всего мира, где есть водопроводная вода. Странно, что до этого никто об этом не додумался. Поэтому изобретение Чоя вышло в финал конкурса по индустриальному дизайну и уже готовится к серийному выпуску. Один английский изобретатель Рян Йонгву Чой разработал метод, как добыть электроэнергию в домашних условиях из водопроводной воды, и придумал трубу, у которой внутри имеется водяное колесо, и назвал ее ES Pipe Waterwheel.

Солнечные батареи

Солнечные батареи это отличный способ добычи для дома электричества.

Но на это дело необходимы некоторые затраты для приобретения солнечных батарей, которых нужно много. Но эти технологии с каждым годом расширяются, и солнечные панели уменьшаются в стоимости.

Плюсы:

Производит электроэнергию в любое время.Для создания электричества нужен солнечный свет. Не нужно другое топливо. Экологическая безопасность. Отсутствие шума.

Минусы:

Требуется немалые открытые площади. Электричество не производится ночью и в дождливую погоду. Дорогие и хрупкие панели.

Креативный подход

Один дачник изобрел устройство, которое представляет собой колесо, в котором постоянно бегают хомячки, но только больших габаритов. В это колесо впускалась собака, которая там начинала бегать. Дальше это колесо соединялась с генератором с помощью нескольких ременных передач. Генератор производил электричество, превращая в электричество энергию собаки.

Как получить электричество из картофеля

Почти в любом овоще или фрукте есть электричество. Для создания генератора тока понадобится:

Картофель 1 шт;зубочистки 2 шт;соль;чайная ложка; провода 2 шт;зубная паста.

Провода необходимо зачистить. Картофель разрезать ножом на 2 половинки. Провод протянуть через одну половинку картофеля. Используя чайную ложку сделать во второй половинке картофеля ямку — размер ее равен размеру ложки.

Смешать с солью зубную пасту и заполнить ею ямку, сделанную в разрезанном картофеле. Соединить две половинки картофеля зубочистками. Теперь генератор готов!

Для добычи напряжения необходимо на один из проводов намотать кусочек ваты. Подождать две минуты (пока батарея зарядиться).Затем друг к другу поднести провода до появления искры.

Как добыть электричество в небольших количествах

Для этого понадобится: алюминиевая фольга, медный и алюминиевый штыри, медный провод, транзистор, соль, вода.

1. Алюминиевый штырь нужно глубоко воткнуть в дерево, чтобы штырь насквозь прошел через кору и проник в ствол на значительное расстояние. Затем, воткнуть в землю медный штырь, примерно на тридцать см. Если вставить в дерево не один штырь, а несколько, то будет электричества больше. Между штырями напряжение составит около 1 V.

2. Взять транзистор и раскрыть его, при этом главное внутри корпуса не повредить кристалл. Присоединить провода к одному из переходов, «коллектор-база» или «эмиттер-база». В солнечный день, вместо транзистора можно использовать фотоэлемент, между проводами будет напряжение приблизительно 0.2 V. Применяя нескольких транзисторов можно сделать батарею.

3. Взять несколько стаканов и залить их раствором поваренной соли. Затем, взять несколько отрезков медного провода и обмотать алюминиевой фольгой один конец каждого отрезка. Этими проводами соединить стаканы с раствором, чтобы в одном стакане проволока находилась обнаженным концом, а в другом завернутым в фольгу. Получаемое напряжение будет завесить от числа стаканов.

Конечно полностью обеспечить дом своей электроэнергией конечно тяжело. Слишком много прожорливых электрических приборов: компьютеры, микроволновки, холодильники, мультиварки, телевизоры и другие. Все эти приборы потребляют много электроэнергии, на сегодняшнее время мы не можем выработать в домашних условиях такой электроэнергии на все 100%. Но вот что действительно реально, так это сэкономить и уменьшить счета за потребления электричества.

Никогда не знаешь, когда может понадобиться электричество, будь это электричество для самодельных лампочек с обугленными волокнами бамбука вместо нити накаливания, чтобы скрасить и согреть темные ночи на необитаемом острове, или ток для реанимации рации либо мобильного телефона.

Как добыть электричество из дерева?

Для практически любого простейшего способа получения электричества без подключения к уже имеющейся электрической сети, обязательно понадобятся гальванические элементы, а именно два металла, которые в паре образуют разнополярные анод и катод соответственно. Теперь остается воткнуть в ближайшее дерево один из них, например, алюминиевый стержень или железный гвоздь так, чтобы он полностью вошел через кору в сам ствол дерева; а другой элемент, например, медную трубку, воткнуть в почву рядом, чтобы она вошла в землю на 15-20 см. Не удивлюсь, если между медной трубкой и алюминиевым стержнем возникнет напряжение в приблизительно 1 Вольт. Чем больше стержней вы вставите в дерево, тем лучше будет качество электроэнергии, добываемой таким способом.

Как добыть электричество из фруктов?

Апельсины, лимоны и другие цитрусовые, — все это идеальный электролит для выработки электричества в экстремальных условиях, особенно если экстремальная ситуация застала вас недалеко от экватора. Помимо уже известных алюминия и меди, можно использовать более эффективные золото и серебро если на вас или вашей спутнице остались украшения, доведя напряжение вашего электричества аж до 2 Вольт. Если вы занимаетесь получением электроэнергии с целью освещения, то в качестве лампочки может служить стеклянная колба с кусочком обугленного бамбукового волокна в качестве нити накаливания. Эту кустарную нить накаливания использовал для первой лампочки в мире сам Эдиссон!

Как добыть электричество из воды?

Если у вас есть медная проволока и фольга, получение электричества в этом случае, займёт минимум усилий. Наполняем несколько стаканов соленой водой и соединяем их медной проволокой, от стакана к стакану. На один конец каждого провода, соединяющего стаканы, должна быть намотана алюминиевая фольга. Соответственно, чем больше проволоки и стаканов. тем выше ваши шансы!

Как добыть электричество из картофеля?

Из клубней обычной картошки, тоже можно получить электричество, все что вам понадобится, это соль, зубная паста, провода и картофелина. Разрежьте её пополам ножом, через одну половинку проведите провода, в то время как в другой сделайте по центру углубление в форме ложки, после чего наполните её зубной пастой, смешанной с солью. Соедините половинки картошки, причем провода должны контачить с зубной пастой, а их самих лучше зачистить. Все! Теперь вы можете при помощи вашего генератора электричества, зажигать костры от электрической искры.

Как добыть электричество из воздуха?

Однозначно построить ветряк, что кстати не так уж и сложно. Все что вам понадобится это винтообразные лопасти, вращаемые силой ветра, и генератор электричества для преобразования механической энергии в электроэнергию. Его кстати можно просто вытащить из поломанного автомобиля!

Как сделать простейший аккумулятор?

Свинец и серная кислота уже не один десяток лет зарекомендовали себя как универсальный генератор электричества с превосходным качеством электроэнергии, использующийся повсеместно, например, в аккумуляторах различных транспортных средств. Для этого вам понадобятся оба компонента, соединить которые нужно в керамической посуде (найти в экстремальных условиях глину и обжечь её не должно составить для вас труда). Если вопрос остался за серной кислотой, то получите её из серы, обжигая её при избытке кислорода и воды не трудно. Если нет ни того ни другого, электричество принесет вам минерал «галенит», который уже при температуре 327 градусов в смеси с углем расплавляется на серу и свинец.

У каждого на кухне есть вентиляционный канал. У кого-то он просто закрыт решеткой. У некоторых стоит вентилятор для принудительной вытяжки. Многие замечали, как этот вентилятор начинает бешено крутится не будучи включенным в сеть. Просто оттого сквозняка, который возникает в канале. Это же халявная энергия электричества! Для неё всегда можно найти применение.

Игорь Белецкий взял корпусной вентилятор от компьютера. Самый дешёвый 120. Подойдёт даже старый нерабочий. Нам нужна только сама крыльчатка. Соединяем с коллекторным моторчиком от принтера. Получаем мини ветрогенератор. Всё это делается просто и быстро, под силу каждому. Мобильный телефон от такого ветряка не зарядить. А вот сделать освещение на кухне реально. Электрическая мощность такой установки не превышает одного ватта. Несколько увеличим, если добавим простую деталь — любая труба по диаметру вентилятора. Мастер сделает из обычного картона.

Благодаря ей набегающие воздушный поток приобретает направленное движение и даже может ускоряться, что повышает силу давления на лопасти и мощность ветрогенератора в целом. Таким образом можно сделать дармовое дежурное освещение на кухне, в ванной, в туалете. Везде, где есть вытяжки. Часто заходим в эти помещения на короткое время. Что-то взять, помыть руки, для этого не требуется хорошее освещение. Если вы не включаете основной свет, то это уже экономия электричества. Плюс продлевается срок службы лампочек. Таким нехитрым способом можно превратить свою вытяжку в мини электростанцию. Задумайтесь.

Сегодня электричество в дачном доме уже не относится к излишествам: комфортный отдых и эффективный уход за участком сложно представить без соответствующего оборудования, так что задумываться об энергоснабжении рано или поздно придется.

Естественно, в этом процессе есть множество нюансов, и потому мы настоятельно рекомендуем вам ознакомиться с данной статьей. Конечно, все тонкости не раскроем, но общее представление о масштабах предстоящей работы вы получите.

Чтобы в загородном доме было тепло, светло и уютно, стоит позаботиться об энергоснабжении

Где взять?

Традиционные источники

И если ограничиваться лишь традиционными технологиями, то схем энергоснабжения можно выделить всего две:

Подключение к ЛЭП

  • Централизованное – участок «запитываем» от проходящей на относительно небольшом расстоянии линии электропередач.
  • Автономное – в качестве источника выступает генератор.

Рассмотрим оба варианта более подробно.

  • Если говорить об использовании централизованного энергоснабжения, то основным плюсом является достаточно высокая предоставляемая мощность. Так, в этом случае можно даже организовать обогрев дачи электричеством, не разорившись на топливе для генератора.

Присоединение к проводам на столбе

  • С другой стороны, сам процесс подключения к ЛЭП связан с весьма утомительными бюрократическими процедурами. Даже в том случае, если провода проложены сравнительно недалеко, на этапе согласования могут возникнуть проблемы.

Обратите внимание! Самовольное подключение к ЛЭП является правонарушением, и при обнаружении подобного факта вам придется заплатить немалый штраф. Также стоит помнить, что выполнять такие работы должны исключительно профессионалы с соответствующим уровнем допуска.

  • Аренда дизель — генератора для дачи или покупка такого устройства могут обеспечить вас энергией вне зависимости от расположения участка. Да, эта технология является более затратной с финансовой точки зрения, но так вы можете быть уверены, что свет в доме и на участке не пропадет даже во время непогоды (обрывы проводов, особенно в удаленных районах — не редкость).

Даже компактное устройство может обеспечить освещение целого дома

  • Еще один вариант автономного энергоснабжения – монтаж газового генератора. Конечно, цена прибора будет выше, чем у дизельной установки, да и обслуживать его могут только специалисты, но себестоимость киловатта энергии при этом получится существенно ниже.

В итоге оптимальная инструкция будет следующей: если есть возможность – подключаемся к линии электропередач и используем ее мощности, но на всякий случай устанавливаем в доме или сарае генератор с небольшим запасом топлива. Если возможности подключения нет – просто покупаем более производительный генератор, и проектируем электросеть участка с оглядкой на ограничения по производительности установки.

Альтернативные источники

Впрочем, современные технологии позволяют получить электричество на халяву для дачи. Под «халявой» в данном случае имеется полная или практически полная независимость от цен на энергоносители. Конечно, само альтернативное оборудование нужно приобретать, причем за довольно большие деньги, но со временем (от двух до пяти лет) оно окупается, и дальше работает «в плюс».

Фото крыльчатки ветряного генератора на крыше дома

Несколько наиболее эффективных технологий можно выделить, и их особенности мы свели в таблицу:

Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.

Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.

Некоторые способы следующие:

  • грозовые батареи используют свойство электрического потенциала накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
  • ионизатор (люстра Чижевского) — популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе — бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор TPU (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.

Добыча из Земли

Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.

Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.

Гальванический способ (с двумя стержнями)

Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).

Между стержнями из разных металлов в электролите появляется разность потенциалов.

Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.

От заземления

Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.

Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.

Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.

Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).

Другие способы

Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.

Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.

Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.

Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.

Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.

Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.

Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.

На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.

Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.

Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.

Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.

Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:

Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

Каково быть девственницей в 30 лет? Каково, интересно, женщинам, которые не занимались сексом практически до достижения среднего возраста.

ЭЛЕКТРОЭНЕРГИЯ БЕСПЛАТНО (НЕ СМОТКА СЧЁТЧИКА)

Для освещения, питания телевизора, холодильника, других электроприборов. Не надо «усовершенствовать электросчётчик, подключаться к соседу, заменять имеющиеся электроприборы – ничего этого делать не надо!

НОВЫЙ ПРИНЦИП ПИТАНИЯ ЭЛЕКТРОПРИБОРОВ В БЫТУ,

В квартире электроприборы к сети подключаются параллельно, так как U=220 В и постоянно по величине, то каждое новое включение увеличивает потребляемый ток:

Предлагаем Вам новое изобретение. Суть его в том, что часть нагрузки запитывается через большую емкость С = (10 – 50 мкФ). При прохождении тока через ёмкость происходит сдвиг фаз между током и напряжением на 900. Ток в общей цепи при этом уже не будет равен сумме отдельных токов, а рассчитывается по формуле:

то есть меньше, чем I? = I1+ I2+. In. без ёмкости С.

Можно запитывать осветительные, обогревательные устройства, холодильники типа «Морозко» (без электродвигателей), новые телевизоры (без трансформатора) и другие электроприборы.

КОМЕРЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ДАННОГО ИЗОБРЕТЕНИЯ ПРЕСЛЕДУЕТСЯ ПО ЗАКОНОДАТЕЛЬСТВУ.

«Сделай сам – своими руками » — сайт интересных самоделок, сделанных из подручных материалов и предметов в домашних условиях. Пошаговые мастер-классы с фото и описанием, технологии, примеры работ — все, что нужно для рукоделия настоящему мастеру или просто умельцу. Поделки любой сложности, большой выбор направлений и идей для творчества.

Внимание, только СЕГОДНЯ!

В наше время возник призрак энергетического кризиса. Человечество ищет разные ответы на этот вызов, предлагая решение в виде атомной энергии или источников альтернативной энергетики. Но что они представляют собой? Может ли «обычный» рядовой человек получить возможность наслаждаться плодами технического прогресса, собрав то, что позволит эксплуатировать источники электричества, своими руками? Да, и реализация будет показана в статье на примере ветровой энергии.

Возможности альтернативной энергетики

Но первоначально поговорим об альтернативной энергетике вообще. Её особенностью является то, что используются источники энергии, которые никак не иссякнут в ближайшем будущем. Минусом, который тормозит её повсеместное внедрение, является привязка к определённым параметрам окружающей среды и длительный срок окупаемости.

Но вышеуказанные возможности — это не то, что является главной целью статьи. Здесь будет рассказано о настолько непривычном способе получения энергии, что большинство людей про него и не знает. Итак, как получить электричество из воздуха своими руками?

Получение энергии из воздуха

А что же с ветровой энергией? Сначала всегда вспоминают про неё. Тут требуется наличие достаточно быстрых воздушных потоков, которые будут вращаться и превращать механическую энергию ветра в электричество. Самым лучшим вариантом считается, если скорость ветрового потока составляет больше 5 м\с. Механизм превращения заключается в том, что ветер крутит лопасти ветряной мельницы, которые соединены с генератором тока. Поскольку на него подаётся то генератор превращает её в электрическую энергию.

Но самый экзотический способ добычи — это электричество из воздуха своими руками. Не с помощью воздуха, а из него. Как такое возможно? Наверное, многие из вас слышали про то, что электрические устройства создают электрические поля, так почему бы не черпать энергию из этих полей?

Что необходимо для создания простой станции получения энергии?

Как же осуществить получение электричества из воздуха? Минимум, необходимый для забора электроэнергии из воздуха, — земля и металлическая антенна. Между этими проводниками с разной полярностью устанавливается электрический потенциал, который накапливается на протяжении длительного времени. Учитывая непостоянность величины, рассчитать её силу почти невозможно. Подобная станция работает как молния: разряд тока происходит через определённое время, когда достигается максимальный потенциал. Таким способом можно получить довольно много электроэнергии, чтобы поддерживать работу электрической установки.

Схематическое изображение

Вас, наверное, интересует не только электричество из воздуха. Схема, как сделать ее — самое важное. Что ж, предлагаю взглянуть, как она выглядит. В целом ничего сложного, и на рисунке всё подписано. Только следует сказать: не вздумайте телефонную трубку называть наушниками. Если же назвали так, схема и её реализация — это пока не для вас, слишком мало опыта.

Рассмотрим плюсы и минусы конструкции.

Сначала о плюсах:

  1. Простота конструкции, благодаря чему практическое повторение в домашних условиях — дело не сложное.
  2. Доступность материалов, необходимых для проекта.

Теперь о недостатках:

  1. Следует учитывать, что, несмотря на свою простоту, схема чрезвычайно опасна ввиду невозможности расчета примерного количества ампер и силы токового импульса.
  2. Образование открытого при работе, вследствие чего могут возникать удары молний до 2 000 Вольт. Это было главной причиной, почему установку признали небезопасной для жизни и, соответственно, не запустили ее в производство.

Поэтому электричество, полученное с помощью солнечной панели или и является более безопасным. Но приобрести механизм похожего действия можно — это люстра Чижевского (одна из самых удивительных советских разработок). Она хоть и не даёт возможность получать электричество из воздуха своими руками, но является очень интересной конструкцией.

Альтернатива Марка

Устройство также известно как генератор электричества из воздуха TPU, разработанный Стивеном Марком. Он позволяет получать различные количества электричества, чтобы питать разные цели, и делается это без необходимости подпитки из внешней среды. Но из-за некоторых особенностей она всё ещё не работает. Такая проблемка не помешает, тем не менее, рассказать вам о ней.

Принцип работы простой: в кольце создается резонанс магнитных вихрей и токов, что способствует появлению токовых ударов в металлических отводах. Чтобы собрать такой тороидальный генератор, позволяющий получить электричество из воздуха своими руками, вам нужно:

  1. Основание, в качестве которого может выступить кусок фанеры, похожий на кольцо, полиуретан или отрезок резины; 2 коллекторные катушки (внешняя и внутренняя) и катушка управления. В качестве основания наилучшим образом подойдёт кольцо, у которого наружный диаметр 230 миллиметров, а внутренний 180.
  2. Намотайте катушку внутри коллектора. Намотка должна быть трехвитковой и делаться многожильным проводом, сделанным из меди. Теоретически, чтобы запитать лампочку, вам должно хватить одного витка как на фотографиях. Если не получилось — сделайте ещё.
  3. Управляющих катушек необходимо 4 штуки. Каждую из них следует разместить под прямым углом, чтобы не создавать помех магнитному полю. Намотка должна быть плоской, а зазор между витками не должен превышать 15 миллиметров. Меньше тоже нежелательно.
  4. Чтобы намотать управляющие катушки, используйте одножильный провод. Необходимо сделать не менее 21 витка.
  5. Для последней катушки используйте медный провод с изоляцией, который следует наматывать по всей площади. Основное конструирование завершено.

Соедините выводы, предварительно установив между землёй и обратной землёй конденсатор на десять микрофарад. Чтобы запитать схему, используйте мультивибраторы и транзисторы. Подбирать их придется опытным путём ввиду того, что нужны разные характеристики для разных конструкций.

Альтернатива Капанадзе

Также хочется предложить вашему вниманию схему, которая, вероятно, опишет изобретение Капанадзе. В её основе — катушка Теслы, что может накапливать электроэнергию. Так ли это — можете проверить лично.

technosvarmet.ru

2QM.ru: Электричество из воздуха своими руками. Можно ли добывать электричество из воздуха

В наше время возник призрак энергетического кризиса. Человечество ищет разные ответы на этот вызов, предлагая решение в виде атомной энергии или источников альтернативной энергетики. Но что они представляют собой? Может ли «обычный» рядовой человек получить возможность наслаждаться плодами технического прогресса, собрав то, что позволит эксплуатировать источники электричества, своими руками? Да, и реализация будет показана в статье на примере ветровой энергии.

Содержание статьи

Возможности альтернативной энергетики

Но первоначально поговорим об альтернативной энергетике вообще. Её особенностью является то, что используются источники энергии, которые никак не иссякнут в ближайшем будущем. Минусом, который тормозит её повсеместное внедрение, является привязка к определённым параметрам окружающей среды и длительный срок окупаемости.

Но вышеуказанные возможности – это не то, что является главной целью статьи. Здесь будет рассказано о настолько непривычном способе получения энергии, что большинство людей про него и не знает. Итак, как получить электричество из воздуха своими руками?

Получение энергии из воздуха

А что же с ветровой энергией? Сначала всегда вспоминают про неё. Тут требуется наличие достаточно быстрых воздушных потоков, ветряных мельниц, которые будут вращаться и превращать механическую энергию ветра в электричество. Самым лучшим вариантом считается, если скорость ветрового потока составляет больше 5 мс. Механизм превращения заключается в том, что ветер крутит лопасти ветряной мельницы, которые соединены с генератором тока. Поскольку на него подаётся механическая энергия, то генератор превращает её в электрическую энергию.

Но самый экзотический способ добычи – это электричество из воздуха своими руками. Не с помощью воздуха, а из него. Как такое возможно? Наверное, многие из вас слышали про то, что электрические устройства создают электрические поля, так почему бы не черпать энергию из этих полей?

Что необходимо для создания простой станции получения энергии?

Как же осуществить получение электричества из воздуха? Минимум, необходимый для забора электроэнергии из воздуха, – земля и металлическая антенна. Между этими проводниками с разной полярностью устанавливается электрический потенциал, который накапливается на протяжении длительного времени. Учитывая непостоянность величины, рассчитать её силу почти невозможно. Подобная станция работает как молния: разряд тока происходит через определённое время, когда достигается максимальный потенциал. Таким способом можно получить довольно много электроэнергии, чтобы поддерживать работу электрической установки.

Схематическое изображение

Вас, наверное, интересует не только электричество из воздуха. Схема, как сделать ее — самое важное. Что ж, предлагаю взглянуть, как она выглядит. В целом ничего сложного, и на рисунке всё подписано. Только следует сказать: не вздумайте телефонную трубку называть наушниками. Если же назвали так, электричество своими руками, схема и её реализация – это пока не для вас, слишком мало опыта.

Рассмотрим плюсы и минусы конструкции.

Сначала о плюсах:

  • Простота конструкции, благодаря чему практическое повторение в домашних условиях – дело не сложное.
  • Доступность материалов, необходимых для проекта.
  • Теперь о недостатках:

  • Следует учитывать, что, несмотря на свою простоту, схема чрезвычайно опасна ввиду невозможности расчета примерного количества ампер и силы токового импульса.
  • Образование открытого контура заземления при работе, вследствие чего могут возникать удары молний до 2 000 Вольт. Это было главной причиной, почему установку признали небезопасной для жизни и, соответственно, не запустили ее в производство.
  • Поэтому электричество, полученное с помощью солнечной панели или ветрового генератора, и является более безопасным. Но приобрести механизм похожего действия можно – это люстра Чижевского (одна из самых удивительных советских разработок). Она хоть и не даёт возможность получать электричество из воздуха своими руками, но является очень интересной конструкцией.

    Альтернатива Марка

    Устройство также известно как генератор электричества из воздуха TPU, разработанный Стивеном Марком. Он позволяет получать различные количества электричества, чтобы питать разные цели, и делается это без необходимости подпитки из внешней среды. Но из-за некоторых особенностей она всё ещё не работает. Такая проблемка не помешает, тем не менее, рассказать вам о ней.

    Принцип работы простой: в кольце создается резонанс магнитных вихрей и токов, что способствует появлению токовых ударов в металлических отводах. Чтобы собрать такой тороидальный генератор, позволяющий получить электричество из воздуха своими руками, вам нужно:

  • Основание, в качестве которого может выступить кусок фанеры, похожий на кольцо, полиуретан или отрезок резины; 2 коллекторные катушки (внешняя и внутренняя) и катушка управления. В качестве основания наилучшим образом подойдёт кольцо, у которого наружный диаметр 230 миллиметров, а внутренний 180.
  • Намотайте катушку внутри коллектора. Намотка должна быть трехвитковой и делаться многожильным проводом, сделанным из меди. Теоретически, чтобы запитать лампочку, вам должно хватить одного витка как на фотографиях. Если не получилось – сделайте ещё.
  • Управляющих катушек необходимо 4 штуки. Каждую из них следует разместить под прямым углом, чтобы не создавать помех магнитному полю. Намотка должна быть плоской, а зазор между витками не должен превышать 15 миллиметров. Меньше тоже нежелательно.
  • Чтобы намотать управляющие катушки, используйте одножильный провод. Необходимо сделать не менее 21 витка.
  • Для последней катушки используйте медный провод с изоляцией, который следует наматывать по всей площади. Основное конструирование завершено.
  • Соедините выводы, предварительно установив между землёй и обратной землёй конденсатор на десять микрофарад. Чтобы запитать схему, используйте мультивибраторы и транзисторы. Подбирать их придется опытным путём ввиду того, что нужны разные характеристики для разных конструкций.

    Альтернатива Капанадзе

    Также хочется предложить вашему вниманию схему, которая, вероятно, опишет изобретение Капанадзе. В её основе – катушка Теслы, что может накапливать электроэнергию. Так ли это – можете проверить лично.

    2qm.ru

    Электричество из воздуха своими руками. Можно ли добывать электричество из воздуха

    В наше время возник призрак энергетического кризиса. Человечество ищет разные ответы на этот вызов, предлагая решение в виде атомной энергии или источников альтернативной энергетики. Но что они представляют собой? Может ли «обычный» рядовой человек получить возможность наслаждаться плодами технического прогресса, собрав то, что позволит эксплуатировать источники электричества, своими руками? Да, и реализация будет показана в статье на примере ветровой энергии.

    Возможности альтернативной энергетики

    Но первоначально поговорим об альтернативной энергетике вообще. Её особенностью является то, что используются источники энергии, которые никак не иссякнут в ближайшем будущем. Минусом, который тормозит её повсеместное внедрение, является привязка к определённым параметрам окружающей среды и длительный срок окупаемости.

    Но вышеуказанные возможности – это не то, что является главной целью статьи. Здесь будет рассказано о настолько непривычном способе получения энергии, что большинство людей про него и не знает. Итак, как получить электричество из воздуха своими руками?

    Получение энергии из воздуха

    А что же с ветровой энергией? Сначала всегда вспоминают про неё. Тут требуется наличие достаточно быстрых воздушных потоков, ветряных мельниц, которые будут вращаться и превращать механическую энергию ветра в электричество. Самым лучшим вариантом считается, если скорость ветрового потока составляет больше 5 м\с. Механизм превращения заключается в том, что ветер крутит лопасти ветряной мельницы, которые соединены с генератором тока. Поскольку на него подаётся механическая энергия, то генератор превращает её в электрическую энергию.

    Но самый экзотический способ добычи – это электричество из воздуха своими руками. Не с помощью воздуха, а из него. Как такое возможно? Наверное, многие из вас слышали про то, что электрические устройства создают электрические поля, так почему бы не черпать энергию из этих полей?

    Что необходимо для создания простой станции получения энергии?

    Как же осуществить получение электричества из воздуха? Минимум, необходимый для забора электроэнергии из воздуха, – земля и металлическая антенна. Между этими проводниками с разной полярностью устанавливается электрический потенциал, который накапливается на протяжении длительного времени. Учитывая непостоянность величины, рассчитать её силу почти невозможно. Подобная станция работает как молния: разряд тока происходит через определённое время, когда достигается максимальный потенциал. Таким способом можно получить довольно много электроэнергии, чтобы поддерживать работу электрической установки.

    Схематическое изображение

    Вас, наверное, интересует не только электричество из воздуха. Схема, как сделать ее — самое важное. Что ж, предлагаю взглянуть, как она выглядит. В целом ничего сложного, и на рисунке всё подписано. Только следует сказать: не вздумайте телефонную трубку называть наушниками. Если же назвали так, электричество своими руками, схема и её реализация – это пока не для вас, слишком мало опыта.

    Рассмотрим плюсы и минусы конструкции.

    Сначала о плюсах:

    1. Простота конструкции, благодаря чему практическое повторение в домашних условиях – дело не сложное.
    2. Доступность материалов, необходимых для проекта.

    Теперь о недостатках:

    1. Следует учитывать, что, несмотря на свою простоту, схема чрезвычайно опасна ввиду невозможности расчета примерного количества ампер и силы токового импульса.
    2. Образование открытого контура заземления при работе, вследствие чего могут возникать удары молний до 2 000 Вольт. Это было главной причиной, почему установку признали небезопасной для жизни и, соответственно, не запустили ее в производство.

    Поэтому электричество, полученное с помощью солнечной панели или ветрового генератора, и является более безопасным. Но приобрести механизм похожего действия можно – это люстра Чижевского (одна из самых удивительных советских разработок). Она хоть и не даёт возможность получать электричество из воздуха своими руками, но является очень интересной конструкцией.

    Альтернатива Марка

    Устройство также известно как генератор электричества из воздуха TPU, разработанный Стивеном Марком. Он позволяет получать различные количества электричества, чтобы питать разные цели, и делается это без необходимости подпитки из внешней среды. Но из-за некоторых особенностей она всё ещё не работает. Такая проблемка не помешает, тем не менее, рассказать вам о ней.

    Принцип работы простой: в кольце создается резонанс магнитных вихрей и токов, что способствует появлению токовых ударов в металлических отводах. Чтобы собрать такой тороидальный генератор, позволяющий получить электричество из воздуха своими руками, вам нужно:

    1. Основание, в качестве которого может выступить кусок фанеры, похожий на кольцо, полиуретан или отрезок резины; 2 коллекторные катушки (внешняя и внутренняя) и катушка управления. В качестве основания наилучшим образом подойдёт кольцо, у которого наружный диаметр 230 миллиметров, а внутренний 180.
    2. Намотайте катушку внутри коллектора. Намотка должна быть трехвитковой и делаться многожильным проводом, сделанным из меди. Теоретически, чтобы запитать лампочку, вам должно хватить одного витка как на фотографиях. Если не получилось – сделайте ещё.
    3. Управляющих катушек необходимо 4 штуки. Каждую из них следует разместить под прямым углом, чтобы не создавать помех магнитному полю. Намотка должна быть плоской, а зазор между витками не должен превышать 15 миллиметров. Меньше тоже нежелательно.
    4. Чтобы намотать управляющие катушки, используйте одножильный провод. Необходимо сделать не менее 21 витка.
    5. Для последней катушки используйте медный провод с изоляцией, который следует наматывать по всей площади. Основное конструирование завершено.

    Соедините выводы, предварительно установив между землёй и обратной землёй конденсатор на десять микрофарад. Чтобы запитать схему, используйте мультивибраторы и транзисторы. Подбирать их придется опытным путём ввиду того, что нужны разные характеристики для разных конструкций.

    Альтернатива Капанадзе

    Также хочется предложить вашему вниманию схему, которая, вероятно, опишет изобретение Капанадзе. В её основе – катушка Теслы, что может накапливать электроэнергию. Так ли это – можете проверить лично.

    загрузка…

    worldfb.ru

    Получение электричества из воздуха | Мир невидимого

    Альтернативные способы получения электроэнергии привлекают все больше внимания, так как цена на энергоносители растет. Вот и возникают проекты, в которых изобретатели пытаются получить бесплатное электричество из воздуха в достаточном количестве.

    Причем этот вопрос не просто обсуждается на интернет форумах среди дилетантов, пытающихся создать энергетические установки своими руками, но и на полном серьезе ставится учеными, пытающимися предложить свои схемы получения электричества из воздуха.

    Опыты Никола Тесла

    Первым о том, как добыть электричество из воздуха на промышленной основе задумался еще Никола Тесла. Его больше всего на свете интересовала электрическая энергия и именно он первым заинтересовался ее «свободной» формой. По мнению этого ученого первопричиной возникновения электроэнергии «из ничего» является Солнце.

    Занимаясь изучением свободной энергии, он смог создать прибор, позволяющий получать электричество из воздуха и земли, а также осуществлять его передачу. Более того, Тесла запатентовал свое изобретение под названием «аппарат для использования излучающей энергии».

    Прекраснейшим изобретением он считал радиометр Крука и рассчитывал, что уже в ближайшем будущем сможет получать энергию от природных процессов. Но в результате дело дальше великолепных опытов так и не пошло.

    Как добыть электричество из воздуха

    Во времена Теслы не существовало видео, поэтому его эффектные опыты известны нам только по описаниям очевидцев. Можно попытаться повторить все своими руками, тем более, что сейчас наша атмосфера пронизана куда большим количеством энергетических полей от ЛЭП, сотовых вышек, телевизионного и других излучений.

    Для того чтобы получить электричество из воздуха не нужны сложные схемы. Между основанием и поднятой металлической пластиной имеется электрический потенциал статического электричества, накапливающийся с течением времени.

    Через определенный интервал происходит электрический разряд, который можно заставить совершать полезную работу. Вот так вкратце и реализуется получение электроэнергии из воздуха . Только надо понимать, что реальная реализация такого проекта сопряжена с опасностью получить поражение электрическим током во время разряда.

    А кроме того, металлический контур, накапливающий потенциал замечательно притягивает молнии со всеми вытекающими отсюда последствиями. Именно по этой причине в большинстве случаев дальше идей реализация подобных проектов не идет.

    Ветрогенераторы – электричество из энергии ветра

    А вот ветрогенератор сейчас уже стал реальностью. Фактически такое устройство можно назвать потомком ветряной мельницы. Основная проблема в получении электроэнергии таким способом – непостоянство ветра. Но там, где условия позволяют сейчас даже строятся электростанции, дающие неплохую отдачу буквально из ничего – из движения воздуха.

    Альтернативные способы получения электроэнергии привлекают все больше внимания, так как цена на энергоносители растет. Вот и возникают проекты, в которых изобретатели пытаются получить бесплатное электричество из воздуха в достаточном количестве.

    Электричество из воздуха своими руками

    В связи с постоянным ростом цен на энергоносители, все больше внимания уделяется так называемым альтернативным источникам электрической энергии. Данный вопрос уже давно волнует не только дилетантов, предпринимающих усилия по созданию энергетических установок. Этой проблемой занимаются и ученые, разрабатывающие реальные схемы получения альтернативной электроэнергии.

    Опыты известных ученых

    Одним из первых этой проблемой заинтересовался Никола Тесла. Он планировал перевести добычу электроэнергии из воздуха на промышленную основу. Большинство опытов Николы Тесла были посвящены свободной форме электричества. В качестве основной причины его появления из ниоткуда, он считал солнечную энергию.

    В результате изучения свободной энергии, Тесла создал прибор, который позволял бы получать электрическую энергию напрямую из земли и воздуха. Предусматривалась и передача полученной энергии на расстояние. Данное изобретение было запатентовано под наименованием аппарата, использующего излучающую энергию.

    Уже в наше время изобретателем Стивеном Марком было создано устройство, производящее электроэнергию в достаточном количестве. Оно получило название тороидального генератора, способного эффективно запитывать различные виды потребителей, в том числе, лампы накаливания и даже сложные бытовые приборы. Данный генератор способен работать в течение длительного времени и не требует какой-либо внешней подпитки. Его основным принципом работы служат резонансные частоты, магнитные вихри и токовые удары в металле.

    Как реально получить электричество из воздуха

    Проводимые Николой Тесла опыты, доказывают, что электричество из воздуха своими руками можно получать совершенно свободно. Особенно актуально это стало в настоящее время, когда всю атмосферу постоянно пронизывают в большом количестве различные энергетические поля. Они создаются трансляционными вышками, линиями электропередач и другими устройствами, производящими излучения.

    Получение электричества из воздуха не требует каких-либо сложных схем. Как правило, в качестве основания используется земля, над которой поднимается металлическая пластина, играющая роль антенны. Между ними существует статическое электричество, накапливающееся с течением времени и обладающее определенным потенциалом. Через определенные временные интервалы происходят разряды электричества, которые можно использовать. По своей сути, это эффект молнии, представляющий определенную опасность при работе с ним.

    Источники: remont220.ru, e-science.ru, otvet.mail.ru, magov.net, electric-220.ru

    Предсказания доктора Нострадамуса. Часть1

    Французский медик и ученый Мишель Нострадамус известен практически во всем мире. Книги с предсказаниями доктора Нострадамуса действительно вот уже …

    Гигантские пауки острова Навуо

    История, которая произошла на полинезийском острове Навуо, больше напоминает сюжет из фильма ужасов. Как сообщает С.И.Минаков в книге «Таинственные и паранормальные …

    Самые злобные породы собак

    Если вы приобретаете домашнего питомца для содержания его в квартире, то следует заранее ознакомиться с тем, какие особенности могут быть …

    Фриланс работа

    Фрилансер – работник, не привязанный к рабочему месту, который может быть привлечен к работе любой компанией. Допустим, Вы создаете свой интернет …

    Призрак на дороге

    Временами на определенных отрезках дорог появляются призраки людей, погибших в автокатастрофах. Множество водителей стали свидетелями этого явления. Случаи такого …

    Тайна снежного человека

    Все чаще исследователи склоняются к мнению, что тайна снежного человека заключается в том, что он представляет собой своеобразный биологический вид. …

    Музей Замка в Мальборке

    Сейчас хозяином крепости над Ногатом является Музей Замка в Мальборке, основанный в 1961 году. Основными заданиями Музея являются: забота про старинный …

    Масоны. 33 параллель

    Есть основания полагать, что вследствие важности для масонов числа 33, 33 параллель тоже имеет для них большое значение. Специалисты, занимающиеся …

    Контакты с НЛО

    Количество официально зарегистрированных свидетельств, в которых фигурировали экипажи НЛО, а также обстоятельства, при которых происходили контакты с НЛО побудили многих известных …

    www.objectiv-x.ru

    Электричество из воздуха

    Никола Тесла — один из великих ученых-изобретателей, благодаря которым современное общество может пользоваться благами и уникальными вещами, ставшими для нас привычными.

    Одними из самых любимых тем для изучения для Теслы были электричество и энергия. Он был первым, кто заинтересовался так называемой «свободной энергией». Тесла считал, что ее источником является Солнце. Именно благодаря ему и возникает энергия из ничего. Ученый разработал теорию, согласно которой Солнце излучает частицы, наделенные небольшими зарядами. Они двигаются со скоростью, которая превышает скорость света. В процессе изучения этих явлений был создан прибор, позволяющий получать электричество из воздуха.

    Данное устройство накапливает статическое электричество и преобразует его удобную для потребления форму.

    Свою концепцию Тесла запатентовал в 1901 году. Она получила название «аппарат для использования излучающей энергии». Ученый был очарован излучающей энергией и возможностью получать электричество из воздуха. Известный радиометр Крука он назвал прекраснейшим изобретением, которое имеет лопасти, вращающиеся в вакууме под действием излучающей энергии. Он был убежден, что в ближайшем будущем станет возможным получение энергии от самой природы и процессов, происходящих в ней. На одной из пресс-конференций, отвечая на различные вопросы, он заявил, что двигатель космического излучения в тысячи раз мощнее радиометра Крука.

    Как получают электричество из воздуха?

    Между основание и поднятой пластиной существует электрический потенциал. Эта энергия скапливается в конденсаторе и, через определенный интервал времени, проявляется в мощном разряде, способном совершать работу. Таким образом, можно получить электричество из воздуха. Конденсатор, по мнению Тесла, должен отвечать определенным требованиям: иметь значительную электростатическую емкость; его диэлектрик должен быть изготовлен из слюды самого высокого качества; противостоять потенциалам, способным разорвать слабый диэлектрик.

    Тесла разработал несколько вариантов коммутационного устройства. Одним из них стал поворотный выключатель, по принципу работы подобный регулятору цепи, разработанному Теслой. Другой – электростатическое устройство. Оно состоит из пары легких перепончатых проводников, которые находятся в вакууме. В результате их работы должен быть создан конденсат, отрицательно и положительно заряженный. Помимо этого, Тесла упоминает о работе еще одного подобного устройства. Оно состоит из небольшого промежутка диэлектрической пленки или воздуха, которая прогибается, если достигнут определенный потенциал.

    Что такое электроэнергия из земли?

    Целью опытов Теслы было получение некоторого количества энергии, которая находится между верхней атмосферой и поверхностью земли, а затем преобразование ее в электрический ток. Он представлял Солнце в виде огромного электрического шара, который заражен положительно и имеет потенциал около 200 миллиардов вольт. В то же время Земля заряжена отрицательно. В результате взаимодействия этих двух тел появляется огромная электрическая сила, которая и называется космической энергией. Ее количество может изменяться в зависимости от времени суток и сезона. Но данная энергия неизменно присутствует.

    Положительно заряженные частицы накапливаются в ионосфере. Между ней и отрицательными зарядами Земли возникает огромная разность потенциалов (около 360000 вольт). Учитывая то, что атмосферные газы выступают в роли изолятора, образуется пространство с большим запасом энергии.

    Земля в данном случае выступает в роли конденсатора. Она держит отрицательные и положительные заряды отдельно, используя при этом в качестве изолятора воздух.

    fb.ru

    Электричество из воздуха своими руками. Можно ли добывать электричество из воздуха

    В наше время возник призрак энергетического кризиса. Человечество ищет разные ответы на этот вызов, предлагая решение в виде атомной энергии или источников альтернативной энергетики. Но что они представляют собой? Может ли «обычный» рядовой человек получить возможность наслаждаться плодами технического прогресса, собрав то, что позволит эксплуатировать источники электричества, своими руками? Да, и реализация будет показана в статье на примере ветровой энергии.

    Возможности альтернативной энергетики

    Но первоначально поговорим об альтернативной энергетике вообще. Её особенностью является то, что используются источники энергии, которые никак не иссякнут в ближайшем будущем. Минусом, который тормозит её повсеместное внедрение, является привязка к определённым параметрам окружающей среды и длительный срок окупаемости.

    Но вышеуказанные возможности – это не то, что является главной целью статьи. Здесь будет рассказано о настолько непривычном способе получения энергии, что большинство людей про него и не знает. Итак, как получить электричество из воздуха своими руками?

    Получение энергии из воздуха

    А что же с ветровой энергией? Сначала всегда вспоминают про неё. Тут требуется наличие достаточно быстрых воздушных потоков, ветряных мельниц, которые будут вращаться и превращать механическую энергию ветра в электричество. Самым лучшим вариантом считается, если скорость ветрового потока составляет больше 5 м\с. Механизм превращения заключается в том, что ветер крутит лопасти ветряной мельницы, которые соединены с генератором тока. Поскольку на него подаётся механическая энергия, то генератор превращает её в электрическую энергию.

    Но самый экзотический способ добычи – это электричество из воздуха своими руками. Не с помощью воздуха, а из него. Как такое возможно? Наверное, многие из вас слышали про то, что электрические устройства создают электрические поля, так почему бы не черпать энергию из этих полей?

    Что необходимо для создания простой станции получения энергии?

    Как же осуществить получение электричества из воздуха? Минимум, необходимый для забора электроэнергии из воздуха, – земля и металлическая антенна. Между этими проводниками с разной полярностью устанавливается электрический потенциал, который накапливается на протяжении длительного времени. Учитывая непостоянность величины, рассчитать её силу почти невозможно. Подобная станция работает как молния: разряд тока происходит через определённое время, когда достигается максимальный потенциал. Таким способом можно получить довольно много электроэнергии, чтобы поддерживать работу электрической установки.

    Схематическое изображение

    Вас, наверное, интересует не только электричество из воздуха. Схема, как сделать ее — самое важное. Что ж, предлагаю взглянуть, как она выглядит. В целом ничего сложного, и на рисунке всё подписано. Только следует сказать: не вздумайте телефонную трубку называть наушниками. Если же назвали так, электричество своими руками, схема и её реализация – это пока не для вас, слишком мало опыта.

    Рассмотрим плюсы и минусы конструкции.

    Сначала о плюсах:

    1. Простота конструкции, благодаря чему практическое повторение в домашних условиях – дело не сложное.
    2. Доступность материалов, необходимых для проекта.

    Теперь о недостатках:

    1. Следует учитывать, что, несмотря на свою простоту, схема чрезвычайно опасна ввиду невозможности расчета примерного количества ампер и силы токового импульса.
    2. Образование открытого контура заземления при работе, вследствие чего могут возникать удары молний до 2 000 Вольт. Это было главной причиной, почему установку признали небезопасной для жизни и, соответственно, не запустили ее в производство.

    Поэтому электричество, полученное с помощью солнечной панели или ветрового генератора, и является более безопасным. Но приобрести механизм похожего действия можно – это люстра Чижевского (одна из самых удивительных советских разработок). Она хоть и не даёт возможность получать электричество из воздуха своими руками, но является очень интересной конструкцией.

    Альтернатива Марка

    Устройство также известно как генератор электричества из воздуха TPU, разработанный Стивеном Марком. Он позволяет получать различные количества электричества, чтобы питать разные цели, и делается это без необходимости подпитки из внешней среды. Но из-за некоторых особенностей она всё ещё не работает. Такая проблемка не помешает, тем не менее, рассказать вам о ней.

    Принцип работы простой: в кольце создается резонанс магнитных вихрей и токов, что способствует появлению токовых ударов в металлических отводах. Чтобы собрать такой тороидальный генератор, позволяющий получить электричество из воздуха своими руками, вам нужно:

    1. Основание, в качестве которого может выступить кусок фанеры, похожий на кольцо, полиуретан или отрезок резины; 2 коллекторные катушки (внешняя и внутренняя) и катушка управления. В качестве основания наилучшим образом подойдёт кольцо, у которого наружный диаметр 230 миллиметров, а внутренний 180.
    2. Намотайте катушку внутри коллектора. Намотка должна быть трехвитковой и делаться многожильным проводом, сделанным из меди. Теоретически, чтобы запитать лампочку, вам должно хватить одного витка как на фотографиях. Если не получилось – сделайте ещё.
    3. Управляющих катушек необходимо 4 штуки. Каждую из них следует разместить под прямым углом, чтобы не создавать помех магнитному полю. Намотка должна быть плоской, а зазор между витками не должен превышать 15 миллиметров. Меньше тоже нежелательно.
    4. Чтобы намотать управляющие катушки, используйте одножильный провод. Необходимо сделать не менее 21 витка.
    5. Для последней катушки используйте медный провод с изоляцией, который следует наматывать по всей площади. Основное конструирование завершено.

    Соедините выводы, предварительно установив между землёй и обратной землёй конденсатор на десять микрофарад. Чтобы запитать схему, используйте мультивибраторы и транзисторы. Подбирать их придется опытным путём ввиду того, что нужны разные характеристики для разных конструкций.

    Альтернатива Капанадзе

    Также хочется предложить вашему вниманию схему, которая, вероятно, опишет изобретение Капанадзе. В её основе – катушка Теслы, что может накапливать электроэнергию. Так ли это – можете проверить лично.

    загрузка…

    fjord12.ru

    Электричество из воздуха своими руками. Можно ли добывать электричество из воздуха

    В наше время возник призрак энергетического кризиса. Человечество ищет разные ответы на этот вызов, предлагая решение в виде атомной энергии или источников альтернативной энергетики. Но что они представляют собой? Может ли «обычный» рядовой человек получить возможность наслаждаться плодами технического прогресса, собрав то, что позволит эксплуатировать источники электричества, своими руками? Да, и реализация будет показана в статье на примере ветровой энергии.

    Возможности альтернативной энергетики

    Но первоначально поговорим об альтернативной энергетике вообще. Её особенностью является то, что используются источники энергии, которые никак не иссякнут в ближайшем будущем. Минусом, который тормозит её повсеместное внедрение, является привязка к определённым параметрам окружающей среды и длительный срок окупаемости.

    Но вышеуказанные возможности – это не то, что является главной целью статьи. Здесь будет рассказано о настолько непривычном способе получения энергии, что большинство людей про него и не знает. Итак, как получить электричество из воздуха своими руками?

    Получение энергии из воздуха

    А что же с ветровой энергией? Сначала всегда вспоминают про неё. Тут требуется наличие достаточно быстрых воздушных потоков, ветряных мельниц, которые будут вращаться и превращать механическую энергию ветра в электричество. Самым лучшим вариантом считается, если скорость ветрового потока составляет больше 5 м\с. Механизм превращения заключается в том, что ветер крутит лопасти ветряной мельницы, которые соединены с генератором тока. Поскольку на него подаётся механическая энергия, то генератор превращает её в электрическую энергию.

    Но самый экзотический способ добычи – это электричество из воздуха своими руками. Не с помощью воздуха, а из него. Как такое возможно? Наверное, многие из вас слышали про то, что электрические устройства создают электрические поля, так почему бы не черпать энергию из этих полей?

    Что необходимо для создания простой станции получения энергии?

    Как же осуществить получение электричества из воздуха? Минимум, необходимый для забора электроэнергии из воздуха, – земля и металлическая антенна. Между этими проводниками с разной полярностью устанавливается электрический потенциал, который накапливается на протяжении длительного времени. Учитывая непостоянность величины, рассчитать её силу почти невозможно. Подобная станция работает как молния: разряд тока происходит через определённое время, когда достигается максимальный потенциал. Таким способом можно получить довольно много электроэнергии, чтобы поддерживать работу электрической установки.

    Схематическое изображение

    Вас, наверное, интересует не только электричество из воздуха. Схема, как сделать ее — самое важное. Что ж, предлагаю взглянуть, как она выглядит. В целом ничего сложного, и на рисунке всё подписано. Только следует сказать: не вздумайте телефонную трубку называть наушниками. Если же назвали так, электричество своими руками, схема и её реализация – это пока не для вас, слишком мало опыта.

    Рассмотрим плюсы и минусы конструкции.

    Сначала о плюсах:

    1. Простота конструкции, благодаря чему практическое повторение в домашних условиях – дело не сложное.
    2. Доступность материалов, необходимых для проекта.

    Теперь о недостатках:

    1. Следует учитывать, что, несмотря на свою простоту, схема чрезвычайно опасна ввиду невозможности расчета примерного количества ампер и силы токового импульса.
    2. Образование открытого контура заземления при работе, вследствие чего могут возникать удары молний до 2 000 Вольт. Это было главной причиной, почему установку признали небезопасной для жизни и, соответственно, не запустили ее в производство.

    Поэтому электричество, полученное с помощью солнечной панели или ветрового генератора, и является более безопасным. Но приобрести механизм похожего действия можно – это люстра Чижевского (одна из самых удивительных советских разработок). Она хоть и не даёт возможность получать электричество из воздуха своими руками, но является очень интересной конструкцией.

    Альтернатива Марка

    Устройство также известно как генератор электричества из воздуха TPU, разработанный Стивеном Марком. Он позволяет получать различные количества электричества, чтобы питать разные цели, и делается это без необходимости подпитки из внешней среды. Но из-за некоторых особенностей она всё ещё не работает. Такая проблемка не помешает, тем не менее, рассказать вам о ней.

    Принцип работы простой: в кольце создается резонанс магнитных вихрей и токов, что способствует появлению токовых ударов в металлических отводах. Чтобы собрать такой тороидальный генератор, позволяющий получить электричество из воздуха своими руками, вам нужно:

    1. Основание, в качестве которого может выступить кусок фанеры, похожий на кольцо, полиуретан или отрезок резины; 2 коллекторные катушки (внешняя и внутренняя) и катушка управления. В качестве основания наилучшим образом подойдёт кольцо, у которого наружный диаметр 230 миллиметров, а внутренний 180.
    2. Намотайте катушку внутри коллектора. Намотка должна быть трехвитковой и делаться многожильным проводом, сделанным из меди. Теоретически, чтобы запитать лампочку, вам должно хватить одного витка как на фотографиях. Если не получилось – сделайте ещё.
    3. Управляющих катушек необходимо 4 штуки. Каждую из них следует разместить под прямым углом, чтобы не создавать помех магнитному полю. Намотка должна быть плоской, а зазор между витками не должен превышать 15 миллиметров. Меньше тоже нежелательно.
    4. Чтобы намотать управляющие катушки, используйте одножильный провод. Необходимо сделать не менее 21 витка.
    5. Для последней катушки используйте медный провод с изоляцией, который следует наматывать по всей площади. Основное конструирование завершено.

    Соедините выводы, предварительно установив между землёй и обратной землёй конденсатор на десять микрофарад. Чтобы запитать схему, используйте мультивибраторы и транзисторы. Подбирать их придется опытным путём ввиду того, что нужны разные характеристики для разных конструкций.

    Альтернатива Капанадзе

    Также хочется предложить вашему вниманию схему, которая, вероятно, опишет изобретение Капанадзе. В её основе – катушка Теслы, что может накапливать электроэнергию. Так ли это – можете проверить лично.

    загрузка…

    twofb.ru

    Новый прибор способен добывать электричество из влаги воздуха

    «Эта диффузия заряда вызовет уравновешивающее электрическое поле или потенциал, аналогичный покоящемуся мембранному потенциалу в биологических системах, — объясняют как могут авторы изобретения в своем исследовании. — Поддерживаемый градиент влажности, который принципиально отличается от всего, что наблюдалось в предыдущих системах, объясняет непрерывное выходное напряжение от нашего нанопроволочного устройства».

    Открытие было сделано практически случайно, когда Яо заметил, что устройства, с которыми он экспериментировал, давали электричество. «Я заметил: когда нанопроволоки определенным образом контактировали с электродами, устройства генерировали ток, — говорит Яо. — Затем было обнаружено, что атмосферная влажность имеет важное значение для процесса, и что белковые нанонити поглощают воду, создавая градиент напряжения на устройстве».

    Ранее опыты по выработке гидроэлектрической энергии проводились с использованием других видов наноматериалов, таких как графен. Но при этом наблюдались лишь короткие импульсы электричества.
    Напротив, Air-gen вырабатывает постоянное напряжение около 0,5 В с плотностью тока около 17 микроампер на квадратный сантиметр. Это не так много, но исследователи заверяют, что подключение нескольких устройств способно генерировать достаточно энергии для зарядки небольших устройств, таких как смартфоны. Причем устройство будет работать даже в пустыне Сахара.

    Теперь перед учеными стоит задача по созданию крупномасштабных систем для питания домов с помощью нанопроволоки, встроенной в краску для стен. «Как только мы перейдем к промышленным масштабам производства проволоки, появится возможность создавать большие системы, которые внесут существенный вклад в производство энергии».

    Отметим, что опубликованная фотография не имеет никакого отношения к разработке.

    Устранение электростатического заряда путем увлажнения воздуха и контроля влажности

    Увлажнение воздуха является эффективным способом устранения сэлектростатического разряда на производстве. При поддержании относительной влажности на уровне 55% влага, соедржащаяся в воздухе, является естественным проводником, который заземляет потенциальный статический заряд.

    Накопление электростатического заряда на производственном оборудовании часто приводит к снижению производительности, ухудшению качества продукции, создает проблемы с безопасностью из-за неконтролируемого искрения и наносит физический ущерб оборудованию, особенно электронике и печатным платам.

    Проблемы, вызванные статическим электричеством, характерны для упаковочной, типографской, целлюлозно-бумажной промышленности, производства пластмасс, текстильных изделий, электроники, автомобилестроения и фармацевтической промышленности.

    Для образования электростатического заряда в процессе трения относительная влажность воздуха должна быть ниже 45%. При относительной влажности воздуха 45-55% электростатический заряд все еще накапливается, но в меньшей степени, так как он отводится в землю через содержащуюся в воздухе влагу. Поддержание относительной влажности воздуха выше 55% гарантированно предотвращает образование электростатического заряда.

    Для больших помещений, таких как полиграфические и производственные цеха, эффективным и экономичным решением представляется прямое увлажнение воздуха в помещении. В припотолочной зоне устанавливают форсунки, которые распыляют влагу и поднимают влажность воздуха до требуемого уровня.

    Однако, промышленное оборудование выделяет тепло и понижает относительную влажность воздуха в помещениях, что приводит к накоплению электростатического заряда. Нагрев осушает воздух, и в комнате с общей относительной влажностью воздуха 60% при 18 °C могут образоваться локальные воздушные зоны с влажностью ниже 45%. Если такое оборудование вдобавок создает трение, ведущее к накоплению статического электричества, возникает опасность электростатического разряда.

    Там, где это требуется, можно установить местные распылительные системы для локального повышения влажности. Установив отдельные форсунки непосредственно над технологическим оборудованием, можно устранить накопление электростатического заряда за счет поддержания необходимой относительной влажности воздуха при увеличении температуры.

    Созданное учеными устройство получило электричество «из воздуха»

    Исследователи из Массачусетского университета в Амхерсте разработали устройство, которое может создавать электроэнергию из влаги в воздухе, используя специальный белок. Результаты работы опубликованы в Nature.

    Возобновляемые источники энергии считаются сегодня одной из самых перспективных областей знания. Многие европейские страны уже заявили, что в обозримом будущем планируют отойти от использования ископаемого топлива и целиком обеспечивать свои энергетические потребности с помощью ветряных и солнечных электростанций. В масштабе страны такие источники энергии вполне применимы, но их использование в домашних хозяйствах зачастую не оправдывает себя, в том числе из-за того, что они зависят от погоды и времени суток.

    В своей работе исследователи представили новое устройство, которое может генерировать электрический ток в любое время, потому что использует для этого воздух. Энергию с помощью него можно получать даже в помещениях и засушливых местах.

    Разработка состоит из производимых протеобактериями Geobacter белковых нанопроволок толщиной менее 10 мкм, сложенных в пленку. Нижняя часть пленки полностью соприкасается с одним из электродов. Второй меньший электрод покрывает только часть пленки и расположен сверху.

    Открытая часть белковой конструкции адсорбирует водяной пар из атмосферы. Сочетание хорошей электропроводности и определенной структуры поверхности белковых нанопроволок позволяет создавать электрический ток между двумя электродами. Исследователи говорят, что нынешнее поколение устройств, названных ими Air-gen, способно питать малогабаритную электронику, и они рассчитывают в скором времени довести изобретение до коммерческого масштаба.

    На следующем этапе авторы планируют немного изменить конструкцию созданного ими источника энергии, чтобы его можно было применять в устройствах мониторинга показателей здоровья, а также в системах, где чаще всего случаются перебои в электроснабжении. Исследователи также надеются разработать Air-gen для применения в сотовых телефонах, чтобы исключить необходимость в их постоянной зарядке.

    Как добыть электричество из воздуха?

    Много лет ученые ищут идеальный альтернативный источник электроэнергии, который позволил бы добывать ток из возобновляемых ресурсов. О том, как получить статическое электричество из воздуха, задумывался еще Тесла в 19 веке, и сейчас ученые пришли к выводу, что да, это вполне реально.

    Виды добычи

    Альтернативное электричество может добываться из воздуха двумя способами:

    1. Ветрогенераторами;
    2. За счет полей, пронизывающих атмосферу.

    Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.

    Фото — грозовая батарея

    Ветрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра. Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.

    Фото — ветряки

    Видео: создание электричества из воздуха

    Как добыть энергию из воздуха

    Простейшая принципиальная схема не включает в себя никаких дополнительных накопительных устройств и преобразователей. По сути, требуется только металлическая антенна и земля. Между этими проводниками устанавливается электрический потенциал. Он со временем накапливается, поэтому это непостоянная величина и рассчитать его силу практически невозможно. Такое, вырабатывающее ток, устройство работает по принципу молнии – через определенный промежуток времени происходит разряд тока (когда потенциал достиг своего максимума). Таким образом, можно извлечь из земли и воздуха достаточно большое количество полезной электроэнергии, которой будет достаточно для работы электрической установки. Её конструкция подробно описывается в труде: «Секреты свободной энергии холодного электричества».

    Фото — схема

    Схема имеет свои достоинства:

    1. Простота в реализации. Опыт можно с легкостью повторить в домашних условиях;
    2. Доступность. Не нужно никаких приспособлений, самая обычная пластина из токопроводящего металла подойдет для реализации проекта.

    Недостатки:

    1. Реализация схемы очень опасна. Нельзя рассчитать даже примерное количество ампер, не говоря уже про силу токового импульса;
    2. При работе образовывается своеобразный открытый контур заземления, к которому притягиваются молнии. Это является одной из самых главных причин, почему проект не «пошел в массы» — он опасен для жизни и производства. Удар молнии подчас достигает 2000 Вольт.

    С этой точки зрения, свободное электричество, добытое при помощи ветрогенераторов более безопасно. Но тем ни менее, сейчас можно даже купить такой прибор (к примеру, ионизатор-люстра Чижевского).

    Фото — люстра Чижевского

    Но есть еще один вариант рабочей схемы – это генератор TPU электричества из воздуха от Стивена Марка. Это устройство позволяет получить определенное количество электроэнергии для питания различных потребителей, причем, делает он это без какой-либо подпитки из вне. Технология запатентована и многие ученые уже повторили опыт Стивена Марка, но из-за некоторых особенностей схемы она еще не пущена в обиход.

    Принцип работы прост: в кольце генератора создается резонанс токов и магнитные вихри, они способствуют появлению в металлических отводах токовых ударов. Рассмотрим наглядно, как сделать тороидальный генератор, чтобы добыть электричество из воздуха:

    1. Вам понадобится основание (это может быть кусок фанеры в форме кольца, отрезок резины, полиуретана и т. д.), две коллекторные катушки (внутренняя и внешняя) и катушки управления. Индивидуальный чертеж может иметь другие размеры, но в основании берется кольцо с наружным диаметром 230 мм, внутренним 180 мм, шириной 25 мм и толщиной 5 мм. Вырежьте из основания кольцо этого размера; Фото — основание
    2. Теперь нужно намотать внутреннюю коллекторную катушку. Намотка трехвитковая, производится многожильным проводом из меди. Специалистами заявляется, что и одного витка намотки будет достаточно для запитки лампочки и проведения эксперимента;
    3. Управляющих катушек – четыре штуки, каждая из них должна находиться под прямым углом, в противном случае, будут создаваться помехи магнитному полю. Намотка плоская, зазор между отдельными витками (катушками) примерно 15 мм, но это зависит от особенностей выбранного материала; Фото — четыре катушки
    4. Для намотки управляющих катушек могут использоваться медные одножильные провода, на описываемый размер рекомендуется делать 21 виток;
    5. Для установки последней катушки используется медный провод с изоляцией. Он наматывается по всей площади основания. Фото — конечная обмотка

    На этом конструирование можно считать завершенным. Теперь нужно соединить выводы. Предварительно нужно между выводами обратной земли и земли установить конденсатор на 10 микрофарад. Для запитки схемы используются скоростные транзисторы и мультивибраторы. Они подбираются опытным путем, т. к. их характеристики зависят от размера основания, видов провода и некоторых других особенностей конструкции. Для управления схемой можно использовать стандартная кнопка питания (ВКЛ – ВЫКЛ). Для более подробной информации рекомендуем просмотреть видео по генератору Стивена Марка в Xvid или TVrip-качестве.

    Не менее нашумевшим открытием стал генератор Капанадзе. Этот бестопливный источник энергии был презентован в Грузии, сейчас он тестируется. Генератор позволяет добывать электричество из воздуха без использования сторонних ресурсов.

    Фото — предположительная схема генератора Капанадзе

    В основе его работы лежит катушка Теслы, которая расположена в специальном корпусе, накапливающем электроэнергию. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, реально подтверждающих существование этого изобретения. Схема не разглашается.

    Инженер-электроник Цзюнь Яо и микробиолог Дерек Лавли из университета Массачусетса в Амхерсте разработали устройство, способное генерировать электричество из воздуха, вернее, из влаги, которая в нем содержится, пишет Phys.org.

    В качестве результата своих исследований ученые представили опытный образец — прототип Air-gen, как назвали они свое изобретение. Он непрерывно производил буквально из воздуха порядка 0,5 вольт.

    Интересно, что 17 таких прототипов могли бы запитать мобильный телефон. Так что в ближайшее время мобильные устройства можно будет заряжать даже в пустыне Сахара, там, где не проведено электричество.

    Прибор представляет собой пневматический генератор с электропроводящими белковыми нанопроводами толщиной менее десяти микрон. Вода конденсируется на верхней стороне устройства и вступает в реакцию с белками, разлагаясь на заряженные ионы. Заряды накапливаются, создают разницу потенциалов и вызывают направленное движение свободных электронов между двумя пластинками — то есть электрический ток.

    Непрерывность процесса обеспечивают почвенные бактерии Geobacter, которые используют электричество для окисления и утилизации органических веществ и производят проводящие ток «нанонити» из белковых молекул.

    Новая технология является экологически чистой, возобновляемой и недорогой. По словам разработчиков, она может генерировать электроэнергию даже там, где воздух обладает низкой влажностью. Air-gen не требует энергии солнца, воды или ветра и может быть эффективной даже во внутренних помещениях.

    Ученые считают, что эта инновация может иметь большое значение для развития возобновляемых источников энергии. Вполне возможно, что пропитка стен краской, созданной по принципу Air-gen, согреет дом без применения традиционных источников тепла. Опыт может пригодиться также для работ по управлению климатом и в медицине.

    Прошли новогодние праздники, отгорели гирляндами елки и пришли счета за электричество. Обогрев на основе электроконвекторов не перестает меня радовать общей стоимостью системы отопления загородного дома, но мысль о бесплатных киловатт-часах становится навязчивой. Поделюсь еще одной находкой из области очевидного и невероятного.

    В этот раз электричество будем добывать непосредственно из воздуха. Про электростатические разряды все знают – если погладить пушистую кошку, а потом этой же рукой взяться за металлическую дверную ручку, то ударит током. Более интересный вариант – сняв шерстяной свитер, помыть руки водой из водопроводного крана. Она, оказывается, тоже бьется статическими разрядами! Но мы сегодня не об этом. Давайте упрощенно представим, как выглядит наша планета: твердая сфера – мы здесь, атмосфера – здесь летают птицы, ионосфера – здесь летают заряженные частицы.

    Верхние слои атмосферы называют ионосферой не просто так – в ней очень много положительно заряженных частиц – ионов. Считается, что сама планета, в свою очередь, заряжена отрицательно. Отсюда и «заземление» — подключение отрицательного полюса в полярной электрической схеме к «земле».

    Теперь, если представить нашу планету в виде сферического конденсатора (в вакууме), то получится, что он состоит из двух обкладок – положительно заряженной ионосферы и отрицательно заряженной поверхности земли. Атмосфера играет роль изолятора. Через атмосферу постоянно протекают ионные и конвективные токи утечки этого «конденсатора». Но, несмотря на это, разность потенциалов между «обкладками» не уменьшается. Мы по прежнему наблюдаем молнии, полярные сияния, да и ионов меньше не становится.

    Это значит, что существует некий генератор, который постоянно подзаряжает эту систему. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой, и солнечный ветер, ионизирующий верхние слои атмосферы. Если каким-либо способом подключить к этому генератору полезную нагрузку, мы получим практически вечный и бесплатный источник электроэнергии.

    Разность потенциалов атмосферы и земной поверхности может достигать от сотен до сотен тысяч вольт на разных высотах и в разное время года. Принципиальная схема «электростанции» в таком случае предельно проста: строим высокий столб-проводник (или поднимаем кабель аэростатом), хорошенько его заземляем и разрезаем у основания на нужной нам высоте. Верхняя часть столба будет иметь положительный заряд, нижняя- отрицательный. При помощи трансформаторов снижаем напряжение до нужных нам величин, попутно увеличив силу тока…и вроде как бы все. Включаем полезную нагрузку и радуемся.

    Но в этой простоте и кроется вся хитрость. Проблема 1: высота проводника. Считается, что напряженность электрического поля планеты наиболее сильна у поверхности, т.е. на высоте 100-150 м. Выше строить сложно, хотя всегда есть аэростаты…Проблема 2, она же главная: чтобы по нашему проводнику пошел ток, т.е. движение электронов от отрицательного полюса к положительному, этот самый положительный полюс там должен быть. А если мы просто построим заземленный металлический столб, то электрическое поле в лице атмосферы его обойдет, «приняв» за новую точку поверхности земли. Таким образом, электроны, которые должны были бы двигаться снизу, от заземленной поверхности по проводнику вверх, к положительно заряженным ионам в атмосфере, этого делать не будут потому, что не смогут покинуть верхнюю часть проводника. Они останутся «запертыми» в нем, чем и обеспечится нейтральный заряд всей системы.

    Грубо говоря, с металла (проводника) через воздух и в воздух ток просто так не проходит. Если совсем заумно, то есть такие штуки, как векторы напряженности электрического поля. Векторы напряженности поля проводника направлены вверх, а векторы напряженности эл. поля атмосферы направлены вниз. Они встречаются в верхней точке проводника и складываясь, компенсируют друг друга. Общий заряд системы нейтрален, однако на кончике проводника сконцентрирована наибольшая напряженность электрического поля.

    Электроны не могут покинуть верхнюю точку проводника сами по себе, у них недостаточно энергии для того, чтобы покинуть проводник. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт, но даже ее пока взять неоткуда. А если помочь электронам покинуть проводник? Тогда все заработает – электроны будут подниматься вверх, захватываться электрическим полем и по проводнику пойдет ток. Нужно только постоянно помогать им в этом процессе. Весь фокус в устройстве, которое бы освобождало электроны из проводника в атмосферу и делало это постоянно.

    Нам, получается, нужен трансформатор — проводник электронов в атмосферу. И такое чудо есть – катушки Тесла. Если избыточные электроны направлять в атмосферу при помощи коронных разрядов, или плазменной дуги или еще чего-то такого же плазменного, электроны будут покидать поверхность проводника и переходить в атмосферу по воздуху, еще как.

    p align=»center»>

    Совсем упрощенно – коронным разрядом на верхушке нашего столба мы соединим обкладки «кондесатора», плазменная дуга – тот самый проводник, которым можно соединить отрицательно заряженный металл заземленного проводника с положительно заряженной атмосферой…живой пример – молния, ударившая в громоотвод.

    Электростанции-столбы с генераторами тесла на верхушках, уходящие на сотни метров в высоту – выглядит футуристично, технократично и канонично! Мне эта картинка так нравится, что я не буду портить ее расчетами и формулами. Любопытные все найдут сами. И на всякий случай – первооткрывателем стать не получится, технологию недавно запатентовали.

    Ученые из Университета Массачусетса в Амхерсте разработали технологию, позволяющую вырабатывать электричество из атмосферной влаги с помощью природного белка. Это изобретение может сыграть значительную роль в развитии возобновляемой энергии, повлиять на процессы изменения климата и найти применение в медицине будущего.

    Устройство, названное создателями Air-gen («работающий от воздуха генератор»), содержит токопроводящие белковые нановолокна, которые производит микроорганизм геобактер. Взаимодействие электродов и белковых нанопроводов аналогично тому, как электрический ток вырабатывается из испарений воды, содержащихся в атмосфере.

    «Мы буквально создаем электричество из ничего, — объясняет изобретатель устройства Цзюнь Яо. — Air-gen вырабатывает чистую энергию в режиме 24/7. Это самый удивительный и вдохновляющий способ использования белковых наносетей из всех нам известных».

    Действительно, технология абсолютно экологически чистая, возобновляемая и очень малозатратная. Ее можно применять даже в регионах с экстремально сухим климатом, вплоть до пустыни Сахара. Главное преимущество Air-gen перед другими формами «зеленой» энергии состоит в том, что устройство не зависит от наличия солнца или ветра и может работать даже в помещении. Все, что нужно для его функционирования, – это тонкая пленка из белковых нановолокон толщиной менее 10 микронов.

    На первом этапе генератор Air-gen способен питать небольшие электронные устройстваПленка нанесена на один электрод, тогда как другой, маленький электрод расположен поверх материала. Белковая наносетка впитывает влагу из атмосферы, а сочетание ее химических свойств, электрической проводимости с порами между нанофрагментами создает условия для появления электрического тока между двумя электродами.

    По словам изобретателей, мощности Air-gen сейчас хватит только для питания мелкой электроники, но вскоре она станет пригодна для коммерческого запуска. Тогда «панели» Air-gen найдут применение и заменят собой батарейки в мелких портативных устройствах, от смарт-часов до медицинских мониторов. Вполне возможно, что благодаря ему можно будет отказаться от привычной подзарядки сотовых телефонов.

    «Конечная цель — создание крупномасштабных систем. Например, технология может быть включена в краску для стен, которая обеспечит энергией ваш дом. Или мы можем разработать портативные воздушные генераторы, которые производят электричество в местах без доступа к сети», — говорит Яо.

    В дополнение к Air-gen лаборатория Яо разработала несколько других приложений с белковыми нанопроводами. По словам ученых, их открытие знаменует начало новой эры электронных устройств на основе белка.

    Иванов А.Ю.

    Кандидат технических наук, доцент

    Статическое электричество и влажность воздуха.

    Природа статического электричества такова, что оно возникает в основном либо при трении веществ друг о друга, либо при попадании микрочастиц вещества в мощное электрическое поле, которое генерирует на их поверхности электрические заряды.

    Статическое электричество в промышленности и быту вызывает множество неудобств, приводит к ухудшению условий труда, снижению качества продукции и понижению производительности работы оборудования. Повышается пожароопасность, запылённость воздуха, так как статически заряженные частицы пыли плохо удаляются системой вентиляции. Статические заряды могут вызвать выход из строя элементов электронных устройств управления технологического оборудования. В полиграфии и текстильном производстве это слипание бумаги и пряжи, в покрасочном производстве и производстве изделий из пластмасс оседание пыли на поверхности, что приводит к понижению качества выпускаемой продукции, а в некоторых случаях и к неисправимому браку.

    Существует много различных устройств помогающих бороться со статическим электричеством, но, как правило, все они работают в некоторой локальной зоне, не обеспечивая полной победы над электростатикой.

    Однако существует способ эффективной борьбы с электростатикой – это повышение влажности воздуха в помещении. При относительной влажности воздуха более 70% электростатические процессы практически отсутствуют.

    Влажный воздух имеет достаточную электропроводность, чтобы образующиеся электрические заряды стекали через него. Поэтому во влажной воздушной среде электростатических зарядов практически не образуется, и увлажнение воздуха является одним из наиболее простых и распространенных методов борьбы со статическим электричеством. При этом резко снижается уровень пылеобразования от используемых материалов. Стабилизируются технологические процессы, растёт производительность работы оборудования, улучшаются условия труда.

    Для того чтобы обеспечить такой уровень влажности в промышленных помещениях используются системы увлажнения воздуха. Наиболее эффективными являются системы увлажнения, в которых воздух прогоняется через зону повышенной влажности. При этом происходит не только снятие статического электричества с частиц взвешенной пыли, но и набухание пыли с её последующим осаждением за счёт потери летучести (Мойка воздуха).

    Данный эффект наблюдается практически во всех помещения, где наша компания устанавливала системы увлажнения воздуха. Сначала появляется «туман», но это не водяной туман, а частица пыли, которые набухают и становятся видимыми. Через некоторое время пыль оседает, воздух очищается, пылеобразование уменьшается, электростатика пропадает.

    На рисунках показаны потолочные и настенные блоки увлажнения, применяемые для мойки воздуха и создания в помещениях оптимального климата.

    Американские учёные научились добывать электричество из влаги в воздухе

    Как говорил Артур Кларк, любая достаточно развитая технология неотличима от магии. Американские учёные наглядно доказали этот постулат. Довольно простая с виду установка смогла добыть электричество буквально из воздуха.

    Художественное представление разработки (UMass Amherst)

    Группа исследователей из Массачусетского технологического университета в Амхерсте (не путать с MIT) опубликовала в журнале Nature статью, в которой сообщила об интересном изобретении. Созданное учёными небольшое устройство со сторонами 1×2 см смогло добывать электрический ток из окружающей влажности в воздухе. Устройство генерировало ток часами и восстанавливалось для дальнейшей работы после небольшого перерыва.

    Генерирующий электричество элемент представляет собой тонкую плёнку толщиной 7 мкм. Но это необычная плёнка. Плёнка состоит из белковых нитей нанометровой толщины. Эти нити производятся в процессе жизнедеятельности бактерий Geobacter sulfurreducens. Это интересные бактерии. Они вырабатывают реагенты, которые позволяют восстанавливать металлы.

    В 7-мкм плёнке довольно много слоёв белковых нитей. Естественно, вся толща плёнки пористая и способна абсорбировать влагу из окружающего воздуха. При этом нижний электрод занимает всю площадь под генерирующим элементом, в верхний закрывает только небольшой участок на поверхности плёнки.

    Благодаря абсорбции влаги из воздуха в толще плёнки возникает перепад влажности ― создаётся градиент по направлению к нижнему электроду. Из-за молекул воды на поверхности белковых нитей начинают происходить процессы ионизации, что, в свою очередь, приводит к появлению в плёнке подвижных протонов ― носителей заряда. Поскольку влажность плёнки (её градиент) изменяется от одного электрода к другому, возникает также градиент носителей заряда (протонов) и, как следствие, при замыкании электродов или в случае подключения нагрузки в системе начинает течь электрический ток.

    Иллюстрация из статьи в Nature

    Эксперимент показал, что без нагрузки генератор выдаёт 0,5 В. Достигнутая плотность тока составила 17 мкА на см2. Соединив последовательно 17 таких генераторов и в качестве баланса подключив к нему конденсатор, учёные смогли запитать небольшой экран. В таком состоянии цепь вырабатывала электричество 20 часов, за которые напряжение упало на 30 %. После перерыва в 5 часов напряжение на контактах снова было на уровне первоначального значения.

    Исследователи считают, что данное изобретение может привести к появлению источников питания для носимой электроники или нательных медицинских приборов. Влажный воздух есть везде, даже в пустыне Сахара. А ничего другого для работы предложенного генератора больше не нужно.

    Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

    35 Обеспечение электрической энергией, газом и паром; кондиционирование воздуха / КонсультантПлюс

    35

    Обеспечение электрической энергией, газом и паром; кондиционирование воздуха

    35.1

    Производство, передача и распределение электроэнергии

    Эта группировка включает:

    — производство и передачу электроэнергии от генерирующих объектов к центрам распределения, а также распределение электроэнергии до потребителя

    35.11

    Производство электроэнергии

    Эта группировка включает:

    — производство электрической энергии на всех видах электростанций (тепловых, атомных, гидроэлектростанциях, блок-станциях и электростанциях, работающих на возобновляемых источниках энергии)

    Эта группировка не включает:

    — производство электрической энергии через сжигание отходов, см. 38.21

    35.11.1

    Производство электроэнергии тепловыми электростанциями, в том числе деятельность по обеспечению работоспособности электростанций

    35.11.2

    Производство электроэнергии гидроэлектростанциями, в том числе деятельность по обеспечению работоспособности электростанций

    35.11.3

    Производство электроэнергии атомными электростанциями, в том числе деятельность по обеспечению работоспособности электростанций

    35.11.4

    Производство электроэнергии, получаемой из возобновляемых источников энергии, включая выработанную солнечными, ветровыми, геотермальными электростанциями, в том числе деятельность по обеспечению их работоспособности

    35.12

    Передача электроэнергии и технологическое присоединение к распределительным электросетям

    Эта группировка включает:

    — передачу электроэнергии от генерирующих объектов к распределительным системам путем обеспечения работоспособности (эксплуатации) объектов электросетевого хозяйства

    Эта группировка также включает:

    — процедуру технологического присоединения энергопринимающих устройств (энергетических установок) юридических и физических лиц (энергопринимающих устройств) к электрическим сетям сетевой организации

    35.12.1

    Передача электроэнергии

    35.12.2

    Технологическое присоединение к распределительным электросетям

    35.13

    Распределение электроэнергии

    Эта группировка включает:

    — обеспечение работы распределяющей системы (т.е. системы, состоящей из линий, столбов, счетчиков и электропроводов), которая передает электроэнергию, полученную от генерирующего сооружения или системы передачи электроэнергии конечному потребителю

    35.14

    Торговля электроэнергией

    Эта группировка включает:

    — продажу электроэнергии пользователю;

    — контроль над подачей электроэнергии и пропускной способностью

    35.2

    Производство и распределение газообразного топлива

    Эта группировка включает:

    — производство газа и распределение природного или синтетического газов потребителю по газораспределительным сетям

    Эта группировка также включает:

    — деятельность участников рынка или брокеров, которые организуют продажу природного газа по распределительным системам, которыми управляют третьи лица

    Эта группировка не включает:

    — деятельность по организации работы газопроводов, соединяющих производителей с газораспределительными предприятиями, либо городские центры между собой, вместе с прочей деятельностью транспортировки по трубопроводам, см. 49.50

    35.21

    Производство газа

    Эта группировка включает:

    — выработку газа для поставки, получаемого посредством карбонизации угля, от побочных продуктов сельского хозяйства или от иных отходов;

    — производство газообразного топлива с определенной удельной теплотой сгорания путем очистки и смешивания газов различного типа, включая природный газ

    Эта группировка не включает:

    — добычу природного газа, см. 06.20;

    — работу коксовых печей, см. 19.10;

    — производство очищенных нефтепродуктов, см. 19.20;

    — производство промышленных газов, см. 20.11

    35.21.1

    Газификация угля

    35.21.11

    Газификация антрацита

    35.21.12

    Газификация каменного угля за исключением антрацита

    35.21.13

    Газификация бурого угля (лигнита)

    35.21.2

    Сжижение углей

    35.21.21

    Сжижение антрацита

    35.21.22

    Сжижение каменного угля за исключением антрацита

    35.21.23

    Сжижение бурого угля (лигнита)

    35.22

    Распределение газообразного топлива по газораспределительным сетям

    Эта группировка включает:

    — распределение газообразного топлива всех видов по газораспределительным сетям

    Эта группировка не включает:

    — транспортировку газа (на дальние расстояния) по трубопроводам, см. 49.50

    35.22.1

    Распределение природного, сухого (отбензиненного) газа по газораспределительным сетям

    35.22.11

    Распределение природного, сухого (отбензиненного) газа по газораспределительным сетям по тарифам, регулируемым государством

    35.22.12

    Распределение природного, сухого (отбензиненного) газа по газораспределительным сетям по тарифам, не регулируемым государством

    35.22.2

    Распределение сжиженных углеводородных газов по газораспределительным сетям

    35.22.21

    Распределение сжиженных углеводородных газов по газораспределительным сетям по тарифам, регулируемым государством

    35.22.22

    Распределение сжиженных углеводородных газов по газораспределительным сетям по тарифам, не регулируемым государством

    35.23

    Торговля газообразным топливом, подаваемым по распределительным сетям

    Эта группировка включает:

    — продажу газа пользователю по газораспределительным сетям;

    — деятельность брокеров или агентов газового рынка, которые организуют продажу природного газа по распределительным системам, которыми управляют третьи лица;

    — товарный и транспортный обмен на газообразные виды топлива

    Эта группировка не включает:

    — оптовую торговлю газообразным топливом, см. 46.71;

    — розничную торговлю газом в баллонах, см. 47.78;

    — прямую продажу топлива, см. 47.99

    35.23.1

    Торговля природным, сухим (отбензиненным) газом, подаваемым по распределительным сетям

    35.23.11

    Торговля природным, сухим (отбензиненным) газом, подаваемым по распределительным сетям по регулируемым государством ценам (тарифам)

    35.23.12

    Торговля природным, сухим (отбензиненным) газом, подаваемым по распределительным сетям по не регулируемым государством ценам (тарифам)

    35.23.2

    Торговля сжиженными углеводородными газами, подаваемыми по распределительным сетям

    35.23.21

    Торговля сжиженными углеводородными газами, подаваемыми по распределительным сетям по регулируемым государством ценам (тарифам)

    35.23.22

    Торговля сжиженными углеводородными газами, подаваемыми по распределительным сетям по не регулируемым государством ценам (тарифам)

    35.3

    Производство, передача и распределение пара и горячей воды; кондиционирование воздуха

    35.30

    Производство, передача и распределение пара и горячей воды; кондиционирование воздуха

    Эта группировка включает:

    — производство, передачу и распределение пара и горячей воды для теплоснабжения, мощности и прочих целей, в том числе тепловыми, атомными и прочими электростанциями и промышленными блок-станциями, а также котельными;

    — производство и распределение охлажденного воздуха;

    — производство и распределение охлажденной воды для целей охлаждения;

    — производство льда в пищевых и непищевых целях (например, в целях охлаждения)

    35.30.1

    Производство пара и горячей воды (тепловой энергии)

    35.30.11

    Производство пара и горячей воды (тепловой энергии) тепловыми электростанциями

    35.30.12

    Производство пара и горячей воды (тепловой энергии) атомными электростанциями

    35.30.13

    Производство пара и горячей воды (тепловой энергии) прочими электростанциями и промышленными блок-станциями

    35.30.14

    Производство пара и горячей воды (тепловой энергии) котельными

    35.30.15

    Производство охлажденной воды или льда (натурального из воды) для целей охлаждения

    35.30.2

    Передача пара и горячей воды (тепловой энергии)

    35.30.3

    Распределение пара и горячей воды (тепловой энергии)

    35.30.4

    Обеспечение работоспособности котельных

    35.30.5

    Обеспечение работоспособности тепловых сетей

    35.30.6

    Торговля паром и горячей водой (тепловой энергией)

    Устройство Air-gen вырабатывает электричество из влаги воздуха

    В развитие, которое могло обеспечить постоянный поток экологически чистой электроэнергии, ученые разработали Air-gen, устройство, которое использует натуральный белок для создания электричества из влаги воздуха.

    Графическое изображение тонкой пленки белковых нанопроволок, генерирующих электричество из атмосферной влажности (Изображение: UMass Amherst)

    Лаборатории инженера-электрика Джун Яо и микробиолога Дерека Ловли из Массачусетского университета в Амхерсте (UMass Amherst) создали Air-gen с электропроводящей белковые нанопроволоки, производимые микробом Geobacter.Air-gen соединяет электроды с белковыми нанопроводами таким образом, что электрический ток генерируется из водяного пара, естественным образом присутствующего в атмосфере. Результаты опубликованы в Nature ,

    .

    «Мы буквально производим электричество из воздуха», — сказал Яо. «Air-gen производит чистую энергию 24 часа в сутки, 7 дней в неделю».

    Новая технология, разработанная в лаборатории Яо, считается экологически чистой, возобновляемой, недорогой и может генерировать электроэнергию в областях с чрезвычайно низкой влажностью.

    По словам исследователей, для устройства Air-gen требуется тонкая пленка из белковых нанопроволок толщиной менее 10 микрон. Нижняя часть пленки опирается на электрод, в то время как электрод меньшего размера, который покрывает только часть пленки нанопроволоки, находится сверху. Пленка адсорбирует водяной пар из атмосферы. Комбинация электропроводности и химического состава поверхности белковых нанопроволок в сочетании с тонкими порами между нанопроводами внутри пленки создает условия, при которых возникает электрический ток между двумя электродами.

    Устройство выдает устойчивое напряжение около 0,5 вольт на пленке толщиной 7 микрометров с плотностью тока около 17 микроампер на квадратный сантиметр.

    Исследователи заявили, что нынешнее поколение устройств Air-gen может приводить в действие небольшую электронику, и они планируют вскоре довести изобретение до коммерческого масштаба. Следующие шаги, которые они планируют, включают разработку небольшого «патча» Air-gen, который может питать электронные носимые устройства, такие как мониторы для здоровья и фитнеса, а также умные часы, что устранит необходимость в традиционных батареях.Они также надеются разработать Air-gens для сотовых телефонов, чтобы исключить периодическую зарядку.

    «Конечной целью является создание крупномасштабных систем», — сказал Яо. «Например, технология может быть включена в краску для стен, которая может помочь вашему дому обеспечить электроэнергию. Или мы можем разработать автономные воздушные генераторы, которые поставляют электроэнергию из сети. Как только мы перейдем к промышленному производству проволоки, я полностью ожидаю, что мы сможем создавать большие системы, которые внесут значительный вклад в устойчивое производство энергии.”

    Новое изобретение генерирует электричество «из разреженного воздуха» — предлагает экологически чистую энергию 24/7

    (Щелкните изображение, чтобы просмотреть его полностью.) Графическое изображение тонкой пленки белковых нанопроволок, вырабатывающих электричество из атмосферной влажности. Исследователи из Университета Массачусетса в Амхерсте говорят, что это устройство может буквально производить электричество из воздуха. Предоставлено: UMass Amherst / Yao and Lovley labs

    .

    Возобновляемое устройство может помочь смягчить последствия изменения климата, привести в действие медицинские устройства.

    Ученые из Массачусетского университета в Амхерсте разработали устройство, которое использует натуральный белок для создания электричества из влаги в воздухе, новая технология, которая, по их словам, может иметь серьезные последствия для будущего возобновляемой энергии, изменения климата и будущего медицины. .

    Как сообщалось сегодня в Nature , лаборатории инженера-электрика Джун Яо и микробиолога Дерека Ловли из Университета Массачусетса в Амхерсте создали устройство, которое они назвали «Генератором воздуха», или генератором с воздушным приводом, с электропроводящими белковыми нанопроводами, произведенными микроб Geobacter. Air-gen соединяет электроды с белковыми нанопроводами таким образом, что электрический ток генерируется из водяного пара, естественным образом присутствующего в атмосфере.

    «Мы буквально производим электричество из воздуха», — говорит Яо.«Air-gen производит чистую энергию 24 часа в сутки, 7 дней в неделю». Лавли, который разрабатывает экологически безопасные электронные материалы на основе биологии более трех десятилетий, добавляет: «Это самое удивительное и захватывающее применение белковых нанопроволок».

    «Мы буквально производим электричество из воздуха. Air-gen производит чистую энергию 24 часа в сутки, 7 дней в неделю ». — Цзюнь Яо

    Новая технология, разработанная в лаборатории Яо, не загрязняет окружающую среду, является возобновляемой и недорогой. Он может генерировать электроэнергию даже в районах с очень низкой влажностью, таких как пустыня Сахара.По словам Ловли, он имеет значительные преимущества перед другими формами возобновляемой энергии, включая солнечную и ветровую, потому что, в отличие от других возобновляемых источников энергии, Air-gen не требует солнечного света или ветра и «работает даже в помещении».

    Для устройства Air-gen требуется только тонкая пленка из белковых нанопроволок толщиной менее 10 микрон, объясняют исследователи. Нижняя часть пленки опирается на электрод, в то время как электрод меньшего размера, который покрывает только часть пленки нанопроволоки, находится сверху. Пленка адсорбирует водяной пар из атмосферы.Комбинация электропроводности и химического состава поверхности белковых нанопроволок в сочетании с тонкими порами между нанопроводами внутри пленки создает условия, при которых возникает электрический ток между двумя электродами.

    Исследователи говорят, что нынешнее поколение устройств Air-gen может приводить в действие небольшую электронику, и они планируют вскоре довести изобретение до коммерческого масштаба. Следующие шаги, которые они планируют, включают разработку небольшого «патча» Air-gen, который может питать электронные носимые устройства, такие как мониторы для здоровья и фитнеса, а также умные часы, что устранит необходимость в традиционных батареях.Они также надеются разработать Air-gens для сотовых телефонов, чтобы исключить периодическую зарядку.

    «Это только начало новой эры электронных устройств на основе белков» — Цзюнь Яо

    Яо говорит: «Конечная цель — создание крупномасштабных систем. Например, эта технология может быть включена в краску для стен, которая может помочь вашему дому обеспечить электроэнергию. Или мы можем разработать автономные воздушные генераторы, которые поставляют электроэнергию из сети. Как только мы перейдем к промышленному производству проволоки, я полностью ожидаю, что мы сможем создавать большие системы, которые внесут значительный вклад в устойчивое производство энергии.”

    Продолжая развивать практические биологические возможности Geobacter, лаборатория Ловли недавно разработала новый штамм микробов для более быстрого и недорогого массового производства белковых нанопроволок. «Мы превратили E. coli в фабрику по производству белковых нанопроволок», — говорит он. «Благодаря этому новому масштабируемому процессу поставка белковых нанопроволок больше не будет узким местом для разработки этих приложений».

    По их словам, открытие Air-gen отражает необычное междисциплинарное сотрудничество. Ловли обнаружил микроб Geobacter в иле реки Потомак более 30 лет назад.Позже его лаборатория обнаружила его способность производить электропроводящие белковые нанопроволоки. До прихода в Университет Массачусетса в Амхерсте Яо годами проработал в Гарвардском университете, где он разрабатывал электронные устройства с кремниевыми нанопроводами. Они объединили свои усилия, чтобы посмотреть, можно ли создать полезные электронные устройства из белковых нанопроволок, собранных с Geobacter.

    Лю Сяомэн, доктор философии. Студент в лаборатории Яо, занимался разработкой сенсорных устройств, когда заметил что-то неожиданное. Он вспоминает: «Я видел, что, когда нанопроволоки контактировали с электродами определенным образом, устройства генерировали ток.Я обнаружил, что воздействие атмосферной влажности имеет важное значение и что белковые нанопроволоки адсорбируют воду, создавая градиент напряжения на устройстве ».

    Помимо Air-gen, лаборатория Яо разработала несколько других приложений с белковыми нанопроводами. «Это только начало новой эры электронных устройств на основе белков», — сказал Яо.

    Ссылка: «Производство энергии из окружающей влажности с использованием белковых нанопроволок» Сяомэн Лю, Хунъян Гао, Джой Э. Уорд, Сяожун Лю, Бин Инь, Тианда Фу, Цзяньхан Чен, Дерек Р.Ловли и Цзюнь Яо, 17 февраля 2020 г., Nature .
    DOI: 10.1038 / s41586-020-2010-9

    Исследование было частично поддержано посевным фондом через Управление коммерциализации технологий и венчурного капитала Университета Массачусетса Амхерст и фондами развития исследований Колледжа естественных наук университетского городка.

    Это новое устройство может вырабатывать электричество «из разреженного воздуха»

    Для выработки электроэнергии требуются крупные электростанции, которые, как правило, не возобновляются и имеют высокий уровень выбросов углерода.Но ученые из Массачусетского университета в Амхерсте разработали такое экологически чистое устройство, которое генерирует электричество «из воздуха».

    В частности, устройство генератора воздуха способно преобразовывать влагу в воздухе в электричество. Air-gen использует электропроводящие нанопровода, сделанные из белка особого микроба, известного как Geobacter. Проволока укладывается на поверхность электрода в виде тонких пленок толщиной около 10 микрон / микрометр. Пленка частично закрывается сверху другим электродом меньшего размера.

    Пленки белковых нанопроволок поглощают водяной пар из атмосферы. В результате химического взаимодействия воды с белком между двумя электродами возникает электрический ток. Электроэнергия, вырабатываемая пленками, поддерживается — постоянный источник питания. Исследователи объясняют, что это происходит из-за самоподдерживающегося градиента влажности пленки, которая продолжает поглощать водяной пар в воздухе.

    СМОТРИ ТАКЖЕ: Новая литиевая батарея может обеспечить заряд телефона в течение 5 дней

    Генераторы воздуха способны производить постоянное напряжение около 0.5 вольт. Несколько устройств могут использоваться вместе для увеличения напряжения и тока силовой электроники. В то время как нынешние устройства генерации воздуха могут питать небольшую электронику, исследователи продолжат разработку технологии для коммерческого использования. Они планируют использовать эту технологию для питания носимых устройств, таких как умные часы и, в конечном итоге, смартфоны.

    Эта технология устранит необходимость периодически заряжать электронику, как объясняют исследователи в своей статье: «Наши результаты демонстрируют осуществимость стратегии непрерывного сбора энергии, которая менее ограничена местоположением или условиями окружающей среды, чем другие устойчивые подходы.”

    Чтобы сделать технологию коммерчески жизнеспособной, исследователи даже разработали метод крупномасштабного производства белковых нанопроволок. Цзюнь Яо объясняет, что они превратили штамм микробов «E. coli в фабрику по производству белковых нанопроволок ».

    СМОТРИ ТАКЖЕ: Этот «обратный топливный элемент» может превращать углерод в полезное топливо

    Изображение предоставлено: Университет Амхерста / лаборатории Яо и Ловли / Студия Эллы Мару

    Электроэнергия может передаваться по воздуху

    B EHIND NIKOLA TESLA’S Бывшая лаборатория в Ворденклиффе на Лонг-Айленде, штат Нью-Йорк, является старым фундаментом.Это все, что осталось от 57-метровой башни, которую Тесла начал строить в 1901 году в рамках эксперимента по беспроводной передаче информации и электричества на большие расстояния. Это наполовину сработало. Как он и предсказывал, беспроводная связь изменила мир. Но ему не удалось заставить электричество путешествовать очень далеко. Как следствие, в течение пяти лет работы прекратились, а башня была позже списана, чтобы помочь ему выплатить долги. Тесла — пионер, который, среди прочего, разработал генерацию и передачу переменного тока, — исчез в относительной безвестности.

    Послушайте эту историю

    Ваш браузер не поддерживает элемент

    Больше аудио и подкастов на iOS или Android.

    И так оставалось до тех пор, пока имя Tesla не было возрождено Илоном Маском в качестве бренда для своей компании по производству электромобилей. Теперь видение Теслы о беспроводной передаче энергии, похоже, тоже возвращается. Фирма Emrod из Окленда в сотрудничестве с Powerco, дистрибьютором электроэнергии в Новой Зеландии, разработала прототип системы для использования в закрытом испытательном центре.Затем, в рамках отдельного проекта, планируется передать энергию от солнечной фермы на Северном острове клиенту в нескольких километрах.

    Цель состоит в том, чтобы передавать мощность в виде узкого луча микроволн. Это устранит два фундаментальных недостатка в плане Теслы. Один из них заключался в том, как взимать с людей плату за электричество, которое они могут просто черпать из воздуха. Другой — необходимость преодолеть закон распространения излучения, согласно которому сила сигнала обратно пропорциональна квадрату расстояния, которое он прошел от передатчика.В результате мощность сигнала резко падает даже на коротких расстояниях. Передача мощности узким лучом вместо излучения во всех направлениях помогает свести к минимуму проблему.

    Энергетическое излучение, как известен процесс Эмрода, было опробовано и раньше, но в основном для военных приложений или для использования в космическом пространстве. В 1975 году NASA , американское космическое агентство, использовало микроволны, чтобы послать 34k W электроэнергии на расстояние 1,6 км — рекорд, который все еще сохраняется. Однако он никогда не разрабатывался для коммерческого использования.

    Операция Эмрода начнется осторожно. Он начнется с передачи того, что Грег Кушнир, основатель фирмы, описывает как «несколько киловатт» на расстояние 1,8 км. Затем он будет постепенно увеличивать мощность и расстояние. Важнейшей переменной является эффективность, с которой это можно сделать. По словам Кушнира, сейчас это около 60%. Этого, как он считает, уже достаточно, чтобы сделать передачу энергии коммерчески жизнеспособной в некоторых обстоятельствах, например, в удаленных районах, не тратя деньги на дорогостоящие линии электропередач.Но, чтобы улучшить положение, у Эмрода есть еще две уловки в рукаве. Один из них — использовать реле. Другой — приправить приемники так называемыми метаматериалами.

    Реле, которые являются пассивными устройствами, не потребляющими никакой энергии, работают как линзы, перефокусируя микроволновый луч и отправляя его по своему пути с минимальными потерями при передаче. Они также могут направить его, если необходимо, в новом направлении. Это означает, что передатчик и приемник не обязательно должны находиться в зоне прямой видимости друг друга.

    Метаматериалы — это композиты, содержащие крошечные количества проводящих металлов и изолирующие пластмассы, расположенные таким образом, что они определенным образом взаимодействуют с электромагнитным излучением, таким как микроволны. Они уже используются в так называемых маскирующих устройствах, которые помогают военным кораблям и военным самолетам укрываться от радаров. Но их также можно использовать в приемной антенне для более эффективного преобразования электромагнитных волн в электричество.

    Распространение мощных микроволн по воздуху сопряжено с риском.В конце концов, подобные волны — это средства, с помощью которых микроволновые печи нагревают то, что в них помещено. Эмрод говорит, что кратковременное воздействие его лучей не должно причинить вреда людям или животным, так как плотность мощности относительно низкая. Тем не менее, чтобы избежать несчастных случаев, лучи будут окружены так называемыми лазерными завесами. Это маломощные лазерные лучи, которые сами по себе не вредны. Но если занавес сдвигается из-за вмешательства таких вещей, как птицы или низколетящие вертолеты (которые в Новой Зеландии используются для задержания овец), это прерывание будет немедленно обнаружено, и микроволновая передача временно отключится.Батареи на принимающей стороне будут заряжаться во время любых отключений.

    Если технология Power-Beaming действительно получит успех, у Emrod не будет этой области, поскольку ряд других фирм работают над этой идеей. TransferFi, базирующаяся в Сингапуре, разрабатывает систему, которая формирует лучи радиоволн, которые обычно имеют более низкую частоту, чем микроволны, для передачи мощности конкретным приемным устройствам. Это краткосрочная идея, разработанная для питания гаджетов на фабриках и в домах.

    Американская компания PowerLight Technologies работает с вооруженными силами этой страны над использованием лазеров для передачи энергии на удаленные базы, а также для питания беспилотных летательных аппаратов в воздухе.Компания также уделяет внимание коммерческим приложениям. Так же поступает и японская инжиниринговая фирма Mitsubishi Heavy Industries. В частности, у Mitsubishi большие амбиции. Помимо промышленного применения на Земле, он изучает возможности использования этой технологии для передачи энергии на землю с геостационарных спутников, оснащенных солнечными панелями. Для этого потребуется передать его на расстояние более 35 000 км. Это не столько «поднять меня, Скотти», сколько «поднять». ■

    Примечание редактора (23 февраля 2020 г.): В эту статью были внесены поправки, чтобы прояснить, что Эмрод реализует два отдельных проекта.

    Эта статья появилась в разделе «Наука и технологии» печатного издания под заголовком «Смотри, никаких проводов!»

    Исследователи из Университета Массачусетса разработали устройство, вырабатывающее электричество из влажности

    AMHERST — Исследователи называют непреднамеренным открытием, что команда Массачусетского университета разработала новую технологию, способную генерировать электричество из влаги в воздухе.

    Устройство, названное Air-gen, представляет собой «совершенно новый тип устойчивого производства электроэнергии, который имеет преимущества по сравнению с ранее существовавшими устойчивыми технологиями», — сказал Дерек Ловли, профессор и микробиолог из Университета Массачусетса.

    «Нам не нужен солнечный свет, как солнечный, нам не нужен ветер», — сказал Ловли. «Вы можете просто поставить это устройство на стол, и оно будет производить электричество 24 часа в сутки, 7 дней в неделю».

    Вместо использования энергии солнца или ветра тонкопленочное устройство работает за счет генерации электрического тока из водяного пара в воздухе, что достигается путем соединения электродов с проводящими белковыми нанопроводами. Команда создает нанопроволоки с помощью микроба под названием Geobacter, который Ловли обнаружил в грязи реки Потомак более 30 лет назад.

    Air-gen способен работать даже в таких засушливых условиях, как пустыня Сахара, по словам исследователей, и может производиться с «очень низкими затратами энергии», — сказал Ловли.

    Эта технология является результатом сотрудничества лабораторий Ловли, профессора Университета Массачусетса и инженера-электрика Цзюнь Яо. По словам Ловли, она была вызвана «неожиданным, замечательным открытием» Сяомэна Лю, докторанта лаборатории Яо.

    Около двух лет назад, по словам Лю, он сначала использовал нанопроволоки для создания сенсорного устройства, когда заметил, что при определенных конфигурациях электродов нанопроволоки способны генерировать электрический ток из-за влажности.Для Лю эта технология также примечательна своей способностью генерировать электроэнергию в условиях, ограничивающих другие источники зеленой энергии.

    «Солнечная энергия требует солнечного света, ветровая энергия требует ветра», — сказал Лю. «Но влага присутствует в окружающей среде повсюду, поэтому это означает, что наше устройство может работать везде и ночью».

    На данный момент Air-gen используется только для питания устройств, включая небольшие ЖК-экраны или светодиодные экраны. Но тонкопленочная технология может соединяться вместе для создания более высокого напряжения, и исследователи предполагают, что устройство в конечном итоге станет коммерчески доступным и сможет питать более крупную электронику, такую ​​как мобильные телефоны или медицинские устройства, и, возможно, в какой-то момент даже домашние хозяйства.

    Основным препятствием для питания более крупных устройств была сложность производства больших количеств белковых нанопроволок, сказал Ловли. Но в течение последнего месяца команда обнаружила прогресс, который может создавать большие количества нанопроволок гораздо более быстрыми темпами, что, как оптимистично полагает Ловли, может стимулировать более быстрое развитие.

    Устройство не является первым типом технологии, которая генерирует энергию из влаги, объясняют исследователи в статье, опубликованной в понедельник в научном журнале Nature, но предыдущие устройства могли генерировать энергию только спорадическими импульсами длительностью менее 50 секунд.

    Жаклин Фогель можно связаться по адресу [email protected].

    «Мы буквально производим электричество из воздуха»; UMass разрабатывает революционную технологию, которая изменит способ питания электроники

    Вскоре необходимость замены батарей или тратить время на подзарядку телефона может уйти в прошлое. Ученые из Амхерста разрабатывают новую технологию, которая будет использовать влагу из воздуха для создания заряда.

    Устройство все еще находится на начальной стадии и было обнародовано только в понедельник на веб-сайте UMass.Он использует натуральный белок для производства электричества из влаги в воздухе и может иметь серьезные последствия для будущего возобновляемой энергии, изменения климата и будущего медицины.

    Проще говоря; «Мы буквально производим электричество из воздуха», — сказал в лаборатории инженер-электрик Цзюнь Яо. «Air-gen производит чистую энергию 24 часа в сутки, 7 дней в неделю».

    Яо и микробиолог Дерек Ловли создали устройство, которое они называют генератором воздуха, или генератором с пневматическим приводом, с электропроводящими белковыми нанопроволочками, производимыми микробом Geobacter.Air-gen соединяет электроды с белковыми нанопроводами таким образом, что электрический ток генерируется из водяного пара, естественным образом присутствующего в атмосфере.

    Нынешнее устройство Air-gen может питать небольшие устройства. Фотографии любезно предоставлены: UMass Amherst / Yao and Lovley labs.

    Geobacter оказался первым организмом, способным окислять органические соединения и металлы, включая железо, радиоактивные металлы и нефтяные соединения, до экологически безвредного диоксида углерода, используя оксид железа или другие доступные металлы в качестве акцепторов электронов.

    Лавли был одним из ученых, стоявших за исследованием, и человеком, который первым изолировал Geobacter.

    «Происходит то, что пленка из нанопроволок поглощает влагу из воздуха и создает градиент не только влаги в пленке, но и [электрического] заряда», — сказал Ловли в интервью Vice. «Кажется, что поверхность пленки, вода, которую она поглощает, также высвобождает заряд молекулы воды. Таким образом, у вас может быть непрерывное производство электроэнергии ».

    Лавли сказал MassLive, что он и Яо работали над этим последние 2 года и что это было случайным открытием.В то время они разрабатывали сенсоры.

    «Я видел, что, когда нанопроволоки контактировали с электродами определенным образом, устройства генерировали ток», — сказал Сяомэн Лю, доктор философии. студент в лаборатории Яо. «Я обнаружил, что воздействие атмосферной влажности имеет важное значение и что белковые нанопроволоки адсорбируют воду, создавая градиент напряжения на устройстве».

    По словам Лавли, он и Яо сейчас рассматривают возможность создания электронных носимых устройств, таких как мониторы для здоровья и фитнеса, а также умные часы, которые устранят необходимость в традиционных батареях.

    «Конечная цель — создание крупномасштабных систем. Например, технология может быть включена в краску для стен, которая может помочь в обеспечении электропитания вашего дома », — сказал Яо в ​​своем заявлении. «Как только мы перейдем к промышленному производству проволоки, я полностью ожидаю, что мы сможем создавать большие системы, которые внесут значительный вклад в устойчивое производство энергии».

    Обеспечение финансирования технологии — единственное препятствие в настоящее время. Лавли сказал, что интерес был «непреодолимым», но не смог сообщить подробностей.

    Новое устройство генерирует электричество из воздуха

    Что, если бы вы могли производить электричество из воздуха? Это звучит слишком хорошо, чтобы быть правдой? Ученые из Массачусетского университета в Амхерсте разработали именно такое устройство и назвали его «Генератор воздуха», говорится в пресс-релизе Массачусетского университета в Амхерсте.

    Генератор воздуха — изобретение инженера-электрика Джун Яо и микробиолога Дерека Ловли. «Мы буквально производим электричество из воздуха», — сказал Яо.«Air-gen производит чистую энергию 24 часа в сутки, 7 дней в неделю».

    Новое устройство использует натуральный белок для создания электричества из влаги в воздухе, поскольку влага фактически содержит определенное количество электрического заряда. Эта технология является возобновляемой, экологически чистой и недорогой. Кроме того, он может вырабатывать электричество даже в регионах с очень низкой влажностью, таких как пустыня Сахара.

    В отличие от других форм возобновляемой энергии, таких как ветер и солнце, эта новая технология не требует солнечного света или ветра.Все, что ему нужно, это тонкая пленка из белковых нанопроволок толщиной менее 10 микрон, и он работает даже в помещении. По словам Ловли, это «самое удивительное и захватывающее применение белковых нанопроволок».

    а как работает?

    Нижняя часть пленки поддерживается электродом, а верхняя — меньшим электродом, который покрывает только часть пленки из нанопроволоки. Водяной пар из окружающей среды поглощается пленкой, а электрическая проводимость и химический состав поверхности белковых нанопроволок, а также крошечные поры между нанопроводами внутри пленки создают условия для прохождения электрического тока между двумя электродами.Вот как он может генерировать чистую энергию 24 часа в сутки, 7 дней в неделю.

    При плотности тока около 17 микроампер на квадратный сантиметр устройство генерирует постоянное напряжение около 0,5 вольт на пленке толщиной 7 микрометров. Этого достаточно, чтобы нынешние устройства Air-gen уже питали небольшую электронику. Теперь исследователи стремятся довести свои инновации до коммерческих масштабов.

    «Конечной целью является создание крупномасштабных систем. Например, эта технология может быть включена в краску для стен, которая может помочь в обеспечении электропитания вашего дома.Или мы можем разработать автономные генераторы с воздушным приводом, которые поставляют электроэнергию от сети », — сказал Яо.

    Когда они достигнут промышленного масштаба производства проводов, исследователи полагают, что они могут создавать большие системы, которые внесут значительный вклад в устойчивое развитие. производство энергии. Яо добавляет, что текущие приложения — это «только начало новой эры электронных устройств на основе белков». Мы можем только представить, что нас ждет в будущем.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *