Давление газа: Давление газа — урок. Физика, 7 класс.

Содержание

Давление газов — урок. Физика, 7 класс.

Газы и жидкости не имеют собственной формы. Молекулы газов свободно перемещаются в пространстве, между ними практически не действуют силы притяжения. Но молекулы газов находятся в хаотичном движении, и квадратный сантиметр поверхности любого тела за одну секунду получает так много ударов молекул воздуха, что их количество записывается \(23\)-значным числом.

Совместный удар молекул создаёт давление газа на поверхность.  

Если газом наполнить сосуд, то он займёт весь объём сосуда, к тому же количество молекул газа в сосуде можно увеличивать или уменьшать, таким образом изменяя давление на стенки сосуда. Скорость движения молекул также зависит от температуры.

Если масса газа неизменна, то при повышении температуры газа увеличивается его давление.

Атмосферное давление

Атмосферу Земли удерживают гравитационные силы Земли. Атмосфера Земли простирается на высоту нескольких тысяч километров и своим весом давит на земную поверхность и на все тела на ней (масса \(1\) литра воздуха приблизительно равна \(1,29\) грамма).  Почему это не ощущается? Потому что атмосферный воздух давит на тела со всех сторон с одинаковым давлением.

Закон Паскаля: давление, производимое на жидкость или газ, передаётся без изменения в каждую точку жидкости или газа.

Например, нормальное атмосферное давление на \(1\) квадратный метр стола равносильно \(10\)-тонной массе, положенной на стол. Со столом ничего не происходит, потому что атмосферное давление воздействует и на нижнюю поверхность стола. Давления компенсируют друг друга.

 

Атмосферное давление измеряется в миллиметрах ртутного столба (мм рт. ст.). Нормальным атмосферным давлением считают давление, равное \(760\) мм рт. ст.

\(760\) мм рт. ст. \(= 1013,25\) гПа.

В технике используют и другие единицы, например, атмосферу (атм). \(1\) атм \(= 760\) мм рт. ст.

 

Давление в автомобильных шинах приблизительно равно \(2\) атм, а давление в бутылке шампанского равно почти \(6\) атмосферам.

 

 

Дальше от земной поверхности атмосферное давление снижается. На высоте \(5\) км оно уже приблизительно в \(2\) раза меньше. Поэтому в горах трудно дышать: разреженный воздух содержит меньше молекул, в том числе и молекул кислорода. При этом уменьшается также сила, с которой этот кислород давит на стенки легких, и падает концентрация кислорода в крови.

 

Для измерения атмосферного давления используют барометр-анероид. Давление газов в закрытых сосудах измеряют манометрами.

 

 

Барометр Торричелли. 17 в.

 

 

Барометр

 

 

 

Цифровой (дигитальный) барометр

 

что это, единица измерения, от чего зависит, как вычислить, формулы МКТ

Давление газа — что это за параметр

Определение

Давление в физике представляет собой один из трех ключевых термодинамических макроскопических характеристик для измерения любой газовой системы.

Определение

Газ — это одно из четырех, включая плазму, агрегатных состояний материи, характеризующееся очень слабыми связями между составляющими его частицами, а также их большой подвижностью.

В газообразной среде частицы в определенной концентрации расположены не упорядоченно и перемещаются в хаотичном порядке в разных направлениях с одинаковой вероятностью. Подобное строение не позволяет газам сохранять стабильность объема и формы даже при малом внешнем силовом воздействии. Для любого газа, включая одноатомный, значение средней кинетической энергии его частиц в виде атомов и молекул будет превышать энергию межмолекулярного взаимодействия между ними.

Кроме того, расстояние, на которое удалены частицы, значительно превышает их собственные размеры. В том случае, когда молекулярными взаимодействиями и габаритами частиц допускается пренебрегать, газ считают идеальным. Для такой формы материи характерен только один тип внутреннего взаимодействия в виде упругих столкновений. Так как размер частиц пренебрежимо мал по сравнению с расстоянием, на которое они удалены, вероятность столкновений частиц между собой будет низкой.

Примечание

По этой причине в идеальной газовой среде можно наблюдать лишь столкновения частиц со стенками сосуда. Какой-либо реальный газ с хорошей точностью можно отнести к идеальному, когда их температура выше, чем комнатная, а давление несущественно больше, чем атмосферное.

Причина возникновения давления в газах

Давление газа нельзя объяснить теми же причинами, что и давление твердого тела на опору. Расстояние, на которое удалены молекулы газообразной среды, существенно больше. В результате хаотичного движения они сталкиваются между собой и со стенками сосуда, который они занимают. Давление газа на стенки сосуда и вызвано ударами его молекул.

Данный параметр увеличивается по мере того, как нарастает сила ударов молекул о стенки. Газ характеризуется одинаковым давлением во всех направлениях, которое является следствием хаотичного движения огромного числа молекул.

Примечание

Важно отметить, что газ оказывает давление на дно и стенки сосуда, объем которого он занимает, во всех направления равномерно. В связи с этим, воздушный шарик сохраняет форму, несмотря на то, что его оболочка достаточно эластична.

Перед тем как транспортировать или отправить на хранение газообразные вещества, их сильно сжимают. В этом случае давление газа увеличивается. Его помещают в специальные баллоны из стали высокой прочности. Такие емкости необходимы для хранения сжатого воздуха на подводных лодках и кислорода, предназначенного для сварки металлов.

Свойства давления газа:

  1. Если объем уменьшается, то давление газа возрастает, а во время увеличения объема, давление будет снижаться при постоянных величинах массы и температуры вещества.
  2. Газ, находящийся в закрытом сосуде, характеризуется давлением, которое возрастает по мере увеличения температуры вещества при условии постоянства его массы и объема.
  3. В том случае, когда масса газа увеличивается, его давление также будет возрастать и наоборот.
 

Запись формул для определения давления газа начинают с выяснения причин, по которым оно возникает в рассматриваемой системе.

Исходя из физического смысла, давление представляет собой величину, равную отношению силы, перпендикулярно воздействующей на некоторое основание, к площади этого основания:

\(P=\frac{F}{S}\)

Как было отмечено ранее, для идеальной газовой системы характерен лишь один тип взаимодействия — это абсолютно упругие столкновения. В процессе частицы передают количество движения Δp стенкам сосуда в течение времени соударения Δt. В данном случае применим второй закон Ньютона:

\(F*Δt = Δp\)

Таким образом, конкретно сила F является причиной формирования давления на стенки сосуда. Данная величина F, производимая одной частицей, незначительна. Однако, когда количество частиц огромно, они в совокупности создают ощутимый эффект, проявляемый в виде наличия давления в сосуде.

Формула давления идеального газа из молекулярно-кинетической теории

Объяснение концепции идеального газа построено на основных положениях молекулярно-кинетической теории, которая вытекает из принципов статистической механики.

{2}}{3*V}\)

где N является количеством частиц в системе; V обозначает объем; v представляет собой среднюю квадратичную скорость; m является массой одной частицы.

При наличии указанных в формуле параметров, выраженных в единицах СИ, можно вычислить давление газа в сосуде.

Второй способ записи основного уравнения МКТ

Определение

В середине 30-х годов XIX столетия французскому инженеру Эмилю Клапейрону удалось обобщить накопленный до этого времени экспериментальный опыт изучения поведения газов во время разнообразных изопроцессов и получить формулу, которую в будущем назвали универсальным уравнением состояния идеального газа:

\(P*V = n*R*T \)

n является количеством вещества в молях; T представляет собой температуру по абсолютной шкале и обозначается в кельвинах.

Величина R является универсальной газовой постоянной. Этот термин был введен в уравнение русским химиком Д.И. Менделеевым. Исходя из этого, запись уравнения называют законом Клапейрона-Менделеева.

Определение

С помощью данного выражения можно определить формулу для расчета давления газа:

\(P=\frac{n*R*T}{V}\)

Полученное уравнение объясняет линейный рост давления при увеличении температуры в условиях стабильности объема. Если объем уменьшается с сохранением температуры, то давление увеличивается по гиперболе. Данные закономерности явления отражены в законах Гей-Люссака и Бойля-Мариотта.

 

Сравнивая представленное выражение с записью формулы, которая вытекает из положений молекулярно-кинетической теории, можно установить связь кинетической энергии одной частицы, либо системы в общем, и абсолютной температуры.

 

Важно отметить, что при расчетах с использованием формулы для Р, вытекающей из уравнения Клапейрона, связь с химическим составом газа отсутствует. Если давление определяют с помощью выражения, согласно понятию молекулярно-кинетической теории, то данную связь следует учитывать в виде параметра m. В том случае, когда определяют давление смеси идеальных газов, применяют один из следующих методов:

  1. Расчет средней массы частиц m, либо среднего значения молярной массы М с учетом атомных процентов каждого газа в смеси. {2}}{3*V}\)

    Таким образом, удельный объем сосуда в кубических метрах равен 0,01. Молярная масса молекулы кислорода М составляет 0,032 кг/моль. Данные параметры можно подставить в уравнение вместе со скоростью и количеством вещества. Тогда Р = 533333 Па, что представляет собой давление в 5,3 атмосферы.

    Урок 24. Давление газа – HIMI4KA

    У нас вышел новый курс, где всё объясняется ещё проще. Подробннее по ссылке

    В уроке 24 «Давление газа» из курса «Химия для чайников» рассмотрим устройство и принцип действия ртутного барометра, а также дадим определение давлению и рассмотрим его единицы измерения. Не пройдите мимо вводного урока в главу «Законы газового состояния», если вы его еще не читали.

    Ртутный барометр

    Если стеклянную трубку, закрытую с одного конца, наполнить ртутью (Hg), а затем перевернуть открытым концом в сосуд с ртутью, как показано на рисунке 3-1 (а), уровень ртути в трубке будет опускаться до тех пор, пока высота ртутного столбика над поверхностью ртути в сосуде не достигнет приблизительно 760 миллиметров (мм).

    Давление, оказываемое на поверхность ртути в сосуде весом ртутного столбика в трубке, в точности уравновешивается давлением окружающей атмосферы. Вследствие равенства этих давлений, действующих в противоположных направлениях, ртуть больше не выливается из трубки. Подобное устройство называется ртутным барометром. Его изобрел и впервые протестировал итальянский математик и физик Эванджелиста Торричелли для измерения атмосферного давления. Торричелли показал, что высота столбика ртути в барометрической трубке НЕ зависит от формы и размеров трубки, а потому, определяется не весом ртутного столбика, а давлением у его основания. Атмосферное давление на уровне моря поддерживает столбик ртути высотой 760 мм (в среднем). Поскольку в старину для измерения давления пользовались именно ртутными барометрами, то в качестве единицы измерения давления применялся «миллиметр ртутного столба«.

    Единицы измерения давления

    Давление определяется как сила, действующая на единицу площади (P = F/A), и поэтому в системе СИ единицей давления является паскаль (Па), определяемый как сила в 1 ньютон, действующая на площадь в 1 квадратный метр (Н/м2). Для тех, кто плохо учил физику, напоминаю, что ньютон представляет собой силу, которая придает телу массой 1 кг ускорение 1 м/c2.

    Пример 1. Плотность жидкой ртути равна 13,596 г/см3. Чему будет равен 1 мм ртутного столба (1 мм Hg) в паскалях?

    Решение

    Представим себе разлитый на столе слой ртути площадью 1 м2 и толщиной 1 мм. Переведем сначала все размеры этого слоя в сантиметры; тогда его объем выразится как:

    • 0,100 см × 100 см × 100 см = 1000 см3

    Плотность жидкой ртути равна 13,596 г/см3, т.е масса 1 кубического сантиметра ртути составляет 13,596 г, а зная это, нетрудно установить, что масса слоя равна:

    • 1000 см3 × 13,596 г/см3 = 13 596 г =13,596 кг

    Вес этого слоя можно найти как произведение его массы на ускорение силы тяжести, которое равно g = 9,8 м/c2; таким образом, сила, с которой рассматриваемый слой ртути давит на стол, равна:

    • F = m·g = 13,596 кг × 9,806 м/c2 = 133,32 кг·м·с2 = 133,32 Н

    Поскольку площадь слоя ртути равна равна 1 м2, оказываемое им на стол давление определяется как :

    • P = F/A = 133,32 Н / 1 м2 = 133,32 Н/м2 = 133,32 паскаля (Па)

    Пример 2. Стандартное давление на уровне моря считается равным точно 760 мм Hg. Выразите это давление в паскалях.

    Решение:

    Из примера 1 мы уже знаем, что давление 1 мм Hg эквивалентно 133,32 Па. Следовательно:

    • 760 мм Hg × 133,32 Па/мм = 101 323 Па

    Паскаль — слишком маленькая единица для измерения давлений газов, подобно тому как кубический метр — слишком неудобная единица для измерения объемов жидкостей в лабораторных условиях. Поэтому обычно давление газов измеряют в стандртных атмосферах:

    • 1 атмосфера (атм) = 101 325 Па = 760 мм Hg

    Пример 3. В горах, высота которых составляет около 2500 м над уровнем моря, атмосферное давление приблизительно равно 3/4 давления на уровне моря. Выразите это давление в стандартных атмофсерах, паскалях и миллиметрах ртутного столба.

    Ответ: давление равно 0,750 атм, 76 000 Па или 570 мм Hg

    Надеюсь урок 24 «Давление газа» помог создать некоторое представление о понятии давления и его единицах измерения. Если у вас возникли вопросы, пишите их в комментарии. Если вопросов нет, то переходите к следующему уроку.

    Хотите ещё проще? Мы создали новый курс, где максимум за 7 дней вы овладете химией с нуля. Подробннее по ссылке

    Давление газа

    Мы уже говорили (§ 220), что газы всегда нацело заполняют объем, ограниченный непроницаемыми для газа стенками. Так, например, стальной баллон, употребляемый в технике для хранения сжатых газов (рис. 375), или камера автомобильной шины полностью и практически равномерно заполнены газом.

    Рис. 375. Стальной баллон для хранения сильно сжатых газов

    Стремясь расшириться, газ оказывает давление на стенки баллона, камеры шины или любого другого тела, твердого или жидкого, с которым он соприкасается. Если не принимать во внимание действия поля тяжести Земли, которое при обычных размерах сосудов лишь ничтожно меняет давление, то при равновесии давление газа в сосуде представляется нам совершенно равномерным. Это замечание относится к макромиру. Если же представить себе, что происходит в микромире молекул, составляющих газ в сосуде, то ни о каком равномерном распределении давления не может быть и речи. В одних местах поверхности стенок молекулы газа ударяют о них, в то время как в других местах удары отсутствуют; эта картина все время беспорядочным образом меняется.

    Допустим для простоты, что все молекулы до удара о стенку летят с одинаковой скоростью , направленной по нормали к стенке. Будем также считать удар абсолютно упругим. При этих условиях скорость молекулы при ударе будет изменять направление на обратное, оставаясь неизменной по модулю. Следовательно, скорость молекулы после удара будет равна . Соответственно импульс молекулы до удара равен , а после удара он равен  ( — масса молекулы). Вычтя из конечного значения импульса его начальное значение, найдем сообщаемое стенкой приращение импульса молекулы. Оно равно . Согласно третьему закону Ньютона стенке сообщается при ударе импульс, равный .

    Если за единицу времени на единицу площади стенки приходится  ударов, то за время  об участок  поверхности стенки ударяют  молекул. Молекулы сообщают участку  за время  суммарный импульс, равный по модулю . В силу второго закона Ньютона этот импульс равен произведению силы , действующей на участок , на время . Таким образом,

    , откуда .

    Разделив силу  на площадь участка стенки , получим давление  газа на стенку:

    . (221.1)

    Нетрудно сообразить, что число ударов в единицу времени зависит от скорости молекул, ибо чем быстрее они летят, тем чаще ударяются о стенку, и от числа молекул  в единице объема, ибо чем больше молекул, тем больше и число наносимых ими ударов. Следовательно, можно считать, что  пропорционально  и , т. е.  пропорционально

    Для того чтобы рассчитать с помощью молекулярной теории давление газа, мы должны знать следующие характеристики микромира молекул: массу , скорость  и число молекул в единице объема. Для того чтобы найти эти микрохарактеристики молекул, мы должны установить, от каких характеристик макромира зависит давление газа, т.

    е. установить на опыте законы газового давления. Сравнив эти опытные законы с законами, рассчитанными при помощи молекулярной теории, мы получим возможность определить характеристики микромира, например скорости газовых молекул.

    Итак, установим, от чего зависит давление газа?

    Во-первых, давление зависит от степени сжатия газа, т. е. оттого, сколько молекул газа находится в данном объеме. Например, нагнетая в автомобильную шину все больше воздуха или сжимая (уменьшая объем) закрытую камеру, мы заставляем газ все сильнее давить на стенки камеры.

    Во-вторых, давление зависит от температуры газа. Известно, например, что мяч становится более упругим, если его подержать вблизи нагретой печи.

    Обычно изменение давления вызывается обеими причинами сразу: и изменением объема, и изменением температуры. Но можно осуществить процесс так, что при изменении объема температура будет меняться ничтожно мало или при изменении температуры объем практически останется неизменным. Этими случаями мы сперва и займемся, сделав предварительно еще следующее замечание. Мы будем рассматривать газ в состоянии равновесия. Это значит, что в газе установилось как механическое, так и тепловое равновесие.

    Механическое равновесие означает, что не происходит движения отдельных частей газа. Для этого необходимо, чтобы давление газа было во всех его частях одинаково, если пренебречь незначительной разницей давления в верхних и нижних слоях газа, возникающей под действием силы тяжести.

    Тепловое равновесие означает, что не происходит передачи теплоты от одного участка газа к другому. Для этого необходимо, чтобы температура во всем объеме газа была одинакова.

    04-г. Давление газа

          § 04-г. Давление газа

    Давление может создаваться не только твёрдыми или жидкими телами, но и газами. Например, парусный корабль плывёт по морю именно потому, что на его паруса давит ветер – движущийся газ. Однако покоящиеся газы тоже могут создавать давление. Рассмотрим опыт, подтверждающий это.

    Слева на рисунке – так называемая тарелка воздушного насоса. На ней лежит завязанный воздушный шарик с небольшим количеством воздуха (рис. «а»). Накроем его стеклянным колоколом и откачаем из-под него воздух. Мы увидим, что шарик «раздулся», будто в него накачали дополнительную порцию воздуха (рис. «б»). Однако это не так: воздуха в шарике не прибавилось, ведь он завязан. В чем же разгадка противоречия?

    Воздух в шарике постоянно давит на его оболочку изнутри. Но и воздух вокруг шарика давит на его оболочку – снаружи (см. рисунок). Откачивая воздух из-под колокола, мы уменьшаем наружное давление. В результате внутреннее давление начинает превосходить наружное и тем самым раздувает оболочку сильнее.

    Рассмотренный опыт с тарелкой и колоколом воздушного насоса продемонстрировал нам, что покоящиеся газы постоянно оказывают давление на окружающие их тела. В зависимости от внешних условий это давление может проявляться или же быть незаметным.

    Накачивая или откачивая газ в каком-либо сосуде (например, баллоне), мы увеличиваем или, наоборот, уменьшаем массу газа. Из-за этого изменяется плотность газа – увеличивается или уменьшается. Одновременно изменяется и давление газа – говорят, что оно «повышается» или «понижается» (иногда говорят, что давление «растёт» или «падает»).

    Однако давление газа можно изменить не только изменением его плотности, но и другим путём – изменяя температуру газа. При нагревании газа его давление будет возрастать, а при охлаждении – уменьшаться. Рассмотрим пример.

    На рисунке изображён котёл для воды с прочным корпусом и плотно прилегающей крышкой. На котле имеется манометр – прибор, отмечающий повышение или понижение давления пара. При нагревании котла давление пара возрастает, так как мы видим изменившееся положение стрелки манометра и многочисленные струи пара, вырывающиеся из щелей между корпусом и крышкой.

    Опыты показывают, что не только водяной пар, но и вообще все газы при нагревании увеличивают свое давление на окружающие тела, а при охлаждении – уменьшают.

    Паровая турбина. Она применяется на тепловых электростанциях. Сгорающий природный газ или мазут нагревают воду, которая превращается в пар. Его подвергают дальнейшему сильному нагреванию. В результате давление пара значительно возрастает, и его направляют на лопасти ротора турбины (см. фото).

    Чем выше давление пара, тем с большей скоростью будет вращаться ротор, тем больше электроэнергии может быть выработано. В современных турбинах давление пара составляет более 10 000 кПа при температуре 300–500 °С.

    В вашем браузере отключен Javascript.
    Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!