Дешевое электричество своими руками: системы отопления и водоснабжения для частного дома и квартиры
Халявное электричество своими руками схема
Бесплатное электричество
К настоящему времени рентабельность ферм для майнинга криптовалют сильно понизилась. Это произошло за счет падения рыночной стоимости самих виртуальных активов, из-за подорожания оборудования и электроэнергии. Если раньше затраты на питание фермы составляли около 30% от прибыли, то теперь показатели доходят до 50% и даже 70%, что делает добычу крайне низкопрофитной. Неудивительно, что владельцы ферм начинают искать способы, позволяющие получать бесплатное электричество своими руками. Идея эта не такая уж фантастичная, как может показаться на первый взгляд, но ее реализация потребует серьезной подготовки.
Добыча бесплатного электричество
За рубежом майнеры предпочитают решать проблему не столь радикально. Они просто перебираются туда, где энергия стоит дешевле. Если верить статистике, то ранее самую низкую оплату за потребленное электричество взимал Китай, но после введения запрета на криптовалюту майнинг-фермерам пришлось передислоцироваться в Европу. Дешевое электричество есть в Исландии, то тут существуют проблемы с интернетом. В России же можно поискать регионы с дешевой энергией для начала бизнеса по добыче криптовалюты. Например, если вы установите ферму в Иркутске, то сможете тратить на оплату электричества всего 10% от заработка. Но цифра является приблизительной, если вы используете новейшее оборудование с высокой мощностью, то и энергопотребление у него на порядок выше.
- Значит, выход только один — научиться добывать бесплатное электричество дома.
- Получить энергию для фермы безвозмездно в домашних условиях возможно с помощью альтернативных источников.
- Они уже широко эксплуатируются во всем цивилизованном мире, это солнечные батареи, ветро и водогенераторы.
- Но следует иметь в виду, что собрать такие установки своими руками можно только при наличии минимальных инженерных знаний, да еще придется потратиться на детали и расходные материалы.
Еще можно добыть бесплатную энергию от магнитов, из земли, но ее будет недостаточно для питания мощной майнинг-фермы.
Как сделать бесплатное электричество
Следовательно, стоит рассмотреть способы, как сделать бесплатное электричество в достаточном количестве, чтобы его хватило для бесперебойного питания майнинг-фермы. Впрочем, можно оставить эту затею и арендовать чужие мощности через сайты облачного майнинга, а криптовалюту добывать в пулах (для чего заранее необходимо изучить тему «Что такое пул»).
Но если оборудование уже есть в наличии и проблема заключается только в том, чтобы сделать его работу более рентабельным, то советы по добыче бесплатного электричества лучше всего изучать по видео-урокам в Ютюбе. А перед этим стоит все-таки определиться, какой способ лучше выбрать.
Если вы проживаете в частном доме, то удобнее всего установить солнечные батареи или ветрогенератор на крыше. Кстати, таким способом можно сэкономить и на отоплении: заменить традиционные радиаторы электрическими. Оборудование альтернативного типа можно купить уже в готовом виде, своими руками потребуется только смонтировать его в своем доме. Но стоимость устройств все же отпугивает большинство людей. Кроме того, солнечные батареи актуальны только в южных регионах, где бывает достаточное количество ясных дней.
Схема добычи электричества
Еще добывать бесплатное электричество можно прямо из земли. Схемы подобного способа широко представлены в интернете. В почве, за счет протекания естественных процессов окисления, похожих на те, что происходят внутри обычной батарейки, образуются электрические импульсы. Но такого количества энергии для питания майнинг-фермы будет точно недостаточно. Еще можно получать электричество от обычных магнитов, для чего их требуется обмотать медной проволокой, создав подобие трансформатора, и поместить в электромагнитное поле. Но чтобы извлечь из устройства столько же электричества, сколько из стационарной розетки, понадобятся очень большие магниты и очень много проволоки.
Видео: Электичество из магнита
Особенности свободной энергии
15 октября 2019
Время на чтение:
Многие думают, что газ, уголь или нефть — единственные источники, из которых можно получать энергию. Но атомы сами по себе достаточно опасны. Гидроэлектростанции тоже строятся, но это трудоёмкий и опасный процесс. Можно ли найти альтернативу? Она есть, и далеко не в единственном варианте. Получение энергии из эфира своими руками возможно, но требует некоторых навыков.
Что это такое
Сам термин «свободной энергии» появился, ещё когда широкомасштабно внедрялись двигатели внутреннего сгорания, когда от затрачиваемого угля зависела проблема получения нужных количеств энергии. Древесина и нефтепродукты тоже учитывались. Под свободной энергией принято понимать такую силу, для добычи которой не нужно тратить большое количество топлива. Значит, расходование ресурсов не требуется. В том числе — когда создают трансгенератор с самозапиткой.
Сейчас создают безтопливные генераторы, реализующие подобные схемы. Некоторые из них давно начали работать, получая энергию от солнца и ветра, других тому подобных природных явлений. Но существуют и другие концепции, направленные на обход закона о сохранении энергии.
Установка ТеслаПараметры генераторов
Самый простой вариант такого генератора можно представить как набор из нескольких катушек, взаимодействующих с магнитными полями, образующимися вокруг устройства.
Необходимо учитывать следующие параметры, когда для создания такого генератора выбирают внутренние элементы:
- Первичные катушки лучше делать из нескольких витков толстого провода, когда разрабатывают генератор энергии. Тогда прибор отличается низким омическим сопротивлением, малой индуктивностью.
- Во вторичной катушке количество витков наоборот — больше. И сам провод достаточно тонкий. При такой конфигурации энергетический выброс будет максимальным. Волны будут распространяться на большее расстояние. Неважно, какую выбрали схему генератора свободной энергии на отечественных деталях.
Основной эффект во много раз усиливается, если подключить разрядник параллельно колебательному контуру.
Упрощённый вариантПринцип работы
Чтобы разобраться с главным принципом, по которому работают такие устройства, сначала надо вспомнить одно правило — напряжённость в каждой точке устройства прямо пропорциональна квадрату тока, который протекает по проводнику. При появлении электрического тока вокруг последнего всегда появляется поле. Оно способно распространять своё действие на большие расстояния. Легко создать и в генераторе Романова свободную энергию по инструкции своими руками.
Схему обеспечивает постоянная подкачка энергии из внешнего источника. Образуется она за счёт переменного ВЧ тока. Результат — поле начинает пульсировать, распространять свой сигнал. Энергетические характеристики, таким образом, проявляются в кинетическом виде. Если этот процесс форсировать, удастся получить интересный эфирный эффект. Он проявляет себя как волна, обладающая мощной ударной характеристикой. Электромагнитные установки работают иначе.
Интересно. Ситуация способствует переходу к оперированию с большими мощностями.
Генераторы Тесла — устройства, в которых удаётся реализовать этот процесс. Природный аналог — эфирный разряд молнии, электрогенераторы тоже могут создавать такую энергию.
Бесплатное электричество от магнитовКак соорудить генератор свободной энергии своими руками?
Генераторы создаются на основе следующих комплектующих и приспособлений:
- Элемент питания и резистор номиналом 2,2 КОМ. Его включать в чертёж обязательно.
- Ферритовое колечко любой магнитной проводимости.
- Конденсатор с ёмкостью 0,22 мкф, рассчитанный для напряжения до 250 Вольт.
- Толстая медная шина, чей диаметр — около 2 миллиметров. В дополнение берут тонкие медные провода в эмалевой изоляции, с диаметром 0,01 мм. Тогда и радиантные установки дают результат.
- Пластиковая или картонная трубка, чей диаметр составляет 1,5-2,5 сантиметра.
- Любой транзистор, обладающий подходящими параметрами. Хорошо, если в базовой комплектации, помимо генератора, будет присутствовать дополнительная инструкция. Иначе невозможно заняться реализацией практических схем генераторов свободной энергии с самозапиткой.
Интересно. В случае с дополнительными развязками между питающей и высоковольтной цепями применяют специальный входной фильтр. Можно не ставить такое приспособление, а подавать напряжение напрямую.
Для сборки можно использовать плату из стеклотекстолита, либо другое основание, обладающее похожими характеристиками. Главное — чтобы поверхность вмещала радиатор со всеми необходимыми приспособлениями. На пластиковой трубке наматывают обе катушки таким образом, чтобы одна размещалась внутри другой. Виток к витку наматывают высоковольтную обмотку, тоже расположенную внутри. Иногда этого требуют и самодельные импульсные безтопливные генераторы энергии.
Форма генерируемых импульсов обязательно проверяется на работоспособность, когда сборка закончена. Для этого берут осциллограф, цифровой или электронный. При настройке следует обращать внимание только на один важный параметр — наличие крутых фронтов, которыми отличается генерируемая последовательность прямоугольных контактов.
Схема генератора
Минимальные мощности из любых устройств можно получить несколькими способами:
- Атмосферный конденсат в качестве источника. Его можно использовать при создании трансгенератора.
- Ферримагнитные сплавы.
- Тёплая вода.
- Через магниты. Условия для них нужны минимальные.
Но необходимо научиться управлять этим явлением, чтобы эффект был максимальным.
Схема свободной энергииМагнитный генератор
Подача магнитного поля к электрической катушке — главный эффект, которого можно добиться при использовании такого устройства. Список основных компонентов выглядит следующим образом:
- Поддерживающая катушка, для регулировки электричества.
- Питающая катушка.
- Запирающая катушка.
- Пусковая катушка, необходимая и для бестопливных приборов.
Схема включает транзистор управления вместе с конденсатором, диодами, ограничительным резистором и нагрузкой.
Создание переменного магнитного потока — вопрос, при решении которого у владельцев устройств возникает больше всего вопросов. Рекомендуется монтировать два контура, у которых есть постоянные магниты. Тогда силовые линии организуются со встречным направлением.
С самозапиткой
Необходимо создать схему, которая подаёт на рабочее устройство основной поток электроэнергии. После этого генераторы переходят к автоколебательному режиму. Во внешнем питании они больше не нуждаются.
Такое устройство получило название «качера». Но правильное название — блокинг-генератор. Оно создаёт мощный электрический импульс.
Всего выделяют три основные группы блокинг-генераторов:
- На полевых транзисторах, затвор у которых изолирован.
- С основой в виде биполярных транзисторов.
- С электронными лампами, такие конструкции тоже встречаются часто.
Генераторы Теслы
Конструкция предполагает применение трансформатора, как высоковольтные аналоги. Принцип работы — примерно такой же, как и у обычных изделий. На выходе у этого приспособления образуются так называемые излишки энергии. Они значительно превосходят то, что потратилось при запуске устройства. Главное — выбрать правильную методику изготовления трансформатора, настроить приспособление на работу.
Как получить энергию из эфира своими руками?
Микроквантовые эфирные потоки у многих подобных генераторов — главные источники, откуда поступает энергия для генераторов. Системы можно пробовать подключать через конденсаторы, литиевые батарейки. Можно выбирать различные материалы в зависимости от показателей, которые они дают. Тогда и количество кВт будет разным.
Пока что свободная энергия — явление мало изученное на практике. Поэтому сохраняется много пробелов при конструировании генераторов. Только практические эксперименты помогают найти ответ на большинство вопросов. Но многие крупные производители электронных устройств уже заинтересованы в этом направлении.
Как получить электричество из земли и возможно ли это
Возможно ли это?
Прежде чем рассмотреть технологические схемы и ответить на вопрос «как взять электроэнергию из почвы?», давайте разберемся насколько это реально.
Считается, что в земле очень много энергии и, если сделать установку – вы вечно будете бесплатно ей пользоваться. Это не так, ведь чтобы получить энергию нужен определенный участок земли и металлические штыри, которые вы в неё установите. Но штыри будут окисляться и рано или поздно приём энергии закончится. Кроме того, её количество зависит от состава и качества самой почвы.
Чтобы добиться хорошей мощности нужен очень большой участок земли, поэтому в большинстве случаев энергии, полученной из земли, достаточно для включения пары светодиодов или небольшой лампочки.
Из этого следует, что энергию из земли получить можно, но использовать её как альтернативу электросетям вряд ли получится.
Электричество из нуля и заземлителя
Этот способ подходит для жителей частных домов, если у них есть заземляющий контур. Знаете ли вы, что между заземлителем и нулевым проводом часто наблюдается разность потенциалов в 10-20 Вольт? Это значит, что их можно использовать бесплатно. Повысить их вы можете с помощью трансформатора.
Энергия потребленная таким образом счётчиком учитываться не будет. Такое напряжение можно определить либо вольтметром, либо подключив между этими двумя проводами низковольтную лампочку типа тех, что устанавливают в габариты или приборные панели автомобилей.
Важно! Не перепутайте фазу с нулём – это опасно!
Стоит отметить, что в качестве заземлителя используется отдельное устройство из металлических штырей, вбитых на глубину более 1 метра. Трубопровод в большинстве случаев не даст хорошего результата. Подробнее про заземление в частном доме вы можете узнать из нашей отдельной статьи.
Потенциал между крышей и землей
Этот метод также требует вбить в землю металлический штырь, к нему подключается провод. Второй провод подключается к металлической крыше. Так вы получите пару Вольт. Ток от такой схемы будет ничтожно мал и не факт, что его хватит для включения одного светодиода.
Гальванический элемент
Следующий способ – простая химия. Это самый реальный и понятный способ получения электричества из земли в домашних условиях. Для этого нужны медные и цинковые электроды. В их роли могут выступать пластины, штыри, гвозди. Если медь распространена – с цинком могут возникнуть проблемы, поэтому легче найти оцинкованное железо.
Нужно забить ваши электроды в землю на одинаковом расстоянии друг от друга. Допустим 1 метр в глубину и 0,5 метра между электродами. В таком случае медь будет катодом, а цинк – анодом. Напряжение такого элемента может составлять порядка 1-1,1 Вольта. Это значит, чтобы получить из земли электричество напряжением в 12 вольт нужно забить 12 таких электродов и соединить их последовательно.
Решающим фактором в такой батарее является площадь электродов, от этого зависит и сила тока, ровно, как и от того, что находится между ними. Для того, чтобы батарея выдавала ток – земля должна быть влажной, для этого её можно полить, иногда цинковый электрод заливают раствором соли или щёлочи. Для повышения токовой отдачи можно забить больше электродов и соединить их параллельно. Таким образом устроены все современные батареи и аккумуляторы.
На схеме ниже вы видите еще одну интересную реализацию такой батареи из медных труб и оцинкованных стержней.
Однако с течением времени электроды разрушаться и батарея постепенно прекратит свою работу.
Метод получения электричества по Белоусову
Валерий Белоусов много лет изучает молнии и защиту от них. Он является автором книг о бесплатной энергии и разработал ряд решений, чтобы получить электричество из земли.
На схеме вы можете видеть два условных обозначения заземления. Здесь один из них – это заземлитель, а второй, рядом с которым буква «А» – ноль бытовой электросети. На следующем видео демонстрируется работа такой установки и описываются результаты, полученные с её помощью:
Полученной энергии достаточно чтобы запитать светодиодную лампу на 220 Вольт малой мощности. Такой способ удобно использовать на даче, он может быть легко воспроизведён в домашних условиях.
Получение бесплатного электричества из земли своими руками возможно. Но говорить о практическом применении и подключении мощных потребителей сложно. Холодильник вы так не запустите. На сегодняшний день единственным хорошо изученным источником электроэнергии из недр земли являются природные ресурсы, такие как уголь, газ, топливо для атомных электростанций и т.д.
Наверняка вы не знаете:
Бесплатное электричество: как получить электрический ток из земли и воздуха своими руками
Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.
Добыча из воздуха
Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.
Некоторые способы следующие:
- грозовые батареи используют свойство электрического потенциала накапливаться;
- ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
- ионизатор (люстра Чижевского) — популярный бытовой прибор;
- генератор TPU (тороидального) электричества Стивена Марка;
- генератор Капанадзе — бестопливный энергетический источник.
Рассмотрим подробно некоторые из устройств.
Ветрогенераторы
Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.
[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]
Грозовые батареи
Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.
Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.
[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]
Тороидальный генератор С. Марка
Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.Генератор TPU (тороидальный) может питать бытовые приборы.
Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.
Генератор Капанадзе
Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.
Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.
Добыча из Земли
Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.
Гальванический способ (с двумя стержнями)
Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).Между стержнями из разных металлов в электролите появляется разность потенциалов.
Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.
От заземления
Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.
[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.[/advice]
Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).
Другие способы
Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.
Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.
Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.
Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.
Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.
Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.
На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.
Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.
Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.
Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:
Бесплатное электричество своими руками [инструкции+схемы]
Счет за электричество – неминуемая статья расходов для любого современного человека. Централизованное электроснабжение постоянно дорожает, но потребление электричества с каждым годом все равно растет. Особенно остро эта проблема стоит для майнеров, ведь, как известно, добыча криптовалюты требует значительного количества электроэнергиии, в связи с чем счета на ее оплату могут превышать прибыль от майнинга. При таких условиях стоит обратить внимание на то, что практически все природные ресурсы могут быть использованы для преобразования в электричество. Даже в воздухе присутствует статическое электричество, осталось только найти методы им воспользоваться.
Где взять бесплатное электричество?
Добыть электричество можно практически «из всего». Единственное условие: необходим проводник и разница потенциалов. Ученые и практики постоянно ищут новые альтернативные источники энергии, которые будут бесплатными. Следует уточнить, что под бесплатными подразумевается отсутствие платы за централизованное энергоснабжение, но само оборудование и его установка все же стоит средств. Правда, такие вложения с лихвой окупаются впоследствии.
На данный момент бесплатная электроэнергия добывается из трех альтернативных источников:
Методика получения электричества | Особенности выработки энергии |
---|---|
Солнечная энергия | Требует установки солнечных батарей или коллектора из стеклянных трубок. В первом случае электричество будет вырабатываться благодаря постоянному движению электронов под воздействием солнечных лучей внутри батареи, во втором — электричество будет преобразовано из тепла от нагрева. |
Ветряная энергия | При ветре лопасти ветряка начнут активно вращаться, вырабатывая электричество, которое может сразу поставляться в аккумулятор или сеть. |
Геотермальная энергия | Метод заключается в получении тепла из глубины грунта и его последующей переработки в электроэнергию. Для этого пробуривают скважину и устанавливают зонд с теплоносителем, который будет забирать часть постоянного тепла, существующего в глубине почвы. |
Такие методы используются как обычными потребителями, так и в широких масштабах. Например, огромные геотермальные станции установлены в Исландии и вырабатывают сотни МВт.
Как сделать бесплатное электричество дома?
Бесплатное электричество в квартире должно быть мощным и постоянным, поэтому для полного обеспечения потребления потребуется мощная установка. Первым делом следует определить наиболее подходящий метод. Так, для солнечных регионов рекомендуется установка солнечных батарей. Если солнечной энергии недостаточно, тогда следует использовать ветряные или геотермальные электростанции. Последний метод особенно подходит для регионов, расположенных в относительной близости к вулканическим зонам.
Определившись с методом получения энергии, следует также позаботиться о безопасности и сохранности электроприборов. Для этого домашняя электростанция должна быть подключена к сети через инвертор и стабилизатор напряжения для обеспечения подачи тока без резких скачков. Стоит также учитывать, что альтернативные источники достаточно капризны к погодным условиям. При отсутствии соответствующих климатических условий выработка электроэнергии остановится или будет недостаточной. Поэтому следует обзавестись также мощными аккумуляторами для накопления на случай отсутствия выработки.
Готовые установки альтернативных электростанций широко представлены на рынке. Правда, их стоимость достаточно высока, но, в среднем, все они окупаются за период от 2 до 5 лет. Сэкономить можно, приобретая не готовую установку, а ее комплектующие, а затем уже самостоятельно спроектировать и подключить электростанцию.
Как получить бесплатное электричество на даче?
Подключение к централизованной системе энергоснабжения – проблематичный процесс, и часто дачи остаются без света долгое время. Здесь может помочь установка дизельного генератора или альтернативные способы добычи.
На дачах зачастую нет такого огромного количества электроприборов, как в квартирах. Соответственно, потребление электроэнергии значительно меньше. Для начала следует определить преимущественный период времени, который будет проводиться в помещении. Так, для летних дачников подойдут солнечные коллекторы и батареи, для остальных – ветряные методы.
Питать отдельные электроприборы или освещать помещение можно, собирая электроэнергию от заземления. Схема для получения бесплатного электричества: ноль — нагрузка — земля. Напряжение внутри дома подается через фазовый и нулевой проводник. Включив в эту схему третий проводник нагрузки к нулю, в него будет направлено от 12Вт до 15Вт, которые не будут фиксироваться приборами учета. Для такой схемы обязательно нужно позаботиться о надежном заземлении. Ноль и земля не несут опасности удара током.
Бесплатное электричество из земли
Почва – благоприятная среда для извлечения электричества. В грунте присутствуют три среды:
- влажность — капли воды;
- твердость — минералы;
- газообразность — воздух между минералами и водой.
Кроме того, в почве постоянно проходят электрические процессы, так как ее основной гумусовый комплекс представляет собой систему, на внешней оболочке которой формируется отрицательный заряд, а на внутренней – положительный, что влечет за собой постоянное притягивание положительно заряженных электронов к отрицательным.
Метод похож на тот, что используется в обычных батарейках. Для получения электричества из земли следует погрузить в грунт на глубину полуметра два электрода. Один медный, второй из оцинкованного железа. Расстояние между электродами должно быть примерно 25 см. Грунт между проводниками заливается солевым раствором, а к проводникам подключаются провода, на одном будет положительный заряд, на втором отрицательный.
В практических условиях выходная мощность такой установки составит приблизительно 3Вт. Мощность заряда также зависит от состава грунта. Конечно, такой мощности недостаточно для того, чтоб обеспечить энергоснабжение в частном доме, но установку можно усилить, изменяя размер электродов или последовательно соединив между собой необходимое количество. Проведя первый опыт, можно примерно просчитать, сколько понадобится таких установок, чтоб обеспечить 1 кВт, а далее рассчитать необходимое количество на основе среднего потребления в сутки.
Как добыть бесплатное электричество из воздуха?
Впервые о получении электричества из воздуха заговорил Никола Тесла. Опыты ученого доказали, что между основанием и поднятой металлической пластиной существует статическое электричество, которое можно накапливать. К тому же воздух в современном мире постоянно подвергается дополнительной ионизации за счет функционирования множества электросетей.
Почва может выступать основанием для механизма добычи электроэнергии из воздуха. Металлическую пластину размещают на проводнике. Она должна быть размещена выше других рядом стоящих объектов. Выходы от проводника подключают к аккумулятору, в котором будет накапливаться статическое электричество.
Бесплатное электричество от ЛЭП
Линии электропередач пропускают по своим проводам огромное количество электричества. Вокруг провода, в котором идет ток, создается электромагнитное поле. Таким образом, если поместить под ЛЭП кабель, то на его концах образуется электрический ток, точную мощность которого можно просчитать, зная, какой мощности ток передается по кабелю.
Еще одним способом является создание трансформатора вблизи линий электропередач. Трансформатор можно создать при помощи медной проволоки и стержня, используя метод первичной и вторичной обмотки. Выходная мощность тока в таком случае зависит от объема и мощности трансформатора.
Стоит учесть, что такая система получения бесплатного электричества является незаконной, хоть в ней и отсутствует фактическое незаконное подключение к сети. Дело в том, что такое вклинивание в систему электроснабжения наносит ущерб ее мощности.
Бесплатное электричество из сетевого фильтра
Многие искатели бесплатного электричества наверняка находили в Интернете версии о том, что удлинитель может стать источником нескончаемой свободной энергии, образовывая замкнутую цепь. Для этого следует взять сетевой фильтр с длиной провода не менее трех метров. Из кабеля сложить катушку, диаметром не более 30 см, подключить к розетке потребителя электроэнергии, изолировать все свободные отверстия, оставив только еще одну розетку для вилки самого удлинителя.
Далее сетевому фильтру необходимо дать изначальный заряд. Легче всего это сделать, подключив удлинитель к функционирующей сети, а затем за доли секунды замкнуть в себе. Бесплатное электричество из удлинителя подойдет для питания осветительных приборов, но мощность свободной энергии в такой сети слишком мала для чего-то большего. А сам метод достаточно спорный.
Бесплатное электричество из магнитов
Магнит излучает магнитное поле и, как следствие, его можно использовать для добычи бесплатного электричества. Для этого следует обмотать магнит медной проволокой, образуя маленький трансформатор, разместив который вблизи электромагнитного поля, можно получать бесплатную энергию. Мощность электроэнергии в таком случае зависит от размера магнита, количества обмоток и мощности электромагнитного поля.
Как использовать бесплатное электричество?
Решив заменить централизованное энергоснабжение на альтернативные источники, следует учитывать все необходимые меры безопасности. Во избежание резких перепадов напряжения электрический ток к приборам должен подаваться через стабилизаторы напряжения. Обязательно стоит обратить внимание на опасности каждого метода. Так, погружение электродов в почву подразумевает последующую заливку почвы соленым раствором, что сделает ее непригодной для дальнейшего роста растений, а системы накопления статического электричества из воздуха могут привлекать молнии.
Электричество не только полезно, но и опасно. Неправильная фазировка может привести к ударам тока, а короткое замыкание в сети — к пожарам. Обеспечение дома электричеством в домашних условиях нужно начинать с детального изучения методов и законов физики.
Следует учитывать, что большинство методов не дают стабильной мощности и зависят от многих факторов, в том числе и погодных условий, предугадать которые невозможно. Поэтому энергию рекомендуется накапливать в аккумуляторах, а на всякий случай еще и иметь запасной вид электрообеспечения.
Прогноз на будущее
Уже сейчас альтернативные источники энергии широко используются. Львиная доля потребления электричества приходится на домашние электроприборы и освещение. Заменив их питание с централизованного на альтернативное, можно существенно экономить. Особое внимание на альтернативные источники электроснабжения стоит обратить майнерам, так как майнинг на централизованном энергоснабжении способен забирать до 50% прибыли, в то время как добыча на бесплатном электропитании будет приносить чистый доход.
Все больше домов переходит на питание от солнечных батарей или ветряных электростанций. Такие методы дают намного меньше мощности, но являются экологически чистыми источниками энергии, которые не наносят вреда окружающей среде. Конструируются также и промышленные альтернативные электростанции.
В дальнейшем эта сфера будет только дополняться новыми методами и улучшенными аналогами.
Заключение
Добыть электроэнергию можно даже из воздуха, но для покрытия всех нужд потребления необходимо спроектировать целую систему альтернативной выработки энергии. Можно пойти легким путем и купить уже готовые солнечные батареи или ветряные станции, а можно приложить усилия и собрать собственную электростанцию. Сейчас бесплатное электричество – не до конца изведанная сфера и открывает массу возможностей для самостоятельных экспериментов.
Как сделать бесплатное электричество 220 — Про дизайн и ремонт частного дома
Топ-6 лучших способов получить бесплатную электроэнергию
Дата публикации: 23 января 2020
Сегодня мировые СМИ и предприниматели все больше обращают внимание на альтернативные способы получения энергии. Они помогут не только экономить на электричестве, но и заботиться об окружающей среде. В этой статье собраны 6 самых популярных способов, рассказывающих, как получить бесплатную электроэнергию.
Ток из земли: ТОП-3 способа
Земля — самый большой и мощный источник энергии. В нашей почве объединены три среды — твердая, жидкая и газообразная, что и становится необходимым условием для извлечения электроэнергии. Из-за этого почву можно считать станцией, в которой на постоянной основе хранится электричество.
Есть три основных способа получить бесплатное электричество с помощью почвы:
- Нулевой провод — нагрузка — почва.
- Медный и железный электроды.
- Потенциал между крышей и почвой.
Нулевой провод — нагрузка — почва
Этот метод подразумевает, что будет использоваться третий проводник, соединяющий проводник в земле и нулевой контакт. В результате получится ток напряжением около 15 вольт. Такого вольтажа хватит, чтобы подключить до пяти лампочек и осветить две комнаты.
Впрочем, некоторые умельцы экспериментируют с этим способом и получают напряжение намного превосходящее 20 вольт, способное питать целый дом.
Медный и железный электроды
С помощью этих электродов можно добыть бесплатное электричество из почвы, потратив минимум усилий. Но учтите, что на участке, где расположатся электроды, не будет расти никакой зелени, поскольку она перенасытится солями.
На расстоянии до метра в почву вставляются два прута: один цинковый или железный, другой медный. В этом методе роль электролита играет сам грунт, а с помощью прутьев получается разница потенциалов. В итоге цинковый стержень станет отрицательным электродом, а медный — положительным. Таким способом добывается до трех вольт.
Потенциал между краем крыши и почвой
Те же самые три вольта можно получить, если поймать потенциал между землей и крышей. Чтобы метод сработал, крыша должна быть выполнена из железа, а в почву необходимо установить ферритовые пластины.
Вольтаж увеличится, если пластины взять большего размера или найти более высокую крышу.
Ток из воздуха: ТОП-3 способа
Получать бесплатное электричество для дома из воздуха — желание большинства экономных людей. Как оказалось, эта мечта осуществима.
Вариантов получения тока из воздуха множество, но наиболее популярные среди них — это:
- ветрогенераторы;
- грозовые батареи;
- генератор тороидального электричества Стивена Марка.
Ветряные генераторы уже сейчас используются в странах Европы, Азии и Америки. Поля с этими гигантскими приспособлениями занимают огромные площади и способны обеспечивать энергией техническое предприятие или завод. Единственный минус такого способа — непостоянство ветра. Из-за изменчивости погоды нельзя сказать точно, сколько выработается и накопится энергии.
Подробнее о том, как создать ветрогенератор из подручных средств, читайте здесь: Ветрогенератор из шуруповерта.
Грозовые батареи тоже зависят от погодных условий, поскольку накапливают потенциал из разрядов молний. Эти системы — самые непредсказуемые и опасные в применении, ведь молнии контролировать нельзя.
Еще один прибор, позволяющий получать бесплатную электроэнергию дома, — это генератор тороидального электричества, изобретенный Стивеном Марком. Основу генератора составляют три катушки. Они создают резонансные частоты и магнитные вихри, благодаря которым и появляется электрический ток.
Альтернативные источники энергии позволяют заботиться о природе и использовать ее восполняемые ресурсы по максимуму. Однако стоит помнить, что любые эксперименты с электричеством могут быть опасны. Если у вас нет опыта, то проводите их в присутствии мастера или электрика и с соблюдением всех норм предосторожности.
- Понизить тепловые потери
- Ваш интерьер в новом магическом свете
- Электрический автобус подзаряжается за 10 секунд
- Информационный бюллетень «Оптимизация освещения»
Вам нужно войти, чтобы оставить комментарий.
Бесплатное электричество
К настоящему времени рентабельность ферм для майнинга криптовалют сильно понизилась. Это произошло за счет падения рыночной стоимости самих виртуальных активов, из-за подорожания оборудования и электроэнергии. Если раньше затраты на питание фермы составляли около 30% от прибыли, то теперь показатели доходят до 50% и даже 70%, что делает добычу крайне низкопрофитной. Неудивительно, что владельцы ферм начинают искать способы, позволяющие получать бесплатное электричество своими руками. Идея эта не такая уж фантастичная, как может показаться на первый взгляд, но ее реализация потребует серьезной подготовки.
Добыча бесплатного электричество
За рубежом майнеры предпочитают решать проблему не столь радикально. Они просто перебираются туда, где энергия стоит дешевле. Если верить статистике, то ранее самую низкую оплату за потребленное электричество взимал Китай, но после введения запрета на криптовалюту майнинг-фермерам пришлось передислоцироваться в Европу. Дешевое электричество есть в Исландии, то тут существуют проблемы с интернетом. В России же можно поискать регионы с дешевой энергией для начала бизнеса по добыче криптовалюты. Например, если вы установите ферму в Иркутске, то сможете тратить на оплату электричества всего 10% от заработка. Но цифра является приблизительной, если вы используете новейшее оборудование с высокой мощностью, то и энергопотребление у него на порядок выше.
- Значит, выход только один — научиться добывать бесплатное электричество дома.
- Получить энергию для фермы безвозмездно в домашних условиях возможно с помощью альтернативных источников.
- Они уже широко эксплуатируются во всем цивилизованном мире, это солнечные батареи, ветро и водогенераторы.
- Но следует иметь в виду, что собрать такие установки своими руками можно только при наличии минимальных инженерных знаний, да еще придется потратиться на детали и расходные материалы.
Еще можно добыть бесплатную энергию от магнитов, из земли, но ее будет недостаточно для питания мощной майнинг-фермы.
Как сделать бесплатное электричество
Следовательно, стоит рассмотреть способы, как сделать бесплатное электричество в достаточном количестве, чтобы его хватило для бесперебойного питания майнинг-фермы. Впрочем, можно оставить эту затею и арендовать чужие мощности через сайты облачного майнинга, а криптовалюту добывать в пулах (для чего заранее необходимо изучить тему «Что такое пул»).
Но если оборудование уже есть в наличии и проблема заключается только в том, чтобы сделать его работу более рентабельным, то советы по добыче бесплатного электричества лучше всего изучать по видео-урокам в Ютюбе. А перед этим стоит все-таки определиться, какой способ лучше выбрать.
Если вы проживаете в частном доме, то удобнее всего установить солнечные батареи или ветрогенератор на крыше. Кстати, таким способом можно сэкономить и на отоплении: заменить традиционные радиаторы электрическими. Оборудование альтернативного типа можно купить уже в готовом виде, своими руками потребуется только смонтировать его в своем доме. Но стоимость устройств все же отпугивает большинство людей. Кроме того, солнечные батареи актуальны только в южных регионах, где бывает достаточное количество ясных дней.
Схема добычи электричества
Еще добывать бесплатное электричество можно прямо из земли. Схемы подобного способа широко представлены в интернете. В почве, за счет протекания естественных процессов окисления, похожих на те, что происходят внутри обычной батарейки, образуются электрические импульсы. Но такого количества энергии для питания майнинг-фермы будет точно недостаточно. Еще можно получать электричество от обычных магнитов, для чего их требуется обмотать медной проволокой, создав подобие трансформатора, и поместить в электромагнитное поле. Но чтобы извлечь из устройства столько же электричества, сколько из стационарной розетки, понадобятся очень большие магниты и очень много проволоки.
Видео: Электичество из магнита
Земля как источник бесплатного электричества
Затраты на электроэнергию растут с каждым повышением тарифов. И если городские жители для уменьшения финансовых трат сокращают лишнее потребление электроэнергии, то владельцы частных домов имеют возможность дополнительно получать электричество из земли.
Получаем бесплатное электричество из земли
Вопрос эффективности
Получение электричества из земли окутано мифами – в Интернет регулярно выкладываются материалы на тему получения бесплатной электроэнергии за счет использования неисчерпаемого потенциала электромагнитного поля планеты. Однако многочисленные видео, на которых самодельные установки добывают ток из земли и заставляют сиять многоваттные лампочки или крутиться электромоторы, являются мошенническими. Если бы получение электричества из земли было настолько эффективно, атомная и гидроэнергетика давно ушли бы в прошлое.
Однако бесплатное электричество добыть из земной оболочки вполне реально и сделать это можно своими руками. Правда, полученного тока хватит только на светодиодную подсветку или на то, чтобы не торопясь подзарядить мобильное устройство.
Напряжение из магнитного поля Земли — возможно ли!?
Для получения тока из природной среды на постоянной основе (то есть, исключаем разряды молний), нам необходим проводник и разность потенциалов. Найти разность потенциалов проще всего в земле, которая объединяет все три среды – твердую, жидкую и газообразную. По своей структуре грунт представляет собой твердые частички, между которыми присутствуют молекулы воды и пузырьки воздуха.
Важно знать, что элементарной единицей почвы является глинисто-гумусовый комплекс (мицелла), который обладает определенной разностью потенциалов. Внешняя оболочка мицеллы накапливает отрицательный заряд, внутри нее формируется положительный. За счет того, что электроотрицательная оболочка мицеллы притягивает из окружающей среды ионы с положительным зарядом, в почве беспрерывно протекают электрохимические и электрические процессы. Этим почва выгодно отличается от водной и воздушной среды и дает возможность своими руками создать устройство для добычи электроэнергии.
Способ с двумя электродами
Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.
Мощность такого гальванического элемента зависит от целого ряда факторов, включая:
- сечение и длину электродов;
- глубину погружения электродов в электролит;
- концентрацию солей в электролите и его температуру и т.д.
Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.
Добыча электричества с помощью 2-х стержней
Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.
Внимание! Требуется использовать насыщенный электролит, а такая концентрация соли делает почву непригодной для роста растений.
Способ с нулевым проводом
Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй – нуль. Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт. Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.
Добыча электричества с помощью нулевого провода
Схема, собранная по принципу ноль – потребитель энергии – земля, вполне рабочая. При желании для выравнивания колебаний напряжения можно использовать трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением – для этого требуется, чтобы дом потреблял много электроэнергии.
Обратите внимание! Данный способ добывать даровое электричество пригоден только в условиях частного домовладения. В квартирах нет надежного заземления, а использовать в этом качестве трубопроводы систем отопления или водоснабжения нельзя. Тем более запрещено соединять контур заземления с фазой для получения электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно опасно.
Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии. Как добыть энергию, используя электромагнитный потенциал планеты, остается открытым.
Энергия магнитного поля планеты
Земля представляет собой своего рода конденсатор сферической формы, на внутренней поверхности которой накапливается отрицательный заряд, а снаружи – положительный. Изолятором служит атмосфера – через нее проходит электрический ток, при этом разность потенциалов сохраняется. Утерянные заряды восполняются за счет магнитного поля, которое служит природным электрогенератором.
Как получить на практике электричество из земли? По сути, необходимо подсоединиться к полюсу генератора и организовать надежное заземление.
Устройство, получающее электричество из природных источников, должно состоять из следующих элементов:
- проводник;
- заземляющий контур, к которому подсоединен проводник;
- эмиттер (катушка Тесла, высоковольтный генератор, позволяющий электронам покидать проводник).
Схема получения электроэнергии
Верхняя точка конструкции, на которой расположен эмиттер, должна располагаться на такой высоте, чтобы за счет разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх. Эмиттер их будет освобождать из металла и в виде ионов выпускать в атмосферу. Процесс будет продолжаться до тех пор, пока потенциал в верхних слоях атмосферы не станет вровень с электрическим полем планеты.
К цепи подключается потребитель энергии, причем чем эффективнее работает катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно подключить к системе.
Так как электрическое поле окружает заземленные проводники, к которым относятся деревья, здания, различные высотные конструкции, то в городской черте верхняя часть системы должна располагаться выше всех имеющихся объектов. Своими руками создать подобную конструкцию не реально.
Из этого следует
Электроэнергия из земли потенциально может быть добыта, но сегодня нет технологий, которые позволяют сделать это эффективно. Если есть свой дом с участком, то можно поэкспериментировать с созданием земляной батареи из листов меди и алюминиевой фольги – чертежи и фотографии легко найти в Интернете. Но практика показывает, что мощность сделанного конденсатора заметно ниже заявленной и конструкция быстро выходит из строя. При этом финансовые затраты на материалы вряд ли когда-либо окупятся.
Как получить электричество из земли
Из года в год стоимость электроэнергии в наших домах и квартирах растет, что заставляет большинство людей задуматься об ее экономии. Но есть и такие, что пытаются всеми возможными способами добыть хоть немного бесплатной энергии, например, электричество из земли. Поскольку число этих людей неуклонно растет, есть смысл рассмотреть вопрос подробнее, что и будет сделано в данной статье.
Мифы и реальность
На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.
Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.
Для справки. Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.
Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.
Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.
Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.
Электричество от двух стержней
Данный способ основан совсем на другой теории и никакого отношения к магнитному или электрическому полю Земли не имеет. А теория эта – о взаимодействии гальванических пар в солевом растворе. Если взять два стержня из разных металлов, погрузить их в такой раствор (электролит), то на концах появится разница потенциалов. Ее величина зависит от многих факторов: состава, насыщенности и температуры электролита, размеров электродов, глубины погружения и так далее.
Такое получение электричества возможно и через землю. Берем 2 стержня из разных металлов, образующих так называемую гальваническую пару: алюминиевый и медный. Погружаем их в землю на глубину ориентировочно полметра, расстояние между электродами соблюдаем небольшое, хватит 20—30 см. Участок земли между ними обильно поливаем солевым раствором и спустя 5—10 мин производим измерение электронным вольтметром. Показания прибора могут быть разными, но в лучшем случае вы получите 3 В.
Примечание. Показания вольтметра зависят от влажности почвы, ее природного солесодержания, размеров стержней и глубины их погружения.
В действительности все просто, получившееся бесплатное электричество – это результат взаимодействия гальванической пары, при котором влажная земля служила электролитом, принцип похож на работу солевой батарейки. Реальный эксперимент о разнице потенциалов на электродах, забитых в землю, можно посмотреть на видео:
Электричество от земли и нулевого провода
Данное явление тоже возникает не от магнитного поля Земли, а вследствие того, что часть тока «стекает» через заземление в часы наибольшего потребления электроэнергии. Большинству пользователей известно, что напряжение для дома подается через 2 проводника: фазный и нулевой. Если имеется третий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Этот факт можно зафиксировать, включив меж контактами нагрузку в виде лампочки на 12 В. И что характерно, проходящий из земли на «ноль» ток абсолютно не фиксируется приборами учета.
Воспользоваться таким бесплатным напряжением в квартире затруднительно, поскольку надежного заземления там не найти, трубопроводы таковым считаться не могут. А вот в частном доме, где априори должен быть заземляющий контур, электричество получить можно. Для подключения применяется простая схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже приспособились сглаживать колебания тока трансформатором и присоединять подходящую нагрузку.
Внимание! Не идите на поводу у «добрых» советчиков, предлагающих вместо нулевого проводника использовать фазный! Дело в том, что при подобном подключении фаза и земля дадут вам 220 В, но прикасаться к заземляющей шине смертельно опасно. Особенно это касается «умельцев», проделывающих подобные вещи в квартирах, присоединяя нагрузку к фазе и батарее. Они создают опасность поражения током для всех соседей.
Заключение
Извлекать электроэнергию из магнитного поля планеты своими руками – нереально. Описанные выше способы – другое дело, но их практическая ценность невелика. Разве что заряжать телефон во время похода, но тогда придется тащить с собой металлические трубы. Касаемо второго способа надо отметить, что напряжение между землей и нулем появляется далеко не всегда, а если и есть, то очень нестабильно. Прочие методы требуют большого количества меди и алюминия при неизвестном результате, о чем честно предупреждает автор установки, изображенной на рисунке:
Способы получения электроэнергии в домашних условиях
Бесплатное электричество
К настоящему времени рентабельность ферм для майнинга криптовалют сильно понизилась. Это произошло за счет падения рыночной стоимости самих виртуальных активов, из-за подорожания оборудования и электроэнергии. Если раньше затраты на питание фермы составляли около 30% от прибыли, то теперь показатели доходят до 50% и даже 70%, что делает добычу крайне низкопрофитной. Неудивительно, что владельцы ферм начинают искать способы, позволяющие получать бесплатное электричество своими руками. Идея эта не такая уж фантастичная, как может показаться на первый взгляд, но ее реализация потребует серьезной подготовки.
Добыча бесплатного электричество
За рубежом майнеры предпочитают решать проблему не столь радикально. Они просто перебираются туда, где энергия стоит дешевле. Если верить статистике, то ранее самую низкую оплату за потребленное электричество взимал Китай, но после введения запрета на криптовалюту майнинг-фермерам пришлось передислоцироваться в Европу. Дешевое электричество есть в Исландии, то тут существуют проблемы с интернетом. В России же можно поискать регионы с дешевой энергией для начала бизнеса по добыче криптовалюты. Например, если вы установите ферму в Иркутске, то сможете тратить на оплату электричества всего 10% от заработка. Но цифра является приблизительной, если вы используете новейшее оборудование с высокой мощностью, то и энергопотребление у него на порядок выше.
- Значит, выход только один — научиться добывать бесплатное электричество дома.
- Получить энергию для фермы безвозмездно в домашних условиях возможно с помощью альтернативных источников.
- Они уже широко эксплуатируются во всем цивилизованном мире, это солнечные батареи, ветро и водогенераторы.
- Но следует иметь в виду, что собрать такие установки своими руками можно только при наличии минимальных инженерных знаний, да еще придется потратиться на детали и расходные материалы.
Еще можно добыть бесплатную энергию от магнитов, из земли, но ее будет недостаточно для питания мощной майнинг-фермы.
Как сделать бесплатное электричество
Следовательно, стоит рассмотреть способы, как сделать бесплатное электричество в достаточном количестве, чтобы его хватило для бесперебойного питания майнинг-фермы. Впрочем, можно оставить эту затею и арендовать чужие мощности через сайты облачного майнинга, а криптовалюту добывать в пулах (для чего заранее необходимо изучить тему «Что такое пул»).
Но если оборудование уже есть в наличии и проблема заключается только в том, чтобы сделать его работу более рентабельным, то советы по добыче бесплатного электричества лучше всего изучать по видео-урокам в Ютюбе. А перед этим стоит все-таки определиться, какой способ лучше выбрать.
Если вы проживаете в частном доме, то удобнее всего установить солнечные батареи или ветрогенератор на крыше. Кстати, таким способом можно сэкономить и на отоплении: заменить традиционные радиаторы электрическими. Оборудование альтернативного типа можно купить уже в готовом виде, своими руками потребуется только смонтировать его в своем доме. Но стоимость устройств все же отпугивает большинство людей. Кроме того, солнечные батареи актуальны только в южных регионах, где бывает достаточное количество ясных дней.
Схема добычи электричества
Еще добывать бесплатное электричество можно прямо из земли. Схемы подобного способа широко представлены в интернете. В почве, за счет протекания естественных процессов окисления, похожих на те, что происходят внутри обычной батарейки, образуются электрические импульсы. Но такого количества энергии для питания майнинг-фермы будет точно недостаточно. Еще можно получать электричество от обычных магнитов, для чего их требуется обмотать медной проволокой, создав подобие трансформатора, и поместить в электромагнитное поле. Но чтобы извлечь из устройства столько же электричества, сколько из стационарной розетки, понадобятся очень большие магниты и очень много проволоки.
Видео: Электичество из магнита
Где брать энергию? Не секрет, что люди рано или поздно исчерпают запасы нефти, газа, угля и даже урана, которые ещё остались на планете. Возникает вполне резонный вопрос: «Что же делать дальше? Где брать энергию?». Ведь вся наша жизнь базируется на использовании энергии. Получается, что после того как закончатся запасы углеводородов закончится и существование цивилизации?Выход есть! Это так называемые альтернативные источники энергии. Кстати многие из них применяются, причем успешно, уже в настоящее время. Энергия ветра, приливов, солнца и геотермальные источники ─ успешно используется и преобразовывается людьми в электроэнергию. Но это так сказать «официальные альтернативные источники».
В настоящее время, существуют сотни теорий и разработок по созданию и использованию необычных альтернативных источников энергии. Описанные в этой статье альтернативные источники энергии являются необычными только в том смысле, что они пока не стали популярными, массово не используются, непрактичны, убыточны и т.д.
Но это совсем не значит, что они не смогут эффективно применятся возможно уже в самом ближайшем будущем. Ведь та же нефть, как источник энергии была известна с древнейших времен, но только с конца времени промышленной революции, нефть смогли получить и обработать в пригодную для использования форму.
Неизвестно, что мы в будущем будем использовать для получения энергии, но традиционным источникам энергии наверняка есть альтернативы, и вполне возможно, хотя бы один из перечисленных ниже способов получения электрической энергии сможет стать распространенным и популярным.
Вот 5 необычных альтернативных источников энергии, которые вызывают реальную надежду на эффективное использование их в будущем:
Первая экспериментальная электростанция, получающая энергию из соленой воды создана компанией Statkraft в Норвегии. Электростанция для получения электроэнергии использует физический эффект — осмос. С помощью этого эффекта в результате смешивания солёной и пресной воды извлекается энергия из увеличивающейся энтропии жидкостей. затем эта энергия используется для вращения гидротурбины электрогенератора.
Разработаны демонстрационные электростанции на топливных элементах с твердооксидным электролитом мощностью до 500 кВт. Фактически в элементе происходит сжигание топлива и непосредственное превращение выделяющейся энергии в электричество. Это все равно что дизельный электрогенератор, только без дизеля и генератора. А также без дыма, шума, перегрева и с намного более высоким КПД.
Для получения электрической энергии используется термоэлектрический эффект. Это довольно старая технология, опять ставшая актуальной в наше время за счет массового использования энергосберегающих источников света и различных переносных электроприемников. Уже существуют и с успехом используются промышленные разработки, например отопительно-варочные печи, со встроенными термогенераторами, которые в процессе своей работы позволяют получать не только тепло, но и электроэнергию.
Созданы экспериментальные установки, которые позволяют получать электроэнергию за счет использования кинетической энергии — пешеходные дорожки, турникеты на железнодорожных вокзалах, специальный танцпол со встроенными в него пьезоэлектрическими генераторами. Есть идеи в ближайшем будущем создать специальные «зеленые тренажерные залы», в которых группа спортивных тренажерных велосипедов сможет, по словам производителей, генерировать до 3,6 мегаватт возобновляемой электроэнергии в год.
В данном источником энергии является специальный наногенератор, преобразующий в электрическую энергию микроколебания в человеческом теле. Устройству довольно малейших вибраций, чтобы вырабатывать электический ток, позволяющий поддерживать работоспособность мобильных устройств. Современные наногенераторы превращают любые движения и перемещения в источник энергии. Очень перспективны и интересны варианты совместного использования наногенераторов и солнечных батарей.
А что вы думаете по этому поводу? Может быть вам известны другие новые альтернативные источники электроэнергии. Поделитесь в комментариях!
Как получить электричество из земли
Из года в год стоимость электроэнергии в наших домах и квартирах растет, что заставляет большинство людей задуматься об ее экономии. Но есть и такие, что пытаются всеми возможными способами добыть хоть немного бесплатной энергии, например, электричество из земли. Поскольку число этих людей неуклонно растет, есть смысл рассмотреть вопрос подробнее, что и будет сделано в данной статье.
Мифы и реальность
На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.
Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.
Для справки. Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.
Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.
Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.
Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.
Электричество от двух стержней
Данный способ основан совсем на другой теории и никакого отношения к магнитному или электрическому полю Земли не имеет. А теория эта – о взаимодействии гальванических пар в солевом растворе. Если взять два стержня из разных металлов, погрузить их в такой раствор (электролит), то на концах появится разница потенциалов. Ее величина зависит от многих факторов: состава, насыщенности и температуры электролита, размеров электродов, глубины погружения и так далее.
Такое получение электричества возможно и через землю. Берем 2 стержня из разных металлов, образующих так называемую гальваническую пару: алюминиевый и медный. Погружаем их в землю на глубину ориентировочно полметра, расстояние между электродами соблюдаем небольшое, хватит 20—30 см. Участок земли между ними обильно поливаем солевым раствором и спустя 5—10 мин производим измерение электронным вольтметром. Показания прибора могут быть разными, но в лучшем случае вы получите 3 В.
Примечание. Показания вольтметра зависят от влажности почвы, ее природного солесодержания, размеров стержней и глубины их погружения.
В действительности все просто, получившееся бесплатное электричество – это результат взаимодействия гальванической пары, при котором влажная земля служила электролитом, принцип похож на работу солевой батарейки. Реальный эксперимент о разнице потенциалов на электродах, забитых в землю, можно посмотреть на видео:
Электричество от земли и нулевого провода
Данное явление тоже возникает не от магнитного поля Земли, а вследствие того, что часть тока «стекает» через заземление в часы наибольшего потребления электроэнергии. Большинству пользователей известно, что напряжение для дома подается через 2 проводника: фазный и нулевой. Если имеется третий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Этот факт можно зафиксировать, включив меж контактами нагрузку в виде лампочки на 12 В. И что характерно, проходящий из земли на «ноль» ток абсолютно не фиксируется приборами учета.
Воспользоваться таким бесплатным напряжением в квартире затруднительно, поскольку надежного заземления там не найти, трубопроводы таковым считаться не могут. А вот в частном доме, где априори должен быть заземляющий контур, электричество получить можно. Для подключения применяется простая схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже приспособились сглаживать колебания тока трансформатором и присоединять подходящую нагрузку.
Внимание! Не идите на поводу у «добрых» советчиков, предлагающих вместо нулевого проводника использовать фазный! Дело в том, что при подобном подключении фаза и земля дадут вам 220 В, но прикасаться к заземляющей шине смертельно опасно. Особенно это касается «умельцев», проделывающих подобные вещи в квартирах, присоединяя нагрузку к фазе и батарее. Они создают опасность поражения током для всех соседей.
Заключение
Извлекать электроэнергию из магнитного поля планеты своими руками – нереально. Описанные выше способы – другое дело, но их практическая ценность невелика. Разве что заряжать телефон во время похода, но тогда придется тащить с собой металлические трубы. Касаемо второго способа надо отметить, что напряжение между землей и нулем появляется далеко не всегда, а если и есть, то очень нестабильно. Прочие методы требуют большого количества меди и алюминия при неизвестном результате, о чем честно предупреждает автор установки, изображенной на рисунке:
Топ-6 лучших способов получить бесплатную электроэнергию
Дата публикации: 23 января 2020
Сегодня мировые СМИ и предприниматели все больше обращают внимание на альтернативные способы получения энергии. Они помогут не только экономить на электричестве, но и заботиться об окружающей среде. В этой статье собраны 6 самых популярных способов, рассказывающих, как получить бесплатную электроэнергию.
Ток из земли: ТОП-3 способа
Земля — самый большой и мощный источник энергии. В нашей почве объединены три среды — твердая, жидкая и газообразная, что и становится необходимым условием для извлечения электроэнергии. Из-за этого почву можно считать станцией, в которой на постоянной основе хранится электричество.
Есть три основных способа получить бесплатное электричество с помощью почвы:
- Нулевой провод — нагрузка — почва.
- Медный и железный электроды.
- Потенциал между крышей и почвой.
Нулевой провод — нагрузка — почва
Этот метод подразумевает, что будет использоваться третий проводник, соединяющий проводник в земле и нулевой контакт. В результате получится ток напряжением около 15 вольт. Такого вольтажа хватит, чтобы подключить до пяти лампочек и осветить две комнаты.
Впрочем, некоторые умельцы экспериментируют с этим способом и получают напряжение намного превосходящее 20 вольт, способное питать целый дом.
Медный и железный электроды
С помощью этих электродов можно добыть бесплатное электричество из почвы, потратив минимум усилий. Но учтите, что на участке, где расположатся электроды, не будет расти никакой зелени, поскольку она перенасытится солями.
На расстоянии до метра в почву вставляются два прута: один цинковый или железный, другой медный. В этом методе роль электролита играет сам грунт, а с помощью прутьев получается разница потенциалов. В итоге цинковый стержень станет отрицательным электродом, а медный — положительным. Таким способом добывается до трех вольт.
Потенциал между краем крыши и почвой
Те же самые три вольта можно получить, если поймать потенциал между землей и крышей. Чтобы метод сработал, крыша должна быть выполнена из железа, а в почву необходимо установить ферритовые пластины.
Вольтаж увеличится, если пластины взять большего размера или найти более высокую крышу.
Ток из воздуха: ТОП-3 способа
Получать бесплатное электричество для дома из воздуха — желание большинства экономных людей. Как оказалось, эта мечта осуществима.
Вариантов получения тока из воздуха множество, но наиболее популярные среди них — это:
- ветрогенераторы;
- грозовые батареи;
- генератор тороидального электричества Стивена Марка.
Ветряные генераторы уже сейчас используются в странах Европы, Азии и Америки. Поля с этими гигантскими приспособлениями занимают огромные площади и способны обеспечивать энергией техническое предприятие или завод. Единственный минус такого способа — непостоянство ветра. Из-за изменчивости погоды нельзя сказать точно, сколько выработается и накопится энергии.
Подробнее о том, как создать ветрогенератор из подручных средств, читайте здесь: Ветрогенератор из шуруповерта.
Грозовые батареи тоже зависят от погодных условий, поскольку накапливают потенциал из разрядов молний. Эти системы — самые непредсказуемые и опасные в применении, ведь молнии контролировать нельзя.
Еще один прибор, позволяющий получать бесплатную электроэнергию дома, — это генератор тороидального электричества, изобретенный Стивеном Марком. Основу генератора составляют три катушки. Они создают резонансные частоты и магнитные вихри, благодаря которым и появляется электрический ток.
Альтернативные источники энергии позволяют заботиться о природе и использовать ее восполняемые ресурсы по максимуму. Однако стоит помнить, что любые эксперименты с электричеством могут быть опасны. Если у вас нет опыта, то проводите их в присутствии мастера или электрика и с соблюдением всех норм предосторожности.
Вам нужно войти, чтобы оставить комментарий.
Дешевый, безопасный, экологичный, но редкий способ получения электричества в промышленных масштабах
После Чернобыля мир не испугался и не прекратил строительство атомных электростанций. Мир решил, наверное, что это сработал специфически советский человеческий фактор. После катастрофы на АЭС «Фукусима» в Японии человечество осознало, что атомная энергия опасна даже в руках осторожных, ответственных, и технически продвинутых цивилизаций. Германия и другие страны ЕС уже думают о полном прекращении использования АЭС. Поэтому поиск новых, менее опасных источников энергии сейчас актуален как никогда. Одним из таких источников может стать тепло земли.
Сидим на грелке
Под наружной оболочкой Земли — земной корой — находится разогретая мантия, где, возможно, зарождаются вулканы (по другим теориям, вулканы зарождаются во внешней, расплавленной оболочке ядра). Горячая магма поднимается вверх по тектоническим трещинам и вступает в контакт с океанической водой, которая инфильтрируется из придонных областей океана в околомагматические зоны. Там вода нагревается, вбирает часть растворенных в магме газов — таких как сероводород и углекислый газ — и других химических веществ, захватывая и элементы из пород, сквозь которые она фильтруется. Увеличение содержания СО2 вызывает образование сильного адсорбента — кальциевого силикагеля, что ведет к изменению проницаемости водовмещающих комплексов и, в конечном счете, к тепловой и геохимической самоизоляции геотермальной системы. Считается, что наличие силикагеля обусловливает высокие концентрации разных веществ в термальных водах.
На континентах земная кора обычно очень мощная — до 70, иногда до 100 километров. Более древние магматические породы обычно перекрыты толстым осадочным чехлом, и магме его просто не прорвать. Там же, где земная кора тоньше — например, в зонах перехода от континентальной коры к океанической — магме, раскаленным газам и перегретому водяному пару легче выбраться на поверхность. Именно в таких районах случаются самые интересные геологические события наших дней — извержения вулканов, землетрясения, именно там фыркают и плюются гейзеры, дымят фумаролы, и именно там сравнительно легок доступ к подземным источникам тепла. Вообще-то наиболее активные проявления вулканизма отмечаются в областях, где кора тоньше всего — на дне океанов, в зонах срединно-океанических хребтов, но ни видеть, ни толком изучать, ни тем более использовать этот вулканизм мы пока не научились.
Основная часть территории России расположена на двух древних, 2,5 — 3,5 млрд лет, платформах (Восточно-Европейской и Сибирской). Между ними лежит сравнительно молодая (всего 250-400 млн лет), но тоже надежная Западно-Сибирская плита. Поэтому в России районы с тонкой корой находятся только на дальних окраинах — на Камчатке и Курильских островах, которые входят в зону активных геологических процессов. «В областях современного вулканизма формируются и геотермальные месторождения, — говорит доктор геолого-минералогических наук, заведующий лабораторией тепломассопереноса ИВиС ДВО РАН Алексей Кирюхин. — Условия их формирования могут быть разными. Довольно часто работает правило: чем больше и активнее вулкан, тем меньше шансов найти в его окрестностях геотермальное месторождение (пример — вулкан Ключевский), чем крупнее геотермальное месторождение, тем меньше шансов увидеть в его пределах большой вулкан (пример — Долина гейзеров в Калифорнии)».
Окраины Тихого океана образуют Тихоокеанское огненное кольцо. Огненное оно потому, что здесь сосредоточено большинство действующих вулканов. Здесь же происходит субдукция
Области современного активного вулканизма в основном сосредоточены в так называемом Тихоокеанском огненном кольце — это практически все окраины Тихого Океана, включая Камчатку, Курилы, Японию, Индонезию, Филиппины, Анды и Кордильеры, цепочку Алеутских островов и архипелаг Огненная Земля. Все эти территории относятся к зонам самой молодой, альпийской складчатости, и на окраинах материков подвержены процессу субдукции — поддвиганию океанической коры под континентальную. В процессе субдукции окраинные участки континентальной коры вздымаются, формируя горные хребты, а «ныряющая» фронтальная зона тонкой океанической коры плавится, давая «сырье» для современных вулканов.
К зонам альпийской складчатости относятся также Альпы и Пиренеи, Крым, Кавказ, Памир, Гималаи. Многие вулканы здесь уже прошли активную стадию, и в породах, перекрывающих остывающую магму, происходят постмагматические процессы. В таких районах затухающего или «дремлющего» вулканизма — который проявляется не столько извержениями, сколько работой гейзеров, фумарол, грязевых вулканов — как раз и существует возможность получения электричества в промышленных масштабах. В других, менее активных, областях, впрочем, тоже можно использовать земное тепло. Даже в стабильных платформенных областях встречаются источники термальных вод, да и геотермический градиент может быть достаточно высоким.
Креативная, дешевая и чистая технология
Использовать геотермальное тепло можно по-разному. Во-первых, как древние римляне, можно непосредственно применять термальные воды для обогрева и ванн. Бесчисленные горячие источники в Европе ли, в Америке, на Филиппинах, — это проявления все тех же поствулканических процессов. В России тепло подземных вод используется для обогрева зданий и теплиц в Калининградской области, в Западной Сибири, в Краснодарском крае. Такое «прямое» использование тепла позволяет сэкономить и снизить нагрузку на окружающую среду.
Новозеландская геотермальная станция Ваиракеи открыта в 1958 году, первой после войны и второй в мире (самая первая построена в итальянском городе Лардерелло в 1904 году).
Фото: National Geographic/Getty Images/Fotobank
Можно использовать тепловые насосы, позволяющие обогревать или охлаждать жилые дома за счет разницы температур между воздухом и грунтом. А можно — в дополнение к простому обогреву — построить геотермальную электростанцию и получать очень дешевую электроэнергию. В зависимости от геологических условий, — то есть от температуры пород, наличия и состава воды в них — могут использоваться разные типы гидротермоэлектростанций.
В некоторых случаях геотермальная энергия позволяет убить сразу нескольких зайцев. Например, «Шеврон» использует для ее получения горячие воды, выкачиваемые из недр вместе с нефтью. На поверхности раскаленная смесь воды и пара отделяется от нефти, сепарируется, пар вращает турбины и дает электроэнергию, вода же закачивается обратно в породу. Это позволяет одновременно решить проблему токсичных сбросов и поддержать давление в нефтяном пласте, тем самым улучшая его нефтеотдачу и увеличивая срок использования скважины.
Геотермальная энергетика, новая отрасль на стыке нескольких наук и промышленности, привлекает внимание ученых и практиков разных специальностей. Одни задумываются, как добыть редкие и благородные металлы, растворенные в горячих подземных водах. Может быть, именно в фазе охлаждения этих вод когда-нибудь и удастся извлечь золото и платину.
Другие изобретают способы применения низкотемпературных вод. Главный инженер ОАО «Геотерм» Дмитрий Колесников считает, что вскоре будет разработана технология вторичного использования сепарата, то есть частично охлажденной воды: «Ее можно будет использовать на любых промышленных предприятиях, где есть горячие стоки. Больших мощностей ожидать не стоит, но, во-первых, горячая вода идет на второй цикл, то есть снижается непроизводственное использование энергии, а во-вторых, можно будет решать проблему энергоснабжения самого предприятия».
Россия отличается стабильностью
Геотермальная энергетика в России начала развиваться в 1960 годах. Тогда были построены первые — по сути, экспериментальные — электростанции. Паужетская ГеоЭС (11 МВт), на одноименном геотермальном месторождении была построена в 1967 году. «Эта электростанция служила как бы опытной площадкой, на ней опробовались технологии, испытывалась паро-водяная смесь», — рассказал Колесников. Неподалеку от нее расположены Мутновская ГеоЭС (50 МВт) и Верхне-Мутновская (12 МВт) ГеоЭС. На Курилах, на островах Кунашир и Итуруп, тоже работают две относительно небольшие ГеоЭС — 6 и 2,6 МВт. Собственно, этим недлинным списком и ограничивается действующая российская геотермальная энергетика.
Первая в России геотермальная электростанция — Паужетская — введена в эксплуатацию в 1966 году.
Фото: РИА НОВОСТИ
Не в силу политико-экономических или исторических причин, не потому, что за рубежом лучше головы или технологии, но исключительно из-за высокого уровня стабильности российского геологического устройства западные, восточные, юго-восточные и даже некоторые африканские страны оставили нас далеко позади в области геотермальной энергетики. В Исландии на геотермальных электростанциях получают 30% электроэнергии, на Филиппинах — более 25%, в Сальвадоре и Коста-Рике — около 15%, в Новой Зеландии и Никарагуа — 10%. В США доля «геотермального» электричества невелика, всего 0,3%, но по объемам выработки США опережают все остальные страны мира.
В США к широко известным геотермальным электростанциям в Калифорнии и Неваде в 2006 году добавилась маленькая, но необычная электростанция в самой что ни на есть глубокой американской глубинке — на Аляске, на курорте China Hot Springs. Хотя термальные источники там горячи для человека (74С), эта температура все же слишком низка для производства энергии по обычной технологии. Тем не менее, решение — применение бинарного цикла — было найдено: в теплообменнике природная вода отдает свое тепло специальному реагенту, который закипает даже при столь низкой температуре. Слегка охлажденная (примерно до 70 градусов) вода честно возвращается в исходный горизонт. За пять лет эксплуатации температура поступающей воды упала примерно на градус. Три генератора могут давать 650 кВт в час, что достаточно, например, для обслуживания целого поселка. Каждый генератор стоит около $800 000, и окупаемости за полгода ожидать не стоит. Но лет за 10 эти инвестиции окупятся даже при цене электричества в 6 центов за киловатт. Генератор, работающий на мазуте, «стоил» 30 центов за киловатт, так что разница очевидна.
А бинарная технология, использованная на Аляске, вообще-то изобретена в России еще в 1967 году, и использована на Паратунском геотермальном месторождении на Камчатке.
Экономика горячей воды
Как считает Дмитрий Колесников, преимущества геотермальной энергетики — в простоте процесса и дешевизне получаемой энергии. «Собственно, бурится скважина, из которой идет паро-водяная смесь, которая на станции сепарируется, пар вращает турбину, и дальше все работает как в обычной котельной», — объяснил он принцип работы.
Геотермальная энергия действительно обходится очень дешево, прежде всего за счет экономии на углеводородном сырье. Самое дорогое — это скважины и линии электропередач. Правда, там, где можно построить ГЭС, геотермальные электростанции будут не столь экономически привлекательными. Но в России мощнейшие ГЭС строились тогда, когда понятия частной собственности на землю не было. Сегодня, чтобы затопить гигантские территории, нужно будет их у кого-то выкупить, что сильно поднимет цену киловатт-часа. Да и землю жалко (поэтому современные ГЭС строятся в основном в горах, где площадь затопления минимальна). А вот при сравнении цены «геотермального» киловатт-часа с ценой электричества, вырабатываемого ТЭС, разница уже сегодня не в пользу углеводородной энергетики.
Экология соленой воды
Люди, которые занимаются геотермальной энергетикой, как-то с восхищением к ней относятся. Они понимают, что это сравнительно дешевый, сравнительно безопасный способ получения электроэнергии из возобновляемых источников. Тем не менее, как и во всех отраслях промышленности, здесь есть свои проблемы.
Да, углеводородного топлива на ГеоЭС нет, но проблема отходов существует. «Отходы» — это остывшая подземная вода, часто сильно соленая. Ее нельзя сбросить в ближайшую речку, она слишком токсична. Кроме того, при изъятии материала из недр обычно повышается сейсмическая активность, и из-за сейсмодислокаций приток пароводяной смеси на поверхность может вообще прекратиться. «Воды у нас (на Паужетской электростанции) — 1000 тонн в час, в идеале должен быть замкнутый цикл, на поверхность мы эту воду сливать не можем. Воду — сепарат — мы закачиваем обратно в пласт. Правда, не в то место, откуда мы ее берем, иначе мы быстро охладим «дающий» участок. Поэтому закачиваем не в него, а в соседние зоны», — объясняет Колесников.
В связи с высокой агрессивностью горячих подземных вод возникает проблема коррозии, износа оборудования. Но с коррозией, по мнению Колесникова, бороться можно — надо просто правильно подбирать материалы.
Геотермальную энергию добывать не всегда легко. Часто геотермальные месторождения находятся в труднодоступных местах или в зонах повышенной сейсмической активности. В сейсмически активных зонах постройка ГеоЭС не только сопряжена с угрозой для работников, но может оказаться экономически бессмысленной: при структурных подвижках геотермальное месторождение может просто исчезнуть или поменять режим так, что работа станции станет невыгодной.
Геотермы вообще недостаточно изучены. Поверхностные, более легкодоступные геотермы часто имеют довольно короткий срок жизни. Исследования же глубоко залегающих, более крупных геотермальных месторождений требуют больших средств. Пока российская экономика живет за счет высоких цен на углеводородное сырье, научные и практические работы по геотермам будут оставаться недофинансированными. Это приведет к тому, что Россия, некогда первой применившая бинарную технологию, вновь окажется в хвосте, как и со сланцевым газом.
«Хотим, не хотим, а развивать будем»
Вряд ли геотермальная энергия придет в каждый дом. В России, во всяком случае, не завтра. Низкотемпературные технологии получения электричества пока еще дороги, а самое главное — в платформенных областях, где проживает большая часть населения России, горячие напорные подземные воды редки. Поэтому в ближайшее время можно ожидать только развития применения тепловых насосов, которые позволяют напрямую использовать тепло земли.
Возможности для постройки ГеоТЭС, кроме Камчатки и Курил, существуют на Урале, в Краснодарском крае, на Ставрополье. Анализируются возможности строительства ГеоЭС в южных областях Западной Сибири. «А вообще, должна быть энергетическая стратегия по регионам, комплексный подход. Если есть возможность построить геотермальную электростанцию — надо строить: это и дешевая энергия, и отсутствие потребности в углеводородном сырье», — считает Колесников.
Алексей Кирюхин уверен, что геотермальную энергию можно получать всюду — вопрос в количестве и качестве. Но, конечно, для гидротермальных электростанций главным ограничивающим фактором еще долго будет служить строгая привязанность к источникам тепла.
Даже если экономия на геотермальной электроэнергии окажется меньше ожидаемой, выигрыш для природы очевиден. Валентина Свалова из Института геоэкологии РАН в работе «Геотермальные ресурсы России и их комплексное использование» показала, что если за счет геотермальной энергетики удастся достичь выработки электричества в 7800 ГВт.ч, то это позволит сэкономить 15,4 млн баррелей нефти, что исключит выброс приблизительно 7 млн тонн СО2.
Возобновляемость и дешевизна делают геотермальную энергию крайне привлекательной. «Хотя геотермальные электростанции имеют более низкий потенциал, дают меньшую мощность, они не требуют использования углеводородного сырья, — повторяет Колесников. — Ситуация с нефтью понятна, цены будут только расти, поэтому, хотим мы или не хотим, а геотермальную энергетику развивать будем».
Суммарная мощность геотермальных электростанций
|
Татьяна Крупина
Как сделать бесплатное электричество своими руками — Про дизайн и ремонт частного дома
Статическое электричество из воздуха на службе вашего быта
Дата публикации: 11 октября 2019
Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.
Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла. Он длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.
Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.
Электричество из воздуха: схемы, прошедшие проверку качества
Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.
Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение. Единственная сложность – предсказать его величину в следующий момент времени невозможно. А пустить для бытовых устройств крупный разряд – значит сжечь их в первую же секунду.
В числе достоинств предлагаемого решения:
- Доступность реализации в домашних условиях;
- Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.
Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.
Схема получения электричества из воздуха по проекту Стивена Марка
Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.
Схема получения электричества из воздуха выглядит следующим образом:
- Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
- Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
- Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
- Устанавливается конденсатор на 10 микрофарад.
- Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.
Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.
Несколько полезных советов по технике безопасности
- Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
- Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.
Для тестирования лучше подобрать «ненужный» прибор, порча которого вследствие допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.
- Новости альтернативной энергетики, 1-5 февраля 2015 года
- Коста-Рика прожила 75 дней на возобновляемой энергии
- В Европе разрабатывают хранилища тепла
- Новости альтернативной энергетики от 2.02.2016
Вам нужно войти, чтобы оставить комментарий.
Бесплатное электричество: как получить электрический ток из земли и воздуха своими руками
Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.
Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.
Добыча из воздуха
Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.
В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.
Некоторые способы следующие:
- грозовые батареи используют свойство электрического потенциала накапливаться;
- ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
- ионизатор (люстра Чижевского) — популярный бытовой прибор;
- генератор TPU (тороидального) электричества Стивена Марка;
- генератор Капанадзе — бестопливный энергетический источник.
Рассмотрим подробно некоторые из устройств.
Ветрогенераторы
Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.
Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.
[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]
Грозовые батареи
Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.
Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.
Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.
[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]
Тороидальный генератор С. Марка
Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.
Генератор TPU (тороидальный) может питать бытовые приборы.
Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.
Генератор Капанадзе
Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.
Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.
Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.
Добыча из Земли
Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.
Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.
Гальванический способ (с двумя стержнями)
Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).
Между стержнями из разных металлов в электролите появляется разность потенциалов.
Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.
От заземления
Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.
Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.
[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.[/advice]
Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).
Другие способы
Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.
Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.
Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.
Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.
Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.
Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.
Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.
На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.
Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.
Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.
Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.
Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:
4 способа получить электричество из земли своими руками
Необходимость постоянного сжигания топлива для получения электроэнергии приводит к поискам способов удешевления этого процесса, а порой и создания теорий о возможности выработки халявного электричества. Подобные идеи не новы, их выдвигали еще знаменитые умы прошлого, стоявшие на заре зарождения массового использования электрических приборов.
Поэтому современные генераторы свободной энергии уже никого не удивляют, бесплатную электроэнергию предлагают получать самыми невероятными способами. Сегодня мы рассмотрим такой способ, как электричество из земли, насколько это реально и какие теории существуют в целом.
Мифы и реальность
Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса. С теоретической точки зрения, если разместить один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если пропорционально увеличить расстояние до 1000 м, то и уровень напряжения должен увеличиться в два раза.
Однако на практике все получается далеко на так складно:
- Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
- Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
- В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе.
Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.
Что можно попробовать сделать?
Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.
Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа. Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.
Схема по Белоусову
Название метода произошло от фамилии ученного, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:
Рис. 1. Схема получения электричества по Белоусову
Извлечение электричества из земли будет происходить по такому принципу:
- Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте. Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
- Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
- Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.
Из земли и нулевого провода
Этот способ получения электричества из земли основан на том, что нулевой проводник в системах с глухозаземленной нейтралью у частного потребителя имеет значительное удаление от контура подстанции или КТП. Изначально проверьте, существует ли разность потенциалов между нулевым проводом и контуром заземления. Как правило, вольтметр покажет разность потенциалов в 10 – 20В. Это не большая разность потенциалов, но ее также можно использовать. Тем более что его можно запросто повысить при помощи обычного трансформатора до нужного номинала.
Рис. 2. Между нулем и землей
Чтобы добывать электричество вам понадобится обзавестись собственным контуром заземления, если такового еще нет на вашем участке. Более детальную информацию о процессе изготовления вы можете почерпнуть из соответствующей статьи на сайте — https://www.asutpp.ru/kontur-zazemleniya.html. Заметьте, несмотря на использование системы центрального электроснабжения, приборы учета не будут принимать в учет это напряжение, поэтому его можно считать бесплатным.
Стержни из цинка и меди (гальванический способ)
В таком методе получения электричества из земли используется тот же способ, что и в обычной батарейке. Здесь источником электроэнергии выступает химическая реакция, которая возникает при взаимодействии металлических электродов с природным электролитом. Однако мощность этого природного генератора электричества и разность потенциалов будет зависеть от ряда факторов:
- Габаритных размеров – длины, поперечного сечения и площади взаимодействия с грунтом. Чем больше площадь, тем большую добычу электричества можно осуществить таким методом.
- Глубина расположения – чем глубже разместить электроды, тем больше электричества будет собираться по всей высоте металла.
- Состав грунта – химическая составляющая любого электролита будет определять проводимость электрического тока, способность генерации электрического заряда и т.д. Поэтому наличие тех или иных солей, концентрации определенных элементов и станет основным отличием для естественного электролита на поверхности планеты.
Для практической реализации данного метода получения бесплатной энергии возьмите пару электродов из разных металлов, составляющих гальваническую пару. Наиболее популярным вариантом являются медь и цинк. Погрузите медный провод в грунт, а затем отступите от него на 25 – 30 см и погрузите в грунт цинковый электрод. Для лучшего эффекта землю между ними необходимо залить крепким раствором обычной пищевой соли.
Чтобы оценить результат эксперимента подождите минут 10 – 15, а затем подключите к выводам земляной батареи вольтметр. Как правило, вы получите напряжение от 1 до 3В, в зависимости от глубины залегания электродов и типа почвы показатели могут отличаться. Это конечно не много, но для питания светодиода или другого слаботочного прибора будет вполне достаточно. Со временем солевой раствор впитается и его действие начнет ослабевать, поэтому и ресурс электричества на выходе также снизится.
Если вы проделываете эти манипуляции для постоянного использования гальванического элемента, питающего какую-либо электрическую установку, то будет рациональным попробовать забивать электроды в разных местах на земельном участке. А после выбрать наиболее выгодный вариант. Если напряжения от пары штырей будет слишком малым, то нужно забить несколько и подключить их последовательно. Но помните, постоянное подливание растворенной соли сделает почву непригодной для выращивания сельскохозяйственных и декоративных культур.
Потенциал между крышей и землей
Такой метод получения электричества из земли возможен для домов с металлической крышей. Вам понадобится подключить один электрод к металлической пластине, которая представляет собой единую конструкцию или антенну. А второй подвести к проводу заземления, который соединяется с общим контуром, при его отсутствии можете просто вбить штырь в землю. Крыша здания обязательно должна быть изолирована от земли.
Рис. 4. Потенциал между крышей и землей
Чем большую площадь занимает металлическая антенна и чем выше она расположена, тем большее напряжение вы получите. Как правило, в частном секторе удается сгенерировать электричество в 1 – 2В, поэтому метод носит скорее экспериментальный, чем практический характер. Так как ни поднимать вверх, ни расширять площадь крыши ради нескольких вольт электричества будет нецелесообразным.
Выводы
Из рассмотренных выше методов видно, что в земле присутствует как огромные запасы статического электричества, так и большой потенциал других видов энергии, которую можно поставить на службу человеку. Для этого нет нужды сжигать топливо, однако не один из способов не дает возможности запитать мощный прибор.
Поэтому куда выгоднее в качестве альтернативных источников получения электричества использовать те же солнечные батареи или ветрогенераторы. Дальнейшее изучение методов генерации электричества из земли может принести более продуктивные результаты, но сегодня мы можем довольствоваться лишь энергией ради эксперимента.
Электричество на даче: откуда получить и как правильно распорядиться
Сегодня электричество в дачном доме уже не относится к излишествам: комфортный отдых и эффективный уход за участком сложно представить без соответствующего оборудования, так что задумываться об энергоснабжении рано или поздно придется.
Естественно, в этом процессе есть множество нюансов, и потому мы настоятельно рекомендуем вам ознакомиться с данной статьей. Конечно, все тонкости не раскроем, но общее представление о масштабах предстоящей работы вы получите.
Чтобы в загородном доме было тепло, светло и уютно, стоит позаботиться об энергоснабжении
Где взять?
Традиционные источники
Наиболее актуальным для владельцев загородных домов и дачных участков будет вопрос об источнике электричества (читайте также статью » GSM видеонаблюдение для дачи: присматриваем за участком в дистанционном режиме»).
И если ограничиваться лишь традиционными технологиями, то схем энергоснабжения можно выделить всего две:
Подключение к ЛЭП
- Централизованное – участок «запитываем» от проходящей на относительно небольшом расстоянии линии электропередач.
- Автономное – в качестве источника выступает генератор.
Рассмотрим оба варианта более подробно.
- Если говорить об использовании централизованного энергоснабжения, то основным плюсом является достаточно высокая предоставляемая мощность. Так, в этом случае можно даже организовать обогрев дачи электричеством, не разорившись на топливе для генератора.
Присоединение к проводам на столбе
- С другой стороны, сам процесс подключения к ЛЭП связан с весьма утомительными бюрократическими процедурами. Даже в том случае, если провода проложены сравнительно недалеко, на этапе согласования могут возникнуть проблемы.
Обратите внимание! Самовольное подключение к ЛЭП является правонарушением, и при обнаружении подобного факта вам придется заплатить немалый штраф. Также стоит помнить, что выполнять такие работы должны исключительно профессионалы с соответствующим уровнем допуска.
- Аренда дизель — генератора для дачи или покупка такого устройства могут обеспечить вас энергией вне зависимости от расположения участка. Да, эта технология является более затратной с финансовой точки зрения, но так вы можете быть уверены, что свет в доме и на участке не пропадет даже во время непогоды (обрывы проводов, особенно в удаленных районах — не редкость).
Даже компактное устройство может обеспечить освещение целого дома
- Еще один вариант автономного энергоснабжения – монтаж газового генератора. Конечно, цена прибора будет выше, чем у дизельной установки, да и обслуживать его могут только специалисты, но себестоимость киловатта энергии при этом получится существенно ниже.
В итоге оптимальная инструкция будет следующей: если есть возможность – подключаемся к линии электропередач и используем ее мощности, но на всякий случай устанавливаем в доме или сарае генератор с небольшим запасом топлива. Если возможности подключения нет – просто покупаем более производительный генератор, и проектируем электросеть участка с оглядкой на ограничения по производительности установки.
Альтернативные источники
Впрочем, современные технологии позволяют получить электричество на халяву для дачи. Под «халявой» в данном случае имеется полная или практически полная независимость от цен на энергоносители. Конечно, само альтернативное оборудование нужно приобретать, причем за довольно большие деньги, но со временем (от двух до пяти лет) оно окупается, и дальше работает «в плюс».
Фото крыльчатки ветряного генератора на крыше дома
Несколько наиболее эффективных технологий можно выделить, и их особенности мы свели в таблицу:
Методика | Особенности выработки энергии |
Геотермальная | На участке пробуриваем скважину, в которую погружаем зонд с теплоносителем. Поскольку в глубине грунта температура практически постоянна, то при прохождении по зонду охлажденный теплоноситель будет отбирать часть грунтового тепла. Извлеченная энергия может использоваться как для прямого обогрева дома, так и для выработки электричества. |
Солнечная | На крыше устанавливаются либо солнечные коллекторы из стеклянных трубок, заполненных теплоносителем, либо солнечные батареи. Как и в случае с геотермальными установками, энергией солнца можно не только обогревать дом, но и питать инвертор для обеспечения электроснабжения. |
Ветряная | На крыше дома или на отдельной мачте устанавливаем ветряк, соединенный с генератором. При вращении лопастей вырабатывается электричество, которое аккумулируется в батареях большой емкости и может быть использовано для решения самых разных задач. |
Схема работы геотермального генератора
Впрочем, такое бесплатное энергоснабжение является достаточно капризным. Нет ветра или солнце зашло за тучи на целый день — и придется сидеть в темноте! Вот почему специалисты настоятельно рекомендуют комплектовать подобные установки емкими аккумуляторами, а в качестве резервного источника питания держать как минимум небольшой дизель-генератор.
Особенности монтажа электросети
Если с источниками все более-менее ясно, переходим к правилам обустройства самой электросети:
- Монтаж проводки и электроприборов в дачном доме вполне можно выполнить и своими руками, а вот подключение к магистрали или генератору лучше доверить специалистам-электрикам.
- На входе в дом обязательно устанавливаем щиток со счетчиком. Также каждую ветку проводов присоединяем к щитку через УЗО – автоматический размыкатель цепи. Использование таких предохранителей способно защитить систему от перепадов напряжения и коротких замыканий.
Совет! Если вы часто бываете в отъездах, то есть смысл обустроить дистанционное включение электричества на даче. Для этого в щитке монтируем специальный модуль с GSM-приемником, который активирует всю систему по сигналу с мобильного телефона. Особенно удобно использовать такой управляемый блок в зимнее время: к вашему приезду отопительные приборы как раз успеют прогреть воздух.
Для защиты от огня провода прокладываем в негорючих каналах
- При использовании генераторов нужно тщательно рассчитывать мощность всех включаемых в сеть приборов. К примеру, обогрев дачного дома электричеством может потребовать установки отдельной генерирующей установки, иначе осенью и зимой придется выбирать: либо у нас работают батареи, либо светят лампочки.
- Дачные дома из блок — контейнеров, каркасные конструкции и бревенчатые здания отличаются высокой горючестью. Чтобы снизить риск пожара, вся проводка должна прокладываться в негорючих, желательно металлических, коробах.
Правильное заземление — одно из условий безопасности
- Весьма желательным является также заземление проводов. Для этого каждую ветку системы присоединяем к заземляющему контуру, выведенному наружу. Контур чаще всего представляет собой треугольник из стальных или омедненных стержней, вкопанных в землю и соединенных с домовой электросетью токопроводящим кабелем.
Вывод
Обеспечить электричество в доме и на даче – дело чести любого мастера. Благо, на сегодняшний день возможностей для этого более чем достаточно, и мы с легкостью сможем выбрать, что именно использовать в качестве источника энергии (см.также статью «Электричество на даче своими руками: от подготовки коммуникаций до выбора источника питания»).
Для более подробного ознакомления с данной темой рекомендуем вам просмотреть видео в этой статье: из него вы сможете почерпнуть несколько новых идей по электрификации вашего загородного дома.
Американские ученые добыли электричество из магнитного поля электропроводки
Ученые из Университета штата Пенсильвания создали магнитоэлектрический преобразователь, способный извлекать энергию из магнитных полей вокруг сетевых кабелей. Статья с описанием открытия была опубликована в журнале Energy & Environmental Science. Полученную энергию можно без труда использовать для питания небольших IoT-устройств — например, цифрового будильника.Проблема энергоэффективности и экологичности IoT-устройств становится все более острой по мере развития технологий. Чем более сложными становятся системы, тем большее количество энергии требуется для их обеспечения. Встроенные батареи имеют ограниченный запас ресурсов, а для бесперебойного функционирования высокопроизводительного оборудования сроки службы должны составлять месяцы и годы. В связи с этим на первый план выходят «зеленые технологии» и сбор свободной энергией — то есть добыча ресурсов из внешних источников, например, тепла, вибрации или света.
Именно такой подход использовали в своем изобретении пенсильванские ученые. В качестве добывающего элемента выступила многослойная тонкая пластинка, состоящая из слоя пьезоэлектрика и слоя из магнитострикционного материала. Попадая в магнитное поле электропроводки такая пластинка начинает вибрировать и деформирует приклеенную к ней пластину из пьезоэлектрика. В результате такой деформации по проводам, подключенным к пластине, начинает течь электрический ток.
Сам магнитострикционный материал при этом вырабатывает до 16% электричества. Остальную выработку дает колебание постоянного магнита в электромагнитном поле. Ученые утверждают, что элемент позволяет генерировать напряжение до 80 Вт в поле силой 300 мкТл. Такого заряда достаточно, чтобы обеспечить прямое питание будильника или часов на расстоянии до 20 см от электропроводки.
«Преимущество такого подхода в том, что магнитное поле, создаваемое вокруг электропроводки — это вездесущая и дешевая энергия. Она есть везде: в наших домах, офисах, автомобилях. Возможность собирать этот фоновый шум и преобразовывать его в полезное электричество может обогатить наш подход к архитектуре «зеленой» энергии», — отмечает один из авторов исследования, инженер Шашанк Прия.
Источник: https://www.electronicsweekly.com/news/research-news/milliwats-electricity-mains-magnetic-field-2020-04/
Жизнь за пределами сети: как вырабатывать собственное электричество
Когда мы с женой переехали в Монтану, мы нашли удобный дом на нескольких акрах земли с видом на горы.
Была только одна загвоздка — дом был отключен от электросети. Фактически, каждый в подразделении генерировал свою собственную энергию, включая отель типа «постель и завтрак» поблизости.
Это не значит, что он был примитивным. В доме были солнечные батареи, ветряная турбина, аккумуляторная батарея и инвертор, генератор и полный набор бытовой техники, включая стиральную машину и сушилку, холодильник, плиту, спутниковое телевидение, пропановую печь и даже посудомоечную машину.
Поскольку до приезда в Монтану я работал на когенерационной электростанции, я не слишком беспокоился о выработке собственной электроэнергии, поэтому мы купили дом.
Солнечная панель с трекером
Жизнь вне сети
Предыдущий владелец показал мне важные объекты и рассказал, как с ними работать. Когда мы въехали, мы вставили компактные люминесцентные лампы в каждую розетку, запрограммировали термостат на автоматическое понижение температуры ночью и обязательно выключили свет, когда выходили из комнаты.Мы думали, что у нас все под контролем.
В нашу третью ночь в доме мы легли спать, как обычно, под слабый шум ветра снаружи, звук, который мы уже начали получать, потому что он генерировал большую часть нашей энергии. Среди ночи меня разбудил звук — ничего. Ни гула холодильника, ни вентилятора печи, ни ветра. Крошечный индикатор питания на датчике угарного газа не светился, как и цифровой дисплей на радиочасах. У нас не было силы.
Ветряная турбина
Я встал и вышел на улицу, чтобы проверить силовое оборудование.Очевидно, ветер утих ночью, и небольшое количество потребляемой энергии истощило батареи. Я запустил бензиновый генератор, и он начал подавать электроэнергию в наш дом и заряжать батареи.
Я только что усвоил первый урок энергии ветра и солнца: на них не всегда можно рассчитывать, когда они нужны. Независимо от того, где вы находитесь, солнце всегда заходит, а ветер перестанет дуть.
5 способов использования человеческого тела для выработки электроэнергии
Думайте о человеческом теле как о высшем распределенном энергетическом ресурсе.
Из всех возобновляемых видов топлива, пожалуй, нет более устойчивого, чем ваше собственное тело.
Сегодня уже существует несколько способов, которыми человеческое тело может помочь производить электричество — от простых упражнений до человеческих отходов.
Ни одна из этих диковинных технологий не поможет спасти энергосистему в ближайшее время, но интересно представить будущее, в котором ваши органы смогут управлять суперкомпьютером в вашем мозгу.
1. КровотокКоманда швейцарских исследователей во главе с инженером-биомедицином Алоисом Пфеннигером показывает миру многообещающую картину будущего: микротурбины, имплантированные в артерии человека.
Микротурбины работают так же, как гидроэлектростанции, используя поток крови для выработки электроэнергии. Из трех турбин, протестированных командой Пфеннигера, самая производительная генерирует около 800 микроватт энергии — намного больше, чем необходимо для работы кардиостимулятора.
«Сердце вырабатывает около 1 или 1,5 Вт гидравлической мощности, а мы хотим взять, может быть, один милливатт», — сказал Пфеннигер. «Для кардиостимулятора требуется всего около 10 микроватт».
Сегодня варианты использования микротурбин ограничиваются питанием датчиков артериального давления, насосов для доставки лекарств и нейростимуляторов — всем из которых требуется источник питания.В будущем возможности более диковинные.
2. ШагиЛюди много ходят, так почему бы не уловить эти усилия и не использовать их для выработки электроэнергии? Это первоначальная мысль, стоящая за Pavegen, стартапом, который хочет, чтобы его плитки с опорой на шаги стали способом будущего.
В зависимости от того, насколько сильно вы шагаете, один шаг по плитам компании может произвести от одного до семи ватт мощности. По словам Павегена, этого электричества недостаточно для питания дома, но этого достаточно, чтобы зажечь уличный светодиод на 30 секунд.
Однако для Pavegen использование плитки выходит за рамки возобновляемых источников энергии. Плитки стартапа могут предоставить ранее трудные для сбора данные о привычках людей.
«Наша цель — получить ту же цену, что и обычный пол», — сказал основатель и генеральный директор Лоуренс Кембал-Кук. «И тогда это может быть на любом нормальном этаже в мире».
3. УпражнениеВ спортзалах по всей стране есть велотренажеры, эллиптические тренажеры и степперы.А теперь представьте, если бы каждый из них производил электричество.
Некоторые уже делают. Придавая понятие «человеческая сила» совершенно новое значение, такие стартапы, как ReRev, Green Revolution и Human Dynamo, делают упражнения более безопасными для окружающей среды, оснастив эти машины для производства электроэнергии.
Некоторые, например ReRev, подключают эллиптические тренажеры с генераторами постоянного тока к центральному блоку с инвертором, который преобразует производимую мощность в переменный ток и отправляет ее обратно в здание и сеть. Некоторые, например Green Revolution, решили подключить велотренажеры к батареям.Другие, такие как Human Dynamo, построили индивидуальный стационарный велосипед с «ручными кривошипами» и педалями, которые вращают маховик, связанный с генератором, который может подключаться к нескольким велосипедам одновременно.
Но эти машины еще не вырабатывают энергосберегающее количество энергии — в среднем они могут вырабатывать от 50 до 150 ватт в час, в то время как велосипедист высшего уровня может генерировать более 400 ватт за тот же период.
Расчеты показывают, что эти типы машин при 5 часах ежедневного использования при 100 Вт в час будут производить только 183 киловатт-часа в год — или около 18 долларов электроэнергии.
«Я надеюсь, что эта технология будет в каждом оборудовании через 10 или 15 лет», — сказал Адам Бозель, владелец Green Microgym. «Несколько ватт от каждого из нас, пока мы потеем, могут в сумме дать что-то значительное».
4. Тепло тела
Исследователи из нескольких известных институтов, включая Технологический институт Джорджии, разрабатывают носимые ткани, которые могут генерировать электричество.
Дэвид Кэрролл, профессор физики Университета Уэйк Форест, является одним из таких исследователей.Он создал Power Felt — гибкую ткань, которая может проводить электричество и обеспечивать теплоизоляцию.
Power Felt имеет несколько вариантов использования, но был предназначен для улавливания тепла тела и его повторного использования для зарядки телефонов.
«Из тела, производящего от 100 до 120 Вт мощности, вы могли бы получить от этого один или два ватта», — сказал Кэрролл. «Если вы сделаете из этого одежду, этого достаточно, чтобы начать заниматься электроникой, такой как мобильные телефоны и тому подобное.”
Кэрролл оценивает, что производство достаточно мощного войлока для вашего смартфона будет стоить 1 доллар.
«Пока я разговаривал с вами, задняя часть моего телефона стала горячей», — сказал он Bloomberg. «Наш кусок ткани за 1 доллар даст вам такой же импульс, как и батарея за 50 долларов.
5. Моча и кал
Мы думали о том, чтобы сделать этот номер один и два в нашем списке.
Шутки в сторону, есть несколько многообещающих способов использования энергии для отходов жизнедеятельности человека. По словам китайских исследователей, разработавших унитаз, который помогает производить удобрения и электричество, человеческие фекалии могут перевариваться в биореакторе для выделения биогаза.Кейтлин Батлер, профессор экологической инженерии Массачусетского университета, разработала яму для микробных топливных элементов. В отличие от обычного туалета с выгребной ямой, здесь собираются компостированные отходы и окисляются в анодной камере. Затем электроны высвобождаются и проходят через цепь, несущую нагрузку, которая вырабатывает электричество.
Есть также способ использовать человеческую мочу для выработки электроэнергии. Получатель гранта в размере 500000 фунтов стерлингов от Фонда Билла и Мелинды Гейтс, исследовательской группы, возглавляемой доктором Дж.Иоаннис Иеропулос, профессор Университета Западной Англии в Бристоле, разработал еще один микробный топливный элемент, но этот работает на моче.
«Прелесть этого источника топлива в том, что мы не полагаемся на неустойчивую природу ветра или солнца», — сказал Иеропулос. Электроэнергия, работающая на урине, «настолько экологична, насколько это возможно».
«Мы очень воодушевлены потенциалом этой работы», но необходимы дополнительные исследования, — добавил он. «Пока что разработанный нами микробный топливный блок питания генерирует достаточно энергии, чтобы можно было отправлять SMS-сообщения, просматривать веб-страницы и делать короткие телефонные звонки по телефону.”
Как коммунальные предприятия Индианы больше не имеют монополии на производство энергии
ЗАКРЫТЬПоскольку затраты на возобновляемые источники энергии и природный газ снижаются, становится все труднее оправдать использование угля. Многие коммунальные предприятия также закрывают угольные электростанции в Индиане и других местах. Wochit
Изменения происходили медленно, а потом, казалось бы, сразу.
По соседству ваш сосед установил солнечные батареи. Вы начали видеть все больше и больше электромобилей. Когда вы едете на север по I-65, вы попадаете на участок сельскохозяйственных угодий, усеянный большими ветряными мельницами.А как насчет того большого поля солнечных панелей в аэропорту?
Возможно, вы не особо задумывались об этом, но каждый раз, когда вы включали свет или включали электроприбор, вы были частью революции.
До недавнего времени практически все жители Индианы и многих штатов по всей стране мало говорили о том, откуда поступает их электричество и как оно производится. Счета приходили по почте — от одной из крупных коммунальных компаний, принадлежащих инвестору, или от небольшого муниципального или сельского кооператива, — и клиенты оплачивали их.
Но коммунальные предприятия Индианы больше не обладают монополией на производство энергии в штате.
Будьте в курсе экологических проблем. Присоединяйтесь к репортерам IndyStar на Facebook.
Борьба за спасение угля: Индиана становится штатом поля битвы.
Сегодня перспектива полностью использовать в своем доме электроэнергию, производимую вами или вашим сообществом, уже не фантастика, а реальная возможность. По мере того, как технологии возобновляемой энергии становятся менее дорогими, плательщики тарифов начали брать генерацию в свои руки.Домовладельцы устанавливают солнечные батареи. Сообщества изучают возможность инвестирования в свои небольшие солнечные фермы. Крупный бизнес — Facebook, General Motors, Cummins — подписывают контракты с ветряными электростанциями.
Коммунальные предприятия должны адаптироваться, иначе могут потерять свою актуальность.
Для коммунальных предприятий это означает, что они в меньшей степени производят электроэнергию и в большей степени становятся ее движущими силами. И стареющая инфраструктура страны, впервые построенная после Второй мировой войны, не была рассчитана на электроэнергию, производимую как коммунальными предприятиями, так и их потребителями.Так что у них есть своя работа.
«Их задача сегодня — заново изобрести себя по мере развития событий», — сказала Бет Сохольт, исполнительный директор Clean Grid Alliance. «Они должны создать самолет во время полета».
А для клиентов некоторые предсказывают «демократизацию» сети.
«Сегодня мы просто говорим:« Мы — коммунальное предприятие, и это то, что у нас есть », но это перейдет к« что есть у наших клиентов с точки зрения того, что они производили, и что им нужно »», — сказал Фред Миллс, вице-президент по коммуникациям Indianapolis Power & Light.«Все сводится к тому, что мы будем более клиентоориентированной организацией».
Купить фотоРабочие работают над установкой второго раунда солнечных панелей в Объединенной церкви Христа Святого Петра в среду, 20 декабря 2018 г. (Фото: Келли Уилкинсон / IndyStar)
Коммунальные предприятия реагируют на изменения
Переход может потребуются десятилетия, но коммунальные предприятия планируют на десятилетия вперед и сейчас принимают решения об этих инвестициях.
На данный момент основные коммунальные предприятия все еще производят подавляющее большинство электроэнергии Индианы.Отчасти причина в том, что коммунальные предприятия боролись за способность потребителей генерировать собственную энергию.
В 2017 году законодатели штата проголосовали за резкое сокращение программы чистых измерений в Индиане, например, согласно которой коммунальные предприятия должны были оплачивать потребителям розничный тариф за любую электроэнергию, которую их солнечные панели возвращали в сеть. Эксперты по солнечной энергии заявили, что сдвиг на 180 градусов произошел слишком рано, до того, как солнечная энергия в жилых домах действительно заработала в этом штате.
Угольная промышленность, которая обеспечивает 65% электроэнергии штата, также оказывает влияние на эти решения.Угольные интересы хотят, чтобы коммунальные предприятия Индианы использовали большие электростанции, работающие на угле. Но коммунальные предприятия все чаще обращаются к другим видам топлива.
В сентябре NIPSCO, коммунальное предприятие на севере Индианы, вошло в историю штата, объявив о прекращении использования угольного парка и инвестировании в возобновляемые источники энергии. По их прогнозам, к 2028 году 65% вырабатываемой ими электроэнергии будет приходиться на солнечную, ветровую и аккумуляторную энергию, а 0% — на уголь. Согласно их анализу, это изменение может сэкономить налогоплательщикам более 4 миллиардов долларов в долгосрочной перспективе.
Лоббисты угля поддерживают обещания администрации Трампа отменить правила, касающиеся чистого воздуха и воды, заявляя, что в долгосрочной перспективе это удешевит топливо. Но потребительский спрос, прогрессивные технологии и избыток природного газа способствуют переходу к более чистому производству энергии.
Даже с учетом отмены нормативных требований, по словам представителей NIPSCO, возобновляемые источники энергии в будущем останутся дешевле угля. Катализатор перемен: рыночные силы.
Крупные компании не ждут. Cummins Inc., например, начала закупать часть своей энергии у ветряных турбин. General Motors снабжает электростанции в Огайо и Индиане ветровой и солнечной энергией, а Facebook реализует ветровой проект в Индиане для обеспечения своего центра обработки данных.
Ветряная электростанция в округе Бентон. (Фото: Университет Индианы)
«Если люди хотят более чистые вещи, компании и технологии откликнутся на это», — сказал Миллс из IPL. «Я думаю, что это более быстрый и эффективный способ, чем правила и нормы.
Duke Energy все еще находится на начальной стадии и планирует объявить о своих новых планах по выработке электроэнергии уже этим летом. Duke признает, что технологии развиваются как для коммунальных предприятий, так и для потребителей, — сказал Стэн Пинегар, президент Duke Energy в Индиане. Энергетические компании уже не единственные, у кого есть возможность производить электроэнергию.
«Наивно думать, что у клиентов не будет больше вариантов в будущем, мы уже видим это и увидим еще больше в будущем», — сказал он.«Так что нам просто нужно найти свое место и хорошо в нем уметь».
Больше ориентированности на клиента
Одним из таких вариантов для клиентов является солнечная энергия, хотя и не совсем обычным способом.
Буквально в прошлом месяце в Индианаполисе был запущен первый в штате солнечный кооператив. Это способ снизить стоимость установки панелей для жителей за счет их объединения и использования одного установщика по групповой ставке.
Ведущая организация в этой области, Solar United Neighbours, через такие кооперативы помогла сотням людей в 10 штатах установить солнечные батареи.Проект Индианаполиса все еще находится на первой стадии сбора заинтересованных жителей. На данный момент зарегистрировалось не менее 25 человек.
«Мы нацелены на расширение прав и возможностей домовладельцев и расширение прав и возможностей сообществ, чтобы они увидели будущее энергетической демократии, где электричество находится в руках сообщества, а не в руках коммунальных предприятий, принадлежащих инвесторам», — сказал Зак Шалк, программный директор Solar United Neighbors.
Поскольку электроэнергия не находится в руках коммунальных предприятий, «один из больших рисков состоит в том, что [они] становятся неактуальными, и клиенты, большие и маленькие, решают, как их обойти]», — сказал Сохольт.«Трудно сделать так, чтобы вся сетка не имела значения. Но люди найдут способ получить то, что они хотят, а коммунальные службы смогут выяснить, как стать частью этого или остаться позади ».
Купить фотоДейл Дашиелл с Rectify Solar готовится установить солнечную панель во время работы по установке второго раунда солнечных панелей в Объединенной церкви Христа Святого Петра в четверг, 21 декабря 2018 г. (Фото: Келли Wilkinson / IndyStar)
Некоторые коммунальные предприятия догадались, что их роль может сместиться от производителя электроэнергии к роли оператора сети.
«Мы провайдер проводов», — сказали Пинегар с Дьюком. «Так что в будущем на нас будут полагаться как на носителя энергии».
По словам Скотта Райта, исполнительного директора по рыночной стратегии и дизайну компании MISO, которая координирует поставки электроэнергии в 15 штатах Среднего Запада, эти провода и сеть были построены для одностороннего потока энергии.
Но поскольку все больше людей производят собственное электричество, а иногда и больше, чем им нужно, они отправляют эту энергию обратно в сеть, что требует создания улицы с двусторонним движением.
То, что распространяется там, где производится энергия. По словам Райта, такая «распределенная генерация», вероятно, потребует дополнительных инвестиций в энергосистему, в том числе большего количества линий электропередачи и большего контроля, чтобы помочь сохранить поток и сбалансированность.
Купить фотоЭто старые солнечные панели, так как новые установлены во втором раунде солнечных панелей в Объединенной церкви Христа Святого Петра, среда, 20 декабря 2018 г. (Фото: Келли Уилкинсон / IndyStar)
Батареи также будет играть решающую роль в этом будущем, по словам Майка Холтскло, директора по инжинирингу в области энергоснабжения IPL.
Хотя возобновляемые источники энергии открывают большие перспективы, сказал он, их нужно сочетать с чем-то, например с батареями. Ветряная и солнечная энергия по своей природе имеют слабые места в производстве энергии, поэтому батареи могут помочь использовать производимую избыточную энергию и использовать ее, когда это необходимо.
В 2016 году IPL открыла первую систему хранения на базе аккумуляторов в масштабе сети в регионе MISO, чтобы реагировать на колебания спроса и предложения энергии, а также поддерживать текущую интеграцию возобновляемых ресурсов.
Батареи продолжают дешеветь, и вполне вероятно, что в будущем многие семьи будут иметь свои собственные системы в гараже, чтобы дополнить выработку электроэнергии. Тем не менее, коммунальные предприятия полагают, что потребители будут полагаться на сеть в качестве резервного источника энергии, если кто-то не справится.
В результате всех этих изменений счета за коммунальные услуги будут выглядеть совершенно иначе.
Клиенты не будут платить столько за топливо, которое они используют — энергия ветра и солнца бесплатна. Но им придется заплатить за подключение к сети и получить гарантию передачи электроэнергии из одного места в другое, сказал IPL.Он также будет включать некоторую дополнительную плату, если какая-либо электроэнергия была использована.
Но может ли он также включать в себя кредит — коммунальные предприятия, выплачивающие потребителям — за перегрузку электроэнергии, которая была отправлена в другое место? Это остается неясным.
Построение графика будущего Индианы
Даже когда изменения происходят, немногие в отрасли предсказывают 100-процентное возобновляемое будущее, и будет много споров о том, какие технологии восполнят этот пробел в ближайшей и долгосрочной перспективе.
Время покажет, поскольку скоро начнется целевая группа по разработке энергетической политики Индианы.Многие люди видят в этом возможность посмотреть, как в будущем будет производиться энергия Индианы.
Ожидается, что интересы угля будут иметь большое значение, как это было во время законодательной сессии и во время их стремления ввести мораторий, который мог бы остановить попытки электроэнергетических компаний отказаться от угля. Но в результате неожиданного законодательного поворота эта мера потерпела поражение.
Коммунальные предприятия заявили, что этот переход идет вперед, и им нужна способность адаптироваться и вводить новшества, чтобы оставаться наготове и держать свет включенным.
Ожидается, что эта целевая группа завершит свой отчет к декабрю 2020 года.
«Для меня, — сказал Сохольт, — проблема заключается в скорости, с которой мы можем добиться этих изменений, и насколько быстро мы сможем осуществить этот переход».
Позвоните репортеру IndyStar Саре Боуман по телефону 317-444-6129 или по электронной почте [email protected]. Следуйте за ней в Twitter и Facebook: @IndyStarSarah.
Эмили Хопкинс рассказывает об окружающей среде для IndyStar. Свяжитесь с ними по телефону 317-444-6409 или Эмили[email protected]. Следуйте за ними в Twitter: @indyemapolis.
Проект IndyStar по экологической отчетности стал возможным благодаря щедрой поддержке некоммерческой организации Nina Mason Pulliam Charitable Trust.
Прочтите или поделитесь этой историей: https://www.indystar.com/story/news/environment/2019/05/20/how-indiana-utilities-no-longer-have-monopoly-energy-generation/3693882002 /
Солнечная энергия теперь «самая дешевая электроэнергия в истории», подтверждает IEA
Лучшие в мире схемы использования солнечной энергии теперь предлагают «самую дешевую… электроэнергию в истории» с технологией, более дешевой, чем уголь и газ в большинстве крупных стран.
Это согласно «Перспективе развития мировой энергетики на 2020 год» Международного энергетического агентства. В 464-страничном обзоре, опубликованном сегодня МЭА, также отмечается «чрезвычайно бурное» воздействие коронавируса и «весьма неопределенное» будущее глобального энергопотребления в ближайшем будущем. две декады.
Отражая эту неопределенность, версия очень влиятельного годового прогноза на этот год предлагает четыре «пути» до 2040 года, каждый из которых предполагает значительный рост возобновляемых источников энергии. По основному сценарию МЭА к 2040 году будет произведено на 43% больше солнечной энергии, чем ожидалось в 2018 году, отчасти из-за подробного нового анализа, показывающего, что солнечная энергия на 20-50% дешевле, чем предполагалось.
Несмотря на более быстрый рост возобновляемых источников энергии и «структурный» спад в отношении угля, МЭА заявляет, что пока слишком рано объявлять о пике использования нефти в мире, если не будет более жестких мер по борьбе с изменением климата. Точно так же в нем говорится, что спрос на газ может вырасти на 30% к 2040 году, если не будет усилена политическая реакция на глобальное потепление.
Это означает, что, хотя глобальные выбросы CO2 фактически достигли своего пика, они «далеки от немедленного пика и спада», необходимого для стабилизации климата. МЭА заявляет, что достижение нулевых выбросов потребует «беспрецедентных» усилий со стороны всех частей мировой экономики, а не только сектора энергетики.
Впервые МЭА включает подробное моделирование траектории 1,5 ° C, которая приведет к достижению глобальных чистых нулевых выбросов CO2 к 2050 году. В нем говорится, что изменение индивидуального поведения, такое как работа из дома «три дня в неделю», будет играть «важную роль». »Роль в достижении этого нового« нулевого уровня выбросов к 2050 году »(NZE2050).
Сценарии будущегоЕжегодный обзор мировой энергетики (WEO) МЭА выходит каждую осень и содержит некоторые из наиболее подробных и тщательно изученных анализов глобальной энергетической системы.Более сотни плотно упакованных страниц, он основан на тысячах точек данных и Мировой энергетической модели МЭА.
Прогноз включает несколько различных сценариев, чтобы отразить неопределенность в отношении многих решений, которые повлияют на будущий путь развития мировой экономики, а также на путь выхода из кризиса с коронавирусом в «критическое» следующее десятилетие. ПРМЭ также направлено на информирование политиков, показывая, как их планы должны измениться, если они хотят перейти на более устойчивый путь.
В этом году он опускает «сценарий текущей политики» (CPS), который обычно «обеспечивает базовый уровень… путем определения будущего, в котором не будут добавлены новые политики к уже существующим». Это связано с тем, что «трудно представить себе, что такой подход« обычного ведения дел »будет преобладать в сегодняшних обстоятельствах».
Эти обстоятельства являются беспрецедентными последствиями пандемии коронавируса, глубина и продолжительность которой остаются весьма неопределенными. Ожидается, что кризис приведет к резкому снижению мирового спроса на энергию в 2020 году, причем наибольший удар нанесет ископаемое топливо.
Основным путем ПРМЭ снова является «сценарий заявленной политики» (STEPS, ранее NPS). Это показывает влияние обещаний правительства выйти за рамки текущей политики. Однако важно то, что МЭА делает свою собственную оценку того, действительно ли правительства добиваются своих целей.
В отчете поясняется:
«STEPS разработан, чтобы детально и беспристрастно взглянуть на политику, которая либо действует, либо объявляется в различных частях энергетического сектора.Он принимает во внимание долгосрочные цели в области энергетики и климата только в той мере, в какой они подкреплены конкретной политикой и мерами. Таким образом, он является зеркалом планов сегодняшних политиков и иллюстрирует их последствия, не задумываясь о том, как эти планы могут измениться в будущем ».
Прогноз затем показывает, как нужно будет изменить планы, чтобы проложить более устойчивый путь. В нем говорится, что его «сценарий устойчивого развития» (SDS) «полностью согласован» с парижской целью удержания потепления «значительно ниже 2 ° C…» и продолжения усилий по ограничению [этого] уровнем 1.5С ». (Эта интерпретация оспаривается.)
Согласно паспорту безопасности выбросов CO2 к 2070 году выбросы CO2 достигнут нулевого значения, что дает 50% шанс удержать потепление на уровне 1,65 ° C с потенциалом остаться ниже 1,5 ° C, если отрицательные выбросы будут использоваться в масштабе.
МЭА ранее не указывало подробный путь к тому, чтобы оставаться ниже 1,5 ° C с вероятностью 50%, в прошлогоднем прогнозе предлагался только базовый анализ и некоторые общие параграфы описания.
Впервые в этом году ПРМЭ содержит «детальное моделирование» «нулевых чистых выбросов к 2050 году» (NZE2050).Это показывает, что должно произойти, чтобы выбросы CO2 упали до 45% ниже уровня 2010 года к 2030 году на пути к нулевому значению к 2050 году с 50% вероятностью достижения предела в 1,5 ° C.
Последний путь в прогнозах на этот год — «сценарий отложенного восстановления» (DRS), который показывает, что может произойти, если пандемия коронавируса затянется и мировая экономика займет больше времени для восстановления, с последующим сокращением роста ВВП и энергии. требовать.
На приведенной ниже диаграмме показано, как изменяется использование различных источников энергии по каждой из этих траекторий в течение десятилетия до 2030 года (правые столбцы) относительно сегодняшнего спроса (слева).
Слева: мировой спрос на первичную энергию по видам топлива в 2019 году, млн тонн нефтяного эквивалента (Мтнэ). Справа: изменение спроса к 2030 году по четырем направлениям в прогнозе. Источник: IEA World Energy Outlook 2020.
.Примечательно, что на возобновляемые источники энергии (светло-зеленый) приходится большая часть роста спроса во всех сценариях. В отличие от ископаемого топлива, рост замедления роста сменяется нарастающим спадом по мере увеличения масштабов глобальной климатической политики (слева направо на приведенной выше диаграмме).
Любопытно, что есть признаки того, что МЭА уделяет большее внимание паспорту безопасности (SDS), и этот путь соответствует парижской цели «значительно ниже 2C». В WEO 2020 он появляется чаще, раньше в отчете и более последовательно по страницам по сравнению с более ранними выпусками.
Это показано на приведенной ниже диаграмме, которая показывает расположение в относительном положении на странице каждого упоминания «сценария устойчивого развития» или «паспортов безопасности» в ПРМЭ, опубликованных за последние четыре года.
Упоминания «сценария устойчивого развития» или «паспортов безопасности» в последних четырех отчетах ПРМЭ с указанием относительного положения страниц. Источник: Краткий углеродный анализ отчета МЭА World Energy Outlook 2020 и предыдущих выпусков. Диаграмма Джо Гудмана для Carbon Brief.
Солнечный скачокОдно из наиболее значительных изменений в ПРМЭ этого года спрятано в Приложении B к отчету, в котором показаны оценки МЭА стоимости различных технологий производства электроэнергии.
Таблица показывает, что солнечная электроэнергия сегодня примерно на 20-50% дешевле, чем предполагало МЭА в прошлогоднем прогнозе, причем диапазон зависит от региона. Аналогичным образом наблюдается значительное сокращение предполагаемых затрат на использование наземных и морских ветроэнергетических установок.
Этот сдвиг является результатом нового анализа, проведенного командой WEO, в ходе которой рассматривалась средняя «стоимость капитала» для разработчиков, желающих построить новые генерирующие мощности. Ранее МЭА предполагало, что диапазон 7-8% для всех технологий варьируется в зависимости от стадии развития каждой страны.
Теперь МЭА проанализировало доказательства на международном уровне и пришло к выводу, что для солнечной энергии стоимость капитала намного ниже: 2,6-5,0% в Европе и США, 4,4-5,5% в Китае и 8,8-10,0% в Индии, в основном в результате политики, направленной на снижение риска инвестиций в возобновляемые источники энергии.
В лучших местах и с доступом к наиболее благоприятной политической поддержке и финансированию, по словам МЭА, солнечная энергия теперь может вырабатывать электроэнергию «по цене или ниже» 20 долларов за мегаватт-час (МВтч). Там написано:
«Для проектов с недорогим финансированием, использующих высококачественные ресурсы, солнечные фотоэлектрические панели теперь являются самым дешевым источником электроэнергии в истории.”
МЭА заявляет, что новые солнечные проекты для коммунальных предприятий сейчас стоят 30-60 долларов за МВтч в Европе и США и всего 20-40 долларов за МВтч в Китае и Индии, где действуют «механизмы поддержки доходов», такие как гарантированные цены.
Эти затраты «полностью ниже диапазона LCOE [приведенных затрат] для новых угольных электростанций» и «находятся в том же диапазоне», что и эксплуатационные расходы существующих угольных электростанций в Китае и Индии, сообщает МЭА. Это показано в таблице ниже.
Расчетные приведенные затраты на электроэнергию (LCOE) от солнечной энергии для коммунальных предприятий с поддержкой доходов по сравнению с диапазоном LCOE для электроэнергии на газе и угле.Источник: IEA World Energy Outlook 2020.
.Предполагается, что береговая и морская ветроэнергетика теперь имеет доступ к более дешевому финансированию. Это объясняет гораздо более низкие оценки затрат на эти технологии в последнем ПРМЭ, поскольку стоимость капитала составляет до половины стоимости новых разработок в области возобновляемых источников энергии.
В сочетании с изменениями в государственной политике за последний год эти более низкие затраты означают, что МЭА снова повысило свой прогноз в отношении возобновляемых источников энергии на следующие 20 лет.
Это показано на диаграмме ниже, где производство электроэнергии из возобновляемых источников энергии, не связанных с гидроэнергетикой, в 2040 году теперь достигнет 12 872 тераватт-часов (ТВт-ч) в STEPS, по сравнению с 2 873 ТВт-ч сегодня. Это примерно на 8% выше, чем ожидалось в прошлом году, и на 22% выше уровня, ожидаемого в прогнозе на 2018 год.
Мировое производство электроэнергии по видам топлива, тераватт-час. Исторические данные и ШАГИ из WEO 2020 показаны сплошными линиями, в то время как WEO 2019 показан пунктирными линиями, а WEO 2018 — пунктирными линиями.Источник: Краткий углеродный анализ отчета МЭА World Energy Outlook 2020 и предыдущих выпусков. Диаграмма от Carbon Brief с использованием Highcharts.Solar является главной причиной этого, объем производства в 2040 году увеличится на 43% по сравнению с ПРМЭ 2018 года. В отличие от этого, диаграмма показывает, что производство электроэнергии из угля сейчас «структурно» ниже, чем ожидалось ранее, а производство в 2040 году примерно на 14% ниже, чем предполагалось в прошлом году. МЭА заявляет, что топливо так и не восстановится после 8% -ного падения в 2020 году из-за пандемии коронавируса.
Примечательно, что уровень производства газа в 2040 году также будет на 6% ниже в STEPS этого года, опять же отчасти в результате пандемии и ее длительного воздействия на экономику и рост спроса на энергию.
В целом, возобновляемые источники энергии — во главе с «новым королем» солнечной энергии — удовлетворяют подавляющее большинство нового спроса на электроэнергию в STEPS, что составляет 80% от увеличения к 2030 году.
Это означает, что к 2025 году они превзойдут уголь в качестве крупнейшего источника энергии в мире, опередив «ускоренный случай», изложенный агентством всего год назад.
Рост числа переменных возобновляемых источников означает, что существует растущая потребность в гибкости электросетей, отмечает МЭА. «Надежные электрические сети, управляемые электростанции, технологии хранения и меры реагирования на спрос — все это играет жизненно важную роль в достижении этой цели», — говорится в сообщении.
Пересмотренные перспективыБолее низкие затраты и более быстрый рост солнечной энергии, наблюдаемые в прогнозах на этот год, означают, что с 2020 года будет происходить рекордное добавление новых солнечных мощностей каждый год, сообщает МЭА.
Это контрастирует с его планом STEPS для солнечной энергии в предыдущие годы, когда глобальный прирост мощностей каждый год — за вычетом выбытия — не изменился в будущем.
Теперь рост солнечной активности неуклонно повышается по ШАГАМ, как показано на графике ниже (сплошная черная линия). Это еще яснее, если учесть добавление новых мощностей для замены старых солнечных станций по мере их вывода из эксплуатации (брутто, пунктирная линия). Согласно SDS и NZE2050 рост должен быть еще более быстрым.
Ежегодный чистый прирост солнечной мощности во всем мире, гигаватт.Исторические данные показаны красным цветом, а основные прогнозы из последующих выпусков ПРМЭ показаны оттенками синего. ШАГИ ПРМЭ 2020 показаны черным цветом. Пунктирной линией показаны валовые приросты с учетом замены старых мощностей по мере их вывода из эксплуатации после предполагаемого срока службы в 25 лет. Источник: Краткий углеродный анализ отчета МЭА World Energy Outlook 2020 и предыдущих выпусков прогноза. Диаграмма от Carbon Brief с использованием Highcharts.История повышения прогнозов по солнечной энергии — благодаря обновленным предположениям и улучшению политической ситуации — прямо контрастирует с картиной для угля.
Последовательные выпуски ПРМЭ пересматривали прогноз по наиболее грязному ископаемому топливу, причем в этом году произошли особенно драматические изменения, отчасти благодаря «структурному сдвигу» от угля после коронавируса.
В настоящее время МЭА считает, что использование угля незначительно возрастет в течение следующих нескольких лет, но затем пойдет на спад, как показано на диаграмме ниже (красная линия). Тем не менее, эта траектория далеко отстает от сокращений, необходимых для согласования с SDS, траектории, соответствующей парижской цели «значительно ниже 2C» (желтый).
Исторический мировой спрос на уголь (черная линия, миллионы тонн нефтяного эквивалента) и предыдущие основные сценарии МЭА для будущего роста (оттенки синего). ШАГИ этого года показаны красным, а паспорт безопасности — желтым. Углерод. Краткий анализ «Перспектив мировой энергетики на 2020 год» МЭА и предыдущих выпусков прогноза. Диаграмма от Carbon Brief с использованием Highcharts.Прогноз на этот год особенно кардинально меняется для Индии, где использование угля в производстве электроэнергии, как ожидается, будет расти гораздо медленнее, чем ожидалось в прошлом году.
Согласно STEPS, мощность угольных электростанций вырастет всего на 25 гигаватт (ГВт) к 2040 году, заявляет МЭА, что на 86% меньше, чем ожидалось в WEO 2019. Вместо того, чтобы почти удвоиться с 235 ГВт в 2019 году, это означает, что угольный флот Индии вряд ли вырастет в следующие два десятилетия.
Аналогичным образом, согласно данным МЭА, в настоящее время ожидается, что рост количества электроэнергии, производимой из угля в Индии, будет на 80% медленнее, чем предполагалось в прошлом году.
Вот примечательная деталь, похороненная в @IEA # WEO20
Индия построит на 86% меньше угольных мощностей, чем ожидалось в прошлом году
МЭА, которое давно считается движущей силой глобального роста угля, теперь заявляет, что Индия добавит всего 25 ГВт к 2040 году
Результат? Мировые мощности по добыче угля упадут.https://t.co/bt7QfouTAf pic.twitter.com/SUDlaMo8so
— Саймон Эванс (@DrSimEvans) 15 октября 2020 г.
МЭА ожидает продолжения быстрого вывода из эксплуатации старых угольных мощностей в США и Европе, что произойдет к 2040 г. закрыть 197 ГВт (74% текущего парка) и 129 ГВт (88%) соответственно.
В совокупности, несмотря на быстрое расширение в Юго-Восточной Азии, это означает, что согласно прогнозам, впервые мировой флот угля сократится к 2040 году.
Энергетический прогнозВзятые вместе, быстрый рост возобновляемых источников энергии и структурный упадок угля помогают сдерживать глобальные выбросы CO2, предполагает прогноз.Но стабильный спрос на нефть и рост использования газа означают, что выбросы CO2 только стабилизируются, а не быстро сокращаются, как это требуется для достижения глобальных климатических целей.
Эти конкурирующие тенденции показаны на приведенной ниже диаграмме, которая отслеживает спрос на первичную энергию для каждого вида топлива в соответствии с ШАГАМИ МЭА, сплошными линиями. В целом возобновляемые источники энергии удовлетворяют три пятых увеличения спроса на энергию к 2040 году, при этом на их долю приходится еще две пятых от общего объема. Небольшого увеличения объемов добычи нефти и атомной энергии достаточно, чтобы компенсировать сокращение использования угольной энергии.
Мировой спрос на первичную энергию в разбивке по видам топлива, миллионы тонн нефтяного эквивалента, в период с 1990 по 2040 год. Будущий спрос основан на STEPS (сплошные линии) и SDS (пунктирные). Другие возобновляемые источники энергии включают солнечную, ветровую, геотермальную и морскую. Источник: IEA World Energy Outlook 2020. Chart by Carbon Brief using Highcharts.Пунктирные линии на приведенной выше диаграмме показывают кардинально разные пути, по которым необходимо следовать, чтобы соответствовать SDS МЭА, что примерно соответствует сценарию значительно ниже 2C.
К 2040 году, хотя нефть и газ останутся первыми и вторыми по величине источниками первичной энергии, потребление всех ископаемых видов топлива снизится. Уголь упал бы на две трети, нефть на треть и газ на 12% по сравнению с уровнями 2019 года.
Между тем, другие возобновляемые источники энергии, в первую очередь ветровая и солнечная, заняли бы третье место, поднявшись почти в семь раз за следующие два десятилетия (+ 662%). SDS предполагает меньший, но все же значительный рост в гидроэнергетике (+ 55%), атомной энергии (+ 55%) и биоэнергетике (+ 24%).
В совокупности низкоуглеродные источники составят 44% мировой энергетики в 2040 году по сравнению с 19% в 2019 году. По данным МЭА, уголь упадет до 10%, что является самым низким показателем со времен промышленной революции.
Однако, несмотря на эти быстрые изменения, мир не увидит чистых нулевых выбросов CO2 до 2070 года, примерно через два десятилетия после крайнего срока 2050 года, который потребуется для того, чтобы оставаться ниже 1,5 ° C.
Это несмотря на SDS, включающий «полное выполнение» целевых показателей нулевого уровня, установленных Великобританией, ЕС и совсем недавно Китаем.
Глобальные выбросы будут восстанавливаться гораздо медленнее, чем после финансового кризиса 2008–2009 годов.
Но # WEO20 дает понять, что 🌍 далек от того, чтобы привести к значительному снижению выбросов. А низкий экономический рост — это не стратегия с низким уровнем выбросов.
Подробнее: https://t.co/Iu4KdrI6N9 pic.twitter.com/IfEjXQb4Er
— Fatih Birol (@IEABirol) 13 октября 2020 г. оценка достоверности применяемых политик для достижения целей.Например, в таблице B.4 отчета говорится, что согласно STEPS существует лишь «некоторая реализация» юридически обязывающей цели Соединенного Королевства по достижению нулевых чистых выбросов парниковых газов к 2050 году.) Чистые нулевые числа«Пример» NZE2050, описывающий путь к 1,5 ° C, был опубликован впервые в этом году, потому что команда WEO согласилась, что «пора углубить и расширить наш анализ нулевых чистых выбросов», по словам директора МЭА. Фатих Бирол, пишет в предисловии к отчету.
За последние 18 месяцев крупнейшие страны, объявившие или законодательно установившие целевые показатели нулевых выбросов, включают Великобританию и ЕС. Совсем недавно Китай объявил о своем намерении достичь «углеродной нейтральности» к 2060 году. [В предстоящем анализе Carbon Brief будут изучены последствия этой цели.]
Углерод. Краткий анализ последних четырех ПРМЭ показывает, что эти изменения — наряду с публикацией специального отчета Межправительственной группы экспертов по изменению климата (МГЭИК) по температуре 1,5 ° С в 2018 году — сопровождались значительным ростом охвата этих тем в WEO.
В то время как в WEO 2017 фраза «1,5C» использовалась реже одного раза на 100 страниц, это число увеличилось до пяти использований в 2019 году и восьми использований на 100 страниц в 2020 году. Использование «чистого нуля» увеличилось с одного раза на 100 страниц в В 2017 и 2018 годах, до шести в 2019 году и 38 на 100 страниц в отчете за этот год.
Однако случай NZE2050 не является полным сценарием ПРМЭ, и поэтому он не содержит полного набора данных, сопровождающих ШАГИ и ПБ, что затрудняет полное изучение пути.
Это кажется «странным», — говорит д-р Джоэри Рогель, лектор по вопросам изменения климата и окружающей среды в Институте Грэнтэма в Имперском колледже Лондона и ведущий автор-координатор отчета IPCC 1.5C.
МЭА уже публикует длинные приложения с подробной информацией о путях распространения различных источников энергии и выбросах CO2 в каждом секторе в ряде ключевых экономик мира по каждому из своих основных сценариев. (В этом году это STEPS и SDS.)
Рогель, который в прошлом году присоединился к ученым и неправительственным организациям, призвавшим МЭА опубликовать полный сценарий 1.5C, сообщает Carbon Brief, что «все базовые данные по случаю NZE2050 должны быть доступны с той же детализацией, что и другие сценарии ПРМЭ».
Carbon Brief запросил такие данные в МЭА и обновит эту статью, если появятся новые подробности. Рогель добавляет:
«Главный вопрос, конечно, заключается в том, как NZE2050 намеревается достичь своей цели по нулевым чистым выбросам CO2 к 2050 году.Особый интерес здесь вызывает то, сколько и какой тип удаления CO2 [отрицательные выбросы] сценарий намеревается использовать и как он намеревается это делать при обеспечении устойчивого развития ».
В ПРМЭ целая глава посвящена NZE2050, с особым акцентом на изменениях, которые потребуются в течение следующего десятилетия до 2030 года.
(Он также сравнивает путь с путями, изложенными в специальном отчете МГЭИК, в котором говорится, что в случае NZE2050 траектория выбросов CO2 сопоставима со сценарием «P2», который остается ниже 1.5C с «нулевым или низким выбросом» и относительно «ограниченным» использованием BECCS.)
НИТЬ: @IEA теперь имеет агрессивный сценарий 1,5 ° C, достигающий нулевого значения к 2050 году.
Он основан на сценарии устойчивого развития, усиливая снижение мощности и конечного использования, но с новыми поведенческими мерами.
Голубые сценарии — это IPCC SR15. Https://t.co/RB9jajDICn pic.twitter.com/HETn2c3Icn
— Glen Peters (@Peters_Glen) 15 октября 2020 г. 2030 года в STEPS, оставаясь чуть ниже уровня 2019 года, тогда как в случае NZE2050 ожидается снижение более чем на 40%, с 34 млрд тонн (ГтCO2) в 2020 году до всего 20 ГтCO2 в 2030 году.Глобальные выбросы CO2 от энергетики и промышленных процессов, 2015-2030 гг., Млрд тонн CO2 (ГтCO2), в соответствии с STEPS, SDS и NZE2050. Цветные клинья показывают вклад в дополнительную экономию, необходимую для SDS и NZE2050. Источник: IEA World Energy Outlook 2020.
.Энергетический сектор вносит наибольшую часть экономии, необходимой в течение следующего десятилетия (оранжевые клинья на диаграмме выше). Но есть также важный вклад от конечного использования энергии (желтый), такого как транспорт и промышленность, а также от индивидуального изменения поведения (синий), который более подробно рассматривается в следующем разделе.
Эти три клина внесут примерно равные доли дополнительных 6,4 ГтCO2 экономии, необходимой для перехода от SDS к NZE2050 в 2030 году, заявляет МЭА.
В случае NZE2050 низкоуглеродные источники электроэнергии удовлетворят 75% спроса в 2030 году по сравнению с 40% сегодня. Солнечная мощность должна будет расти примерно на 300 гигаватт (ГВт) в год к середине 2020-х годов и почти на 500 ГВт к 2030 году по сравнению с текущим ростом примерно на 100 ГВт.
Выбросы CO2 от угольных электростанций сократятся на 75% в период с 2019 по 2030 год.Это означает, что наименее эффективные «подкритические» угольные электростанции будут полностью выведены из эксплуатации, и большинство «сверхкритических» электростанций также будет закрыто. В WEO говорится, что большая часть этого снижения придется на Юго-Восточную Азию, на которую приходится две трети нынешних мировых мощностей по углю.
Хотя ядерная энергия внесет небольшой вклад в увеличение производства с нулевым выбросом углерода к 2030 году в NZE2050, МЭА отмечает, что «длительное время создания крупномасштабных ядерных установок» ограничивает потенциал технологии для более быстрого масштабирования в этом десятилетии.
Что касается промышленности, то выбросы CO2 сократятся примерно на четверть, при этом на электрификацию и энергоэффективность придется наибольшая доля усилий. Только в «странах с развитой экономикой» каждый месяц в этом десятилетии будет модернизироваться более 2 млн домов с целью повышения энергоэффективности.
В транспортном секторе выбросы CO2 снизятся на одну пятую, не считая поведенческих сдвигов, перечисленных ниже. К 2030 году более половины новых автомобилей будут электрическими по сравнению с 2,5% в 2019 году.
Поведенческие измененияВпервые в обзоре этого года содержится подробный анализ потенциала изменения индивидуального поведения в целях сокращения выбросов CO2.(Это ясно даже на упрощенном уровне, когда слово «поведение» упоминается 122 раза по сравнению с 12 раз в 2019 году.)
Поведенческие изменения, такие как сокращение рейсов и отключение кондиционирования воздуха, будут играть жизненно важную роль в достижении нулевых выбросов, говорится в отчете.
В то время как SDS призывает к скромным изменениям в образе жизни людей, таким как более широкое использование общественного транспорта, этот выбор составляет лишь 9% разницы между этим сценарием и STEPS.
Для сравнения, в NZE2050 эти изменения ответственны за почти треть сокращений выбросов CO2 по сравнению с SDS в 2030 году.
Отчет включает подробный анализ предполагаемой экономии выбросов в результате глобального принятия конкретных мер, в том числе глобального перехода на сушку белья без стирки, снижение скорости движения и работу из дома.
По оценкам авторов, на 60% этих изменений могут повлиять правительства, ссылаясь на широко распространенное законодательство по контролю за использованием автомобилей в городах и усилия Японии по ограничению кондиционирования воздуха в домах и офисах.
Как показано на диаграмме ниже, большая часть экономии выбросов приходится на изменения в выборе транспорта людьми. На автомобильный транспорт (синие столбцы) приходится более половины экономии в 2030 году, а на значительное сокращение количества рейсов приходится еще один квартал (желтый).
Влияние изменений поведения в трех ключевых секторах на годовые выбросы CO2 в сценарии NZE2050. Источник: IEA World Energy Outlook 2020.
.Около 7% выбросов CO2 от автомобилей происходит при поездках на расстояние менее 3 км, что, по словам авторов, «займет менее 10 минут».В сценарии NZE2050 все эти поездки заменены пешими и велосипедными прогулками.
В отчете оценивается, что изменение поведения может сократить выбросы от полетов примерно на 60% к 2030 году. Сюда входят существенные изменения, такие как отказ от полетов продолжительностью менее одного часа, а также сокращение количества дальних и деловых рейсов на три. кварталы.
Даже в этом случае, из-за ожидаемого роста авиации, общая активность авиации в 2030 году по-прежнему останется на уровне 2017 года в этом сценарии.
Оставшаяся экономия связана с решениями по ограничению использования энергии в домах, такими как отключение систем отопления и кондиционирования воздуха.
Работа на дому может снизить выбросы в целом, поскольку сокращение выбросов от поездок на работу более чем в три раза превышает увеличение выбросов в жилых помещениях.
Получите наш бесплатный ежедневный брифинг, содержащий дайджест новостей о климате и энергетике за последние 24 часа, или наш еженедельный брифинг, содержащий обзор нашего контента за последние семь дней.Просто введите свой адрес электронной почты ниже:
По оценкам отчета, если бы 20% глобальной рабочей силы, способной работать из дома, делали это всего один день в неделю, в 2030 году это позволило бы сэкономить около 18 миллионов тонн CO2 (MtCO2) во всем мире, как показано на диаграмме ниже.
Фактически, сценарий NZE2050 предполагает, что все, кто в состоянии сделать это, работают из дома три дня в неделю, что дает относительно скромную экономию в 55 млн т CO2.
Из-за более широких изменений в структуре энергопотребления в NZE2050 влияние выбросов от широко распространенной домашней работы невелико по сравнению с текущей ситуацией, показанной в левом столбце, или ШАГАМИ в 2030 году, показанными в среднем столбце.
Изменение годового глобального потребления энергии (левая ось Y) и выбросов CO2 (правая ось Y), если 20% населения работали из дома один день в неделю по трем различным сценариям. Сокращение выбросов от транспорта (красный и голубой) превышает увеличение выбросов в жилых помещениях (фиолетовый, темно-синий и серый), связанных с работой на дому. Источник: МЭА.
Хотя в отчете основное внимание уделяется выбросам CO2 от энергетической системы, в нем также упоминаются высокие уровни метана и закиси азота в результате глобального сельского хозяйства и, в частности, животноводства.
В нем отмечается, что без перехода к вегетарианской диете будет «очень трудно добиться быстрого сокращения выбросов».
Авторы признают, что универсальное принятие предложенных изменений поведения маловероятно, но предполагают, что существуют «альтернативные способы», с помощью которых такие изменения могут сочетаться для получения аналогичных результатов.
Например, хотя некоторые регионы могут не вводить более жесткие ограничения скорости, другие могут решить снизить скорость движения более чем на 7 км / ч, предложенных в отчете.
Саймон Эванс был одним из более чем 250 внешних рецензентов, прочитавших разделы «Перспективы мировой энергетики» в черновой форме.
Линии публикации из этой истории
Солнечная энергия стала «самой дешевой электроэнергией в истории», подтверждает IEA
.Анализ: впервые детализированные графики МЭА 1.Путь 5C в World Energy Outlook
Анализ: «Критическое десятилетие» для климата, согласно IEA World Energy Outlook
.Этот фонарик приводится в действие прикосновением руки | Инновация
Вот малоизвестный факт: человеческое тело в любой момент вырабатывает энергию, эквивалентную 100-ваттной лампочке.В этом смысле мы всегда тратим впустую нашу энергию — энергию, которую можно использовать для питания лампочки. Именно это мышление привело к тому, что 16-летний подросток изобрел первый фонарик, работающий исключительно за счет тепла тела.
«Полый фонарик» Энн Макосински — не единственный светильник с ручным приводом. Но в то время как другие продукты генерируют энергию при встряхивании или даже при проворачивании руки, ее отмеченный наградами прототип сияет, как только вы его берете в руки.
«Я подумал, а почему бы не использовать тепло тела?» она рассказала The Oregon Herald . «Из нас излучается так много тепла, и оно тратится зря».
Только недавно исследователи изучали способы улавливания избыточного тепла тела в качестве средства питания таких устройств, как слуховые аппараты и кардиостимуляторы. Четыре года назад шведские инженеры придумали хитрый (и несколько хитрый) способ откачивать биотермическую энергию пассажиров центрального железнодорожного вокзала для обогрева близлежащих офисных зданий.Тем не менее, большая часть проблем при разработке этих технологий связана с тем фактом, что электричество, произведенное из остаточной тепловой энергии, обычно слишком мало для работы большинства обычных устройств. Например, внутреннее ухо производит от 70 до 100 милливольт потенциального электричества, чего недостаточно даже для питания датчика или чипа Wi-Fi, согласно отчету Wall Street Journal .
Макосински, второкурсник средней школы Университета Сент-Майклс в Виктории, Британская Колумбия, сначала подумала об этой идее после того, как узнала, что подруга на Филиппинах, у которой не было электричества, плохо учится в школе, потому что у нее нет электричества. достаточно времени для занятий в светлое время суток.Дилемма ее друга на удивление распространена среди растущего числа людей в развивающихся регионах, которые либо не могут себе позволить, либо не имеют доступа к электросети. Для Макосински это послужило толчком к применению того, что она узнала о материалах для сбора энергии из экспериментов, которые она проводила с седьмого класса.
Тем не менее, Макосинский не был уверен, достаточно ли тепла от руки человека, чтобы заправить фонарик, оснащенный светодиодной лампочкой. Чтобы улавливать и преобразовывать энергию, она остановилась на плитках Пельтье, которые производят электричество, когда разница температур между двумя сторонами составляет 5 градусов Цельсия, явление, известное как эффект Пельтье.Прочный материал, не имеющий движущихся частей и имеющий неограниченный срок службы, был встроен в корпус фонарика, чтобы одновременно поглощать тепло от руки человека вдоль внешней стороны фонарика вместе с прохладным окружающим воздухом внутри гаджета.
Но хотя плитки, согласно ее расчетам, могут генерировать мощность, превышающую минимальную, необходимую для питания фонарика (5,7 милливатт), она обнаружила, что результирующего выходного напряжения недостаточно. Чтобы поднять напряжение, она добавила трансформатор, а затем и цепь, чтобы обеспечить электричество, которое оказалось более чем достаточно (5 вольт переменного тока).
После того, как Макосински включила фонарик, она проверила свое новое изобретение и обнаружила, что свет имеет тенденцию светить ярче, поскольку наружный воздух становится холоднее. Например, фонарик стал работать лучше, когда температура на улице упала с 10 до 5 градусов Цельсия. Но даже в более теплых условиях полый фонарик выдерживал сильный луч света более 20 минут.
Что, пожалуй, наиболее впечатляет, так это то, что материалы, которые Макосинский использовал для создания продукта, стоили всего 26 долларов; если устройство производится серийно, ожидается, что общая стоимость будет значительно меньше.
Весной прошлого года Макосински представила свое патентоспособное изобретение на Google Science Fair 2013, где она была удостоена главного приза в категории от 15 до 16 лет и получила стипендию в размере 25 000 долларов США. Но чтобы коммерциализировать свое изобретение, ей нужно будет найти способ привести его в соответствие с характеристиками других на рынке, которые имеют выходную яркость от 90 до 1200 люмен; ее версия в настоящее время достигает максимума 24.
И все же она не обескуражена.
«Я хочу убедиться, что мой фонарик доступен для тех, кто действительно в нем нуждается», — сказала она The Oregon Herald .
Электронный галлон: насколько дешевле ездить на электричестве?
Сколько стоит добираться до работы или ездить по городу? Цена на бензин вывешена на каждой заправке, но как насчет стоимости езды на электричестве? Электронный галлон Министерства энергетики дает быстрый и простой ответ на этот вопрос и позволяет водителям электромобилей (EV) увидеть, сколько они могут сэкономить на топливе, используя электричество вместо бензина.
Цена электронного галлона говорит потребителям, сколько стоит проехать на электромобиле такое же расстояние, на которое можно проехать галлон неэтилированного бензина в аналогичном автомобиле. Это так просто. Мы берем среднее расстояние, которое автомобиль с бензиновым двигателем может проехать на галлоне бензина (28,2 мили для сопоставимых автомобилей 2012 модельного года), а затем подсчитываем, сколько будет стоить проезд среднего электромобиля на такое же расстояние. Поскольку цены на электроэнергию в разных штатах немного отличаются, наш инструмент электронного галлона показывает, сколько стоит электронный галлон в вашем штате, и сравнивает его со стоимостью бензина.Как видите, в среднем заправка автомобиля бензином обходится примерно в 3 раза дороже, чем заправка электричеством.
Если вы нанесете график цены на бензин и цены в электронных галлонах с течением времени, вы заметите кое-что еще. Цены на бензин часто скачкообразно скачут вверх и вниз, потому что они связаны с международными нефтяными рынками. События за полмира могут увеличить цену, которую мы платим за бензин. Высокие цены и неопределенность — тяжелое бремя для американских потребителей. С другой стороны, стоимость электроэнергии является региональной и гораздо более стабильной, поэтому вам обычно не нужно беспокоиться о резких колебаниях цен на газ.
[[{«type»: «media», «view_mode»: «media_large», «fid»: «654636», «field_deltas»: {}, «link_text»: null, «attributes»: {«height») : 321, «ширина»: 480, «класс»: «медиа-изображение медиа-элемент файл-медиа-большой», «данные-дельта»: «1»}, «поля»: {}}]]
Цена электронного галлона дает потребителям немного больше информации для сравнения затрат на вождение электромобиля со стоимостью бензина, но она не измеряет некоторые другие преимущества езды на электричестве. Существуют значительные экологические выгоды — особенно в связи с увеличением доли электроэнергии, получаемой за счет чистой и возобновляемой энергии, — а также выгоды для энергетической безопасности Америки.Вместо того, чтобы тратить 1 миллиард долларов в день на иностранную нефть, электромобили и другие технологии, мы можем снабжать наши автомобили, дома и предприятия американской энергией.
Поскольку технология электромобилей продолжает совершенствоваться, а стоимость транспортных средств продолжает падать, все больше и больше американцев переходят на электромобили. Если вам интересно, сколько вы могли бы сэкономить, обязательно посетите energy.gov/eGallon, чтобы узнать последнюю цену на электронный галлон в вашем штате.
Как превратить свой дом в более дешевую и экологичную энергию с помощью нашего открытого API
Agile Octopus — это потенциал для инноваций и расширения возможностей, который приходит с вашей энергией в свои руки.Вот почему мы сделали API Agile общедоступным. Мы предоставляем нашим клиентам доступ к нашим данным о ценах, чтобы они могли интегрировать и автоматизировать свой умный дом по своему усмотрению: https://developer.octopus.energy/docs/api/
На нашем онлайн-форуме Agile Octopus находится активное сообщество энтузиастов, которые постоянно расширяют границы энергетики, используя наш общедоступный API и тарифы. Мы хотели поделиться некоторыми способами, которыми они взламывают свои дома, чтобы получить самую дешевую и экологически чистую энергию, а поможет вам начать строительство собственного умного дома!
Экономьте деньги и выбросы углерода с более умным домомМы создаем фундамент для возобновляемого и полностью электрического будущего.
Один из способов уменьшить потребность в грязном ископаемом топливе — это изменить наши модели коллективного потребления и лучше распределять потребление энергии в течение дня — во времена, когда энергия является самой зеленой (и дешевой). Мы делаем это с нашим тарифом AgileOctopus. Благодаря динамическому ценообразованию, основанному на получасовых оптовых ценах на энергию, Agile дает клиентам возможность изменять сверхнизкие (иногда бесплатные или даже отрицательные) цены, когда они используют энергию, до непиковых периодов, когда сеть испытывает меньшую нагрузку, что значительно снижает потребление энергии. углеродоемкие и намного дешевле.Заказчики получают огромные выгоды от изменения энергопотребления и автоматизации устройств, чтобы они работали в самое дешевое и экологически чистое время.
Гибкость или нет, вы можете принять участие — если вы используете фиксированный тариф с фиксированной ставкой, использование энергии в непиковое время все же «зеленее», потому что энергия, поступающая по проводам, будет менее углеродоемкой. Однако, если вы действительно хотите воспользоваться преимуществами изменения потребления энергии, вы можете сэкономить сотни с помощью интеллектуального тарифа, такого как AgileOctopus.
Этот интеллектуальный тариф основан на использовании интеллектуального счетчика для отслеживания переменной стоимости вашей энергии, но экономия Agile действительно достигается с помощью других продуктов для умного дома и интеграции приложений.Автоматизация ваших бытовых приборов позволяет вам максимально использовать самую дешевую и экологически чистую энергию, даже не задумываясь об этом; когда вы спите или гуляете.
Вы можете подключить интеллектуальные системы горячего водоснабжения, электрическое отопление, зарядные устройства для электромобилей и все остальное, что можно указать, когда использовать энергию — от умных розеток до умных домашних помощников, таких как Google Home и Amazon Alexa. Как мы вскоре увидим, автоматизировать дом очень легко, чтобы вы могли получать большую часть дешевой экологически чистой энергии, даже не задумываясь об этом.
Доступ к нашему Agile APIAgile — это все о потенциале инноваций и расширении прав и возможностей, которые приходят, когда вы берете свою энергию в свои руки. Вот почему мы сделали API Agile общедоступным. Мы предоставляем нашим клиентам доступ к нашим данным о ценах, чтобы они могли интегрировать и автоматизировать свой умный дом, свой путь .
Чуть более двух лет назад мы провели хакатон по запуску тарифа Agile и пригласили более 100 инженеров из более чем 20 компаний, чтобы посмотреть, какие инновации могут появиться из тарифного API.С тех пор вокруг нашего форума Octopus Agile собралось активное сообщество энтузиастов энтузиастов, и мы отследили более 30 опубликованных случаев использования. Мы видели самодельные домашние системы управления энергопотреблением, приложения, которые показывают динамическую скорость на часах Apple, и целый ряд оригинальных настроек, использующих все, от Raspberry Pi до интеллектуальных термостатов Tado для автоматизации энергопотребления.
Наши первопроходцы в области энергетики сегодня живут в энергетике будущего. Вот лишь несколько способов взломать наш API, чтобы максимально использовать более дешевую и экологически чистую энергию.
Отслеживание оперативных показателей и данных о потребленииПосле запуска и запуска первый вопрос, который обычно задают нам клиенты, — это отслеживание данных о потреблении.
В мае 2020 года мы обновили панель инструментов, что упростило просмотр и изучение тарифных ставок Agile.
Панель управления учетной записи Octopus также предоставляет красиво оформленный динамический график ежедневного потребления — быстро, легко и довольно захватывающе пролистывать день за днем свои модели потребления и наблюдать, как график движется вверх и вниз.
Ценообразование Agile, опубликованное на панели инструментов учетной записи Octopus, работает для большинства, но наши первопроходцы постоянно используют наш API для разработки новых способов просмотра своих ежедневных цен (и другой информации), которые лучше соответствуют их предпочтениям.
Ким Баутерс, например, использовал наш API для создания своего приложения OctopusWatch, так что вы даже можете держать ставки Agile на запястье для легкого доступа!
В том же духе есть популярное приложение Watchdog от Макса Санны, и у Ким также есть конкуренция с другим приложением для Apple Watch — Octopus Energy Agile Watcher, созданным Робертом Саммонсом.
Еще один отличный пример — и, вероятно, самый популярный — это EnergyStats UK Мика Уолла, веб-сайт (и Twitter), который отображает ставки и предоставляет целый ряд полезных инструментов, которые позволяют вам анализировать ваши тарифы и структуру потребления Agile.
Имея это в виду, клиенты часто спрашивают нас о загрузке их данных для создания собственных графиков, сравнения с фиксированными тарифами или просто проверки нашей домашней работы, чтобы убедиться, что их счет правильный.Опять же, наши пионеры в области технологий использовали наш API, чтобы придумать ряд оригинальных решений!
Если вы не совсем готовы перейти на Agile, но у вас есть умный счетчик, для которого мы собираем получасовые данные, есть несколько онлайн-инструментов, которые помогут вам сравнить, как будут выглядеть ваши счета по нашим различным тарифам. , исходя из вашего энергопотребления — некоторые могут проанализировать тенденции за последние 12 месяцев.
Можно ли это автоматизировать? — Да, ты можешь!После того, как мы спросили, как отслеживать их потребление, второй вопрос, который нам задают, обычно связан с управлением приборами таким образом, чтобы они использовали энергию в наилучшее время суток.
Вы можете использовать Agile API для управления и автоматизации домашних устройств, таких как отопление, горячее водоснабжение, хранение домашних аккумуляторов и зарядка электромобилей. Таким образом, вы сможете максимально использовать сверхдешевую и сверхзеленую энергию в непиковое время.
Smart Energy Storage
Powervault была одной из первых технологий, использующих наш API. Их домашняя система хранения энергии использует ее для пополнения, когда энергия в сети самая дешевая и зеленая, и для передачи энергии вашему дому, когда энергия сети наиболее востребована (и, следовательно, более грязная и дорогая).Мы объединились с Powervault в рамках исследовательского проекта, финансируемого BEIS, который был посвящен использованию мозга батареи для более эффективного нагрева воды. Испытания окончены, но в системы Powervault теперь встроена эта возможность.
Интеллектуальное электрическое отопление
Электрическое отопление — это еще одна область, в которой интеллектуальное отслеживание затрат на электроэнергию может иметь огромные преимущества, особенно при использовании с интеллектуальными тепловыми насосами с наземным и воздушным источником. накопительные нагреватели или электрические нагреватели. Каролис из Homely связался с нами некоторое время назад, чтобы сообщить нам об их интеллектуальном термостате, который предназначен для решений наземного и воздушного отопления.Вместо того, чтобы устанавливать целевую температуру, вы устанавливаете диапазон комфорта, и термостат будет работать с нашим API, чтобы согреть ваш дом до верхнего порога, когда цены низкие, и позволить дому остыть до нижнего порога, когда цены высоки. Каролис также создал приложение, которое с помощью термостата изучает цикл «нагрева» и «охлаждения» дома, постоянно обновляя свои прогнозы, чтобы автоматически обогревать его дом с минимально возможными затратами.
Если вы предпочитаете конкретную заданную температуру, а не комфортный диапазон, то другим решением является аккумулирование тепла.Такие системы, как Sunamp, Boxergy и Tepeo, можно нагревать, используя самые дешевые полчаса дня, сохранять это тепло, а затем отпускать его в течение дня в соответствии с графиком термостата.
Smart EV Charging
Зарядный кабель для электромобилей Ohme был, вероятно, первым зарядным устройством для электромобилей, в котором использовался Agile API. Он работает с нашим гибким тарифом, а также с тарифами Go and Go Faster, используя API для накачки вашего электромобиля электронами, когда это дешевле и экологичнее всего.
Что касается зарядки электромобилей, популярной системы мониторинга и управления энергопотреблением с открытым исходным кодом, OpenEnergyMonitor также включил поддержку Agile для доступа к данным о тарифах и потреблении в своей системе, а также для зарядного устройства OpenEVSE.
Один из наших пионеров интеллектуальной энергетики, GreeningMe, использовал Raspberry Pi и дополнительную печатную плату с нашим API для включения / выключения зарядного устройства своего электромобиля и установки наилучшего времени для работы своего погружного нагревателя с горячей водой. У него также есть солнечная энергия, поэтому он может направлять свою солнечную энергию либо на свое интеллектуальное автомобильное зарядное устройство, либо на горячую воду.
Мик Уолл, мозг, стоящий за EnergyStats UK, недавно приобрел электромобиль, использующий Agile API для автоматизации зарядки и своего все более умного дома! Вы можете узнать больше о его путешествии здесь.
Это лишь некоторые из невероятно умных (простите за каламбур) способов, которыми люди максимально используют умные счетчики, умные устройства и умные API.
Сделаю сам (тех. Уровень 🌶 🌶🌶 )После рассмотрения некоторых различных инструментов отслеживания на основе API и интеграции продуктов, последний шаг — даже принять участие и попробовать себя!
Для тех, кто только начинает работать с API, Гай Липман собрал удобное руководство, в котором более подробно рассказывается, чем на нашей странице для разработчиков. Это отличное место для начала, и я знаю многих клиентов, которые успешно его использовали. в качестве отправной точки.
Наш собственный форум Agile, на котором наши пионеры умного дома собираются, чтобы поделиться советами и приемами, также является особенно богатым источником материалов
Популярная система Home Assistant — еще одна особенно полезная точка отсчета, полная возможностей интеграции умного дома и Интернета вещей. — Приятно видеть, как быстро Agile API и Agile Octopus Tariff вошли в экосистему умного дома.
В категории домашнего пива такие пользователи, как GreeningMe, создали свои собственные системы управления энергопотреблением дома (HEMS), используя вездесущий Raspberry Pi для управления значительной частью своего энергопотребления.
Вместе с Western Power Distribution, Passiv Systems также создали нечто подобное HEMS от GreeningMe, которое в настоящее время проходит испытания и оценивается как еще один исследовательский проект под названием MADE, финансируемый BEIS.
Говоря об устройствах Raspberry Pi, наверное, одним из наших личных фаворитов является дисплей InkyPHAT eInk. Можете ли вы назвать милые дисплеи тарифов? Мы так думаем! Как обычно, вы можете сделать это самостоятельно — код имеет открытый исходный код, и устройства доступны для заказа на Пиморони (и в других местах).
Если вы готовы, Райан Уолмсли взломал свое зарядное устройство для электромобиля (но, пожалуйста, прислушайтесь к его предупреждениям, прежде чем возиться с какой-либо электроникой).
Если изоляция действительно дошла до вас и вы начали разговаривать с неодушевленными объектами, войдите в Telegram и начните общаться с Agile с помощью чат-бота Itinerant Ham’s Agile.
Наконец, если вы хотите узнать больше об API в более общем плане, новый Re.Сервис alto находится в стадии бета-тестирования и стремится стать своего рода торговой площадкой API. Их сайт стоит посмотреть — будет интересно увидеть, какие еще типы API публикуются!
Приятно видеть такой спектр сервисов, систем и устройств, подключенных к нашему API, и мы знаем, что над ними еще много работы.