Аварийные режимы работы электроустановок приводящие к пожарам – Тема № 12. Причины пожаров и загораний от электроустановок

Содержание

Тема № 12. Причины пожаров и загораний от электроустановок

АВАРИЙНЫЕ РЕЖИМЫ РАБОТЫ В ЭЛЕКТРОУСТАНОВКАХ, ПРИВОДЯЩИЕ К ПОЖАРАМ.

Аварийный режим работы электроустановки – режим работы, сопровождающийся отклонением рабочих параметров от предельно-допустимых значений, характеризующийся повреждением, выходу из строя электрооборудования, возможным перерывом электроснабжения или представляющий угрозу жизни людей.

Наиболее частыми причинами возникновения аварийного режима работы электродвигателя являются повреждения его обмоток, вызванные перегревом, пробоем изоляции или механические повреждения двигателя.

Перегрев обмоток электродвигателя возникает в случаях пропадания одной из питающих фаз, понижения питающего напряжения, слишком большой нагрузки на вал, либо его полная остановка, недостаточного охлаждения обмоток, высокой частоты включения двигателя или его запуск под слишком большой нагрузкой.

Пробой изоляции чаще всего случается при работе электродвигателя в условиях повышенной влажности, в результате увлажнения изоляции обмоток электродвигателя.

Частой причиной механического повреждения электродвигателя является износ подшипников, вызывающий осевой сдвиг ротора относительно статора.

Эксплуатация электродвигателей в аварийном режиме приводит к дорогостоящему ремонту или преждевременному выходу его из строя.

Анализ пожаров, возникающих при эксплуатации электроустановок, показывает, что наиболее частыми причинами их являются:

- короткие замыкания в электропроводках и электрическом оборудовании;

- воспламенение горючих материалов, находящихся в непосредственной близости от электроприемников, включенных на продолжительное время и оставленных без

присмотра;

- токовые перегрузки электропроводок и электрооборудования;

- большие переходные сопротивления в местах контактных соединений;

- появление напряжения на строительных конструкциях и технологическом оборудовании;

- разрыв колб электроламп и попадание раскаленных частиц нити накаливания на легкогорючие материалы и др.

Короткие замыкания

Короткие замыкания возникают в результате нарушения изоляции токоведущих частей электроустановок.

Опасные повреждения кабелей и проводок могут возникать вследствие чрезмерного растяжения, перегибов, в местах подсоединения их к электродвигателям или аппаратам управления, при земляных работах и т. п. При нарушении изоляции на жилах кабеля возникают утечки тока, которые затем перерастают в токи короткого замыкания. В зависимости от характера повреждения внутри кабеля может нарастать аварийный процесс короткого замыкания с сопутствующим мощным выбросом в окружающую среду искр и пламени.

Так как многие виды электрооборудования не являются влаго- и пыленепроницаемыми, то производственная пыль (особенно токопроводящая), химически активные вещества и влага проникают внутрь их оболочки и оседают на поверхности электроизоляционных частей и материалов. Некоторые нагревающиеся части электрооборудования при остановке охлаждаются, поэтому на них часто выпадает конденсат воды. Все это может привести к повреждению и переувлажнению изоляции и вызвать чрезмерные токи утечки, дуговые короткие замыкания, перекрытия или замыкания как изолированных обмоток, так и других токоведущих частей.

Изоляция электроустановок может повреждаться при воздействии на нее высокой температуры или пламени во время пожара, из-за перенапряжения в результате первичного или вторичного воздействия молнии, перехода напряжения с установок выше 1000 В на установки до 1000 В и т. д.

Причиной короткого замыкания может быть схлестывание проводов воздушных линий электропередач под действием ветра и от наброса на них металлических предметов. К возникновению короткого замыкания могут привести ошибочные действия обслуживающего персонала при различных оперативных переключениях, ревизиях и ремонтах электрооборудования.

Профилактика короткого замыкания

Наиболее действенным предупреждением короткого замыкания являются правильный выбор, монтаж и эксплуатация электрических сетей, машин и аппаратов. Конструкция, вид исполнения, способ установки и класс изоляции применяемых машин, аппаратов, приборов, кабелей, проводов и прочего электрооборудования должны соответствовать номинальным параметрам сети или электроустановки (току, нагрузке, напряжению), условиям окружающей среды и требованиям ПУЭ (Правила устройства электроустановок). Особенно строго следует соблюдать регулярное проведение осмотров, ремонтов, планово-предупредительных и профилактических испытаний электрооборудования во взрывоопасных установках как при приемке его, так и при эксплуатации. Кроме того, должна быть предусмотрена электрическая защита сетей и электрооборудования. Основное назначение электрической защиты заключается в том, что питание поврежденной в любом месте проводки должно быть прекращено раньше, чем произойдет опасное развитие аварии. Наиболее эффективными аппаратами защиты являются быстродействующие реле и выключатели, установочные автоматы и плавкие предохранители.

Перегрузки

Перегрузкой называется такой аварийный режим, при котором в проводниках электрических сетей, машин и аппаратов возникают токи, длительно превышающие величины, допускаемые нормами.

Одним из видов преобразования электрической энергии является переход ее в тепловую. Электрический ток в проводниках электрических сетей, машин и аппаратов выделяет теплоту, рассеивающуюся в окружающем пространстве. Проводники при этом могут нагреваться до опасных температур. Так, для голых медных, алюминиевых и стальных проводов воздушных линий максимально допустимая температура не должна превышать 70°С.

Объясняется это тем, что с повышением температуры усиливаются окислительные процессы и на проводах (особенно в контактных соединениях) образуются окиси, имеющие высокое сопротивление; увеличивается сопротивление контакта, и следовательно, выделяемая в нем теплота. С увеличением температуры соединения увеличивается окисление, а это может привести к полному разрушению контакта провода.

Весьма опасным является перегрев изолированных проводников, особенно с горючей изоляцией, приводящий к ускорению её износа (старению). Старение изоляции оценивается в относительных единицах. За единицу принимается старение, соответствующее работе при температуре, допускаемой нормами для данного рода изоляции. Для расчетов обычно пользуются установленным экспериментально «восьмиградусным правилом». По этому правилу длительное повышение температуры проводника сверх допустимого на каждые 8°С, приводит к ускорению износа его изоляции вдвое.

Опыты показали, что продолжительность срока службы изоляции в электродвигателях при нагреве до 100°С будет 10 – 15 лет, а при 150°С сокращается до l,5 – 2 мес.

Старение изоляции характеризуется уменьшением ее эластичности и механической прочности. Сильно состарившаяся изоляция под влиянием вибрации при работе трансформаторов, генераторов, электродвигателей и т. п. начинает растрескиваться и ломаться. Следствием этого могут быть электрический пробой изоляции и повреждение электроустановки, а при наличии сгораемой изоляции и пожаро- и взрывоопасной среды – пожар или даже взрыв.

Причиной возникновения перегрузки может быть неправильный расчет проводников при проектировании. Если сечение проводников занижено, то при включении всех предусмотренных электроприёмников возникает перегрузка. Перегрузка может возникнуть из-за дополнительного включения электроприёмников, на которые проводники сети не рассчитаны.

Профилактика перегрузок

Чтобы избежать перегрузки или ее последствий, при проектировании необходимо правильно выбирать сечения проводников сетей по допустимому току, а также

электродвигатели и аппараты управления.

В процессе эксплуатации электрических сетей нельзя включать дополнительно электроприёмники, если сеть на это не рассчитана.

При эксплуатации машин и аппаратов не следует допускать нагрев их до температуры, превышающей предельно допустимую.

Для защиты электроустановок от токов перегрузки наиболее эффективными являются автоматические выключатели, тепловые реле магнитных пускателей и плавкие предохранители.

Переходные сопротивления Переходными называются сопротивления в местах перехода тока с одной контактной поверхности на другую через площадки действительного их соприкосновения. В таком контактном соединении за единицу времени выделяется некоторое количество теплоты, пропорциональное квадрату тока и сопротивлению участков действительного соприкосновения.

Количество выделяемой теплоты может быть столь значительным, что места переходных сопротивлений сильно нагреваются. Следовательно, если нагретые контакты будут соприкасаться с горючими материалами, возможно их воспламенение, а соприкосновение этих мест со взрывоопасными концентрациями горючих пылей, газов и паров легковоспламеняющихся жидкостей явится причиной взрыва.

Профилактика пожаров от контактных сопротивлений

Чтобы увеличить площади действительного соприкосновения контактов, необходимо увеличить силы их сжатия путем применения упругих контактов или специальных стальных пружин. Если контактные плоскости прижать друг к другу с некоторой силой, мелкие бугорки в местах касания плоскостей будут несколько сминаться, при этом увеличатся размеры соприкасающихся основных площадок и появятся новые дополнительные площадки касания. Переходное сопротивление контакта снизится, уменьшится и нагрев контактного устройства.

Для отвода тепла от точек соприкосновения и рассеивания его в окружающую среду необходимы контакты с достаточной массой и поверхностью охлаждения. Особое внимание следует уделять местам соединения проводов и подключения их к контактам вводных устройств электроприемников. На съемных концах для удобства и надежности контакта применяют наконечники различной формы и специальные зажимы, что особенно важно для алюминиевых проводов. Для надежности контакта предусматривают также пружинящие шайбы и бортики, препятствующие растеканию алюминия. В местах, подвергающихся вибрации, при любых проводниках необходимо применять пружинящие шайбы или контргайки. Все контактные соединения должны быть доступны для осмотра — их систематически контролируют в процессе эксплуатации.

Существует несколько способов соединения проводов; основные из них — пайка, сварка, механическое соединение под давлением (опрессование). При пайке необходим источник тепла с температурой, достаточной для нагревания соединяющихся проводов и плавления дополнительного металла (олова или оловянно-свинцовых припоев). Во время пайки изолированных проводов следует применять предохранительные меры, чтобы не повредить изоляцию.

Сварка проводов (электрическая и газопламенная) обеспечивает надежный электрический контакт (что особенно важно для алюминиевых проводов), однако это сложная операция, требующая большого опыта. Соединение проводов пайкой и сваркой не допускается в помещениях со взрывоопасной средой.

Наиболее распространено в настоящее время соединение проводов механической опрессовкой специальными клещами и гидропрессом. Этот способ дает хороший электрический контакт, не требует источника тепла и дефицитных припоев и допускается в помещениях с взрывоопасной средой.

Жилы проводов и кабелей в местах соединений и ответвлений должны иметь такую же изоляцию, как и в целых местах этих проводов и кабелей. Для уменьшения влияния окисления на контактное сопротивление размыкающиеся контакты конструируют таким образом, чтобы размыкание и замыкание их сопровождались скольжением (трением) одного контакта по другому. При этом тонкая пленка окислов разрушается, удаляется с площадки действительного касания контактов, и происходит самоочищение контактов.

Контакты из меди, латуни и бронзы защищают от окисления лужением тонким слоем олова или сплава олова и свинца. Лужение медных контактов особенно эффективно в наружных установках, в сырых или содержащих активные газы и пары помещениях и при температуре воздуха выше 60°С. В процессе эксплуатации необходимо систематически следить за тем, чтобы контакты аппаратов, машин и т. п. плотно и с достаточной силой прилегали друг к другу. Существенную роль играет защитная смазка, предохраняющая контактную поверхность от быстрого окисления.

Вывод по вопросу: Эксплуатация электродвигателей в аварийном режиме приводит к дорогостоящему ремонту или преждевременному выходу его из строя.

ОПАСНОСТЬ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА.

Электростатические заряды возникают на поверхностях некоторых материалов, как жидких, так и твердых, в результате сложного процесса контактной электролизации.

«Электролизация возникает при трении двух диэлектрических или диэлектрического и проводящего материалов, если последний изолирован. При разделении двух диэлектрических материалов происходит разделение электрических зарядов, причем материал, имеющий большую диэлектрическую проницаемость, заряжается положительно, а меньшую — отрицательно. Чем больше различаются диэлектрические свойства материалов, тем интенсивнее происходит разделение и накопление зарядов. На соприкасающихся материалах с одинаковыми диэлектрическими свойствами (диэлектрической проницаемостью) зарядов не образуется».

Интенсивность образования электрических зарядов определяется различием электрических свойств материалов в материалах электрических свойств, а также силой и скоростью трения. Чем больше сила и скорость трения и больше различие электрических свойств, тем интенсивнее происходит образование электрических зарядов.

Например, электростатические заряды образуются на кузове двигающегося в сухую погоду автомобиля, если резина колес обладает хорошими изо

mchsnik.ru

1.2 Разновидности аварийных режимов, приводящих к пожару. Разработка комплекса мер, направленных на исключение причин возникновения пожаров в зданиях общественного назначения

Похожие главы из других работ:

Аварии на предприятии нефтепереработки и их последствия

3. Методы прогнозирования аварийных ситуаций

Ускорение темпов и расширение масштабов производственной деятельности в современных условиях неразрывно связано с все возрастающим использованием энергонасыщенных технологий и опасных веществ. В первую очередь...

Анализ риска возникновения аварийной ситуации на ОАО "КраснодарЭконефть"

5. Определение перечня возможных аварийных ситуаций

Рассмотрим возможные причины и факторы, способствующие возникновению аварийной ситуации, и то к чему они могут привести. В электродегидраторах при повышении давления произойдет отказ регулятора расхода нефти FIRC-12...

Должностная инструкция электромонтера и охрана труда на рабочем месте

4.3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ В АВАРИЙНЫХ СИТУАЦИЯХ

При возникновении возгорания в электроустановке или опасности поражения окружающих электрическим током в результате обрыва кабеля (провода) или замыкания необходимо обесточить установку...

Защитное зануление, заземление и отключение. Молниезащита. Защита от статического электричества

2.4 Разновидности систем искусственного заземления

TN-S пришла в 1930-х на замену TN-C после большого количества электротравм при обрыве нулевого провода, так как сечение нулевого провода обычно бралось 1/3 от толщины сечения фазных проводов...

Ионизирующие излучения: виды, физическая природа и основные свойства

1. Радиация и её разновидности. Ионизирующие излучения

Радиация - это все виды электромагнитного излучения: свет, радиоволны, энергия солнца и множество иных излучений вокруг нас. Источниками проникающей радиации, создающими природный фон облучения, являются галактическое и солнечное излучение...

Нагрузка и отдых

2.2 Разновидности отдыха

...

Обеспечение безопасности труда на ОАО "Северные магистральные нефтепроводы"

2.2.5 Анализ возможных аварийных ситуаций

Таблица 11...

Обеспечение безопасности труда на ОАО "Северные магистральные нефтепроводы"

3.2.7 Мероприятия по предотвращению аварийных ситуаций

Производственный контроль является составной частью системы управления промышленной безопасностью и осуществляется организацией путем проведения комплекса мероприятий

trud.bobrodobro.ru

Основные причины возникновения пожаров в электроустановках - Охрана труда и промышленная безопасность - Энергетика - Каталог статей

Анализ пожаров, возникающих при эксплуатации электроустановок, показывает, что наиболее частыми причинами их являются:

Короткие замыкания

    Короткие замыкания возникают в результате нарушения изоляции токоведущих частей электроустановок.
    Опасные повреждения кабелей и проводок могут возникать вследствие чрезмерного растяжения, перегибов, в местах подсоединения их к электродвигателям или аппаратам управления, при земляных работах и т. п. При нарушении изоляции на жилах кабеля возникают утечки тока, которые затем перерастают в токи короткого замыкания. В зависимости от характера повреждения внутри кабеля может нарастать аварийный процесс короткого замыкания с сопутствующим мощным выбросом в окружающую среду искр и пламени.
    Так как многие виды электрооборудования не являются влаго- и пыленепроницаемыми, то производственная пыль (особенно токопроводящая сажа , копоть, графит), химически активные вещества и влага проникают внутрь их оболочки и оседают на поверхности электроизоляционных частей и материалов. Некоторые нагревающиеся части электрооборудования при остановке охлаждаются, поэтому на них часто выпадает конденсат воды. Все это может привести к повреждению и переувлажнению изоляции и вызвать чрезмерные токи утечки, дуговые короткие замыкания, перекрытия или замыкания как изолированных обмоток, так и других токоведущих частей.
    Изоляция электроустановок может повреждаться при воздействии на нее высокой температуры или пламени во время пожара, из-за перенапряжения в результате первичного или вторичного воздействия молнии, перехода напряжения с установок выше 1000 В на установки до 1000 В и т. д.
    Причиной короткого замыкания может быть схлестывание проводов воздушных линий электропередач под действием ветра и от наброса на них металлических предметов. К возникновению короткого замыкания могут привести ошибочные действия обслуживающего персонала при различных оперативных переключениях, ревизиях и ремонтах электрооборудования.

Профилактика короткого замыкания

    Наиболее действенным предупреждением короткого замыкания являются правильный выбор, монтаж и эксплуатация электрических сетей, машин и аппаратов. Конструкция, вид исполнения, способ установки и класс изоляции применяемых машин, аппаратов, приборов, кабелей, проводов и прочего электрооборудования должны соответствовать номинальным параметрам сети или электроустановки (току, нагрузке, напряжению), условиям окружающей среды и требованиям ПУЭ (Правила устройства электроустановок). Особенно строго следует соблюдать регулярное проведение осмотров, ремонтов, планово-предупредительных и профилактических испытаний электрооборудования во взрывоопасных установках как при приемке его, так и при эксплуатации. Кроме того, должна быть предусмотрена электрическая защита сетей и электрооборудования. Основное назначение электрической защиты заключается в том, что питание поврежденной в любом месте проводки должно быть прекращено раньше, чем произойдет опасное развитие аварии. Наиболее эффективными аппаратами защиты являются быстродействующие реле и выключатели, установочные автоматы и плавкие предохранители.

Перегрузки

    Перегрузкой называется такой аварийный режим, при котором в проводниках электрических сетей, машин и аппаратов возникают токи, длительно превышающие величины, допускаемые нормами.
    Одним из видов преобразования электрической энергии является переход ее в тепловую. Электрический ток в проводниках электрических сетей, машин и аппаратов выделяет теплоту, рассеивающуюся в окружающем пространстве. Проводники при этом могут нагреваться до опасных температур. Так, для голых медных, алюминиевых и стальных проводов воздушных линий максимально допустимая температура не должна превышать 70°С. Объясняется это тем, что с повышением температуры усиливаются окислительные процессы и на проводах (особенно в контактных соединениях) образуются окиси, имеющие высокое сопротивление; увеличивается сопротивление контакта, и следовательно, выделяемая в нем теплота. С увеличением температуры соединения увеличивается окисление, а это может привести к полному разрушению контакта провода.
    Весьма опасным является перегрев изолированных проводников, особенно с горючей изоляцией, приводящий к ускорению её износа (старению). Старение изоляции оценивается в относительных единицах. За единицу принимается старение, соответствующее работе при температуре, допускаемой нормами для данного рода изоляции. Для расчетов обычно пользуются установленным экспериментально «восьмиградусным правилом». По этому правилу длительное повышение температуры проводника сверх допустимого на каждые 8°С, приводит к ускорению износа его изоляции вдвое.
    Опыты показали, что продолжительность срока службы изоляции в электродвигателях при нагреве до 100°С будет 10 – 15 лет, а при 150°С сокращается до l,5 – 2 мес.
    Старение изоляции характеризуется уменьшением ее эластичности и механической прочности. Сильно состарившаяся изоляция под влиянием вибрации при работе трансформаторов, генераторов, электродвигателей и т. п. начинает растрескиваться и ломаться. Следствием этого могут быть электрический пробой изоляции и повреждение электроустановки, а при наличии сгораемой изоляции и пожаро- и взрывоопасной среды – пожар или даже взрыв.
    Причиной возникновения перегрузки может быть неправильный расчет проводников при проектировании. Если сечение проводников занижено, то при включении всех предусмотренных электроприёмников возникает перегрузка. Перегрузка может возникнуть из-за дополнительного включения электроприёмников, на которые проводники сети не рассчитаны.

Профилактика перегрузок

    Чтобы избежать перегрузки или ее последствий, при проектировании необходимо правильно выбирать сечения проводников сетей по допустимому току, а также электродвигатели и аппараты управления.
    В процессе эксплуатации электрических сетей нельзя включать дополнительно электроприёмники, если сеть на это не рассчитана.
    При эксплуатации машин и аппаратов не следует допускать нагрев их до температуры, превышающей предельно допустимую.
    Для защиты электроустановок от токов перегрузки наиболее эффективными являются автоматические выключатели, тепловые реле магнитных пускателей и плавкие предохранители.

Переходные сопротивления

    Переходными называются сопротивления в местах перехода тока с одной контактной поверхности на другую через площадки действительного их соприкосновения. В таком контактном соединении за единицу времени выделяется некоторое количество теплоты, пропорциональное квадрату тока и сопротивлению участков действительного соприкосновения.
    Количество выделяемой теплоты может быть столь значительным, что места переходных сопротивлений сильно нагреваются. Следовательно, если нагретые контакты будут соприкасаться с горючими материалами, возможно их воспламенение, а соприкосновение этих мест со взрывоопасными концентрациями горючих пылей, газов и паров легковоспламеняющихся жидкостей явится причиной взрыва.

Профилактика пожаров от контактных сопротивлений

    Чтобы увеличить площади действительного соприкосновения контактов, необходимо увеличить силы их сжатия путем применения упругих контактов или специальных стальных пружин. Если контактные плоскости прижать друг к другу с некоторой силой, мелкие бугорки в местах касания плоскостей будут несколько сминаться, при этом увеличатся размеры соприкасающихся основных площадок и появятся новые дополнительные площадки касания. Переходное сопротивление контакта снизится, уменьшится и нагрев контактного устройства.
    Для отвода тепла от точек соприкосновения и рассеивания его в окружающую среду необходимы контакты с достаточной массой и поверхностью охлаждения. Особое внимание следует уделять местам соединения проводов и подключения их к контактам вводных устройств электроприемников. На съемных концах для удобства и надежности контакта применяют наконечники различной формы и специальные зажимы, что особенно важно для алюминиевых проводов. Для надежности контакта предусматривают также пружинящие шайбы и бортики, препятствующие растеканию алюминия. В местах, подвергающихся вибрации, при любых проводниках необходимо применять пружинящие шайбы или контргайки. Все контактные соединения должны быть доступны для осмотра — их систематически контролируют в процессе эксплуатации.
    Существует несколько способов соединения проводов; основные из них — пайка, сварка, механическое соединение под давлением (опрессование). При пайке необходим источник тепла с температурой, достаточной для нагревания соединяющихся проводов и плавления дополнительного металла (олова или оловянно-свинцовых припоев). Во время пайки изолированных проводов следует применять предохранительные меры, чтобы не повредить изоляцию.
    Сварка проводов (электрическая и газопламенная) обеспечивает надежный электрический контакт (что особенно важно для алюминиевых проводов), однако это сложная операция, требующая большого опыта. Соединение проводов пайкой и сваркой не допускается в помещениях со взрывоопасной средой.
    Наиболее распространено в настоящее время соединение проводов механической опрессовкой специальными клещами и гидропрессом. Этот способ дает хороший электрический контакт, не требует источника тепла и дефицитных припоев и допускается в помещениях с взрывоопасной средой.
    Жилы проводов и кабелей в местах соединений и ответвлений должны иметь такую же изоляцию, как и в целых местах этих проводов и кабелей. Для уменьшения влияния окисления на контактное сопротивление размыкающиеся контакты конструируют таким образом, чтобы размыкание и замыкание их сопровождались скольжением (трением) одного контакта по другому. При этом тонкая пленка окислов разрушается, удаляется с площадки действительного касания контактов, и происходит самоочищение контактов.
    Контакты из меди, латуни и бронзы защищают от окисления лужением тонким слоем олова или сплава олова и свинца. Лужение медных контактов особенно эффективно в наружных установках, в сырых или содержащих активные газы и пары помещениях и при температуре воздуха выше 60°С. В процессе эксплуатации необходимо систематически следить за тем, чтобы контакты аппаратов, машин и т. п. плотно и с достаточной силой прилегали друг к другу. Существенную роль играет защитная смазка, предохраняющая контактную поверхность от быстрого окисления.

www.xn--80affsqimkl5h.xn--p1ai

Основные причины пожаров от электроустановок


⇐ ПредыдущаяСтр 3 из 4Следующая ⇒

Электрические установки состоят из источников электроэнергии, электросетей, потребителей, а также из аппаратов защиты и управления.

Источниками электроэнергии в большинстве являются генераторы постоянного и переменного тока, электрохимические элементы. Электрические сети, служащие для передачи эл.энергии к потребителям представляют собой провода и кабели, прокладываемые в воздухе, в земле

или под водой. Сети могут содержать аппараты для преобразования эл.энергии (трансформаторы, выпрямители).

К потребителям эл.энергии относятся:

- эл.двигатели постоянного и переменного тока,

- эл. термические установки (эл.печи, сварочные агрегаты, бытовые нагревательные приборы),

- эл.химические установки (эл.химические ванны),

- осветительные установки.

К аппаратам защиты и управления относятся магнитные пускатели, пусковые и регулировочные реостаты, выключатели, рубильники, предохранители, тепловые реле и автоматы.

 

Пожарная опасность электроустановок обуславливается наличием горючей среды в виде изоляционных материалов проводов, кабелей, обмоток эл.машин, различных установочных деталей и корпусов аппаратов, выполненных из горючих материалов, а также наличием горючих материалов вблизи эл.установок.

Кроме того, эл.установки могут находиться и эксплуатироваться во взрывоопасной среде, создаваемой ГГ и парами ЛВЖ, а так же некоторыми взрывоопасными пылями.

Другим фактором, характеризующим пожарную опасность эл.установок является наличие источника зажигания.

К ним относятся:

- искры и дуги, возникающие при нормальном режиме работы электрических машин;

- искрение, возникающее при авариях и неисправностях;

- дуга, возникающая при электросварке и К. З.;

- тепло, аккумулированное в различных частях электроустановок;

- искрение, вызванное зарядами статического электричества и вторичным проявлением молнии.

Как видно из выше изложенного электроустановки представляют собой большую пожарную опасность. Поэтому работники органов ГПН должны знать причины пожаров от электрического тока для разработки противопожарных мероприятий.

Большое значение имеет знание действующих нормативных документов, предусматривающих вопросы пожарной безопасности.

Строгое выполнение правил пожарной безопасности почти всегда исключает возможность возникновения пожаров.

 

Основными причинами технологических нарушений в работе электрооборудования приводящих к возникновению пожаров являются:

· физический износ оборудования;

· низкое качество технического обслуживания и ремонта оборудования;

· несоблюдение периодичности и объема выполнения профилактических мероприятий;

· недостаточный уровень использования средств оценки технического состояния и диагностики;

· ошибки и недостаточный уровень подготовки оперативного персонала;

· природно-климатические воздействия;

· недостатки эксплуатации;

· недостатки проектных решений, монтажных и строительных работ;

· недостатки конструкции и изготовления и др.

Короткие замыкания.

"Коротким замыканием называется всякое не предусмотренное нормальными условиями работы замыкание через малое сопротивление между фазами, а в системах с заземлённой нейтралью- также замыкание одной или нескольких фаз на землю (или нулевой провод)."

При возникновении К.З. в электрической сети её общее сопротивление резко уменьшается, что приводит к увеличению токов в её ветвях по сравнению с токами нормального режима. В свою очередь это вызывает снижение напряжения в сети, которое особенно велико вблизи места КЗ.

Явление КЗ объясняется тем, что при эксплуатации эл. установок эл. изоляция может быть нарушена, эл. сопротивление её резко падает и при непосредственном соприкосновении проводников, находящихся под напряжением или через малое сопротивление постоянного проводника ток будет проходить с проводника на проводник, минуя потребителя и цепь замыкается “накоротко”, так как сопротивление проводников может быть ничтожно мало по сравнению с сопротивлением сети потребителя. Закон Ома

I= R↓

Таким образом ток КЗ может достигать больших величин – 10000А и более, сопровождается термическими проявлениями, величина выделения тепла при прохождении тока по проводнику определяется законом Джоуля-Ленца

Q=I2Rt(Дж)

I-сила тока[А];

R -сопративление [Ом];

t -время прохождения тока по проводнику [сек];

Q -количество выделившейся теплоты[Дж]

В результате этих воздействий эл.оборудование может быть разрушено, а большой перегрев токоведущих частей сопровождаемый выделением искр или дуг могут воспламенить изоляцию эл.оборудования и окружающую среду.

 

Причинами КЗ являются нарушение изоляции токоведущих частей электроустановок при:

-естественном старении изоляции,

-перенапряжениях в результате воздействия молнии, попадания напряжения с высоковольтных установок на низковольтные

-повреждение в процессе эксплуатации эл.установок:

1) механическое

2) в результате воздействия окружающей агрессивной среды

3) воздействия влаги

4) повышенной температуры

 

К коротким замыканиям могут приводить ошибочные действия обслуживающего персонала, не выполняющие правила тех-ки безопасности и тех.эксплуатации, а также вследствие перекрытия голых токоведущих частей животными и птицами.

ПРИМЕР1:

Примером пожара от осветительных приборов может быть пожар, происшедший в вычислительном отделе Пентагона в г. Арлингтоне (штат Виргиния). Причина пожара — неисправность пускорегулируещей аппаратуры люминесцентного светильника и возгорание подвесного потолка, выполненного из листовой фибры. Ущерб составил около 6,7 млн. долл.

ПРИМЕР 2:

Окраска силовой выключателя. Работник тщательно окрасил все поверхности, в том числе и ту часть аппарата, которая находилась год защитным кожухом. В результате продувное отверстие пневматического привода вспомогательного выключателя оказалось частично забито краской. При пробном пуске выключатель сработал. При этом давление воздуха соответствовало верхнему допустимому значению. Когда позднее потребовались переключения, этот выключатель отказал, так как на этот раз давление было на нижней границе допустимых значении. Это повлекло за собой аварию трансформатора мощностью 1000 кВ-А и генератора такой же мощности с последующим пожаром. Несоблюдение противопожарного режима при проведении профилактических работ иногда становится причиной крупных пожаров.

ПРИМЕР 3:

Пожар г. Иваново, в одноэтажном, бревенчатом доме причина - КЗ в электрическом шнуре утюга оставленного включенным в сеть без присмотра.

Меры предотвращения:

1. Не допускать нарушения техники безопасности и техники эксплуатации

2. Следить за исправностью электрооборудования и

изоляционных материалов

2.2. Перегрузка.

Перегрузкой называется такое явление, когда по проводам и кабелям электрических сетей, обмоткам машин и аппаратов идёт рабочий ток Iр больше длительно допустимого Iд . IР > IД

Сущность перегрузки связана с переходом энергии эл.тока в тепловую.

Это явление сформулировано известны законом Джоуля-Ленца.

↑Q=I2Rt ↑I→Q↑

При этом часть тепловой энергии рассеивается в окружающую среду, а отдельные части эл. оборудования нагреваются до температуры выше допустимой.

Так например, для изолированных проводников с резиновой и полихлорвиниловой изоляцией максимально допустимая температура нагрева равна 650С. Перегрев проводника может вызвать старение, растрескивание изоляции, её обугливание и загорание.

Причины перегрузки:

1. Неправильный расчёт и подбор сечения проводников допустимой токовой нагрузке (IД )

IРАБ > IДОП SТР > SДОП площадь сечения

2. Дополнительное включение потребителей в сеть, на которую она не рассчитана

IРАБ= ; Iраб.=I1+I2+….+IП

3. Перегрузка вызванная в результате увеличения механической нагрузки на валу двигателя.

4. Перегрузка эл. двигателя вызванная в результате падения напряжения.

IН=

5. Перегрузка трёхфазных эл. двигателей возникающая при работе на двух фазах.

6. Перегрузка в электродвигателях вследствие недостаточного количества смазки в подшипниках.

7. Перегрузка эл. двигателей, работающих в среде с токопроводящей пылью вследствие затягивания её во внутрь статера двигателя.

Пример 1:

Пожар в магазине вследствие подключения к электроудлинителю двух холодильников, расположенные в центре зала, и электронных весов на прилавке. Вилка электроудлинителя была подключена к эл. розетке. Установлено, что на момент возникновения пожара все холодильное оборудование находилось в рабочем режиме, т.е. было подключено к эл. сети.

Меры предотвращения:

1.Правильный подбор и расчет сечения проводников

2. Включение в сеть того количества потребителей на которое она рассчитана

3.Соблюдение техники безопасности и техники эксплуатации

 


Рекомендуемые страницы:

lektsia.com

Аварийный режим электроустановки - это... Что такое Аварийный режим электроустановки?



Строительный словарь.

  • Аварийный режим трансформатора
  • Аварийный режим мощности энергосистемы (Аварийный резерв)

Смотреть что такое "Аварийный режим электроустановки" в других словарях:

  • аварийный режим электроустановки — Режим эксплуатации электроустановки в условиях единичного или множественных повреждений. Примечание В аварийном режиме электроустановки появляются единичное или множественные повреждения средств защиты от поражения электрическим током, резко… …   Справочник технического переводчика

  • аварийный режим электроустановки — работа неисправной электроустановки, при которой могут возникать опасные ситуации, приводящие к электротравмированию людей, взаимодействующих с электроустановкой …   Российская энциклопедия по охране труда

  • Аварийный режим электроустановки — – тех. без. работа неисправной электроустановки, при которой могут возникнуть опасные ситуации, приводящие к электротравмированию людей, взаимодействующих с электроустановкой. [ГОСТ 12.1.038 82] Рубрика термина: Энергетическое оборудование… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • аварийный режим электроустановки — 20.7 аварийный режим электроустановки: Режим эксплуатации электроустановки в условиях единичного или множественных повреждений. Примечание В аварийном режиме электроустановки появляются единичное или множественные повреждения средств защиты от… …   Словарь-справочник терминов нормативно-технической документации

  • Аварийный режим электроустановки — – работа неисправной электроустановки, при которой могут возникнуть опасные ситуации, приводящие к электротравмированию людей, взаимодействующих с электроустановкой. ГОСТ 12.1.038 82 …   Коммерческая электроэнергетика. Словарь-справочник

  • Аварийный режим — 8. Аварийный режим Режим электрооборудования, при котором произошли изменения электрических и конструктивных параметров элементов (узлов, блоков), оказывающих влияние на искробезопасность цепи Источник …   Словарь-справочник терминов нормативно-технической документации

  • Аварийный — 56. Аварийный дамп Postmortem dump Дамп, полученный в результате ненормального завершения программы Источник: ГОСТ 19781 90: Обеспечение систем обработки информации программное. Термины и определения …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 50571.1-2009: Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения — Терминология ГОСТ Р 50571.1 2009: Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения оригинал документа: 20.16 PEL проводник (совмещенный защитный заземляющий и линейный проводник):… …   Словарь-справочник терминов нормативно-технической документации

  • Нормальный режим — 7. Нормальный режим Нормальный режим электротехнического устройства по ГОСТ 18311 80 Примечание. К нормальному режиму относятся искрения, которые могут возникнуть при разрыве, коротком замыкании или замыкании на землю внешних искробезопасных… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 12.1.038-82: Система стандартов безопасности труда. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов — Терминология ГОСТ 12.1.038 82: Система стандартов безопасности труда. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов оригинал документа: Аварийный режим электроустановки Работа неисправной электроустановки,… …   Словарь-справочник терминов нормативно-технической документации

dic.academic.ru

Режимы работы и замыкания в электроустановках

Библиографическое описание:

Коваленко Д. В. Режимы работы и замыкания в электроустановках // Молодой ученый. — 2016. — №18. — С. 85-87. — URL https://moluch.ru/archive/122/33627/ (дата обращения: 04.12.2019).



Система электроснабжения (СЭС) может находиться в различных режимах работы: нормальном, ненормальном и аварийном. Рассмотрим эти режимы.

Основные определения

Нормальный режим работы — это такой режим работы электроустановки, при котором обеспечивается снабжение электроэнергией любых потребителей надлежащего качества. При этом показатели качества электроэнергии находятся в пределах, установленных ГОСТ 32144–2013 [3].

Аварийный режим работы — это режим работы электроустановки, который сопровождается отклонением рабочих параметров от предельно-допустимых значений. Этот режим работы характеризуется повреждением элементов СЭС, выходом из строя электрооборудования, возможным перерывом электроснабжения.

Ненормальный режим работы — это режим работы электроустановки, при котором значение какого-либо одного из параметров, характеризующего режим работы СЭС выходит за пределы диапазона допустимых рабочих значений. Они связаны с отклонениями значений величин тока, напряжения и частоты. Ненормальные режимы работы могут быть опасны для оборудования или устойчивой работы энергосистемы.

К аварийным режимам работы электроустановок относятся короткие замыкания: трехфазные (К(3)), двухфазные (К(2)), двухфазные на землю (К(1.1)), однофазные (К(1)). Все эти виды замыканий справедливы для сетей с заземленным режимом работы нейтрали [1, 2, 4, 5].

Короткое замыкание(КЗ) — это электрическое соединение двух точекэлектрической цепис разными значениямипотенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу или состояние, при котором сопротивление нагрузки меньше внутреннего сопротивления источника питания. Кроме того, короткое замыкание может возникать при нарушении изоляции токоведущих элементов [1, 2, 4, 5].

Виды коротких замыканий, основные соотношения токов инапряжений

При трехфазном коротком замыкании токи и напряжения во всех трех фазах равны по величине не только в месте короткого замыкания, но и любой другой точке сети: ; .

При двухфазном коротком замыкании на здоровой фазе ток отсутствует, а в поврежденных фазах проходят токи, одинаковые по величине и противоположные по направлению: , . Напряжение между поврежденными фазами равно нулю, а фазные напряжения равны: , .

При двухфазном коротком замыкании на землю соотношения токов и напряжений имеют следующий вид: , .

Для сетей с заземленной нейтралью этот вид короткого замыкания является более опасным по сравнению с двухфазным коротким замыканием из-за значительного уменьшения линейных напряжений в месте короткого замыкания.

При однофазном коротком замыкании соотношения токов и напряжений принимают следующий вид: ; . (Этот вид короткого замыкания справедлив только для сетей с заземленной нейтралью, также как и двухфазное короткое замыкание на землю.)

В электрических машинах возможны межвитковые короткие замыкания (замыкание витков обмотокротораилистатора, либо витков обмоток трансформаторов), а также замыкание обмотки на металлический корпус машины.

Короткое замыкание в любом из элементов СЭС может нарушить её функционирование — у некоторых потребителей может упасть питающее напряжение, что приводит к повреждению оборудования; в трёхфазных сетях при коротких замыканиях возникает несимметрия напряжений, нарушающая её нормальное электроснабжение. В системообразующих сетях короткое замыкание способно вызвать тяжёлые системные аварии [1–5].

Основные причины возникновения коротких замыканий

  1. Старение и, вследствие этого, пробой изоляции.
  2. Набросы на провода линий электропередачи (ЛЭП).
  3. Обрывы проводов ЛЭП с падением на землю.
  4. Механические повреждения изоляции кабельных ЛЭП при земляных работах.
  5. Удары молнии в ЛЭП.

Чаще всего КЗ происходит через переходное сопротивление (через сопротивление электрической. дуги, возникающей в месте повреждения изоляции). Иногда возникают металлические КЗ без переходного сопротивления.

Таблица 1

Вероятность возникновения повреждений вэлектрических сетях

Вид КЗ/повреждения

Вероятность возникновения

Трехфазное — К(3)

1–7 %

Двухфазное — К(2)

2–13 %

Двухфазное на землю — К(1.1)

5–20 %

Однофазное — К(1)

60–92 %

Однофазное замыкание на землю — З(1)

60–92 %

Другие ненормальные режимы работы

В сетях, не имеющих непосредственного заземления нейтрали (изолированная, компенсированная или резистивно заземленная нейтраль) могут возникать только трехфазные и двухфазные короткие замыкания.

В упомянутых выше сетях (без заземления нейтрали) при электрическом контакте любой из трех фаз с землей возникают однофазные замыкания на землю (ОЗЗ), которые относятся к ненормальным режимам работы (не являются короткими), так как в режиме работы сети при однофазном замыкании на землю сеть (в классическом случае) не отключается устройствами релейной защиты и продолжает работать. В этом случае напряжения на здоровых фазах возрастают до линейных значений. Допустимые значения емкостных токов при однофазном замыкании на землю для сетей с различными классами напряжений приведены в таблице 2.

Таблица 2

Допустимые значения емкостного тока при однофазном замыкании на землю

Класс напряжения, кВ

Допустимое значение емкостного ток, А

3–6

30

10

20

15–20

15

35

10

Генераторные цепи

5

ЛЭП на ж/б опорах

10

Именно этот режим работы в настоящее время вызывает живой интерес, так как на данный момент еще никому не удалось создать универсальную селективную защиту от однофазных замыканий на землю, поэтому актуальность и перспективность создания такой защиты не вызывает сомнений.

Кроме всего вышеперечисленного следует выделить режим перегрузки как одну из разновидностей ненормальных режимов работы. К ним относятся: перегрузка оборудования при превышении номинального значения тока, перегрузка оборудования при превышении номинального значения напряжения. При превышении номинального значения тока возникает повышенный износ изоляции, что приводит к её повреждению. При превышении напряжения выше номинального значения уменьшается срок службы электрооборудования и увеличивается вероятность возникновения аварий.

В заключение приведем таблицу с режимами работ нейтралей СЭС и видами замыканий, которые могут возникнуть в каждом конкретном случае.

Таблица 3

Виды замыканий всистемах электроснабжения

Вид замыкания или повреждения

Трехфазное — К(3)

+

+

Двухфазное — К(2)

+

+

Двухфазное на землю — К(1.1)

+

Однофазное — К(1)

+

Однофазное замыкание на землю — З(1)

+

Литература:

  1. Андреев В. А. Релейная защита и автоматика систем электроснабжения / В. А. Андреев. М.: Высшая школа, 2006. — 642 с.
  2. Беркович М. А. и др. Основы техники релейной защиты / М. А. Беркович, В. В. Молчанов, В. Л. Семенов. — 6-е изд., перераб. и доп. — М.: Энергоатомиздат, 1984. — 376 с.
  3. ГОСТ 32144–2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. — М.: Стандартинформ, 2014. — 16 с.
  4. Правила Устройства Электроустановок. 7-е издание.
  5. Рожкова Л. Д. и др. Электрооборудование электрических станций и подстанций / Л. Д. Рожкова, Л. К. Карнеева, Т. В. Чиркова. — 4-е изд., стер. — М.: Академия, 2007. — 448 с.

Основные термины (генерируются автоматически): короткое замыкание, однофазное замыкание, ненормальный режим работы, сеть, земля, двухфазное короткое замыкание, замыкание, заземленная нейтраль, режим работы электроустановки, вид замыканий.

moluch.ru

Аварийные режимы электроустановок. Напряжение прикосновения, шаговое напряжение.

 

Влияние аварийных режимов работы электроустановок на электробезопасность

Наибольшую опасность поражения человека электрическим током в электроустановках вызывают замыкания на корпус и замыкания на землю.

Замыканием на корпус называется случайное электрическое соединение токоведущей части с металлическими нетоковедущими частями электроустановки.

Замыканием на землю называется случайное электрическое соединение токоведущей части непосредственно с землей или нетоковедущими проводящими конструкциями и предметами, не изолированными от земли.

Если человек касается изолированных от земли металлических нетоковедущих частей электроустановки, то при замыкании на корпус он оказывается подключенным к одной из фаз электрической сети. Это условие следует классифицировать как косвенное однофазное прикосновение к токоведущим частям электроустановки.

Все формулы и выводы, полученные для прямого однофазного прикосновения в нормальном режиме работы электроустановки, будут справедливы для рассматриваемого случая.

Замыкание на землю, как это следует из определения , представляет собой резкое снижение сопротивления изоляции одной из фаз электроустановки относительно земли. При однофазном прикосновении к токоведущим частям это повлияет на значение тока проходящего через тело человека.

Наибольшая опасность поражения при замыкании на землю существует в сети с изолированной нейтралью, так как если при наличии в сети замыкания на землю человек касается одной из исправных фаз, то он окажется под напряжением близким к линейному напряжению источника питания.

Так как, в этом случае, человек попадает под напряжение в раз больше фазного, замыкание на землю в сети с изолированной нейтралью представляет большую опасность (практически такую же как и при двухфазном прикосновении).

Замыкание на землю всегда сопровождается растеканием тока в грунте, а это приводит к возникновению нового условия поражения – включения под напряжение шага.

Напряжение шага (Uш) появляется при нахождении человека в зоне растекания тока.

Согласно ПУЭ:

Напряжение шага – напряжение между двумя точками на поверхности земли, на расстоянии 1 м одна от другой, которое принимается равным длине шага человека.

Зона растекания тока – зона земли, за пределами которой электрический потенциал, обусловленный токами замыкания на землю (Iз), удельным сопротивлением грунта (r) и местом нахождения человека в зоне растекания тока, равен нулю.

На рис.2.5 показано характерное для замыкания на землю распределение потенциала j в зоне растекания тока.

 

 

Зона растекания – зона земли между заземлителем и зоной нулевого потенциала.

В положении 1 человек попадает под напряжение шага. Положение 2 характеризуется как однофазное прикосновение человека, находящегося в зоне растекания тока, к замкнувшейся на землю токоведущей части. При этом человек попадает под напряжение прикосновения Uпр, которое равно разности потенциалов рук и ног.

По ПУЭ:

Напряжение прикосновения – напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека.

Если эти потенциалы выразить через напряжения относительно земли с нулевым потенциалом, то получим:

Uпр=Uф.з-Uт.з.р. (2.9)

где: Uт.з.р - напряжение точки зоны растекания тока, в которой находится человек прикоснувшийся к замкнувшийся на землю токоведущей части.

 

Ток, проходящий через человека, в этом случае:

(2.10)

 

где: α - коэффициент прикосновения, учитывающий влияние зоны растекания на Uпр. Значения a в зависимости от места нахождения человека могут быть от 0 до 1

Выводы, полученные при опасности однофазного прикосновения в нормальном режиме работы электроустановок, будут справедливы и для данного случая.

При известном значении a можно рассчитать ток через человека.

Если человек находится вне зоны растекания тока, то Uт.з.р.=0 и a=0. В этом случае потенциальное поле зоны растекания тока не влияет на опасность поражения

 

studopedia.net

Отправить ответ

avatar
  Подписаться  
Уведомление о