Что такое истинная плотность строительных материалов – Истинная и средняя плотность материалов — Материалы и свойства

Истинная и средняя плотность материалов — Материалы и свойства

Автор Admin На чтение 5 мин. Просмотров 456 Опубликовано

Истинная плотность  (прежнее название – удельный вес) – масса единицы объема материала в абсолютно плотном состоянии, т. е. без пор и пустот. Определяют по формуле ? = m / V, где m – масса материала, кг; V – абсолютный объем, занимаемый материалом (без пор и пустот), м3. Истинная плотность жидкостей и материалов, полученных из расплавленных масс (металла, стекла, а также гранита, мрамора и других подобных горных пород), практически соответствует их плотности в естественном состоянии, а пористых материалов – приводится к абсолютно плотному состоянию искусственным путем.

Истинная плотность – свойство, которое контролируются только при геологической разведке с подземными сетями.

Для горных пород, служащих сырьем при производстве облицовочных материалов, не имеет решающего значения при их оценке. Однако этот показатель позволяет косвенно выявить другие свойства камня, например вычислить его пористость.

Плотность различных материалов

Для определения истинной плотности камня его необходимо получить в абсолютно плотном состоянии, т. е. без пор. Простейший способ заключается в измельчении камня до такой степени, пока каждая его частица не будет иметь внутри себя пор. С этой целью вначале отбирают куски горной породы общей массой не менее 1 кг, тщательно очищают их щеткой от пыли и затем измельчают до крупности менее 5 мм, после чего перемешивают и сокращают пробу примерно до 150 г. Полученную пробу вновь измельчают до крупности менее 1,25 мм, перемешивают и сокращают до 30 г. Оставшуюся пробу вновь измельчают в порошок в фарфоровой ступке, насыпают в стаканчик для взвешивания, высушивают до постоянной массы и охлаждают до комнатной температуры, после чего отвешивают две навески по 10 г каждая. Каждую навеску насыпают в пикнометр (пикнос – плотный, метрео – измеряю, дословно с греческого «измеритель плотности») и заливают дистиллированной водой, заполняя пикнометр не более чем на половину объема. Затем его ставят на песчаную ванну или в водяную баню и кипятят содержимое в течение 15—20 мин для удаления пузырьков воздуха. После этого пикнометр обтирают насухо, охлаждают до комнатной температуры, доливают до метки дистиллированной водой и взвешивают на лабораторных весах. Далее прибор освобождают от содержимого, промывают, наполняют до метки дистиллированной водой и вновь взвешивают.

Истинную плотность р, кг/м3, вычисляют по формуле

? = m?В / (m + m1 – m2) · 1000,

где m – навеска порошка, высушенного до постоянной массы, г; m1 – масса пикнометра с дистиллированной водой, г; m2— то же, с навеской и дистиллированной водой после удаления пузырьков воздуха, г; р„ – истинная плотность воды: р

в = 1 г/см3.

Средняя плотность ? (прежнее название – объемная масса) – масса единицы объема материала в естественном состоянии, т. е. вместе с порами и пустотами. Определяется по формуле ? = m / V1, где m – масса материала, кг; V1 – объем материала в естественном состоянии, м3. Средняя плотность металла и стекла практически равна их истинной плотности, у большинства строительных материалов она, как правило, меньше (из-за наличия пор).

Для каждого материала стандарты устанавливают значение влажности, при котором вычисляют среднюю плотность, необходимую для расчета пористости, теплопроводности и теплоемкости материалов, определения стоимости их перевозок и расчета прочности конструкций с учетом их собственной массы.

Истинная и средняя плотности широко используемых материалов показаны в табл. 1.

Средняя плотность – физическое свойство облицовочного камня, используемое обычно при его общей характеристике. Этим показателем пользуются при вычислении массы изделий из камня по их объему или при определении объема, когда известна масса изделий. Кроме того, используя среднюю плотность, определяют пористость камня и некоторые другие показатели. Особенно важное значение имеет это свойство для горных пород, используемых при производстве стеновых материалов, где значение этого показателя не должно превышать 2100 кг/м3.

Для определения средней плотности берут пять образцов кубической формы с размером ребра 40—50 мм или цилиндры диаметром и высотой 40—50 мм. Каждый образец очищают щеткой от рыхлых частиц и высушивают до постоянной массы, после чего взвешивают на настольных (гирных) или циферблатных весах. Затем измеряют размеры кубов или цилиндров камня и вычисляют объемы образцов.

Среднюю плотность каждого образца вычисляют по формуле, приведенной в § 2. Средняя плотность горной породы будет средним арифметическим результатом определения этой характеристики для пяти образцов. Значения средней плотности у наиболее распространенных видов облицовочного камня СНГ даны в приложении.

Среднюю плотность сыпучих (рыхлых) материалов (цемента, извести, песка, гравия, щебня) называют насыпной средней плотностью (прежнее название – насыпная объемная масса). В объем сыпучих материалов включают не только объем пор в самом материале, но и пустот между зернами или кусками материала.

Таблица 1. Плотность материалов в воздушно-сухом состоянии

МатериалыЗначение плотности, кг/м3МатериалыЗначение плотности, кг/м3
истиннойсреднейистинной
средней
Свинец11300—1140011300—11400Известняк плотный2400—26002100—2400
Медь8300—89008300—8900Песок кварцевый2600—2700,1400—1900
Сталь7800—79007800—7850Стекло строительное30002500—3000
Чугун78006900—7400Цемент3000—3100800—1300
Алюминиевые

сплавы

28002700—2800Бетон тяжелый2600—29001800—2500
Раствор строитель

ный

2500—29001300—2200
Базальт33002700—3200
Габбро32002800—3200Гравий2600—28001400—1600
Мрамор30002700—2800Кирпич глиняный2500—28001600—1900
Гранит2600—29002600—2700Минеральная вата280075—400
Туф2200—2800
1000—2200
Сосна1600500—600
Ракушечник2650—27501400—2200

Примечание. Для сыпучих (рыхлых) материалов: песка, цемента, гравия приведена насыпная средняя плотность.

arxipedia.ru

истинная, средняя, насыпная, относительная. Методики определения плотности. Зависимость свойств материалов от их плотности.

Физическое состояние строительных материалов достаточно полно характеризуется средней и истинной плотностью, а также пористостью.

Средняя плотность ρ0 (г/см3, кг/м3) – масса единицы объема материала в естественном состоянии.

Среднюю плотность вычисляют путем деления массы образца m, г (кг), на его геометрический объем V, см33)

ρ0=m/V

При изменении температуры и влажности среды, окружающей материал, меняется его влажность, а следовательно, и средняя плотность. Поэтому показатель средней плотности определяют после предварительной сушки материала до постоянной массы или вычисляют по формуле:

где ρwи ρ0средняя плотность влажного и сухого материала; Wколичество воды в материале (доля от его массы).

Метод определения средней плотности зависит от формы образца материала.

Насыпной плотностью называется отношение массы материала в свободном рыхло насыпанном состоянии к его объему.

Определение насыпной плотности сыпучих материалов производят засыпкой их в предварительно взвешенный мерный цилиндр с высоты 10 см через воронку или без нее. Объем материала определяют по объему цилиндра. Воронка обеспечивает равномерное заполнение мерного цилиндра материалом. Образовавшуюся (без уплотнения) над краями цилиндра горку материала срезают ножом или линейкой. После этого цилиндр с материалом взвешивают. Насыпную плотность материала рассчитывают по формуле:

где — масса пустого мерного цилиндра;- масса цилиндра, заполненного испытываемым материалом;V – объем мерного цилиндра.

Истинной плотностью ρ (г/см3, кг/м3) называют массу единицы объема материала в абсолютно плотном состоянии без учета имеющихся в нем пор.

Для определения абсолютного объема образцы измельчают в порошок до полного прохождения через сито с размером отверстий 0,2 мм. (Считается, что каждое отдельное зерно такого размера не содержит внутренних пор.)

Истинную плотность определяют в приборе Ле-Шателье – Кандло. Прибор представляет собой стеклянную колбу с узкой трубкой, имеющей шарообразное уширение в средней части. На трубке ниже уровня уширения имеется черта; верхняя часть трубки градуирована делениями и заканчивается воронкой.

Объем трубки между нижней чертой и нижним делением градуированной части равен 20 см3. Прибор заполняют дистиллированной водой до уровня нижней черты, уровень устанавливают по нижнему мениску, затем взвешивают сухой измельченный образец массой m1, г. Порошок всыпают в прибор до тех пор, пока уровень воды в приборе не поднимется до нижнего деления градуированной части. Тогда абсолютный объем порошка, засыпанного в прибор, равен объему вытесненной воды – 20 см3. Остаток порошка взвешивают и подсчитывают массу порошка, всыпанного в прибор, по формуле:

m = m1-m2

Истинную плотность вычисляют по формуле:

Часто плотность материалов относят к плотности воды при температуре равной 4 0C, равной 1 г/см3 , и тогда определяемая плотность становится безразмерной величиной, которую называют относительной плотностью d.

Большинство строительных материалов имеет поры, поэтому истинная плотность у них всегда больше средней. Лишь у плотных материалов (сталь, стекло) истинная и средняя плотность практически равны, так как объем внутренних пор у этих материалов ничтожно мал.

studfile.net

Плотность строительных материалов.

Сайт строителя

Плотность строительных материалов.

Плотность строительных материалов. Плотность может быть истинной, средней, насыпной, относительной.

Истинная плотностью строительных материалов.
Под истинной плотностью строительных материалов. (кг/м куб.) понимают массу единицы объема абсолютно плотного материала без трещин, пор и пустот.

Истинная плотность для основных строительных материалов следующая:

  • сталь, чугун 7800…7900 кг/м3;
  • портландцемент 2900…3100 кг/м3;
  • гранит 2700…2800 кг/м3;
  • песок кварцевый 2600…2700 кг/м3;
  • кирпич керамический 2500…2800 кг/м3;
  • стекло 2500…3000 кг/м3;
  • известняк 2400…2600 кг/м3;
  • древесина 1500…1600 кг/м3.
Средняя плотность строительных материалов
Это масса единицы объема материла или изделия в естественном состоянии, то есть с пустотами и порами. Средняя плотность одного и того же материала может быть разной в зависимости от пористости и пустотности. Сыпучие материалы (цемент, щебень, песок и др.) характеризуются насыпной плотностью -отношением массы зернистых и порошкообразных материалов в свободном без уплотнения насыпном состоянии ко всему занимаемому ими объему, включая пространство между частицами.

От плотности строительного материала в значительной степени зависят его прочность, теплопроводность и другие свойства. Этими данными пользуются при определении толщины ограждающих конструкций отапливаемых зданий, размера строительных конструкций, расчетах транспортных средств и др. Значения средней плотности строительных материалов находятся в широких пределах.

Средняя плотность для некоторых строительных материалов следующая:
  • сталь — 7800…7850 кг/м3;
  • гранит — 2600…2800 кг/м3;
  • бетон тяжелый — 1800…2500 кг/м3;
  • кирпич керамический — 1600…1800 кг/м3;
  • песок -1450…1650 кг/м3;
  • вода — 1000 кг/м3;
  • бетон легкий — 500…1800 кг/м3;
  • керамзит -300…900 кг/м3;
  • сосна — 500…600 кг/м3;
  • минеральная вата — 200…400 кг/м3;
  • поропласты -20…100 кг/м3.

Плотность материала зависит от его пористости и влажности. С увеличением влажности плотность материала увеличивается.

Относительная плотность строительных материалов
Это степень заполнения веществом объема материала. Относительную плотность выражают отвлеченным числом или в процентах.

Пористость строительного материала характеризует объем, занимаемый в нем порами — мелкими ячейками, заполненными воздухом. Мелкие поры, заполненные воздухом, придают строительным материалам теплоизоляционные свойства. По величине пористости можно судить о примерной прочности, плотности, водопоглощении, долговечности и др. Для конструкций, от которых требуется высокая прочность или водонепроницаемость, используют плотные материалы, для стен зданий используют материалы со значительной пористостью. Такие материалы обладают хорошими теплоизоляционными и звукопоглощающими свойствами.

Для рыхлых материалов при расчетах учитывают насыпную объемную массу. Пористость и относительная плотность в значительной степени определяют эксплуатационные качества материалов (прочность, водопоглощение, морозостойкость, теплопроводность). Значение показателя пористости строительных материалов колеблется от О (стекло, сталь) до 90 % (минеральная вата).

Пустотность строительного материала представляет собой количество пустот, образующихся между зернами рыхлонасыпного материала. Выражается в процентах по отношению ко всему занимаемому объему. Этот показатель важен для керамзита, песка, щебня при изготовлении бетона. В некоторых строительных материалах (кирпич, панели) имеются полости, также образующие пустоты. Пустотность пустотелого кирпича составляет от 15 до 50 %, песка и щебня — 35…45 %.

Свойства строительных материалов.

stroyremkom.ru

Физические свойства — ТехЛиб СПБ УВТ

Плотность материала является нужной характеристикой при расчете прочности сооружения с учетом собственной массы, для определения способа и стоимости перевозки материала, для расчета складов и подъемно-транспортного оборудования. По величине плотности косвенно судят о некоторых других свойствах материала. Например, для каменных материалов существует приближенная зависимость между плотностью и теплопроводностью, а для древесины и некоторых каменных материалов (известняков) — между прочностью и плотностью.

Истинная плотность — величина, определяемая отношением массы однородного материала m(кг) к занимаемому им объему в абсолютно плотном состоянии Va3), т. е. без пор и пустот:

Размерность истинной плотности — кг/м или г/см

Истинная плотность каждого материала — постоянная физи­ческая характеристика, которая не может быть изменена без из­менения его химического состава или молекулярной структуры.

Так, истинная плотность неорганических материалов, природ­ных и искусственных камней, состоящих в основном из оксидов кремния, алюминия и кальция, составляет 2400…3100 кг/м3, органических материалов, состоящих в основном из углерода, кислорода и водорода, — 800… 1400, древесины, состоящей в ос­новном из целлюлозы, — 1550 кг/м3. Истинная плотность метал-лов колеблется в широком диапазоне: алюминия — 2700 кг/м , стали — 7850, свинца — 11300 кг/м3.

В строительных конструкциях материал находится в естест­венном состоянии, т. е. занимаемый им объем обязательно включает в себя и поры. В этом случае для характеристики фи­зического состояния материала используется понятие средней плотности.

Средняя плотность— величина, определяемая отношением массы однородного материала т (кг) к занимаемому им объему в естественном состоянии Ve (м ):

Так как Ve > Va(равенство только в абсолютно плотных мате­риалах, не содержащих пор, — стали, стекле, воде), то всегда вы­полняется и соотношение

Большинство строительных материалов имеют поры, поэтому у них истинная плотность всегда больше средней. Лишь у плотных материалов (стали, стекла, битума и др.) истинная и средняя плотности практически равны, так как объем внутренних пор у них ничтожно мал.

Экспериментальный (прямой) метод определения пористости основан на замещении порового пространства в материале сжиженным гелием и описан ранее.

Поры представляют собой ячейки, не заполненные структурным материалом. По величине они могут быть от миллионных долей миллиметра до нескольких миллиметров.

Более крупные поры, например между зернами сыпучих материалов, или полости, имеющиеся, в некоторых изделиях (пустотелый кирпич, панели из железобетона), называют пустотами. Поры обычно заполнены воздухом или водой; в пустотах, особенно в широкополостных, вода не может задерживаться и вытекает.

Пористость стройматериалов — степень заполнения объема материала порами. Пористость — величина относительная, выражается в процентах или долях объема материала. Если известны значения средней и истинной плотности, то пористость материала, %, рассчиты­вают по формуле

Она колеблется в широких пределах: от 0,2…0,8 %—  у гранита и мрамора до 75…85 % у теплоизоляционного кирпича и у ячеистого бетона и свыше 90 % —У пенопластов и минеральной ваты.

  Значения средней и истинной плотности и пористости некоторых строительных материалов

 

Материал

Плотность, кг/м

Пористость. %

 

средняя

истинная

 

Гранит

2600…2700

2700…2800

0…2

Тяжелый бетон

2200…2500

2600…2700

2…25

Кирпич

1400…1800

2500…2600

25…35

Древесина

400…800

1500…1550

45…70

Пенопласт

15…100

950… 1200

90…98

Пористость материала характеризуют не только с количест­венной стороны, но и по характеру пор: замкнутые и откры­тые, мелкие (размером в сотые и тысячные доли миллиметра) и крупные (от десятых долей миллиметра до 2…5 мм). По харак­теру пор оценивают способность материала поглощать воду. Так, полистирольный пенопласт, пористость которого достигает 95 %, имеет замкнутые поры и практически не поглощает воду. В то же время керамический кирпич, имеющий пористость в три раза меньшую (т. е. около 30 %), благодаря открытому характеру пор (большинство пор представляют собой сообщающиеся ка­пилляры) активно поглощает воду.

Величина пористости в значительной мере влияет на проч­ность материала. Строительный материал тем слабее сопротив­ляется механическим нагрузкам, тепловым, усадочным и другим усилиям, чем больше пор в его объеме. Опытные данные пока­зывают, что при увеличении пористости от 0 до 20 % прочность снижается почти линейно.

Величина прочности также зависит от размеров пор. Она возрастает с их уменьшением. Прочность мелкопористых мате­риалов, а также материалов с закрытой пористостью выше, чем прочность крупнопористых и с открытой пористостью.

Для сыпучих материалов (цемент, песок, гравий, щебень) рассчитывают насыпную плотность.

Насыпная плотность — величина, определяемая отношени­ем массы материала т (кг) к занимаемому им объему в рыхлом состоянии Vn(м ):

Величина Vnвключает в себя объем всех частиц сыпучего материала и объем пространств между частицами, называемых пустотами. Если для зернистого материала известны насыпная плотность и средняя плотность зерен , то можно рассчитать его пустотность а — относительную характеристику, выражае­мую в долях единицы или в процентах:

От величины пористости и ее характера (размера и формы пор, равномерности распределения пор по объему материала, их структуры — сообщающиеся поры или замкнутые) зависят важнейшие свойства материала: плотность, прочность, долговечность, теплопроводность, водопоглощение, водонепроницаемость и др. Например, открытые поры увеличивают проницаемость и водопоглощение материала и ухудшают его морозостойкость. Однако в звукопоглощающих материалах открытые поры желательны, так как они поглощают звуковую энергию. Увеличение закрытой пористости за счет открытой повышает долговечность материала и уменьшает его теплопроводность.

Сведения о пористости материала позволяют определять целесообразные области его применения.

Среди физических процессов наибольшее значение в практике имеют воздействия водной и паровой среды, тепловые воздействия, распространение звуковых волн, электротока, ядерных излучений и т. п. Отношение материала к статическому или циклическому воздействию воды или пара характеризуется гидрофизическими свойствами (гигроскопичность, капиллярное всасывание, во-допоглощение, водостойкость, водопроницаемость, паропроницаемость, влажностные деформации, морозостойкость).

Влажностные деформации — изменение размеров и объема материала при изменении его влажности. Уменьшение размеров и объема материала при его высыхании называют усадкой (усушкой), а увеличение размеров и объема при увлажнении вплоть до полного насыщения материала водой — набуханием (разбуханием). Усадка возникает и увеличивается в результате уменьшения толщины слоев воды, окружающих частицы материала, и действием внутренних капиллярных сил, стремящихся сблизить частицы материала. Набухание связано с тем, что полярные молекулы воды, проникая между частицами или волокнами, слагающими материал, как бы расклинивают их, при этом утолщаются гидратные оболочки вокруг частиц исчезают внутренние мениски, а с ними и капиллярные силы. Материалы высокопористого и волокнистого строения, способные поглощать много воды, характеризуются большой усадкой (древесина поперек волокон 30… 100 мм/м; ячеистый бетон 1…3 мм/м; кирпич керамический 0,03…0,1 мм/м; тяжелый бетон 0,3…0,7 мм/м; гранит 0,02…0,06 мм/м).

Водопоглощение — способность пористого материала впитывать и удерживать в порах капельножидкую влагу. Разли­чают водопоглощение по массе и водопоглощение по объему.

Водопоглощение по массе Wм равно отношению массы воды твн полностью насыщающей материал, к массе сухого материала т

Wм= (твн/m)*100

Водопоглощение по объему Wвн %, характеризует степень за­полнения объема материала водой. Вычисляют водопоглощение как отношение объема воды Vвн при полном насыщении материала к его объему Ve

Водопоглощение по объему можно вычислить при известных значениях водопоглощения по массе и средней плотности мате-риала, используя формулу

Водопоглощение материалов, зависящее от характера порис­тости, может изменяться в широких пределах. Значения WMсо­ставляют для гранита 0,02…0,7 %, тяжелого бетона — 2…4, кир­пича 8…20, легких теплоизоляционных материалов с открытой пористостью — 100 % и более. Водопоглощение по объему Woне превышает пористости, так как объем впитанной материалом воды не может быть больше объема пор.

Величины Woи Wмхарактеризуют предельный случай, когда материал более не в состоянии впитывать влагу. В реальных конструкциях материал может содержать некоторое количество влаги, полученной при кратковременном увлажнении капельно­жидкой водой либо в результате конденсации в порах водяных паров из воздуха. В этом случае состояние материала ха­рактеризуют влажностью.

Влажность — отношение массы воды, находящейся в данный момент в материале mв, к массе (реже — к объему) материала в сухом состоянии тс

W=(mв/m)* 100.

Влажность может изменяться от нуля, когда материал сухой, до величины WM, соответствующей максимальному водосодержанию. Увлажнение приводит к изменению многих свойств ма­териала: повышается масса строительной конструкции, возрас­тает теплопроводность; под влиянием расклинивающего дейст­вия воды уменьшается прочность материала.

Для многих строительных материалов влажность нормирова­на. Так, влажность молотого мела — 2 %, стеновых материалов -5…7, воздушно-сухой древесины- 12…18 %.

Водостойкость — свойство материала сохранять прочность при насыщении его водой. Критерием водостойкости строитель­ных материалов служит коэффициент размягчения — отношение прочности при сжатии материала, насыщенного водой, RBк прочности при сжатии сухого материала Rc

Материалы, у которых коэффициент размягчения больше 0,75, называют водостойкими.

Водонепроницаемость— свойство материала сопротивляться проникновению в него воды под давлением. Это свойство осо­бенно важно для бетона, воспринимающего напор воды (трубы, резервуары, плотины). Водонепроницаемость бетона оценивают маркой по W (W-2…W-8), обозначающей максимальное односто­роннее гидростатическое давление, при котором стандартный образец не пропускает воду. Для гидроизоляционных материа­лов водонепроницаемость характеризуется временем, по истече­нии которого появляется просачивание воды под определенным давлением через образец материала (мастика, гидроизол).

Гигроскопичность — способность материала поглощать и конденсировать водяные пары из воздуха. Гигроскопичность вызывается сорбцией, представляющей собой физико-химический процесс поглощения водяных паров из воздуха как в результате их адсорбции на внутренней поверхности материала, так и капиллярной конденсации. Капиллярная конденсация возможна только в капиллярах с малым радиусом (менее 10~7 м), так как разность давлений насыщенного водяного пара над вогнутой поверхностью мениска и плоской поверхностью в капиллярах с большим радиусом несущественна.

Гигроскопичность зависит как от свойств материала — величины и характера пористости, так и от условий внешней среды—температуры и относительной влажности, а для сыпучих материалов также от их растворимости в воде и дисперсности и снижением температуры воздуха. Этот процесс носит обратимый характер. Гигроскопичность характеризуется величиной отношения массы поглощенной материалом влаги, при относительной влажности воздуха 100% и температуре 20 °С, к массе сухого материала, выраженной в процентах.

Капиллярное всасывание (подъем) воды пористым материалом происходит по капиллярным порам, когда часть конструкции соприкасается с водой. Например, грунтовые воды могут подниматься по капиллярам и увлажнять нижнюю часть стены здания. Капиллярными называют поры с такими условными радиусами, при которых их капиллярный потенциал (потенциальная энергия поля капиллярных сил, отнесенных к единице массы жидкости) значительно больше потенциала поля тяжести.

Капиллярное всасывание характеризуется высотой поднятия уровня воды в капиллярах материала, количеством поглощенной воды и интенсивностью всасывания.

Более точно, учитывая неправильную форму пор в материале и их изменяющееся поперечное сечение, высоту всасывания воды определяют экспериментально по методу «меченых атомов» либо по измерению электропроводности материала.

Для оперативного контроля влажности преимущественно сыпучих материалов (например, заполнителей для бетона — песка, щебня) применяют диэлькометрический и нейтронный методы. Диэлькометрический метод измерения основан на зависимости между влажностью и диэлектрической проницаемостью материала. В нейтронном методе используется связь влажности и степени замедления быстрых нейтронов, проходящих через материал.

При насыщении материала водой существенно изменяются его свойства: увеличивается плотность и теплопроводность, происходят некоторые структурные изменения в материале, вызывающие появление в нем внутренних напряжений, что, как правило, приводит к снижению прочности материала.

Воздухостойкость — способность материала выдерживать циклические воздействия увлажнения и высушивания без заметных деформаций и потери механической прочности.

Многократное гигроскопическое увлажнение и высушивание вызывает в материале знакопеременные напряжения и со временем приводит к потере им несущей способности.

Влагоотдача — свойство, характеризующее скорость высыхания материала, при наличии соответствующих условий в окружающей среде (понижение влажности, нагрев, движение воздуха). Влагоотдача обычно характеризуется количеством воды, которое материал теряет в сутки при относительной влажности воздуха 60 % и температуре 20 °С. В естественных условиях вследствие влагоотдачи, через некоторое время после строительства, устанавливается равновесие между влажностью строительных конструкций и окружающей средой. Такое состояние равновесия называют воздушно-сухим (воздушно-влажным) состоянием.

Водопроницаемость — способность материала пропускать воду под давлением. Характеристикой водопроницаемости служит количество воды, прошедшее в течение 1 с через 1 м2 поверхности материала при заданном давлении воды. Для определения водопроницаемости используют различные устройства, позволяющие создавать нужное одностороннее давление воды на поверхность материала. Методика определения зависит от назначения и разновидности материала. Водопроницаем мость зависит от плотности и строения материала. Чем больше в материале пор и чем эти поры крупнее, тем больше его водопроницаемость.

При выборе стройматериалов для специальных целей (кровельные материалы, бетоны для гидротехнических сооружений, трубы и др.) чаще оценивают не водопроницаемость, а водонепроницаемость, характеризуемую периодом времени, по истечении которого появляются признаки просачивания воды под определенным давлением через образец испытуемого материала (кровельные материалы), или предельной величиной давления воды (Па), при котором вода не проходит через образец (например, бетон).

Паропроницаемость и газопроницаемость — способность материала пропускать через свою толщу водяной пар или газы (воздух). Паропроницаемость характеризуется коэффициентом паропроницаемости, численно равным количеству водяного пара, проникающего через слой материала толщиной 1 м, площадью 1 м2 в течение 1 с, и разностью парциальных давлений пара в 133,3 Па. Аналогичным коэффициентом оценивается и газопроницаемость (воздухопроницаемость). Эти характеристики определяются для комплексной оценки физических свойств строительного материала или при его специальном назначении. Материалы для стен жилых зданий должны обладать определенной проницаемостью (стена должна «дышать»), т. е. через наружные стены происходит естественная вентиляция. Наоборот, стены и покрытия влажных помещений необходимо защищать с внутренней стороны от проникновения в них водяного пара, особенно зимой, когда содержание пара внутри помещения значительно больше, чем снаружи, и пар, проникая в холодную зону ограждения, конденсируется, резко повышает влажность в этих местах. В ряде случаев необходима практически полная газонепроницаемость (емкости для хранения газов и др.).

Морозостойкость — свойство материала, насыщенного водой, выдерживать многократное попеременное замораживание и оттаивание без значительных признаков разрушения и снижения прочности. От морозостойкости в основном зависит долговечность материалов, применяемых в наружных зонах конструкций различных зданий и сооружений. Разрушение материала при таких циклических воздействиях связано с появлением в нем напряжений, вызванных как односторонним давлением растущих кристаллов льда в порах материала, так и всесторонним гидростатическим давлением воды, вызванным увеличением объема при образовании льда примерно на 9% (плотность воды равна 1, а льда — 0,917). При этом давление на стенки пор может достигать при некоторых условиях сотен МПа.

Очевидно, что при полном заполнении всех пор и капилляров пористого материала водой разрушение может наступить даже при однократном замораживании. Однако у многих пористых материалов вода не может заполнить весь объем доступных пор, поэтому образующийся при замерзании воды лед имеет свободное пространство для расширения. При насыщении пористого материала в воде в основном заполняются водой макрокапилляры, микрокапилляры при этом заполняются водой частично и служат резервными порами, куда отжимается вода в процессе замораживания.

При работе пористого материала в атмосферных условиях (наземные конструкции) водой заполняются в основном микрокапилляры за счет сорбции водяных паров из окружающего воздуха; крупные же поры и макрокапилляры являются резервными. Следовательно, морозостойкость пористых материалов определяется величиной и характером пористости и условиями эксплуатации изготовленных из них конструкций. Она тем выше, чем меньше водопоглощение и больше прочность материала при растяжении. Учитывая неоднородность строения материала и неравномерность распределения в нем воды, удовлетворительную морозостойкость можно ожидать у пористых материалов, имеющих объемное водопоглощение не более 80 % объема пор. Разрушение материала наступает только после многократного попеременного замораживания и оттаивания.

Морозостойкость характеризуется числом циклов попеременного замораживания при —15, —17 °С и оттаивания в воде при температуре около 20 °С. Выбор температуры замораживания не выше —15, —17 СС вызван тем, что при более высокой температуре вода, находящаяся в мелких порах и капиллярах, не может вся замерзнуть. Число циклов (марка), которые должен выдерживать материал, зависит от условий его будущей службы в сооружении, климатических условий и указывается в СНиПах и ГОСТах на материалы.

Марка по моро­зостойкости (F10, F15, F25, F35, F50, F75, F100, F150, F200, F300 для каменных материалов) характеризуется числом циклов за­мораживания и оттаивания, которое выдержал материал, при допустимом снижении прочности или уменьшении массы об­разцов.

Материал считают выдержавшим испытание, если после заданного количества циклов замораживания и оттаивания потеря массы образцов в результате выкрашивания и расслаивания не превышает 5%, а прочность снижается не более чем на 15 % (для некоторых материалов на 25 %). Для определения морозостойкости иногда используют ускоренный метод, например с помощью сернокислого натрия. Кристаллизация этой соли из насыщенных паров при ее высыхании в порах образцов воспроизводит механическое    действие   замерзающей   воды, но в более сильной степени, так как образующиеся кристаллы крупнее (значительное увеличение объема). Один цикл таких испытаний приравнивается 5…10 и даже 20 циклам прямых испытаний замораживанием. С некоторым приближением о морозостойкости можно косвенно судить по величине коэффициента размягчения. Большое понижение прочности вследствие размягчения материала (больше 10 %) указывает, что в материале есть глинистые или другие размокающие частицы, что отрицательно сказывается и на морозостойкости материала.

Отношение материала к постоянному или переменному тепловому воздействию характеризуется его теплопроводностью, теплоемкостью, термической стойкостью, огнестойкостью, огнеупорностью.

Теплопроводность — сp align=»JUSTIFY»/td/spanвойство стройматериала передавать теплоту через толщу от одной поверхности к другой. Теплопроводность К [Вт/(м*°С)] характеризуется количеством теплоты (Дж), проходящей через материал толщиной 1 м, площадью 1 м2 в течение 1 с, при разности температур на противоположных поверхностях материала 1 °С.

Это свойство имеет важное значение для строительных материалов, приме­няемых при устройстве ограждающих конструкций (стен, по­крытий и перекрытий), и материалов, предназначенных для теп­ловой изоляции. Теплопроводность материала зависит от его строения, химического состава, пористости и характера пор, а также влажности и температуры, при которой происходит пе­редача теплоты.

Теплопроводность характеризуют коэффициентом тепло­проводности, указывающим, какое количество теплоты в Дж способен пропустить материал через 1 м2 поверхности при тол­щине материала 1 м и разности температур на противоположных поверхностях 1 °С в течение 1 ч. Коэффициент теплопроводно­сти, Вт/(м *°С), равен: для воздуха — 0,023; для воды — 0,59; для льда — 2,3; для керамического кирпича — 0,82. Воздушные поры в материале резко снижают его теплопроводность, а увлажнение водой сильно повышает ее, так как коэффициент теплопровод­ности воды в 25 раз выше, чем у воздуха.

С ростом температуры теплопроводность большинства строительных материалов увеличивается, что объясняется по­вышением кинетической энергии молекул, слагающих вещество материала, и определяется по формуле

где и — теплопроводность соответственно при температурах t и 0 °С; — температурный коэффициент, показывающий вели­чину приращения коэффициента теплопроводности материала при повышении температуры на 1 °С; t — температура материала, °С.

Теплоемкость — свойство материала аккумулировать теплоту при нагревании. Материалы с, высокой теплоемкостью могут выделять больше теплоты при последующем охлаждении. Поэтому при использовании материалов с повышенной теплоемкостью для стен, пола, перегородок и других частей помещений температура в комнатах может сохраняться устойчивой длительное время. Теплоемкость оценивают коэффициентом теплоемкости (удельной теплоемкостью), т. е. количеством теплоты, необходимой для нагревания 1 кг материала на 1 °С.

Строительные материалы имеют коэффициент теплоемкости меньше, чем у воды, которая обладает наибольшей теплоемкостью [4,2 кДж/(кг*°С)]. Например, коэффициент теплоемкости лесных материалов 2,39…2,72 кДж/(кг*°С), природных и искусственных каменных материалов — 0,75…0,92 кДж/(кг*°С), стали — 0,48 кДж/(кг*°С). Поэтому с увлажнением материалов их теплоемкость возрастает, но вместе с тем возрастает и теплопроводность.

Коэффициент теплоемкости материалов используют при расчетах теплоустойчивости ограждающих конструкций (стен, перекрытий), подогрева материала при зимних работах (бетонных, каменных и т. д.), а также при расчете печей. В некоторых случаях приходится рассчитывать размеры печи, используя удельную объемную теплоемкость, которая представляет собой количество тепла, необходимого для нагревания 1 м3 материала на 1 °С.

Термическая стойкость — способность материала выдерживать чередование (циклы) резких тепловых изменений. Это свойство в значительной степени зависит от однородности материала и коэффициента теплового расширения составляющих его веществ. Коэффициент линейного температурного расширения характеризует удлинение 1 м материала при нагревании его на 1 °С, коэффициент объемного расширения характеризует увеличение объема 1 м3 материала при нагревании его на 1 °С.

Чем меньше эти коэффициенты и выше однородность материала, тем выше и его термическая стойкость, т. е. большое количество циклов резких смен температуры он может выдержать. Так, каменные материалы из мономинеральных горных пород (мрамор) более термостойки, чем породы, сложенные из нескольких минералов (например, гранит). При жестком соединении материалов с различными коэффициентами линейного расширения в конструкциях могут возникнуть большие напряжения и, как результат, — коробление и растрескивание материала. Во избежание этого конструкции большой протяженности разрезают деформационными швами.

Огнестойкость— свойство материала выдерживать без раз­рушения воздействие высоких температур, пламени и воды в условиях пожара. Материал в таких условиях либо сгорает, либо растрескивается, сильно деформируется, разрушается от потери прочности. По огнестойкости различают материалы несгорае­мые, трудносгораемые и сгораемые.

Несгораемые материалы в условиях высоких температур не подвержены воспламенению, тлению или обугливанию — кирпич, бетон и др. Однако некоторые несгораемые материалы — мрамор, стекло, асбестоцемент — при резком нагревании разру­шаются, а стальные конструкции сильно деформируются и те­ряют прочность.

Трудносгораемые материалы под воздействием огня или вы­сокой температуры медленно воспламеняются, но после удале­ния источника огня их тление или горение прекращается. К та­ким материалам относятся фибролит, асфальтобетон, пропитан­ная антипиренами древесина.

Сгораемые материалы под воздействием огня или высокой температуры горят и продолжают гореть после удаления источ­ника огня. Это — древесина, обои, битуминозные кровельные и полимерные материалы и др.

Предел огнестойкости — это промежуток времени (минуты или часы) от начала возгорания до возникновения в конструкции предельного состояния. Предельным состоянием считают поте­рю несущей способности, т. е. обрушение конструкции; возник­новение в ней сквозных трещин, через которые на противопо­ложную поверхность могут проникать продукты горения и пла­мя; недопустимый нагрев поверхности, противоположной действию огня, который может вызвать самопроизвольное воз­горание других частей сооружения.

Огнеупорность— свойство материала выдерживать длитель­ное воздействие высокой температуры (от 1580 °С и выше), не деформируясь и не размягчаясь. Огнеупорные материалы (ди­нас, шамот, хромомагнезит, корунд), применяемые для внутрен­ней футеровки промышленных печей, не деформируются и не размягчаются при температуре 1580 °С и выше. Тугоплавкие материалы (тугоплавкий печной кирпич) выдерживают без оп­лавления и деформации температуру 1350…1580 °С, легкоплав­кие (кирпич керамический строительный) — до 1350 °С.

Акустические свойства материалов — это свойства, связан­ные с взаимодействием материала и звука. Звук, или звуковые волны — это механические колебания, распространяющиеся в твердых, жидких и газообразных средах. Строителя интересуют две стороны взаимодействия звука и материала: в какой степени материал проводит сквозь свою толщу звук — звукопроводность и в какой мере материал поглощает и отражает падающий на него звук — звукопоглощение.

При падении звуковой волны на ограждающую поверхность звуковая энергия отражается, поглощается и проводится твер­дым телом. Отношение, характеризующее количество погло­щенной энергии Епоглк падающей Епадназывают коэффициен­том звукопоглощения α

Коэффициент звукопоглощения зависит от ряда факторов: уровня и характеристик звука (шума), свойств поглощающего материала, способов его расположения по отношению к жесткой поверхности (потолку, стене) и методов измерения.

Звукопоглощение зависит от характера поверхности и порис­тости материала. Материалы с гладкой поверхностью отражают большую часть падающего на них звука, поэтому в помещении с гладкими стенами звук, многократно отражаясь от них, создает постоянный шум. Если же поверхность материала имеет откры­тую пористость, то звуковые колебания, входя в поры, погло­щаются материалом, а не отражаются.

Сущность физического явления, происходящего при гашении звука пористым телом, заключается в следующем. Звуковые волны, падая на поверхность такого материала и проникая далее в его поры, возбуждают колебания воздуха, находящегося в уз­ких порах. При этом значительная часть звуковой энергии рас­ходуется. Высокая степень сжатия воздуха и его трение о стенки пор вызывают разогрев. За счет этого кинетическая энергия зву­ковых колебаний преобразуется в тепловую, которая рассеива­ется в среде.

Гашению звука способствует деформирование гибкого ске­лета звукопоглощающего материала, на что также тратится зву­ковая энергия; этот вклад особенно заметен в пористо-волокнистых материалах с открытой сообщающейся пористо­стью при ее общем объеме не менее 75 %.

Звукопроводность зависит от массы материала и его строе­ния. Материал тем меньше проводит звук, чем больше его масса: если масса материала велика, то энергии звуковых волн не хва­тает, чтобы пройти сквозь него, так как для этого надо привести материал в колебание.

Качество звукоизоляционных ограждений оценивают коэф­фициентом звукопроводности т, представляющим собой отно­шение количества звуковой энергии, прошедшей через преграду, к звуковой падающей энергии Епад

Придание звукоизолирующих свойств ограждению базирует­ся на трех основных физических явлениях: отражении воздуш­ных звуковых волн от поверхности ограждения, поглощении звуковых волн материалом ограждения, гашении ударного или воздушного шума за счет деформации элементов конструкции и материалов, из которых она изготовлена.

Способность отражать звуковые волны важна для наружных ограждений зданий. В этом случае для повышения отражения воздушных звуковых волн применяют массивные конструкции с гладкой наружной поверхностью.

Для внутренних помещений высокая отражающая способ­ность ограждения (перегородок) недостаточна, так как отражен­ные звуковые волны будут усиливать шум в наиболее шумном помещении. В данном случае применяют многослойные конст­рукции, в состав которых входят элементы из звукоизоляционных материалов, эффективность которых оценивается динами­ческим модулем упругости. В качестве звукоизоляционных про­кладок применяют пористо-волокнистые материалы из мине­ральной или стеклянной ваты, древесных волокон (древесно­волокнистые плиты), засыпки из пористых зерен (керамзита, шлака и др.).

Снижению уровня ударных и звуковых шумов способствуют малый динамический модуль упругости звукоизоляционных ма­териалов (до 15 МПа) и наличие воздуха в порах. В данном слу­чае снижение интенсивности звука происходит за счет деформа­ции элементов структуры звукоизоляционных материалов и час­тично — за счет звукопоглощения.

Читать по теме:
К разделу

Строительные материалы

tehlib.com

Физические свойства стройматериалов. Физические свойства строительных материалов

К атегория: Выбор стройматериалов

Свойства строительных материалов

Физические свойства

Физические свойства включают в себя следующие параметры: плотность, пористость, водопоглощение, влагоотдача, гигроскопичность, водопроницаемость, морозостойкость, теплопроводность, звукопоглощение, огнестойкость, огнеупорность и некоторые другие.

Плотность

Плотность материала бывает средней и истинной. Средняя плотность определяется отношением массы тела (кирпича, камня и т. п.) ко всему занимаемому им объему, включая имеющиеся в нем поры и пустоты, и выражается в соотношении кг/м2.

Истинная плотность- это предел отношения массы к объему без учета имеющихся в них пустот и пор.

У плотных материалов — таких, как сталь и гранит, — средняя плотность практически равна истинной, у пористых (кирпич и т. п.) — меньше ее.

Пористость

Эта характеристика определяется степенью заполнения объема материала порами, которая исчисляется в процентах. Пористость влияет на такие свойства материалов, как прочность, водопоглощение, теплопроводность, морозостойкость и др.

По величине пор материалы,разделяют на мелкопористые, у которых размеры пор измеряются в сотых и тысячных долях миллиметра, и крупнопористые (размеры пор — от десятых долей миллиметра до 1-2 мм). Пористость строительных материалов колеблется в широком диапазоне. Так, например, у стекла и металла она равна 0, у кирпича она составляет — 25-35%, у мипоры — 98%.

Влагоотдача

Это свойство материала характеризует способность терять находящуюся в его порах влагу. Влагоотдача исчисляется процентным количеством воды, которое материал теряет за сутки (при относительной влажности окружающего воздуха 60% и его температуре 20° С).

Влагоотдача имеет большое значение для многих материалов и изделий, например стеновых панелей и блоков, которые в процессе возведения здания обычно имеют повышенную влажность, а в обычных условиях благодаря водоотдаче высыхают — вода испаряется до тех пор, пока не установится равновесие между влажностью материала стен и влажностью окружающего воздуха, то есть пока материал не достигнет воздушно-сухого состояния.

Водопоглощение

Водопоглощение — это способность материала впитывать и удерживать в своих порах влагу.

По объему водопоглощение всегда меньше 100%, а по массе может быть более 100%, например у теплоизоляционных материалов. Насыщение материала водой ухудшает его основные свойства, увеличивает теплопроводность и среднюю плотность, уменьшает прочность.

Степень снижения прочности материала при предельном его водонасыщении называется водостойкостью и характеризуется коэффициентом размягчения.

Материалы с коэффициентом размягчения не менее 0,8 относят к водостойким. Их применяют в конструкциях, находящихся в воде, и в местах с повышенной влажностью.

Гигроскопичность

Гигроскопичность — это свойство пористых материалов поглощать влагу из воздуха. Гигроскопичные материалы (древесина, теплоизоляционные материалы, кирпичи полусухого прессован

skdeco.ru

Определение истинной плотности строительных материалов

Лабораторная работа № 1

Лабораторная работа №2

Лабораторная работа №3

Тема: Определение влажности, водопоглощения и водостойкости

Строительных материалов.

 

Краткие теоретические сведения

 

Влажность — отношение массы воды, находящейся в данный момент в материале, к массе (реже к объему) материала в сухом состоянии. Поглощение влаги из воздуха обусловлено полимолекулярной адсорбцией водяных паров внутренней поверхности пористого материала, а также капиллярной конденсацией.

При транспортировании, хранении и применении материалов имеют дело не с водопоглощением, а с их влажностью. Влажность меняется от 0 % (для абсолютно сухих материалов) до значения полного водопоглощения и зависит от пористости, гигроскопичности и других свойств материала, а также от окружающей среды — относительной влажности и температуры воздуха, контакта материала с водой и т. д.

Влажность материала, %:

                                                     ,                                         (3.1)

где m2, m1 – масса соответственно влажного и сухого образца.

 

Известны и другие способы определения влажности материала, например, путем измерения электросопротивления и электроемкости.

Водопоглощение — свойство материала при непосредственном соприкосновении с водой впитывать и удерживать ее в своих порах. Его определяют путем полного насыщения водой предварительно высушенного образца.

Водопоглощение выражают степенью заполнения объема материала водой (водопоглощение по объему Wо) или отношением количества поглощенной воды к массе сухого материала.

Водопоглощение по массе – это масса поглощенной материалом воды, отнесенная к массе сухого материала, %:

                                                                                               (3.2)

Водопоглощение по объему – это объем поглощенной материалом воды, отнесенный к объему материала, характеризует интегральную (кажущуюся) пористость материала Пи:

 

                                                                                           (3.3)

 

Водопоглощение по массе Wm. и объемное водопоглощение Wо связаны между собой зависимостью

                                                                                                           (3.4)

 

Водонасыщение – это отношение объема пор, занятых водой, к общему объему пор. Определяется оно отношением водопоглощения по объему к общей пористости материала. Это отношение называется коэффициентом водонасыщения:

 

                                                                                                               (3.5)

 

Величина Кнас определяет морозостойкость материала. Морозостойкими материалами считаются материалы, если их Кнас≤ 0.9

Под морозостойкостью бетона понимают способность материала выдерживать многократное попеременное замораживание и оттаивание в насыщенном водой состоянии без значительного снижения прочности. Для большинства строительных материалов после испытания их на морозостойкость снижение прочности допускается не более 25%, а потеря массы – 5%. Морозостойкость характеризуется числом циклов попеременного замораживания при температуре -150…-180С и оттаивания при температуре около 200С.

 

Водостойкость – это способность материала сохранять свою прочность при увлажнении, численно она характеризуется коэффициентом размягчения

 

                                                                                                               (3.6)

 

где Rнас – предел прочности при сжатии образца в насыщенном водой состоянии; Rсух – предел прочности при сжатии сухого образца, МПа.

Водостойкими называются материалы, у которых Кразм ≥ 0,8.

 

Опыт 1: Определение влажности строительных материалов.

 

Аппаратура: весы, сушильный шкаф, образцы.

Методика проведения опыта

Образец взвешивают, сушат до постоянной массы в сушильном шкафу, снова взвешивают и определяют влажность по формуле (3.1).

Результаты заносят в табл. 3.1

                                                                           Таблица 3.1

Масса образца, г

Влажность, %,

 

  до сушки m2     после сушки m1

1

2
   

 

Опыт 2 Определение водопоглощения строительных материалов.

Аппаратура: весы, сушильный шкаф, образцы, сосуд металлический для кипячения образцов, электроплитка, эксикатор, объемомер.

Методика проведения опыта

Образцы строительных материалов сушат до постоянной массы, взвешивают с точностью до 0,1 г и подвергают водонасыщению. Водонасыщенные образцы взвешивают, опускают в объемомер для определения объема и вычисляют водопоглощение по формулам (3.2) и (3.3).

 

Результаты опыта заносят в табл. 3.2

Таблица 3.2

 

Номер

опыта

 

Вид материала

Масса образца, г

Объем

образца

V, см

Водопоглощение, %

сухого m1 насыщенного m2 по массе по объему
1 2

3

4

5

       

 

 

Опыт 3 Определение замкнутой пористости и коэффициента насыщения.

Данные для вычисления берут из лабораторных работ №1, №2, №3 (табл. 3.2) и заносят в табл. 3.3.

 

 

Таблица 3.3

Номер опыта Истинная плотность ρ, г/см3 Средняя плотность ρ0, г/см3 Общая пористость Открытая пористость По=Wо Замкнутая пористость Пз=П-По Коэффициент насыщения
1 2 3 4 5 6 7

 

 

Контрольные вопросы по лекционному курсу

 

1 Что такое твердость материалов? Ее физическая природа.

2 Как определяется твердость пластичных и твердых материалов?

3 Что такое истираемость? Как она определяется?

4 Что такое упругость материала? Где она учитывается?

5 Что такое пластичность и где она используется?

6 Что такое водопоглощение по массе и по объему?

7 Что такое истинная и кажущаяся пористость?

8 Какие показатели зависят от водопоглощения?

9 Что такое водостойкость и как она определяется?

10 Что такое водонепроницаемость и как она определяется? От чего зависит?

11 Что такое морозостойкость? Как она определяется?

12 В чем выражается отрицательное влияние процессов замораживания и оттаивания?

13 Что такое теплопроводность и какие показатели конструкций она определяет?

14 Что такое термическая стойкость?

15 Сформулировать понятия огнестойкости и огнеупорности.

16 Что такое химическая стойкость строительных материалов?

Лабораторная работа № 4

Лабораторная работа № 5

Лабораторная работа № 6

Лабораторная работа № 7

Лабораторная работа № 1

Тема: Определение истинной плотности строительных материалов

 

Краткие теоретические сведения

 

Одним из важнейших физических свойств является, безусловно, плотность, которая бывает истинной и средней.

Истинная плотность — масса единицы объема материала в абсолютно плотном состоянии, т. е. без учета пор, трещин или других полостей, присущих материалу в его обычном состоянии. Истинную плотность ρ определяют как частное от деления массы m материала на объем V в абсолютно плотном состоянии (без пор), г/см3( кг/м3).

,

где m — это масса материала (измеряется в граммах), V — объём материала в абсолютно плотном состоянии (измеряется в см3), ρ — истинная плотность (измеряется в г/см3).

 

Истинная плотность каждого вещества — постоянная физическая характеристика.

Большинство строительных материалов имеют поры, поэтому у них истинная плотность всегда больше средней. Лишь у плотных материалов (стали, стекла, битума и др.) истинная и средняя плотности практически равны, так как объем внутренних пор у них ничтожно мал.

Плотность большинства каменных материалов колеблется от 2,2 до 3,3, г/см3.

органических материалов от 0,9 до 1,6 и металлов от 7,25 до 7,85 г/см3.

Стандартный метод определения истинной плотности предусматривает измельчение материала в порошок и определение V с помощью объёмомера Ле-Шателье или пикнометра по величине объема вытесненной жидкости известной массой этого порошка.

Для устранения замкнутых пор материал измельчают так, чтобы он проходил через сито с отверстиями Ø 0,2 мм; для исключения влаги просеянный материал высушивают при температуре 105…110 оС до постоянной массы.

Объёмомер заполняют жидкостью до нижней метки и засыпают измельченный образец до тех пор, пока уровень жидкости не поднимется до верхней метки. Это означает, что образец занял объём V, равный объёму, заключенному между нижней и верхней метками прибора. Для удаления воздуха из материала навеску подвергают вакуумированию в течение часа или кипячению в течение 20 минут.

При определении объёмов материалов, не реагирующих с водой, объёмомер или пикнометр заполняют дистиллированной водой, для вычисления объёма материалов, реагирующих с водой (гипс, цемент), применяют бензин, керосин или безводный спирт. Плотность жидких и вязких строительных материалов определяют с помощью ареометра.

 

Опыт 1 .  Определение истинной плотности с помощью объёмомера Ле-Шателье.

 

Аппаратура: объёмомер Ле-Шателье, весы технические с разновесами, фарфоровая чашка, эксикатор, сушильный шкаф, песчаная баня, фарфоровая ступка с пестиком, вакуумнасос, стеклянный сосуд (эксикатор) с крышкой.

 

Методика проведения опыта

Подготовка пробы.

От средней пробы материала дроблёного известняка, керамзита или кирпича отбирают около 200 г., измельчают до крупности частиц 1,2 мм, тщательно перемешивают, после чего отвешивают навеску около 150 г. Навеску измельчают в ступке в порошок до полного прохождения через сито с сеткой №140.

Пробу высыпают в чашку, высушивают до постоянной массы и охлаждают до комнатной температуры в эксикаторе, после чего отделяют навеску равной 80г. и определяют плотность.

Для проведения испытания объёмомер наполняют жидкостью, чтобы уровень её по нижнему мениску доходил до черты 0-0. Навеску массой 80 г взвешивают вместе с чашкой с точностью до 0,1 г. Порошок высыпают в объёмомер ложечкой или совочком небольшими равномерными порциями, пока уровень жидкости в объёмомере (по нижнему мениску) не поднимется до верхней черты.

Чтобы удалить пузырьки воздуха из материала, объёмомер несколько раз энергично поворачивают вокруг вертикальной оси. Остаток порошка с чашкой взвешивают. По разности между массой порошка с чашкой после опыта и массой чашки с материалом до опыта определяют массу всыпанного материала, полный объём, которого равен 20 см3.
 
Рис. 1.1 Объёмомер Ле-Шателье

 

Результат опыта записывают в табл.1.1

Таблица 1.1

Номер опыта Наименование материала Масса чашки с материалом m1, г Масса чашки с остатком m2, г Объём материала V, см 3 Плотность, г/см 3
1 2 3 4 5 6

 

Опыт 2. Определение истинной плотности с помощью пикнометра.

Методика проведения опыта

Навеску массой 10 г переносят в чистый сухой пикнометр и доливают дистиллированную воду до половины пикнометра.

Затем пикнометр в слегка наклонённом положении ставят на песчаную баню и кипятят в течение 15-20 минут. После этого пикнометр охлаждают до комнатной температуры, доливают до метки дистиллированную воду, вытирают и взвешивают. Освобождают пикнометр от содержимого, доливают до метки дистиллированную воду комнатной температуры и снова взвешивают.

 

Аппаратура:, пикнометр вместимостью 100 мл, весы технические с разновесами, сушильный шкаф, песчаная баня

 

Рис. 1.2. Пикнометр, установленный для кипячения.

Плотность определяют как среднее арифметическое двух определений. Результат опыта записывают в табл. 1.2.

Таблица 1.2.

  Номер опыта   Наименование материала Объём пикнометра V, см3 Масса материала m1 Масса пикнометра с жидкостью m2 Плотность, г /см3   Масса пикнометра с материалом и жидкостью m3, г
1 2 3 4 5 6 7

 

 

Контрольные вопросы по лекционному курсу

1. Сформулировать понятия о строительных материалах, изделиях и конструкциях и привести их примеры.

2. Назвать древние строительные материалы: используемые в строительстве до сих пор; уже не используемые в строительстве.

3. Назвать отечественных ученых и охарактеризовать их вклад в строительную науку.

4. Перечислить основные классы строительных материалов и изделий; по назначению; по исходному сырью; технологии переработки.

5. Что такое эффективные строительные материалы и в чем их различие?

6. Какие требования регламентируются стандартами и в чем заключается, их роль?

7. Что такое модульная система, чему равен строительный модуль?

 

Лабораторная работа №2


Рекомендуемые страницы:

lektsia.com

Плотность строительных материалов

Эксплуатационные характеристики современных строительных материалов – прочность, долговечность, морозостойкость и пр. – определяются их физическими параметрами, к числу которых относится и плотность.

Виды плотности, и их определение

Плотность определяется массой, которой обладает единица объёма конкретного материала; единицей измерения служит обычно кг/м3, хотя встречаются также размерности т/м3 и г/см3. Понятие «Плотность строительных материалов» включает в себя:

  1. Насыпную плотность – показатель, применяемый к сыпучим строительным материалам: щебню, песку, гравию и пр., который учитывает степень пористости вещества. При одном и том же объёме с увеличением количества пустот масса материала снижается.
  2. Истинную плотность, которая устанавливается при абсолютном отсутствии пор, и является больше теоретической, чем практической характеристикой материала. Показатели истинной и насыпной плотности материалов в большинстве случаев не совпадают.
  3. Относительную плотность – сравнительную характеристику, которая устанавливает, насколько показатель плотности строительного материала превышает плотность воды при так называемых нормальных условиях: внешней температуре 4°С, и давлении воздуха 760 мм. рт. ст.

На практике удобно истинную/фактическую плотность строительных материалов оценивать их пористостью. С этой целью определяют предельное значение объёма насыщающего материала – газа или жидкости, которую может воспринять единица объёма исследуемого вещества. По увеличению веса материала судят о степени его пористости.

Для расчета плотности используется формула: p=m/V, где m — масса; V — объем.

Взаимосвязь плотности и качества строительных материалов

Помимо степени пористости, плотность определяет также и эксплуатационные показатели строительных материалов. Например, с увеличением плотности соответственно возрастает теплопроводность и снижается степень поглощения влаги древесиной. Поэтому часто относительно строительной древесины используют также показатель её качества, под которым понимают отношение предела прочности на сжатие к плотности материала.

Оценка плотности строительных материалов сильно зависит от условий их хранения и применения. Например, у бетона со временем плотность снижается, что объясняется постепенным вымыванием ряда составляющих из его состава. Изменения показателей плотности характерны и для строительных пластиков, которые длительное время пребывают под воздействием ультрафиолетового излучения.

Снижение плотности негативно отражается на механической прочности строительных материалов. Объясняется это более лёгкой деформацией имеющихся пустот, которые сопровождаются деформациями изгиба строительного элемента или его части. Постепенное накапливание механических напряжений в материале приводит к его разрушению (чаще внезапному, поскольку пластичность всех строительных материалов – достаточно низкая).

Значения плотности преобладающего количества строительных материалов изменяются в широких пределах. В частности, для неорганических материалов – камня, бетона – обычные показатели механической плотности могут изменяться в диапазоне значений 2200…3500 кг/м3, а для органических (пластик, битум, дерево) – 400…2500 кг/м3. Плотность структурно однородных материалов (в частности, металлов) обычно колеблется от 2700 кг/м3 в случае алюминия или его сплавов, до 7600…8000 кг/м3 — для стали и латуни.

Таблица плотности строительных материалов

В таблицах ниже будет приведена плотность основных строительных материалов.

postroy-sam.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *