Расчет мощности отопления: Расчет котла отопления частного дома — онлайн калькулятор мощности котла
Расчет тепловой мощности прибора для отопления Теплота Харьков
Формула расчета мощности теплового обогревателя исходя из площади помещения и желаемой температуры. Данная статья поможет самостоятельно рассчитать мощность тепловентилятора, конвектора, радиатора, тепловой завесы или общую мощность для отопления дома.
Расчет тепловой мощности обогревательного прибора.Для расчета мощности любого обогревательного прибора в конкретно взятом помещении, вам необходимо знать некоторые характеристики данного места:
• V – Объем нагреваемого помещения, (ширина х длина х высота) в м3.
• Т – Температурная разница между наружной температурой воздуха и желаемой температурой внутри помещения в °C
• К – Коэффициент теплового рассеивания, который можно подобрать, исходя из характеристик помещения.
— К = 0,6 — 0,9 – помещения с очень высокой теплоизоляцией стен, пола и крыши, с небольшой площадью окон. Очень хорошая теплоизоляция
— К = 1,0 – 1,9 — стандартная жилая конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. Данное помещение можно охарактеризовать, как — Средняя теплоизоляция.
— К = 2,0 – 2,9 – упрощенная конструкция, одинарная кирпичная кладка, слабо утепленная крыша, большая площадь окон – Теплоизоляция ниже среднего.
— К = 3,0 – 4,0 – деревянная, либо металлическая конструкция. Без теплоизоляции.
Благодаря этим данным, мы сможем узнать ккал/ч нужно потратить для обогрева помещения исходя из заданных значений. Применяем формулу расчета тепловой мощности:
Полученное значение, для перевода в обычные кВт/ч нужно разделить на 860, т.к. известно, что 1 кВт = 860 ккал/ч
Пример расчета тепловой мощности тепловентилятора
V – Ширина 4 м, Длина 6 м, Высота 3 м. Объем обогреваемого помещения 72 м3
T– Температура воздуха снаружи -5C Требуемая температура внутри помещения +23°C. Разница между температурами внутри и снаружи +28°C
K – Этот коэффициент зависит от типа конструкции и изоляции помещения, в нашем случае это обычная квартира с К = 1,5
Итак, требуемая тепловая мощность:
72х28х1,5=3024 ккал/ч (VxTxK = ккал/ч)
3024/860=3,52 кВт/ч (ккал/ч / 860 = кВт/ч)
Теперь можно приступить к выбору теплового прибора для данной комнаты. Это может быть тепловентилятор, тепловая пушка, тепловой насос, тепловая завеса или другой прибор отопления мощностью 3,5 кВт.
видео-инструкция как рассчитать своими руками, особенности электрических, твердотопливных изделий, цена, фото
Приобретая котел отопления, перед покупателем возникает задача, связанная с тем, какая мощность должна быть у устройства. Дело в том, что от данного параметра зависит не только качество работы системы, но и срок ее эксплуатации. Именно поэтому расчет мощности котла отопления по площади выполняется еще на стадии проектирования.
Любительское фото типового котла, присоединенного к системе
Варианты получения данных и их необходимость
Для начала необходимо сказать о том, что раньше такой показатель находили очень просто. Достаточно было площадь помещения разделить на десять и в итоге получится значение в кВт, которое нужно использовать, как номинальную мощность изделия. Однако современная инструкция по монтажу не рекомендует использовать такой подход, поскольку качество построек, их конструкция и тип материалов сильно изменились за последнее время.
Для получения необходимых данных, прежде всего, нужно узнать площадь всех помещений в квартире или доме и иметь замеры высоты потолка
Необходимость в расчетах
- Прежде всего, точные данные позволят определить конкретный тип устройства, которое необходимо. Не придется переплачивать за избыточную мощность или страдать из-за ее нехватки. Дело в том, что цена изделия напрямую зависит от этого параметра.
Таблица с указанием накопительных мощностей при определенном времени нагрева и использовании соответствующего теплоаккумулятора
- Также необходимо упомянуть и о том, что устройство должно работать на своем оптимальном режиме . Если оно будет использоваться менее чем на 60%, то это сильно снизит срок эксплуатации его деталей, и в дымоходе будет появляться конденсат. Поэтому вопрос о том, как рассчитать мощность котла отопления требует довольно точного ответа и проверенных данных.
Таблица с типовыми параметрами, которые получены при учете высоты помещения до трех метров и максимальном расходе газового топлива
- Отдельное внимание стоит уделить и тому, что более мощные системы имею дорогие детали, и при профилактическом ремонте это приведет к лишним затратам. При этом КПД при неполном использовании оборудования очень сильно снижается, поскольку оно рассчитано для работы с конкретным объемом. Именно поэтому расчет тепловой мощности системы отопления очень важен при выборе бытового отопительного котла для дома.
Совет!
Некоторые производители сразу указывают на своих изделиях данные, которые указывают на площадь помещения или его объем.Однако все это довольно относительно и подлежит проверке.
Некоторые производители подобного оборудования создают специальное программное обеспечение, которое дает возможность покупателю самостоятельно подобрать не только изделие необходимой мощности, но и конкретно указывает на модель
Вычисления
Если расчет мощности электрического котла отопления или калорифера производится в помещении с потолками высотой до трех метров, то необходимо использовать специальную формулу: МК = S*УМК/10
Где МК – мощность котла, S – площадь помещения, а УМК – это удельная мощность установки. (См. также статью Электрокотел для отопления: особенности.)
Основные варианты расчета мощности
Стоит отметить, что расчет мощности отопительного котла в качестве последнего параметра предполагает использование специальных величин для определенных регионов страны.
Например:
- для подмосковных регионов он будет составлять 1.2 – 1.5 кВт,
- для южных регионов он равняется 0.7 – 0.9 кВт,
- для средней полосы этот параметр будет составлять 1.0 – 1.2 кВт,
- а вот северные регионы должны воспользоваться данными равными 1.5 – 2.0 кВт.
Формула расчета с учетом всех теплопотерь
Если же высота потолка значительно выше, то необходимо произвести дополнительные вычисления.
При этом расчет мощности отопления будет производиться с запасом в 15 – 20%.
- Для получения необходимой величины нужно сначала умножить величину запаса, которая будет равна числу 1.15 или 1.20, на данные по прогнозируемым потерям.
- Чтобы узнать такие потери необходимо произвести дополнительный расчет мощности системы отопления. Для этого необходимо умножить разницу внешней и внутренней температуры на объем помещения, а затем, полученную величину умножают и на коэффициент теплоизоляции здания и делят на 860.
- Сам этот коэффициент берут из специальной инструкции. Например, для обычных конструкций из дерева или железа он будет составлять 3 или 4, а для здания с хорошей термоизоляцией это число будет ровняться от 0,6 до 0,9.
- Однако стоит отметить, что готовые данные этого типа не могут претендовать на полноценный расчет мощности твердотопливного котла. Дело в том, что подобное оборудования для горения может использовать материалы, которые дают разный жар. Поэтому стараются использовать средние параметры газовых систем.
Совет!
Учитывая всю сложность подобных вычислений лучше воспользоваться специальным программным обеспечением, которое специально придумано для этих целей.
Существует отдельное программное обеспечение для учета всех потерь тепла
Калькулятор
Большинство специалистов, рассказывая как рассчитать мощность отопительного котла, рекомендуют воспользоваться специальным программным обеспечением. В него вводятся масса различных параметров, начиная от высоты потолка и заканчивая типом утеплителя, а значит, полученный результат будет максимально приближенный к действительности. Это очень важно при проектировании больших помещений или частных домов.
Необходимо отметить, что использовать подобный калькулятор своими руками может даже человек без опыта. Главное иметь все необходимые для ввода данные и четко следовать инструкции.
Совет!
Все имеющиеся параметры нужно перевести в те величины, которые использует для работы калькулятор.
Если этого не сделать, то конечный результат будет иметь неточности.
Чем больше непредвиденных утечек тепла или расходов, тем больше уменьшается КПД изделия
Вывод
Изучив подробнее видео, представленное в этой статье, можно узнать более детально о подобных вычислениях и необходимых данных. Также принимая во внимание текст, приведенный выше, стоит сделать вывод о том, что порой лучше воспользоваться специальной программой, чем производить расчеты самостоятельно.
Расчет отопления в частном доме калькулятор. Калькулятор расчета мощности котла отопления
Расчет отопления в частном доме калькулятор. Калькулятор расчета мощности котла отопления
Мощность котла является одной из важнейших характеристик отопительного оборудования. Избыток мощности скажется переплатой за котел, недостаток – невозможностью оборудования отопить жилую площадь или нагреть воду в системе ГВС. Поэтому перед выбором котла предлагаем прикинуть его параметры не без помощи нашего онлайн-калькулятора для расчета мощности котла отопления. Попробуем разобраться со значениями, которые вам придется ввести для получения достоверного результата.
Температура
Комфорт пребывания в жилом помещении зимой определяется температурой воздуха и его влажностью. Сначала введите значение температуры, которую вы планируете поддерживать дома. Температуру наиболее холодной пятидневки можете посмотреть в СП 131.13330.2012 Строительная климатология , т.к. она привязана к климатической зоне.
Отапливаемые площадь и объем помещений
В качестве теплоносителя, передающего тепло от радиаторов отопления человеку, служит воздух. Логично, что мощность отопительного оборудования во многом зависит от того, какой объем этого воздуха необходимо нагреть и далее поддерживать постоянной его температуру.
Конструктивные элементы здания
В различных постройках и условиях эксплуатации котлы одинаковой мощности дают совершенно разные результаты. Все потому, что потери тепла через стены, перекрытия и окна влияют на общую картину. Чем выше тепловые потери, тем более высокой должна быть поправка мощности отопительного оборудования.
Могут быть непонятны маркировки стеклопакетов. Тут все довольно просто, например, 4-16-4 означает, что зазор между двумя стеклами толщиной 4 мм составляет 16 мм. Буква «К» означает энергосберегающее стекло, «Ar» — камеры заполнены аргоном.
Расчет радиаторов отопления по площади калькулятор. Тепловая мощность радиаторов отопления
Расчет радиаторов отопления частного дома начинается с выбора самих устройств. В ассортименте для потребителей представлены чугунные, стальные, алюминиевые и биметаллические модели, отличающиеся по своей тепловой мощности (теплоотдаче). Какие-то из них греют лучше, а какие-то хуже – тут следует ориентироваться на количество секций и на размеры батарей. Давайте посмотрим, какой тепловой мощностью обладают те или иные конструкции.
Биметаллические радиаторы
Секционные биметаллические радиаторы изготавливаются из двух компонентов – это сталь и алюминий. Их внутренняя основа состоит из прочной стали, выдерживающей высокое давление, стойкой к гидроударам и агрессивному теплоносителю . Поверх стального сердечника методом литья под давлением наносится алюминиевая «рубашка». Именно она и отвечает за высокую теплоотдачу. В результате у нас получается эдакий бутерброд, стойкий к любым негативным воздействиям и характеризующийся приличной тепловой мощностью.
Теплоотдача биметаллических радиаторов зависит от межосевого расстояния и от конкретно выбранной модели. Например, устройства от компании Rifar могут похвастаться тепловой мощностью до 204 Вт при межосевом расстоянии 500 мм. Аналогичные модели, но с межосевым расстоянием 350 мм, отличаются тепловой мощностью 136 Вт. Для небольших радиаторов с межосевым расстоянием 200 мм теплоотдача составляет 104 Вт.
Теплоотдача биметаллических радиаторов от других производителей может отличаться в меньшую сторону (в среднем 180-190 Вт при расстояние между осями 500 мм). Например, максимальная тепловая мощность батарей от Global составляет 185 Вт на секцию при расстояние между осями 500 мм.
Расчет радиаторов отопления по площади калькулятор в частном доме. Расчет размера стального радиатора
Конструкция панельных приборов отличается от секционных. Батареи делаются из штампованных стальных листов толщиной 1…1.2 мм, заранее обрезанных в нужный размер. Чтобы подобрать радиатор требуемой мощности, нужно выяснить теплоотдачу 1 метра длины сваренной из листов панели.
Предлагаем воспользоваться простейшей методикой, основанной на технических данных серьезного немецкого производителя панельных водяных радиаторов Kermi. В чем суть: штампованные батареи унифицированы, типы изделий отличаются между собой количеством греющих панелей и теплообменных оребрений. Классификация радиаторов выглядит так:
- тип 10 – однопанельный прибор без дополнительных ребер;
- тип 11 – 1 панель + 1 лист гофрированного металла;
- тип 12 – две панели плюс 1 лист оребрения;
- тип 20 – батарея на 2 греющих пластины, конвекционное оребрение не предусмотрено;
- тип 22 – двухпанельный радиатор с 2 листами, увеличивающими площадь теплообмена.
Эскизы стальных обогревателей различных типов — вид сверху
Примечание. Также существуют обогреватели типа 33 (3 панели + 3 ребра), но подобные изделия менее востребованы ввиду повышенной толщины и цены. Самая «ходовая» модель – тип 22.
Итак, панельные штампованные приборы любого бренда отличаются только монтажными габаритами. Расчет радиаторов отопления сводится к выбору подходящего типа, затем по высоте и теплоотдаче вычисляется длина батареи для конкретного помещения. Алгоритм следующий:
- Определите исходные данные, перечисленные в начале статьи.
- Выберите тип и высоту отопительного прибора. Самый распространенные варианты – изделия высотой 30, 40 и 50 см, тип 22.
- Воспользуйтесь представленной таблицей, где указана теплоотдача q (Вт/1 м. п.) радиаторов Kermi разных типов и размеров в зависимости от условий эксплуатации. Начните с левого столбца – отыщите соответствующую температуру комнаты, потом – теплоносителя, дальше высоту и тип батареи. В ячейке на пересечении строки и столбца найдете мощность 1 метра радиатора.
- Количество энергии, нужной для обогрева, разделите на величину q – узнаете метраж радиатора заданной высоты.
- По каталогу подберите прибор водяного отопления соответствующей длины. При необходимости (например, батарея вышла чересчур длинной) разбейте этот размер на 2—3 прибора.
Пример расчета. Определим габариты стального радиатора для той же комнаты 15.75 м²: теплопотери — 2048 Вт, температура воздуха – 22 градуса, теплоносителя – 65 °C. Возьмем стандартные батареи высотой 500 мм, тип 22. По таблице находим q = 1461 Вт, выясняем общую длину панели 2048 / 1461 = 1.4 м. Из каталога любого производителя выбираем ближайший больший вариант – обогреватель длиной 1.5 м либо 2 прибора по 0.7 м.
Окончание первой таблицы — теплопередача 1 м длины радиаторов «Керми»
Совет. Наша инструкция на 100% верна для изделий компании Kermi. При покупке радиаторов другого бренда (особенно, китайского) длину панели стоит принимать с запасом 10—15%.
Калькулятор отопления частного дома. Расчет котла для отопления частного дома
С помощью нашего калькулятора расчета отопления для частного дома вы сможете с легкостью узнать необходимую мощность котла для обогрева вашего уютного «гнездышка».
Как вы помните, для того чтобы рассчитать показатель теплопотерь, необходимо знать несколько значений основных компонентов дома, на которые в сумме приходится более 90% от общих потерь. Для вашего удобства мы добавили в калькулятор только те поля, которые вы можете заполнить без специальных знаний :
- остекление;
- теплоизоляция;
- соотношение площади окон и пола;
- температура снаружи помещения;
- число стен выходящих наружу;
- какое помещение над рассчитываемым;
- высота помещения;
- площадь помещения.
После того, как вы получите значение теплопотерь дома, для вычисления необходимой мощности котла берется поправочный коэффициент запаса равный 1.2.
Порядок работы на калькуляторе
Помните, что чем толще остекление и качественнее теплоизоляция, тем меньшей мощности отопление потребуется.
Для получения результатов необходимо ответить себе на следующие вопросы:
- Выберите один из предложенных типов остекления (тройной или двойной стеклопакет, обычное двухкамерное стекло).
- Как утеплены ваши стены? Добротное толстое утепление из пары слоев минеральной ваты, пенопласта, ЭППС для севера и Сибири. Может быть, живете в Центральной России и вам хватит одного слоя утеплителя. Или вы из тех, кто строит дом в южных регионах и ему подойдет двойной пустотелый кирпич.
- Какое у вас соотношение площади окон к полам, в %. Если вы не знаете это значение, то оно рассчитывается очень просто: делите площадь полов на площадь окон и умножайте на 100%.
- Укажите минимальную температуру в зимний период за пару сезонов и округляйте в большую сторону. Не нужно использовать среднюю температуру по зимам, иначе вы рискуете получить котел меньшей мощности, и дом будет недостаточно отапливаться.
- Рассчитываем для всего дома или только для одной стены?
- Что находится над нашим помещением. Если у вас одноэтажный дом, выберите тип чердака (холодный или теплый), если второй этаж, то обогреваемое помещение.
- Высота потолков и площадь помещения, необходимы для расчета объема квартиры, который в свою очередь, является основой для всех вычислений.
Как провести отопление в частном доме своими руками от котла схема. Как работает система
Если вы планируете самостоятельно провести тепло в помещения, стоит разобраться в конструкции и принципе работы водяного отопления. Три составляющих любой схемы:
- установка, вырабатывающая тепловую энергию и передающая ее воде;
- трубопроводная разводка;
- отопительные приборы, расположенные в обогреваемых комнатах.
Один из способов организации отопления в жилище на 2 этажа — двухтрубная плечевая разводка
Примечание. Запорная арматура – краны, балансировочные вентили, смесительные клапаны – всегда являются частью разводки. Дополнительное оборудование – циркуляционный насос , расширительный бак – входят в состав котла либо монтируются отдельно.
Принцип действия системы основан на передаче теплоты от источника к приборам отопления посредством жидкого рабочего тела – обычной воды, способной поглотить большое количество энергии (удельная теплоемкость – 4.18 кДж/кг •°С). В отдельных случаях применяется незамерзающая жидкость – водный раствор этиленгликоля либо пропиленгликоля. Как это происходит:
- Сжигая углеводородное топливо или потребляя электроэнергию, установка нагревает воду до температуры 40…90 градусов.
- Горячий теплоноситель движется по трубам с помощью насоса либо естественным образом (за счет конвекции) к водяным радиаторам.
- Между обогревательными приборами и воздухом комнат происходит теплообмен – протекающая через батарею вода остывает на 10—20 °C, атмосфера помещения прогревается. Плюс горячая поверхность радиатора выделяет инфракрасное тепловое излучение.
- Охлажденный теплоноситель возвращается по магистрали в теплогенератор, где снова нагревается до требуемой температуры.
- Излишек воды, образующийся при тепловом расширении, поступает в специальную емкость. Когда температура в системе падает, жидкость опять сжимается и уходит из расширительного бачка.
Рабочий цикл отопления — вода нагревается котельной установкой, по трубам направляется в радиаторы, где отдает теплоту окружающему воздуху
Справка. Интенсивное выделение инфракрасного тепла поверхностью батарей начинается при температуре более 60 °C.
Прежде чем проводить отопление, запомните одно правило: эффективность обогрева практически не зависит от объема воды в системе. Данный показатель влияет лишь на скорость прогрева/остывания дома при запуске либо остановке теплогенератора.
Перечислим действительно важные характеристики:
- разность температур на входе и выходе домашнего отопителя, максимально допустимая – 25 градусов;
- мощность источника – должна выбираться по расчету тепловых потерь сквозь внешние стены + прогрев воздуха для вентиляции;
- расход теплоносителя – объем воды, проходящей через отопительные приборы в течение 1 часа;
- гидравлическое сопротивление трубопроводной сети вместе с радиаторами, в идеале не должно превышать 1 Бар (10 м водного столба).
Видео расчет отопления дома онлайн. Самый простой и самый точный способ!
Как правильно рассчитать мощность котла отопления с учетом площади дома: экономия без проблем
Главный вопрос при установке автономного отопления — расчет мощности котла отопления. Для того, чтобы произвести правильные расчеты, нужно учитывать:
- площадь отапливаемого помещения;
- степень утепленности дома;
- объем теплопотерь;
- необходимое количество энергии для подогрева воздуха;
- будет ли котел использоваться для подогрева воды.
Расчет мощности котла отопления и теплопотерь здания
По нормативам СНиП мощность котла определяется по такой формуле: на каждые 10 м2 используется 1 кВт мощности с учетом запаса 10%. Такой вариант расчетов возможен только для стандартных помещений с хорошей теплоизоляцией и высотой потолков не выше 3 м. Но в любом случае он не учитывает всех нюансов даже в многоквартирных домах. Поэтому для более точных расчетов используется формула:
MK = S x YMK/10 (кВт)
где: MK — мощность котла; S — площадь отапливаемого помещения;
УMK — удельная мощность котла на 10 м2, которая рассчитывается в соответствии с климатическими условиями в конкретном регионе:
- для южных регионов — 0.7 — 0.9 кВт;
- для регионов с умеренным климатом — 1 — 1.2 кВт;
- для Москвы и подмосковья — 1.2 — 1.5 кВт;
- для северных регионов — 1.5 — 2 кВт.
Если вы планируете использовать котел для нагрева воды в системе, следует добавить к полученному результату дополнительно 25% мощности.
Известно, что частные дома отличаются большей долей теплопотери, плюс высота потолков обычно выше, чем в многоквартирных домах. Поэтому для расчета мощности котла для отопления частного дома используется следующая формула:
- МК = Qт x Kзап
- где:
- МК — мощность котла; Qт — количество теплопотерь дома;
- Кзап — коэффициент запаса тепла (обычно в пределах 15 — 20%).
- Теплопотери частного дома вычисляются по формуле:
- Qт = V x Rt x K
- где: V — объем помещения; Pt — разница между температурой на улице и в помещении;
- K — коэффициент потери тепла, в зависимости от степени теплоизоляции.
Степень теплоизоляции имеет следующее соотношение:
- дерево и гофрированное железо — 3 — 4;
- одинарная кирпичная кладка + 4 окна — 2 — 2.9;
- двойная кирпичная кладка + 2-3 окна — 1 — 1.9;
- хорошо утепленный дом с системой теплые полы и окнами с двойными стеклопакетами — 0.6 — 0.9.
Для небольших домов с хорошей теплоизоляцией сложно найти котел с минимальной мощностью, поэтому можно использовать более мощные котлы с автоматической терморегуляцией. В остальных случаях лучше не покупать котел, мощность которого значительно превышает рекомендуемый для вашего помещения, якобы, про запас. Это может привести к:
- снижению эффективности оборудования;
- преждевременному его износу;
- неисправности автоматической терморегуляции;
- появлению конденсата в дымоходе;
- лишним затратам для покупки комплектующих.
Источник: https://vodaidom.com/raschet-moshhnosti-kotla-otopleniya-i-teplopoter-zdaniya/
Расчет мощности котла – обеспечиваем максимальную эффективность отдачи тепла
Котел для автономного отопления зачастую выбирается по принципу как у соседа. А между тем это важнейший прибор, от которого зависит комфорт в доме. Здесь важно правильно выбрать мощность, так как ни ее излишек, ни тем более недостача пользы не принесут.
Система отопления должна полностью восполнить все теплопотери в доме, для чего и проводится расчет мощности котла. Здание постоянно выделяет тепло наружу.
Теплопотери в доме бывают различными и зависят от материала контруктивных частей, их утепления. Это влияет на расчетные показатели теплового генератора.
Обратите внимание
Если подходить к расчетам максимально серьезно, следует заказать их у специалистов, по результатам подбирается котел и рассчитываются все параметры.
Самому рассчитать теплопотери не очень сложно, но требуется учитывать множество данных о доме и его составляющих, их состоянии. Более легким способом является применение специального прибора для определения тепловых утечек – тепловизора. На экране небольшого прибора отображаются не расчетные, а фактические потори. Он наглядно показывает места утечек, и можно принять меры для их устранения.
А может, никакие расчеты не нужны, просто взять мощный котел и дом теплом обеспечен. Не все так просто. В доме действительно будет тепло, комфортно, пока не придет пора кое о чем задуматься. У соседа такой же дом, в доме тепло, а за газ он платит намного меньше.
Почему? Он рассчитал необходимую производительность котла, она у него на треть меньше. Приходит понимание – совершена ошибка: покупать котел без расчета мощности не следует.
Потрачены лишние деньги, часть топлива расходуется впустую и, что кажется странным, недогруженный агрегат быстрее изнашивается.
Котел с недостаточной мощностью не обогреет дом, будет постоянно работать с перегрузкой, что приведет к преждевременному выходу из строя. Да и топливо он будет не просто потреблять, а жрать, и все равно хорошего тепла в доме не будет. Выход один – установить другой котел.
Деньги ушли на ветер – покупка нового котла, демонтаж старого, установка другого – все не бесплатно.
А если учесть еще моральные страдания из-за совершеной ошибки, возможно, отопительный сезон, пережитый в холодном доме? Вывод однозначный – покупать котел без предварительных расчетов нельзя.
Важно
Наиболее простой способ расчета необходимой мощности прибора теплогенерации – по площади дома. При анализе расчетов, проведенных на протяжении многих лет, была выявлена закономерность: 10 м2 площади можно отопить должным образом, используя 1 киловатт теплоэнергии. Это правило справедливо для зданий со стандартными характеристиками: потолок высотой 2,5–2,7 м, утепление среднее.
Если жилье вписывается в эти параметры, измеряем его общую площадь и приблизительно определяем мощность теплового генератора. Результаты расчетов всегда округляем в сторону увеличения и немного увеличиваем, чтобы иметь в запасе некоторую мощность. Используем очень простую формулу:
W=S×Wуд/10:
- здесь W – это искомая мощность теплового котла;
- S – общая отапливаемая площадь дома с учетом всех жилых и бытовых помещений;
- Wуд – удельная мощность, необходимая для отопления 10 квадратных метров, корректируется для каждого климатического пояса.
Для наглядности и большей ясности рассчитаем мощность теплогенератора для кирпичного дома. Он имеет размеры 10×12 м, умножаем и получаем S – общую площадь, равную 120 м2. Удельную мощность – Wуд принимаем за 1,0.
Производим расчеты по формуле: площадь 120 м2 умножаем на удельную мощность 1,0 и получаем 120, делим на 10 – в результате 12 киловатт. Именно котел отопления мощностью 12 киловатт подойдет для дома со средними параметрами.
Это исходные данные, которые будем корректировать в ходе дальнейших расчетов.
На практике жилье со средними показателями встречается не так уж часто, поэтому при расчетах системы учитываются дополнительные параметры. Об одном определяющем факторе – климатической зоне, регионе, где будет использоваться котел, речь уже шла. Приведем значения коэффициента Wуд для всех местностей:
- средняя полоса служит эталоном, удельная мощность составляет 1–1,1;
- Москва и Подмосковье – результат умножаем на 1,2–1,5;
- для южных регионов – от 0,7 до 0,9;
- для северных областей она поднимается до 1,5–2,0.
В каждой зоне наблюдаем определенный разброс значений. Поступаем просто – чем южнее местность в климатической зоне, тем ниже коэффициент; чем севернее, тем выше.
Приведем пример корректировки по регионам. Предположим, что дом, для которого рассчеты проводились раньше, расположен в Сибири с морозами до 35°. Берем Wуд равное 1,8.
Тогда полученное число 12 умножаем на 1,8, получаем 21,6. Закругляем в сторону большего значения, выходит 22 киловатта. Разница с первоначальным результатом почти вдвое, а ведь учитывалась всего одна поправка.
Так что корректировать расчеты необходимо.
Кроме климатических условий регионов, для точных расчетов учитываются и другие поправки: высота потолка и теплопотери здания. Среднестатистическое значение высоты потолков – 2,6 м.
Если высота значительно отличается, высчитываем значение коэффициента – фактическую высоту делим на среднюю. Предположим, высота потолка в здании из ранее рассматриваемого примера 3,2 м. Считаем: 3,2/2,6=1,23, округляем, выходит 1,3.
Выходит, для обогрева дома в Сибири площадью 120 м2 с потолками 3,2 м требуется котел 22 кВт×1,3=28,6, т.е. 29 киловатт.
Также очень важно для правильных расчетов принимать во внимание теплопотери здания. Тепло теряется в любом доме, независимо от его конструкции и вида топлива.
Совет
Через слабо утепленные стены может уйти 35% теплого воздуха, через окна – 10% и больше. Неутепленный пол заберет 15%, а крыша – все 25%. Даже один из этих факторов, если он присутствует, следует принимать во внимание.
Используют специальное значение, на которое умножают полученную мощность. Он имеет такие показатели:
- для кирпичного, деревянного или дома из пеноблоков, которому более 15 лет, с хорошим утеплением, К=1;
- для других домов с неутепленными стенами К=1,5;
- если у дома, кроме неутепленных стен, не утеплена крыша К=1,8;
- для современного утепленного дома К=0,6.
Вернемся к нашему примеру для расчетов – дому в Сибири, для которого по нашим расчетам понадобится нагревательное устройство мощностью 29 киловатт. Предположим, что это современный дом с утеплением, тогда К= 0,6. Подсчитываем: 29×0,6=17,4. Добавляем 15–20%, чтобы иметь запас на случай экстремальных морозов.
Итак, мы рассчитали требуемую мощность теплогенератора, используя следующий алгоритм:
- Узнаем общую площадь отапливаемого помещения и делим на 10. Число удельной мощности при этом игнорируется, нам нужны средние исходные данные.
- Учитываем климатическую зону, где находится дом. Ранее полученный результат умножаем на коэффициентый показатель региона.
- Если высота потолка отличается от 2,6 м, учитываем и это. Узнаем коэффициентное число, поделив фактическую высоту на стандартную. Мощность котла, полученную с учетом климатической зоны, умножаем на это число.
- Делаем поправку на теплопотери. Предыдущий результат умножаем на коэффициентный показатель теплопотерь.
Размещение котлов для отопления в доме
Выше речь шла исключительно о котлах, которые используются исключительно для отопления. Если прибор используется для нагрева воды, рассчетную мощность следует увеличить на 25%.
Обращаем внимание, что резерв для подогрева рассчитывается после коррекции с учетом климатических условий.
Полученный после всех расчетов результат довольно точный, его можно использовать для выбора любого котла: газового, на жидком топливе, твердотопливного, электрического.
Рассчитывая отопительное оборудование для квартир, можно ориентироваться на нормы СНиП. Строительные нормы и правила определяют, сколько тепловой энергии понадобится, чтобы нагреть 1 м3 воздуха в зданиях типовой постройки.
Такой способ называют расчетом по объему. В СНиП приводятся такие нормы расхода тепловой энергии: для панельного дома – 41 Вт, для кирпичного – 34 Вт. Расчет простой: объем квартиры умножаем на норму расхода теплоэнергии.
Приводим пример. Квартира в кирпичном доме площадью 96 кв.м., высота потолков – 2,7 м. Узнаем объем – 96×2,7=259,2 м3. Умножаем на норму – 259,2×34=8812,8 Вт. Переводим в киловатты, получаем 8,8.
Для панельного дома расчеты проводим аналогично – 259,2×41=10672,2 Вт или 10,6 киловатт.
Обратите внимание
В теплотехнике округление проводят в большую сторону, но, если принять во внимание энергосберегающие пакеты на окнах, то можно округлить и в меньшую.
Полученные данные о мощности оборудования являются исходными. Для более точного результата понадобится коррекция, но для квартир она осуществляется по другим параметрам. Первым делом учитывается наличие неотапливаемого помещения или его отсутствие:
- если этажом выше или ниже располагается отапливаемая квартира, применяем поправку 0,7;
- если такая квартира не отапливается, ничего не меняем;
- если под квартирой подвал или над ней чердак – поправка равна 0,9.
Учитываем также количество наружных стен в квартире. Если на улицу выходит одна стена, применяем поправку 1,1, две –1,2, три – 1,3. Методику расчета мощности котла по объему можно применить и для частных кирпичных домов.
Итак, рассчитать необходимую мощность отопительного котла можно двумя способами: по общей площади и по объему. В принципе, полученными данными можно пользоваться, если дом среднестатистический, умножив их на 1,5.
Но если существуют значительные отклонения от средних параметров в климатической зоне, высоте потолков, утеплении, лучше провести коррекцию данных, потому что первоначальный результат может значительно отличаться от окончательного.
Источник: http://obustroen.ru/inghenernye-sistemy/otoplenie/kotly/raschet-moshhnosti-kotla.html
Калькулятор расчета мощности котла отопления
Мощность котла является одной из важнейших характеристик отопительного оборудования. Избыток мощности скажется переплатой за котел, недостаток – невозможностью оборудования отопить жилую площадь или нагреть воду в системе ГВС.
Поэтому перед выбором котла предлагаем прикинуть его параметры не без помощи нашего онлайн-калькулятора для расчета мощности котла отопления.
Попробуем разобраться со значениями, которые вам придется ввести для получения достоверного результата.
Комфорт пребывания в жилом помещении зимой определяется температурой воздуха и его влажностью. Сначала введите значение температуры, которую вы планируете поддерживать дома. Температуру наиболее холодной пятидневки можете посмотреть в СНиП 23-01-99 «Строительная климатология», т.к. она привязана к климатической зоне.
Отапливаемые площадь и объем помещений
В качестве теплоносителя, передающего тепло от радиаторов отопления человеку, служит воздух. Логично, что мощность отопительного оборудования во многом зависит от того, какой объем этого воздуха необходимо нагреть и далее поддерживать постоянной его температуру.
Конструктивные элементы здания
В различных постройках и условиях эксплуатации котлы одинаковой мощности дают совершенно разные результаты. Все потому, что потери тепла через стены, перекрытия и окна влияют на общую картину. Чем выше тепловые потери, тем более высокой должна быть поправка мощности отопительного оборудования.
Могут быть непонятны маркировки стеклопакетов. Тут все довольно просто, например, 4-16-4 означает, что зазор между двумя стеклами толщиной 4 мм составляет 16 мм. Буква «К» означает энергосберегающее стекло, «Ar» — камеры заполнены аргоном.
Источник: http://CdelayRemont.ru/kalkulyator-rascheta-moshhnosti-kotla-otopleniya
Расчет мощности котла
Правильный расчет мощности котла отопления необходим для эффективной работы отопительной системы, способной обеспечить бесперебойную работу по обогреву площади дома или квартиры с учетом всех теплопотерь, а также таких обстоятельств, как аномально холодная зима или расширение площади.
Эффективность котла будет достигнута при восполнении всех теплопотерь с необходимым запасом. Расчет тепловой мощности необходимо производить для всех видов котлов: газового, на твердом топливе, использующего электроэнергию.
Основные параметры к расчетуДля расчета тепловой мощности котла нужно учитывать все теплопотери здания. На величину потери тепла влияют материалы, из которых сделаны стены здания (и наличие их теплоизоляции), фундамент, кровля, перекрытия, чердак, пол, оконные и дверные проемы.
Помимо используемых материалов учитывается толщина стен, степень утепления их и каждого из проемов, высота потолков, количество этажей в здании. Не последнюю роль в расчете принимает факт наличия системы теплых полов, а также тип разводки самой системы.
Кроме этого, в расчете производительности котла принимают участие такие параметры, как: общая площадь отапливаемого помещения, местные климатические условия, вид используемого топлива, наличие системы приточной вентиляции. Перед установкой котла часто рассчитывают количество потерь тепла.
Обычно это длительный процесс, который выполняют приглашенные специалисты, но можно осуществить его при помощи тепловизора. Этот прибор показывает фактическую картину мест оттока тепла, которые можно оперативно устранить.
Не рекомендуется устанавливать котел с большим запасом мощности, достаточно прибавить к его производительности 15-25%.
Формула расчета с учетом тепловых потерьТочный расчет мощности отопительного котла с учетом теплопотерь для дома индивидуальной планировки с высотой потолков свыше 2,5 метров, осуществляется так:
Коэффициент теплопередачи стены, зависящий от типа используемого материала нужно умножить на общую площадь стены и на разность температур внутри помещения и самой низкой температуры снаружи.
- Рассчитывается показатель тепловых потерь для окон аналогичным образом, что и для стен, только с использованием коэффициента теплопередачи окон, а не стен. Он находится исходя из значений коэффициента теплопередачи стеклопакета, умноженного на его площадь, коэффициента теплопроводности рамы, умноженного на периметр застекленного участка, а также коэффициента алюминиевой полосы, умноженного на периметр остекления. Эти показатели нужно сложить вместе и разделить на общую площадь окна.
- Рассчитываются теплопотери пола и потолка по формуле, аналогичной расчету для стен.
- Рассчитываются потери тепла для комнат с вентиляцией:
0,28 – расход оттока воздуха из помещения*плотность воздуха*его удельную теплоемкость*(разность температуры внутри помещения и температуры приточного воздуха)*1.
Все полученные значения суммируются, в результате чего получится сумма всех теплопотерь жилого здания в кВт. К этому значению можно прибавить 10-15% запаса и получить искомую величину мощности теплового отопительного котла.
Расчет мощности газового котлаГазовое отопление получило большое распространение в системе автономного отопления по причине экономного расхода топлива, безопасности использования, простоты эксплуатации, малого количества занимаемого места.
Если неправильно произвести расчет мощности газового котла, его использование будет экономически невыгодным из-за большого расхода топлива или обогрев здания будет недостаточным для поддержания комфортного уровня тепла.
Если брать самый элементарный расчет необходимой мощности без учета прочих факторов, таких как: теплопотери здания, габариты, наличие теплоизоляции, характер климата, количество тепла для подогрева воды и энергии для прогрева воздуха принудительной вентиляции, то можно получить весьма приблизительный расчет, состоящий в соотношении 1 кВт на 10 кв.м. площади жилого дома.
Если учитывать все необходимые показатели, можно сделать точный расчет мощности котла газовой отопительной системы: она равна произведению общей площади отапливаемого помещения (кв.м.) и удельной мощности котла в расчете на каждые 10 кв.м. площади, разделенного на десять.
Удельная мощность зависит от региона проживания и его климатических особенностей, она может оставлять от 0,7 кВт для Южных до 2,0 кВт для Северных регионов.
При условии монтажа двухконтурной системы водяного обогрева к рассчитанному значению мощности нужно прибавить 25%.
Расчет мощности электрокотлаЭлектрокотел – нечасто используемое оборудование из-за большого потребления электроэнергии, относительно невысокой мощности, возможности сбоев в работе.
Формула расчета мощности электрического котла проста: нужно умножить сумму площадей всех отапливаемых помещений на удельную величину генератора, которая необходима для обогрева 10 кв.м. площади. Полученное значение нужно разделить на 10. После этого показатель умножается на специальный коэффициент, характеризующий здание относительно утепленности его стен.
- Коэффициент, равный 1 характеризует здания, построенные более 15 лет назад, с утепленными кирпичными, блочными или деревянными стенами.
- Коэффициент 1,5 характеризует здание с не утепленными стенами.
- Коэффициент 1,8: здание не утепленное, и крыша имеет большую теплопотерю.
- Коэффициент со значением 0,6: здание, построенное менее 15 лет назад и утепленное.
Существует более детальный способ, как рассчитать производительность электрического отопительного котла: для прогрева каждых 1 м3 помещения требуется 40 Вт мощности без учета дополнительных влияющих факторов. После этого к показателю нужно прибавить по 100 Вт за одно окно и 200 Вт за каждую входную дверь как источники теплопотерь. Далее учитываются все коэффициенты, указанные выше.
Расчет мощности твердотопливного котлаТвердотопливная отопительная система характеризуется экономичностью при эксплуатации, относительной доступностью, но невысокой популярностью. Цикличность получаемой температуры обязательно должна учитываться при выборе мощности котла.
Расчет мощности твердотопливного котла аналогичен тому, что производился для газового отопительного оборудования. Отличием этого расчета будет являться то, что, по причине низкого КПД твердотопливного котла, существует необходимость прибавить запас мощности 20%. Если при этом использовать теплоаккумулятор, формулу расчета можно оставить как для газового оборудования, без изменений.
Источник: http://pechiexpert.ru/raschet-moshhnosti-kotla/
Расчет мощности газовых котлов
Котел является основной частью отопительной системы. Он вырабатывает необходимое для комфортных условий количество тепла и обеспечивает горячее водоснабжение. При наличии рядом с домом газопровода, оптимальным вариантом будет установка газового котла.
Он имеет свои плюсы и минусы.
Преимуществами газового оборудования являются экономичность, высокая мощность, простота эксплуатации, котлы средней мощности могут устанавливаться даже на кухне, компактные размеры и экологичность (котел выделяет в атмосферу наименьшее количество вредных веществ).
Схема подключения газового котла.
Недостатками такого котла можно считать требование специального разрешения на его установку, риск утечек газа, наличие определенных требований к помещению, в котором будет находиться котел, и наличие автоматического отключения газа при утечке или недостаточной вентиляции. В любом случае, если вы решили установить газовое отопительное оборудование, у вас возникнет вопрос о том, как рассчитать мощность газового котла.
Правильно произведенный расчет мощности котла является гарантией надежной и эффективной работы отопительной системы. Основой расчета является обеспечение дома оптимальной температурой. Чаще всего основным источником тепла в доме или коттедже является именно котел. Для того чтобы рассчитать необходимые параметры и записать полученные данные, понадобятся следующие материалы и инструменты:
Схема напольного одноконтурного газового котла.
- рулетка;
- бумага, ручка;
- калькулятор.
Эффективность системы отопления полностью зависит от мощности котла. Избыточная мощность приводит к перерасходу топлива, а недостаточная — к невозможности поддержания нужной температуры в доме, особенно в зимнее время года.
Мощность газового котла определяют исходя из следующих параметров: удельная мощность агрегата из расчета на 10 м2 с учетом климатических условий определенного региона (Wуд), площадь отапливаемых помещений (S).
Удельная мощность, в зависимости от климатической зоны может принимать различные значения: 1,2-1,5 кВт — для средней полосы России, 0,7-0,9 — для южных областей и 1,5-2,0 кВт — для северных областей.
Расчет мощности котла производят с помощью формулы Wкот = (S * Wуд)/10. Для удобства расчета за удельную мощность чаще всего принимают единицу.
Важно
Мощность соответственно рассчитывается как 10 кВт на 100 м2. Другим важным параметром является объем теплоносителя, циркулирующего в системе (Vсист). При подсчетах используют пропорцию 1 кВт : 15 л (мощность агрегата : объем жидкости. Формула будет иметь такой вид: Vсист = Wкот • 15
В качестве примера будет приведен расчет мощности газового котла и требуемого объема теплоносителя для отопления дома площадью 100 м2, расположенного в северном районе. Максимальная удельная мощность для северных районов равна 2 кВт, тогда
- Wкот = 100 • 2 / 10 = 20 кВт;
- Vсист = 20 • 15 = 300 л.
Для того чтобы расчет был более точным, можно воспользоваться специальным калькулятором, учитывающим еще и желаемую постоянную температуру в доме, самую низкую среднегодовую температуру, параметры помещений, толщину и материал стен, вид перекрытий и количество окон.
Так вы будете уверены в его тепловой мощности, ведь в некоторых случаях вместо мощности, отдаваемой системе могут указываться технические характеристики горелки, не представляющие никакого интереса для потребителей.
Второй способ подсчета мощности оборудования
При выбора котла необходимо учитывать информацию о теплопотерях помещения, которые нужно будет компенсировать. Их необходимо рассчитать. Обычно это делает архитектор, разрабатывающий проект дома.
С помощью этих данных можно выбрать котел требуемой мощности.
Рассчитать теплопотери можно с использованием специальных программ, имеющих расширенные возможности, с помощью которых расчеты могут делать даже те, кто никогда не сталкивался с проектированием.
Таблица расчета мощности котла.
Если проекта дома и расчетов теплопотерь нет, их можно определить и самостоятельно при помощи упрощенного метода расчетов. Анкеты достаточно точны для небольших частных домов. В них имеются вопросы, касающиеся материала и толщины стен, количества и размеров окон и типа стеклопакетов. Для каждого вопроса имеется несколько вариантов ответа. Для каждого ответа предлагается свое число.
Расчет котла производят при помощи этих чисел, в результате получится значение, отражающее теплопотери дома. Оно вполне подойдет для определения мощности агрегата. Для заполнения анкеты и произведения вычислений потребуется всего несколько минут.
Наиболее простым методом расчета теплопотерь является их вычисление с помощью условного коэффициента, имеющего следующие значения:
Схема установки газового котла.
- от 130 до 200 Вт/м2 — дома без теплоизоляции;
- от 90 до 110 Вт/м2 — дома с теплоизоляцией, построенные 20-30 лет назад;
- от 50 до 70 Вт/м2 — современные теплоизолированные дома с новыми окнами, построенные в 21 веке.
Для определения теплопотери коэффициент умножают на площадь дома, однако расчеты эти являются примерными, они не берут во внимание количество и размеры окон, расположение и форму дома, сказывающиеся на теплопотерях. Этот расчет не является основным при выборе котла.
Вычисленные теплопотери отражают максимальную потребность дома в тепле, необходимом для поддержания нормальной температуры. Наибольшая потребность в тепле возникает при температурах ниже -22°С. Такие морозы, обычно, бывают несколько дней в году, а то и вовсе не бывают несколько лет.
А котел должен работать весь отопительный сезон, когда температура в среднем равна нулю. В таком случае для обогрева дома потребуется половина расчетной мощности оборудования. Котел большей мощности приобретать не стоит, это приводит не только к лишним тратам, но и понижает его КПД.
Нехватку тепла в сильные холода можно компенсировать другими приборами, например, камином или электрическим обогревателем.
Источник: https://budeshstroit.ru/kotly/kak-rasschitat-moshhnost-gazovogo-kotla.html
Как зависит мощность котла от площади – как рассчитать правильно
Любая отопительная система основана на использовании нагревательного прибора. От того, насколько правильно произведен расчет котла отопления для частного дома и определены его параметры, зависит комфортное проживание. Такие вычисления сделать несложно, потребуется лишь калькулятор и информация относительно некоторых данных по жилому строению.
Влияние теплопотерь на качество отопления
Чтобы обеспечить качественный обогрев домовладения, необходимо, чтобы система теплоснабжения могла полностью восполнить потери тепла. Оно покидает пределы построек через кровлю, пол, окна и стены. По этой причине прежде, как рассчитать мощность котла для отопления дома, следует учесть степень теплоизоляции этих элементов жилья.
Некоторые владельцы недвижимости предпочитают со всей серьезностью заниматься вопросом оценки теплопотерь и соответствующие расчеты заказывают у специалистов. Затем они, основываясь на результатах вычислений, могут подобрать котел по площади дома с учетом других параметров отопительной конструкции.
Выполняя соответствующие расчеты, следует учитывать материалы, из которых выстроены стены, пол, потолочное перекрытие, их толщину и степень теплоизоляции. Также имеет значение, какие установлены окна и двери, обустроена ли система приточной вентиляции и ее производительность. Одним словом, процесс этот непростой.
Существует еще один способ, как узнать теплопотери. Можно наглядно увидеть количество тепла, теряемое зданием или помещением, применив такой прибор как тепловизор. Он имеет небольшие размеры и на его экране видны фактические потери тепловой энергии. Одновременно имеется возможность узнать, в каких зонах отток самый большой и принять меры для его устранения.
Совет
Нередко хозяева недвижимости интересуются, нужно ли для квартиры или для частного дома при расчете твердотопливного котла или другого вида отопительного агрегата делать это с запасом. По утверждению специалистов каждодневная работа такого оборудования на пределе возможностей самым негативным образом отражается на продолжительности его службы.
Потому следует приобретать прибор с запасом производительности, который должен составлять 15 – 20 % от расчетной мощности – его будет достаточно для обеспечения условий для функционирования.
Определение мощности по площади
Расчет мощности котла отопления по площади дома – это наиболее простой способ подбора нагревательного агрегата. На основании многочисленных вычислений, проведенных специалистами, была определена средняя величина, которая составляет 1 кВт тепла на каждые 10 квадратных метров.
Но данный показатель актуален только для помещений, имеющих высоту 2,5 – 2,7 метра со средней степенью утепления. В случае, когда дом соответствует вышеназванным параметрам, тогда, зная его метраж, можно легко определить приблизительную мощность котла от площади.
Например, размеры одноэтажного дома составляют 10 и14 метров:
- Сначала определяют площадь домовладения, для этого его длину умножают на ширину, или наоборот 10х14 = 140 кв.м.
- Полученный результат, согласно методике, делят на 10 и получают значение мощности 140: 10 = 14 кВт.
- Если итог расчета по площади газового котла или другого вида отопительного агрегата получается дробным, тогда его нужно округлить до целого значения.
Мощность и высота потолков
В собственных домах потолки бывают выше2,7 метра. Если разница 10 –15 сантиметров, это обстоятельство можно не учитывать, но когда данный параметр достигает2,9 метра, следует выполнить перерасчет.
До того, как рассчитать мощность котла для частного дома, определяют поправочный коэффициент путем деления фактической высоты на2,6 метра, а затем ранее полученный результат умножают на него.
Например, при высоте потолка 3,2 метра перерасчет производят следующим образом:
- узнают коэффициент 3,2: 2,6 = 1, 23;
- корректируют результат 14 кВт х 1,.23 = 17, 22 кВт.
Итог округляют в большую сторону и получают 18 кВт.
Учет региона нахождения дома
Для обогрева жилья, расположенного на юге страны, потребуется меньше тепловой энергии, чем находящего севернее. Для учета региона также применяют поправочные коэффициенты.
Их величина имеет диапазон, поскольку в пределах одной климатической зоны погодные условия несколько отличаются. Если дом построен ближе к ее северной границе, берут больший коэффициент, а если к южным рубежам – меньший. Также нужно принимать во внимание отсутствие или наличие сильной ветровой нагрузки.
В России за эталон принимают среднюю полосу, для которой размер поправки равен 1 – 1,1, но при приближении к северной границе мощность агрегата увеличивают.
Для Подмосковья результат расчета мощности котельной умножают на коэффициент 1,2 – 1,5. Что касается северных регионов, то для них результат корректируют на поправку, равную 1,5-2,0.
Для южных зон применяют понижающие коэффициенты 0,7 – 0.9.
Например, дом располагается на севере Подмосковья, тогда18 кВт умножают на 1,5 и получают 27 кВт.
Если сравнить 27 кВт с первоначальным результатом, когда мощность составляла 14 кВт, то можно увидеть, что этот параметр увеличился почти в 2 раза.
Вычисление производительности для двухконтурного агрегата
Вышеприведенные расчеты производились для прибора, обеспечивающего лишь отопление. Когда нужно сделать расчет мощности газового котла для дома, который одновременно будет греть воду для бытовых нужд, его производительность требуется увеличить. Это также касается агрегатов, работающих на других видах топлива.
Определяя мощность отопительного котла с возможностью нагрева воды, следует заложить запас в размере 20-25%, применив коэффициент 1,2-1,25.
Например, нужно произвести корректировку на ГВС. Ранее вычисленный результат в 27 кВт умножают на 1,2 и получают 32,4 кВт. Разница получается немаленькой.
Расчет производительности агрегата для квартиры
Мощность котла для теплоснабжения квартир вычисляют с учетом той же нормы: на каждые 10 «квадратов» площади требуется 1 кВт тепловой энергии. Но в данном случае коррекцию производят в соответствии с другими параметрами.
Прежде всего, учитывают наличие/отсутствие холодного помещения снизу квартиры или сверху ее:
- когда на этаже ниже или выше расположена теплая квартира, применяют коэффициент 0,7;
- если там находится неотапливаемое помещение, корректировка не нужна;
- когда чердак или подвал отапливаются, поправка составляет 0,9.
Прежде, как определить мощность котла, необходимо подсчитать количество наружных стен, выходящих на улицу, а для угловой квартиры тепла потребуется больше, поэтому:
- когда внешняя стена одна – применяемый коэффициент 1,1;
- если она одна – 1,2;
- когда 3 наружные стены – 1,3.
Ограждающие поверхности, соприкасающиеся с улицей, являются основными зонами, через которые уходит тепло. Желательно учитывать качество остекления оконных проемов. Корректировку не вносят при наличии стеклопакетов. Если окна старые деревянные, результат предыдущих расчетов умножают на 1,2.
Расчет производительности с учетом объема
На практике часто применяют другую методику подбора газового котла по мощности для квартиры, основанную на нормах СНиПа:
- для обогрева одного кубического метра жилья в панельном здании уходит 41 Вт тепла;
- на компенсацию теплопотерь в кирпичном доме – 34 Вт.
При таком подходе сразу учитывается высота потолков. Поэтому данный способ вычислений принято считать более правильным. Чтобы узнать объем, следует отапливаемую площадь квартиры умножить на высоту потолочного перекрытия.
В качестве примера рассчитана мощность котла, обычно это газовый прибор. Его планируется установить в квартире на третьем этаже, находящейся в пятиэтажном доме, имеющей площадь 80 «квадратов» и высоту потолков –2,8 метр.
Пример расчета:
- Узнают объем – 80х2.8 =224 куб. м.
- Требуемая мощность – 224х34 Вт = 7616 или 7,62 кВт.
- После округления получают 8 кВт.
- Поскольку и сверху, и снизу отапливаемые квартиры, применяют поправку, равную 0,7 – 8 кВт х 0,7 = 5,6 кВт.
- После округления 6 кВт.
- Так как прибор должен греть и воду для бытовых нужд, дают 20% запас – 6 кВт х 1,2 = 7,2 кВт.
- Окна деревянные, поэтому применяют коэффициент 1,2 – 7,2 кВт х1,2 = 8,64 кВт.
- Поскольку в квартире 3 наружные стены, поправка будет равна 1,3, а значит 8,64 кВт х 1,3 = 11,23 кВт.
После округления требуемая мощность для котла составит 12 кВт.
Источник: https://teplospec.com/montazh-remont/kak-zavisit-moshchnost-kotla-ot-ploshchadi-kak-rasschitat-pravilno.html
Правила расчета мощности котла для отопления частного дома
Для обеспечения комфортного проживания в доме зимой котел должен производить столько тепловой энергии, чтобы полностью компенсировать потери тепла здания.
Кроме этого, необходимо обеспечить определенный запас мощности на случай сильных холодов либо увеличения площади строения. Чтобы рассчитать мощность котла, нужно учитывать довольно много факторов.
В теплотехнике такой расчет является одним из самых сложных.
Необходимость расчета теплоотдачи котла
Из каких бы материалов не было построено здание, оно постоянно выделяет наружу тепло. Теплопотери дома для каждого помещения могут отличаться и зависят от материалов конструкции и степени утепления. Если подойти к расчетам серьезно, то такую работу лучше доверить специалистам. Затем в соответствии с полученными результатами выбирается котел.
Самостоятельно посчитать теплопотери здания не очень сложно, но предстоит учитывать много факторов. Проще всего решить поставленную задачу с помощью особого прибора — тепловизора.
Это устройство небольших размеров, на дисплее которого указываются фактические потери тепла строения.
При этом можно наглядно увидеть те места, где наблюдаются максимальные утечки тепловой энергии, и принять меры по исправлению ситуации.
Безусловно, можно просто взять мощный котел и не проводить никаких вычислений. Однако в такой ситуации расходы на газ могут оказаться очень большими.
Обратите внимание
Кроме этого, если котел недогружен, то срок его эксплуатации снижается. Впрочем, тепловой генератор можно догрузить, например, задействовав его для обогрева ранее неотапливаемых помещений.
Однако переплачивать за сгораемое впустую топливо не захочет ни один владелец частного дома.
Рекомендации по расчету
Проще всего самостоятельно выполнить расчет мощности котла отопления по площади дома. После этого можно будет точно сказать, какой отопительный агрегат нужен для обогрева всех помещений строения.
Основная формула
Если провести анализ результатов вычислений, проведенных за несколько лет, то наблюдается одна закономерность — для обогрева каждых 10 м2 площади необходимо затратить 1 кВт тепловой энергии. Это утверждение справедливо для строений со средним утеплением, а высота потолков в них находится в диапазоне от 2,5 до 2,7 м.
Если здание соответствует этим стандартам, то определить мощность котлов отопления будет довольно просто, достаточно использовать простую формулу:
Последний показатель для различных регионов страны имеет следующие значения:
- Подмосковье — от 1,2 до 1,5 кВт.
- Средняя полоса — от 1 до 1,2 кВт.
- Юг страны — от 0,7 до 0,9 кВт.
- Северные территории — от 1,5 до 2 кВт.
В качестве примера можно сделать расчет мощности теплогенератора для дома размером 12×14 м, построенного из кирпича в Подмосковье. Общая площадь строения составляет 168 м2. Значение удельной мощности Wуд принимается равной 1.
В результате W = (168 × 1) / 10 = 16,8 кВт. Полученная расчетная мощность теплового генератора должна быть округлена в большую сторону.
Однако это еще не полный расчет газового котла для дома по площади, так как предстоит провести корректировку полученного показателя.
Дополнительные вычисления
Жилые строения со средними характеристиками на практике встречаются довольно редко. Чтобы расчет мощности котельной был максимально точным, приходится учитывать дополнительные показатели. Один из них уже был рассмотрен в основной формуле — удельная мощность, затрачиваемая на обогрев 10 м2.
В качестве эталона необходимо использовать показатель для средней полосы. При этом в каждой зоне можно видеть довольно серьезный разброс значений удельной емкости. Выход из сложившейся ситуации прост — чем севернее расположена в климатической зоне местность, тем выше должен быть коэффициент, и наоборот. Например, для Сибири с морозами около 35 градусов принято использовать Wуд = 1,8.
Не менее важно при расчетах учитывать и тепловые потери строения. Процесс утечки тепла наблюдается в каждом здании. Например, если стены утеплены плохо, то потери могут доходить до 35%. Таким образом, во время расчетов следует использовать специальный коэффициент:
- Строение из древесины, пеноблоков либо кирпича, возраст которого превышает 15 лет с качественным утеплением — К=1.
- Здания прочих материалов с некачественно утепленными стенами — К=1,5.
- Если в здании не утеплялась еще и крыша, а не только стены — К=1,8.
- Современные качественно утепленные дома — К=0,6.
Так выполняется расчет требуемой мощности теплогенератора, чтобы сделать правильный выбор оборудования. Однако, если котел планируется использовать еще и для подогрева воды, предстоит полученное значение его мощности увеличить на 25%. Таким образом, для определения необходимой мощности генератора тепла нужно использовать следующий алгоритм:
- Рассчитывается общая площадь строения и делится на 10. При этом показатель Wуд учитывать не нужно.
- Выполняется корректировка расчетного значения в зависимости от климатической зоны, в которой возведено строение. Показатель, определенный на первом этапе, умножается на коэффициент региона.
- Если реальное значение высоты потолков значительно отличается от усредненного, это нужно учесть при расчете. Сначала нужно разделить фактический показатель на средний. Полученный коэффициент умножается на мощность теплогенератора, определенную с учетом поправки на климатические особенности местности.
- Учитываются тепловые потери здания. Полученный на предыдущем этапе результат нужно умножить на коэффициент теплопотерь.
- Если котел используется еще и для подогрева воды, его мощность увеличивается на 25%.
Полученный с помощью этого алгоритма результат отличается высокой точностью, и он подходит для выбора котла, работающего на любом виде топлива.
В соответствии с нормами СНиП
Рассчитать мощность оборудования для отопительной системы дома можно на основе строительных норм и правил (СНиП). Этот документ определяет необходимое количество тепловой энергии для обогрева 1 м3 воздуха. Расчет по объему выполнить довольно просто. Достаточно лишь определить объем внутренних помещений строения и умножить его на норму расхода тепловой энергии.
Согласно СНиП в панельном здании для нагрева 1 м3 воздуха нужно затратить 41 Вт теплоэнергии.
Если необходимо получить максимально точные результаты, то нужно учитывать поправочный коэффициент:
- Если над либо под квартирой расположено отапливаемое помещение — поправка равна 0,7.
- В случае если оно неотапливаемое — коэффициент составит 1.
- Если квартира расположена над подвалом либо под чердаком — поправка составит 0,9.
Также нужно учитывать и число наружных стен в помещении. Когда на улицу выходит только одна стена, то коэффициент составит 1,1, при двух — 1,2, трех — 1,3.
Таким образом, расчет котла для отопления дома можно рассчитать по общему объему здания или его площади. Какой бы метод ни был выбран, процесс не отличается высокой сложностью.
Все необходимые расчеты может провести любой человек, не владеющий специальными знаниями.
Источник: https://kaminguru.com/kotel/kak-rasschitat-moshhnost.html
Как рассчитать мощность котла отопления
Загородные дома в большинстве случаев оборудуются автономной системой отопления и горячего водоснабжения. От того, правильно ли подобран котёл по мощности, зависит комфорт проживания в доме. Это также влияет на амортизацию котельного оборудования, длительность его эксплуатации и расход топлива, то есть ежемесячные траты на эксплуатацию коттеджа.
Автономное отопление дома — сложная система, требующая детального расчёта. Одна из важных переменных — мощность котла отопления. Эта статья о том, как правильно её рассчитать, на какие параметры стоит обратить внимание и зачем вообще это делать — рассчитывать мощность котла.
Вот с вопроса «зачем» и начнём.
Зачем рассчитывать, если можно взять самый мощный?
Если вы не привыкли считать свои деньги, и их у вас куры не клюют, то тогда смело можете не читать дальше и отправиться выбирать самый мощный котёл из имеющихся в продаже.
Но не забывайте: куры, говорят, очень смешливые птицы, как бы не получилось им на смех!
Если мощность котла превышает потребности, то, конечно, свою функцию отопления здания и приготовления горячей воды он выполнять будет. Но, во-первых, стоимость котельного оборудования зависит от мощности.
Поэтому, совершая покупку без предварительных расчётов, вы заведомо зря потратите больше денег.
Не хотите считать финансовые потери — правильно рассчитайте мощность котла
Во-вторых, излишняя мощность, превышающая потребности восполнения тепловых потерь здания, приводит к повышенной нагрузке на всю гидравлическую систему. Излишняя нагрузка ведёт к несбалансированной работе системы, сбоям в автоматике и в конечном итоге — к быстрому выходу оборудования из строя.
Частично с этой проблемой можно справиться, если котёл оборудован многоступенчатой модуляционной горелкой, когда сила горения пламени регулируется в зависимости от запрашиваемой мощности. Другой вариант — установка гидравлической стрелки в системе, возможно, в дополнение к многоступенчатой горелке.
Горелка газового котла Но так вопрос решается только отчасти: если разница между необходимой и вырабатываемой мощностью значительна, то модуляционная горелка не будет срабатывать в многоступенчатом режиме. Следовательно, работа котла будет импульсной, как и у оборудования с одноступенчатой горелкой.
В-третьих, горелка мощного котла, нагрев теплоноситель, слишком быстро отключается, топливо не успевает полностью прогореть, а дымоход прогреться. В результате получим повышенное осаждение сажи в дымоходе и на теплообменнике (необходимость частой чистки), а также образование излишнего конденсата.
И всё те же возможные сбои в работе системы отопления.
Какие параметры влияют на выбор котла
Кроме финансового вопроса и вида доступного топлива, основной параметр при выборе отопительного котла — это его мощность. То есть какое количество тепла он вырабатывает, и хватит ли этого тепла для отопления дома и подготовки горячей воды, если ГВС (горячее водоснабжение) тоже возлагается на этот котёл. Что же влияет на способность отопительного оборудования обогревать дом?
Теплопотери
Самый главный параметр, от которого зависит, будет ли в доме комфортная температура, это теплопотери здания.
Каким бы котёл ни был мощным и имеющим высокий КПД, если дом не утеплён, то комфорта в нём не жди.
Теплопотери — это тепло, которое теряется, «просачиваясь» через систему вентиляции и ограждающие конструкции: стены, крышу, фундамент, окна и двери.
Больше всего тепла утекает через крышу и систему вентиляции, включая дымоходы: примерно по 25-30%.
Через наружные стены и окна теряется 10-15%, примыкание фундамента к грунту уносит тоже около 15%, на пол первого этажа и неотапливаемый подвал приходится ещё 10-15%.
Важно
Поэтому задача утепления строения тесно связана с выбором отопительного оборудования: лучше утеплите — меньшей мощности потребуется котёл.
Расчёт теплопотерь сложен. В вычислениях используются значения толщин ограждающих конструкций с учётом всех применённых материалов, разница между наружной и внутренней температурой, климатические параметры региона строительства, сила и направление преобладающих ветров, инсоляция и ещё много других критериев.
Полученное значение теплопотерь в киловаттах и есть то количество теплоты, которое должен выработать котёл — его мощность. В идеальном случае потери тепла дома должны полностью компенсироваться теплом, вырабатываемым отопительным оборудованием.
Площадь и объём
Второй по значимости параметр — это площадь дома. Даже неспециалисту понятно, что для отопления маленького дачного домика и просторного коттеджа требуется оборудование разной мощности.
Но, кроме площади, важен и объём воздуха в помещениях: если высота потолков в комнатах значительно больше стандартных 2700 мм, то и отопительный прибор понадобится более внушительный.
Помимо размеров помещения, важно учитывать площадь остекления.
Если в доме большие панорамные окна, это тоже нужно иметь в виду при выборе котла. Имеет значение и то, какие конечные отопительные приборы будут использоваться, например, радиаторы отопления или тёплые полы.
Упрощённая схема расчёта мощности котла
На практике часто используют упрощённую схему теплотехнических расчётов, основанную на площади здания.
Если строение имеет стандартное утепление стен и других ограждающих конструкций, то есть у него расчётные теплопотери, то принимается, что для отопления каждых 10 м² помещения требуется 1 кВт мощности.
Для коррекции расчётов под разные региональные климатические условия используются коэффициенты:
- для средней полосы России — 1-1,5;
- для северных районов — 1,5-2;
- для южных районов — 0,7-0,9.
Кроме региона в упрощённых расчётах можно учесть объём прогреваемого воздуха, то есть высоту потолков. Если в вашем доме потолки выше стандартных 2700 мм, то поправочный коэффициент вычисляется делением фактической высоты потолка на стандартную. На случай сильных аномальных морозов при расчётах добавляем запас мощности в 10%, а если котёл ещё и горячую воду греет, то плюсуем дополнительно 25%.
Посчитаем на конкретных примерах
Чтобы проще понять методику расчётов необходимой мощности котла, рассмотрим конкретный пример. Допустим, мы имеем кирпичный дом со стенами толщиной в 2 кирпича, расположенный в Калужской области. Площадь дома — 160 м². Высота потолков в комнатах больше стандартной — 3500 мм. И котёл, помимо системы отопления, предполагается ещё использовать и для ГВС.
Итак, приступим к расчётам. Наш дом с кирпичными стенами толщиной 500 мм (в 2 кирпича). Согласно строительным нормам, эти стены имеют стандартные теплопотери.
Предположим, что прочие ограждающие конструкции тоже выполнены с учётом стандартных требований. Делим площадь дома на десять (160/10=16) и получаем, что для отопления требуется котёл мощностью в 16 кВт. Теперь используем все коэффициенты и поправки. Так как Калужская область — это средняя полоса России, то будем использовать коэффициент 1.
Наши потолки выше стандартных, поэтому рассчитаем поправочный коэффициент: 3500/2700=1,29. Округлим до первой цифры после запятой, получаем 1,3. Применяем коэффициенты: 16 кВт*1*1,3=20,8 кВт.
Округляем в большую сторону до 21 кВт. Так как котёл будет, кроме отопления, нагревать и горячую воду, прибавим ещё 25%: 21+5,3=26,3 кВт.
На аномальные зимние температуры добавляем ещё 10%: 26,3+2,1=28,4 кВт. Округляем и смотрим, у какой модели котлов значение мощности наиболее совпадает с расчётным. Чтобы окончательно разобраться, рассмотрим ещё один пример.
Зима
Бревенчатый дом в Псковской области. Площадь дома — 72 м², высота потолков — 2500 мм. Дом построен из бревна толщиной не менее 220 мм. Для нагрева воды котёл использовать не предполагается.
Если в качестве материала для стен используется не кирпич, то соотносим теплопроводность имеющихся конструкций с аналогичным параметром кирпичной стены толщиной 500 мм. Стены нашего дома соответствуют стандартной теплопроводности кирпичной стены в 2 кирпича.
Бревенчатый дом, учитывая толщину бревна, даже теплее кирпичного (дерево имеет теплопроводность ниже, чем у кирпича). Но так как дом старый, то посчитаем, что с точки зрения теплопотерь, они одинаковы. Хотя Псковская область и относится к средней полосе, но это всё-таки её север, поэтому будем использовать региональный коэффициент 1,5.
Итак, 72/10=7,2 кВт, 7,2*1,5=10,8 кВт. Так как потолки в доме ниже стандартных, то поправочный коэффициент использовать не будем, как и прибавлять 25% на ГВС. Учтём только возможные сильные морозы: 10% это 1,08 кВт. Значит, нам потребуется приобрести котёл мощностью не ниже 12 кВт.
Подберите правильно отопительное оборудование Приведённая выше упрощённая схема расчётов мощности оправдывает себя в подборе отопительного оборудования только для типовых проектов отдельно стоящих домов.
Если ваш дом блокированный, часть таунхауса или это квартира, то расчёты будут другими, ведь соседи сбоку, снизу или сверху уменьшают теплопотери помещений. Также потребуются отдельные теплотехнические расчёты, если дом выстроен по индивидуальному проекту.
Тип котла и расчёт мощности
Тип котла и вид используемого топлива не влияет на способ расчёта мощности отопительного оборудования и результат. Поэтому часто возникающий вопрос, как рассчитать мощность, например, газового котла, не совсем корректен.
Верный расчёт — залог комфорта Традиционная кирпичная печь, электрический, твердотопливный, жидкотопливный, газовый котёл, да даже если вам удастся найти бытовой агрегат, работающий на принципе ядерного синтеза — всё равно отопительный прибор должен выдавать требуемую мощность, которая зависит от теплопотерь здания и его площади.
Тип оборудования, его технологичность и вид топлива влияют не на мощность, а на КПД, конечную экономичность и комфортность эксплуатации для пользователя. Подобрав отопительное оборудование правильно, вы сделаете свой дом уютным и тёплым, а свои финансовые расходы — адекватными потребностям. Другие публикации нашего сайта, которые могут вас заинтересовать.
Источник: https://7dach.ru/NatashaPetrova/kak-rasschitat-moschnost-kotla-otopleniya-106951.html
Калькулятор расчета мощности обогрева теплицы
Наличие загородного участка очень часто предполагает ведение на нем тех или иных сельскохозяйственных работ. Согласитесь, любому человеку приятно иметь на своем столе овощи, фрукты или ягоды, выращенные собственноручно и гарантированно «чистые». Но вот правда летний «огородный» сезон во многих регионах – довольно короток. Поэтому рачительные хозяева строят специальные агротехнические сооружения – теплицы и парники. А чтобы довести период сельхозработ до возможного максимума, или даже вообще перейти на круглогодичный цикл, обязательно потребуется оборудовать теплицу системой обогрева.
Калькулятор расчета мощности обогрева теплицыСистема отопления теплицы может быть разной – печи длительного горения, водяные или электрические контуры, заглубленные в грунт по принципу «теплого пола», конвекторы, обеспечивающие перемещения масс теплого воздуха, инфракрасный обогрев. Но любая из выбранных систем должна выполнять главную задачу – создавать и поддерживать в помещении требуемую для выращиваемых культур температуру, то есть, обладать определенной тепловой мощностью. А вот какой? – в этом вопросе нам поможет калькулятор расчета мощности обогрева теплицы.
Цены на обогреватели для теплицы
обогреватель инфракрасный
Ниже, под калькулятором, приведены пояснения и необходимые справочные данные.
Калькулятор расчета мощности обогрева теплицыПерейти к расчётам
Пояснения по проведению расчетовМощности системы обогрева теплицы должно быть достаточно для обеспечения компенсации теплопотерь, а они, при больших площадях остекления этих сооружений – весьма немалые.
Расчет необходимой тепловой мощности строится исходя из следующего соотношения:
Qт = Sw × Kinf × Δt × τw
Qт – рассчитываемая мощность обогрева.
Sw – площадь остекления теплицы. Именно она принимается в расчет, так как через прозрачные стены проходит не только инсоляция (проникновение энергии солнечных лучей), но и максимальный объем теплопотерь.
Площадь рассчитывается самостоятельно, по известным геометрическим формулам.
Для тех, у кого возникли сложности с вычислением площади…
Некоторые геометрические фигуры не желают напрямую «подчиняться» простым формулам, и их приходится разбивать на участки. Как рассчитать площадь – в том числе и для сложных случаев, с примерами и калькуляторами – в специальной публикации нашего портала.
Kinf – так называемый коэффициент инфильтрации. Он зависит от примерного режима эксплуатации теплицы, то есть от необходимой температуры внутри сооружения, и возможного уровня температур снаружи, на улице. Естественно, желательно брать в расчет наиболее неблагоприятные возможные условия, чтобы обеспечить необходимый эксплуатационный запас мощности.
Значения коэффициента инфильтрации можно взять из таблицы ниже:
Планируемая температура воздуха в помещении теплицы | Возможная температура воздуха снаружи | ||||
---|---|---|---|---|---|
0 °С | — 10 °С | — 20 °С | — 30 °С | — 40 °С | |
+ 18 °С | 1.08 | 1.13 | 1.18 | 1.24 | 1.30 |
+ 25 °С | 1.11 | 1.16 | 1.21 | 1.27 | 1.33 |
Δt – максимальная амплитуда температуры, то есть разница между нормальным значением в помещении, и минимальным – на улице, в самую холодную неделю в период эксплуатации теплицы. В калькуляторе значении Δt будет подсчитана по указанным значения снаружи и внутри.
— Как правило, + 18 ºС бывает достаточно для выращивания большинства овощей. Для рассады или цветов требуется порядка + 25 ºС. При выращивании некоторых экзотических растений температурный режим предполагает и более высокие показатели.
— В поле ввода внешних температур указывается уровень минимальной отрицательной температуры воздуха, характерный для данного региона, в период эксплуатации теплицы.
τw – показатель теплопроводности материала остекления теплицы.
Разные материалы (по составу и по строению) имеют собственную теплопроводность – она уже учтена в алгоритме калькулятора. Вариант теплицы с пленочным покрытием не рассматривается, так как воспринимать его всерьез в качестве «зимнего» сооружения – было бы преувеличением.
Полученное значение, в киловаттах, станет ориентиром при выборе наиболее подходящей системы обогрева теплицы.
Сложно ли построить теплицу самостоятельно?
Вопрос неоднозначный, так как теплицы могут существенно различаться размерами, принципиальной конструкцией, своей оснащенностью и другими характеристиками. Тем не менее, это вполне выполнимо, и ряд полезных рекомендаций по данной проблеме можно получить в специальной статье портала – про строительство теплицы своими руками.
Калькулятор расчета мощности котла отопления
Индивидуальное отопление — один из важнейших компонентов для улучшения комфорта в доме или квартире. При его наличии можно забыть о начале и конце отопительного сезона, графике подачи воды, невозможности регулировки температуры в комнатах, а также о «платёжках» с заоблачными суммами за отопление. Качественное и правильно установленное индивидуальное отопление в частном доме — обязательный элемент. Но чтобы система служила долго и выполняла свои функции, перед её монтажом необходимо составить грамотный проект и всё рассчитать. Например, чтобы подобрать котёл под определённое помещение, может пригодиться калькулятор расчета мощности котла отопления.
Зачем рассчитывать мощность котла?
Правильный выбор котла для отопления конкретного помещения — важный этап проектировки всей системы. При этом ориентироваться нужно не только на общий объём помещения, его утепление, количество потребителей (радиаторы, тёплый пол), но и на другие факторы. Неправильный выбор мощности котла может привести к тому, что устройство не сможет в полной мере выполнять свои функции.
Например, не будет прогревать помещение до необходимой температуры. Из-за этого котёл, работающий постоянно, на пределе своих возможностей, быстрее исчерпает свой ресурс. И наоборот, при наличии избытка мощности, котёл отопления справится со своим задачами легко, но стоить такое устройство будет дороже, что приведёт к излишним затратам.
Как работает калькулятор расчета мощности котла отопления?
Калькулятор расчета мощности котла отопления представляет собой программу, использующую в расчёте стандартные формулы и поправочные коэффициенты. Он позволяет учесть такие параметры помещения: этаж, площадь, высоту стен, материал и тип стен (внешняя, внутренняя), желаемую температуру внутри комнат, материал перекрытия (снизу и сверху), самую холодную внешнюю температуру в конкретной климатической зоне (усреднённые показатели), тип и количество окон, их размеры, наличие утепления. Учитывая все эти данные, программа-калькулятор позволяет довольно точно рассчитать необходимую мощность котла для отопления вашего дома.
Калькулятор расчета мощности котла отопления по площади помещения
]]>Окна
Тройной стеклопакет Двойной стеклопакетОбычное (двойное) остекление
Стены
Хорошая теплоизоляцияДва кирпича или 150 мм утеплителяПлохая теплоизоляция
Соотношение площадей окон и пола
10%20%30%40%50%
Температура снаружи помещения
-10C-15C-20C-25C-30C-35C
Число стен выходящих наружу
ОднаДвеТриЧетыри
Тип помещения над рассчитываемым
Обогреваемое помещениеТеплый чердакХолодный чердак
Высота помещения
2,5 метра3 метра3,5 метра4 метра4,5 метра
Площадь помещения
Теплопотери
Теплопроизводительность котла
Просмотры: 459
Расчет мощности котла отопления
При выборе газового водогрейного котла наиболее важным показателем является мощность. Помещения могут иметь различную площадь, и это следует обязательно учитывать. Тепло уходит из помещения через окна, стены и дверные проемы. Выбирая газовый котел, нельзя забывать о таких потерях.
Существует несколько способов расчета мощности котла отопления, необходимой для достаточного обеспечения помещения теплом. Ниже представлены три способа предварительного расчета мощности котла, которые наиболее успешно справляются с поставленной задачей.
- Применение пропорции. Самый легкий способ вычислить необходимую мощность — использовать соотношение «на 10 квадратных метров — 1 киловатт мощности».
- Программа-калькулятор. За счет значительно большего числа обрабатываемых параметров помещения специальная программа-калькулятор даст более конкретный и точный результат.
- Обращение к специалистам. Специалисты ПАО «Ирбис» произведут необходимые расчеты и подберут наиболее подходящее и эффективное котельное оборудование для Вашего помещения.
Соотношение «1 кВт на 10 кв. м»
Данный метод расчета хорош своей простотой, однако результаты он дает весьма приблизительные. Таким образом, как правило, осуществляют лишь предварительную оценку необходимой мощности устанавливаемого котельного оборудования.
Иногда используют немного другую формулу. Площадь помещения (в квадратных метрах) делят на десять, а затем прибавляют еще одну пятую от полученного результата. Полученное число — мощность подходящего котла в киловаттах. Данный способ также не отличается особо высокой точностью, но может оказаться полезным во время предварительных расчетов.
Онлайн-калькулятор расчета мощности котла
Программа-калькулятор обеспечивает довольно точные расчеты благодаря широкому спектру используемых параметров. Различные онлайн-калькуляторы расчета необходимой мощности котла учитывает в своих алгоритмах не только площадь помещения, но и, например, высоту потолков и теплоизоляцию стен.
Окна Тройной стеклопакетДвойной стеклопакетОбычное (двойное) остекление
Стены Хорошая изоляцияЖ/бетон, кирпич (2), утеплитель (150 мм)Плохая изоляция
Соотношение площадей окон и пола 10%11%-19%20%21%-29%30%31%-3940%50%
Температура снаружи помещения до -10 °C-10 °C-15 °C-20 °C-25 °C-30 °C-35 °C
Число стен, выходящих наружу ОднаДвеТриЧетыре
Тип помещения над расчитываемым Обогреваемое помещениеТеплый чердакХолодный чердак
Высота помещения 2,5 м3,0 м3,5 м4,0 м4,5 м
Необходимость в горячем водоснабжении (ГВС) ГВС требуетсяГВС не требуется
Площадь помещения, м²
Мощность котла без учета теплопотерь, кВт
Теплопотери, кВт
Необходимая мощность котла с учетом теплопотерь, кВт
Полученные результаты являются довольно объективными и точными, и на их основании вполне можно выбирать газовый котел.
Произведения расчетов специалистами
Точно определить необходимую мощность газового котла можно только грамотно оценив все теплопотери. Как бы хороша ни была программа-калькулятор, ни один компьютер не может учесть всех особенностей помещения. Наличие теплых полов, двойных дверей, размеры окон и многие другие показатели могут весьма сильно повлиять на результаты расчетов.
Опытные инженеры ПАО «Ирбис» произведут расчет водогрейного котла с учетом всех особенностей планировки. Специалисты нашего завода помогут Вам с выбором котельного оборудования, в отапливаемом помещении всегда будет тепло, но не будет необходимости переплачивать за завышенную мощность котла.
Сколько тепла вам нужно
Большинство проблем с электрическим нагревом можно легко решить, определив количество тепла, необходимое для выполнения работы. Требуемое количество тепла должно быть преобразовано в электрическую энергию, после чего можно выбрать наиболее практичный обогреватель для работы. Независимо от того, является ли проблема нагревом твердых тел, жидкостей или газов, метод или подход к определению потребляемой мощности одинаков.
Ваша проблема с отоплением должна быть четко обозначена, уделяя особое внимание определению рабочих параметров.Прежде чем двигаться дальше, убедитесь, что у вас есть следующая информация:
Тепловая система, которую вы проектируете, может не учитывать все возможные или непредвиденные требования к обогреву, поэтому помните о коэффициенте безопасности. Коэффициент безопасности увеличивает мощность нагревателя сверх расчетных требований.
Полная требуемая тепловая энергия (кВтч или британских тепловых единиц) представляет собой либо количество тепла, необходимое для запуска, либо количество тепла, необходимое для поддержания заданной температуры. Это зависит от того, какой расчетный результат больше.
Требуемая мощность (кВт) — это значение тепловой энергии (кВтч), деленное на необходимое время запуска или рабочего цикла. Мощность обогревателя в кВт будет больше из этих значений плюс коэффициент безопасности.
Расчет требований к запуску и эксплуатации состоит из нескольких отдельных частей, которые лучше всего обрабатывать отдельно. Однако можно использовать краткий метод для быстрой оценки необходимой тепловой энергии.
Коэффициент безопасности обычно составляет от 10 до 35 процентов в зависимости от области применения.
A = Ватты, необходимые для повышения температуры материала и оборудования до рабочей точки в течение требуемого времени
B = Ватты, необходимые для повышения температуры материала во время рабочего цикла
Вес материала (фунты) ) x Удельная теплоемкость материала (° F) x повышение температуры (° F)
––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––412
D = Ватты, необходимые для плавления или испарения материала во время рабочего цикла
Уравнение для C и D (поглощенные ватты при плавлении или испарении)
Вес материала (фунты) x теплота плавления или испарение (БТЕ / фунт)
–––––––––––––––––––––––––––––––––––––––– –––
Время запуска или цикла (часы) x 3.412
L = Ватт, потерянный поверхностями при использовании теплопроводности, кривых тепловых потерь при использовании излучения или кривых тепловых потерь при использовании конвекции
Теплопроводность материала или изоляции (БТЕ x дюйм / фут 2 x ° F x час) x Площадь поверхности (футы 2 ) x Темп. дифференциал к температуре окружающей среды (° F)
––––––––––––––––––––––––––––––––––––––––– ––––––
Толщина материала или изоляции (дюйм.) х 3,412
Расчет мощности
Поглощенная энергия, тепло, необходимое для повышения температуры материала
Поскольку все вещества нагреваются по-разному, для изменения температуры требуется разное количество тепла. Удельная теплоемкость вещества — это количество тепла, необходимое для повышения температуры единицы вещества на один градус. Называя количество добавленного тепла Q, которое вызовет изменение температуры ∆T на массу вещества W, при удельной теплоемкости материала Cp, тогда Q = w x Cp x ∆T.
Поскольку все вычисления производятся в ваттах, вводится дополнительное преобразование 3,412 британских тепловых единиц = 1 Вт-час.
Q A или Q B = w x Cp x ∆T
––––––––––
3,412
QA = Тепло, необходимое для повышения температуры материалов во время нагрева (Втч)
QB = Тепло, необходимое для повышения температуры обрабатываемых материалов в рабочем цикле (Вт · ч)
w = Вес материала (фунты)
Cp = удельная теплоемкость материала (БТЕ / фунт x ° F)
∆T = Повышение температуры материала (T Final — T Initial ) (° F)
Тепло, необходимое для плавления или испарения материала
Тепло, необходимое для плавления материала, называется скрытой теплотой плавления и обозначается H f .Другое изменение состояния связано с испарением и конденсацией. Скрытая теплота парообразования H v вещества — это энергия, необходимая для превращения вещества из жидкости в пар. Такое же количество энергии выделяется, когда пар конденсируется обратно в жидкость.
Q C или Q D = w x H f или v
–––––
3,412
Q C = Тепло, необходимое для плавления / испарения материалов во время нагрева (Втч)
Q D = Тепло, необходимое для плавления / испарения материалов, обрабатываемых в рабочем цикле (Вт-ч)
w = Вес материала (фунты)
H f = Скрытая теплота плавления (БТЕ / фунт)
H v = скрытая теплота испарения (БТЕ / фунт)
Теплопроводность потерь
Теплопередача за счет теплопроводности — это контактный обмен теплом от одного тела с более высокой температурой к другому телу с более низкой температурой или между частями одного и того же тела при разных температурах.
Q L1 = k x A x ∆T x te [1]
–––––––––––
3,412 x L
Q L1 = теплопроводность потерь (Втч)
k = теплопроводность (британские тепловые единицы x дюйм / фут 2 x ° F x час)
A = Площадь поверхности теплопередачи (футы 2 )
L = толщина материала (дюйм.)
∆T = разница температур в материале (T 2 -T 1 ) ° F
te = Время выдержки (час)
Конвекционные тепловые потери
Конвекция — это особый случай проводимости. Конвекция определяется как передача тепла из высокотемпературной области в газе или жидкости в результате движения масс жидкости.
Q L2 = A • F SL • C F
Q L2 = Конвекционные тепловые потери (Втч)
A = Площадь поверхности (дюйм2)
F SL = Коэффициент потерь при вертикальной поверхностной конвекции (Вт / дюйм2), рассчитанный при температуре поверхности
C F = Фактор ориентации поверхности: нагретая поверхность обращена горизонтально вверх (1.29), вертикально (1,00), нагреваемая поверхность обращена горизонтально вниз (0,63)
Радиационные тепловые потери
Радиационные потери не зависят от ориентации поверхности. Коэффициент излучения используется для корректировки способности материала излучать тепловую энергию.
Q L3 = A x F SL x e
Q L3 = Потери тепла на излучение (Втч)
A = Площадь поверхности (дюйм2)
F SL = Коэффициент потерь на излучение черного тела при температуре поверхности (Вт / дюйм2)
e = коэффициент поправки на излучательную способность поверхности материала
Комбинированные потери тепла конвекцией и излучением
Если требуется только конвекционная составляющая, то радиационная составляющая должна определяться отдельно и вычитаться из комбинированной кривой.
Q L4 = A x F SL
Q L4 = Потери тепла на поверхности в сочетании с конвекцией и излучением (Вт · ч)
A = Площадь поверхности (в 2 )
F SL = комбинированный коэффициент поверхностных потерь при температуре поверхности (Вт / дюйм 2 )
Общие тепловые потери
Суммарные потери тепла на теплопроводность, конвекцию и излучение суммируются, чтобы учесть все потери в уравнениях мощности.
Q L = Q L1 + Q L2 + Q L3 Если конвекционные и радиационные потери рассчитываются отдельно. (Поверхности изолированы неравномерно, и потери следует рассчитывать отдельно.)
ИЛИ
Q L = Q L1 + Q L4 Если используются комбинированные кривые излучения и конвекции. (Трубы, воздуховоды, равномерно изолированные тела.)
Оценка мощности
После расчета требований к пусковой и рабочей мощности необходимо провести сравнение и оценить различные варианты.
В ссылке 1 показаны пусковые и рабочие ватты в графическом формате, чтобы помочь вам увидеть, как складываются требования к мощности. С учетом этого графического средства возможны следующие оценки:
Сравните начальную мощность с рабочей мощностью.
Оцените влияние увеличения времени запуска таким образом, чтобы мощность запуска равнялась рабочим Вт (используйте таймер для запуска системы перед сменой).
Признайте, что существует больше тепловой мощности, чем используется. (Требование короткого времени запуска требует большей мощности, чем процесс в ваттах.)
Определите, куда уходит большая часть энергии, и измените конструкцию или добавьте изоляцию, чтобы снизить требования к мощности.
Рассмотрев всю систему, необходимо проанализировать время запуска, производственные мощности и методы изоляции. Как только у вас будет необходимое количество тепла, вы должны учитывать факторы применения вашего обогревателя.
НАГРЕВАТЕЛЬНЫЙ ЭФФЕКТ ЭЛЕКТРИЧЕСКОГО ТОКА
Введение
Когда ток течет по проводнику, в проводнике генерируется тепловая энергия. Нагревательный эффект электрического тока зависит от трех факторов:
- Сопротивление R проводника. Чем выше сопротивление, тем больше тепла.
- Время t, в течение которого течет ток. Чем больше время, тем больше выделяется тепла
- Величина тока, I.чем выше сила тока, тем больше выделяется тепла.
Следовательно, эффект нагрева, создаваемый электрическим током I через проводник сопротивления R в течение некоторого времени, t определяется как H = I 2 Rt. Это уравнение называется уравнением Джоуля электрического нагрева.
Электроэнергия и мощность
Работа, выполняемая при проталкивании заряда по электрической цепи, определяется выражением w.d = VIt
.Таким образом, мощность, P = w.d / t = VI
Электрическая мощность, потребляемая электроприбором, определяется как P = VI = I 2 R = V 2 / R
Пример
- Электрическая лампочка имеет маркировку 100 Вт, 240 В.Вычислить:
б) Сопротивление нити накала лампы.
Решение
- I = P / V = 100/240 = 0,4167A
- R = P / I 2 = 100 / 0,4167 2 = 576,04 Ом или R = V 2 / P = 240 2 /100 = 576 Ом
- Найдите энергию, рассеиваемую за 5 минут электрической лампочкой с нитью накала 500 Ом, подключенной к источнику питания 240 В.{ ANS. 34,560J }
Решение
E = Pt = V2 / R * t = (240 2 * 5 * 60) / 500 = 34,560 Дж
- Погружной нагреватель мощностью 2,5 кВт используется для нагрева воды. Вычислить:
- Рабочее напряжение нагревателя при сопротивлении 24 Ом
- Электрическая энергия, преобразованная в тепловую за 2 часа.
{ ANS. 244,9488 В, 1,8 * 10 7 Дж }
Решение
- P = VI = I 2 R
I = (2500/24) 1/2 = 10.2062A
В = ИК = 10,2062 * 24 = 244,9488 В
- E = VIt = Pt = 2500 * 2 * 60 * 60 = 1,8 * 10 7 J
ИЛИ E = VIt = 244,9488 * 10,2062 * 2 * 60 * 60 = 1,8 * 10 7 Дж
Электрическая лампочка имеет маркировку 100W, 240V. Вычислить:Ток через нить накала
Сопротивление нити накала лампы.
Решение
P = VI I = P / V = 100/240 = 0,4167AСогласно закону Ома, V = IR R = V / I = 240 / 0,4167 = 575,95 Ом
Применение нагревающего эффекта электрического тока
Большинство бытовых электроприборов таким образом преобразуют электрическую энергию в тепло.К ним относятся лампы накаливания, электрический нагреватель, электрический утюг, электрический чайник и т. Д.
В осветительных приборах
- Лампы накаливания — изготовлены из вольфрамовой проволоки, заключенной в стеклянную колбу, из которой удален воздух. Это потому, что воздух окисляет нить. Нить нагревается до высокой температуры и становится раскаленной добела. Вольфрам используется из-за его высокой температуры плавления; 3400 0 Колба заполнена неактивным газом, например. аргон или азот при низком давлении, что снижает испарение вольфрамовой проволоки.Однако одним из недостатков инертного газа является то, что он вызывает конвекционные токи, которые охлаждают нить накала. Эта проблема сводится к минимуму за счет наматывания проволоки таким образом, чтобы она занимала меньшую площадь, что снижает потери тепла за счет конвекции.
- Люминесцентные лампы — эти лампы более эффективны по сравнению с лампами накаливания и служат намного дольше. У них есть пары ртути в стеклянной трубке, которая при включении испускает ультрафиолетовое излучение. Это излучение заставляет порошок в трубке светиться (флуоресцировать) i.е. излучает видимый свет. Из разных порошков получаются разные цвета. Обратите внимание, что люминесцентные лампы дороги в установке, но их эксплуатационные расходы намного меньше.
В электрическом обогреве
- Электрические плиты — электрические плиты раскалены докрасна, и произведенная тепловая энергия поглощается кастрюлей за счет теплопроводности.
- Электрические обогреватели — лучистые обогреватели становятся красными при температуре около 900 0 C, а испускаемое излучение направляется в комнату с помощью полированных отражателей.
- Электрические чайники — нагревательный элемент размещается внизу чайника так, чтобы нагреваемая жидкость покрывала его. Затем тепло поглощается водой и распределяется по всей жидкости за счет конвекции.
- Электрические утюги — при прохождении тока через нагревательный элемент выделяемая тепловая энергия передается на основание из тяжелого металла, повышая его температуру. Затем эта энергия используется для прессования одежды. Температуру утюга можно контролировать с помощью термостата (биметаллической планки).
3.12: Расчет энергоемкости и теплоемкости
Цели обучения
- Для связи теплопередачи с изменением температуры.
Тепло — знакомое проявление передачи энергии. Когда мы прикасаемся к горячему объекту, энергия перетекает от горячего объекта к нашим пальцам, и мы воспринимаем эту поступающую энергию как «горячий» объект. И наоборот, когда мы держим кубик льда в ладонях, энергия перетекает из руки в кубик льда, и мы воспринимаем эту потерю энергии как «холод».«В обоих случаях температура объекта отличается от температуры нашей руки, поэтому мы можем сделать вывод, что разница температур является основной причиной теплопередачи.
Удельную теплоемкость вещества можно использовать для расчета изменения температуры, которому подвергнется данное вещество при нагревании или охлаждении. Уравнение, связывающее тепло \ (\ left (q \ right) \) с удельной теплоемкостью \ (\ left (c_p \ right) \), массой \ (\ left (m \ right) \) и изменением температуры \ (\ left (\ Delta T \ right) \) показан ниже.\text{o} \text{C} \right)\)»> 0.233
Направление теплового потока не показано в heat = mc Δ T . Если энергия поступает в объект, общая энергия объекта увеличивается, и значения тепла Δ T положительны. Если энергия исходит из объекта, общая энергия объекта уменьшается, а значения тепла и Δ T являются отрицательными.
Пример \ (\ PageIndex {1} \)
A \ (15.0 \: \ text {g} \) кусок металлического кадмия поглощает \ (134 \: \ text {J} \) тепла, поднимаясь из \ (24.\ text {o} \ text {C} \]
Пример \ (\ PageIndex {2} \)
Какое количество тепла передается при нагревании блока металлического железа весом 150,0 г с 25,0 ° C до 73,3 ° C? Какое направление теплового потока?
Решение
Мы можем использовать heat = mc Δ T , чтобы определить количество тепла, но сначала нам нужно определить Δ T . Поскольку конечная температура утюга составляет 73,3 ° C, а начальная температура составляет 25,0 ° C, Δ T имеет следующий вид:
Δ T = T конечный — T начальный = 73.\ circ C) = 782 \: cal} \]
Обратите внимание, как единицы измерения грамм и ° C отменяются алгебраически, оставляя только единицу калорий, которая является единицей тепла. Поскольку температура железа увеличивается, энергия (в виде тепла) должна течь в металл .
Упражнение \ (\ PageIndex {1} \)
Какое количество тепла передается при охлаждении блока металлического алюминия массой 295,5 г с 128,0 ° C до 22,5 ° C? Какое направление теплового потока?
- Ответ
- Тепло уходит из алюминиевого блока.
Пример \ (\ PageIndex {2} \)
Образец красновато-коричневого металла массой 10,3 г выделил 71,7 кал тепла при снижении его температуры с 97,5 ° C до 22,0 ° C. Какова удельная теплоемкость металла? Можете ли вы идентифицировать металл по данным в Таблице \ (\ PageIndex {1} \)?
Решение
Вопрос дает нам тепло, конечную и начальную температуры и массу образца. Значение Δ T составляет:
Δ T = T конечный — T начальный = 22.\ circ C)}} \)
c = 0,0923 кал / г • ° C
Это значение удельной теплоемкости очень близко к значению, приведенному для меди в таблице 7.3.
Упражнение \ (\ PageIndex {2} \)
Кристалл хлорида натрия (NaCl) массой 10,7 г имеет начальную температуру 37,0 ° C. Какова конечная температура кристалла, если на него было подано 147 кал тепла?
- Ответ
Сводка
Проиллюстрированы расчеты удельной теплоемкости.
Материалы и авторство
Эта страница была создана на основе содержимого следующими участниками и отредактирована (тематически или всесторонне) командой разработчиков LibreTexts в соответствии со стилем, представлением и качеством платформы:
Как рассчитать количество выделяемого тепла
Обновлено 12 февраля 2020 г.
Клэр Гиллеспи
Проверено: Lana Bandoim, B.S.
Некоторые химические реакции выделяют энергию за счет тепла.Другими словами, они передают тепло своему окружению. Они известны как экзотермические реакции : «Экзо» относится к внешним или внешним, а «термический» означает тепло.
Некоторые примеры экзотермических реакций включают горение (горение), реакции окисления (ржавление) и реакции нейтрализации между кислотами и щелочами. Многие предметы повседневного обихода, такие как грелки для рук и самонагревающиеся банки для кофе и других горячих напитков, подвергаются экзотермическим реакциям.
TL; DR (слишком долго; не читал)
Чтобы рассчитать количество тепла, выделяемого в химической реакции, используйте уравнение Q = mc ΔT , где Q — тепловая энергия перенесенная (в джоулях), м — масса нагретой жидкости (в килограммах), c — удельная теплоемкость жидкости (джоуль на килограмм градусов Цельсия), а ΔT — изменение температуры жидкости (градусы Цельсия).
Разница между теплом и температурой
Важно помнить, что температура и тепло — это не одно и то же. Температура — это мера того, насколько что-то горячее, измеряется в градусах Цельсия или градусах Фаренгейта, а тепла — это мера тепловой энергии, содержащейся в объекте, измеряется в джоулях.
Когда тепловая энергия передается объекту, его повышение температуры зависит от:
- массы объекта
- вещества, из которого сделан объект
- количества энергии, приложенной к объекту
Чем больше тепловой энергии переносится на объект, тем больше увеличивается его температура.
Удельная теплоемкость
Удельная теплоемкость ( c ) вещества — это количество энергии, необходимое для изменения температуры 1 кг вещества на 1 единицу температуры. Различные вещества имеют разную удельную теплоемкость, например, вода имеет удельную теплоемкость 4 181 джоулей / кг градусов Цельсия, кислород имеет удельную теплоемкость 918 джоулей / кг градусов Цельсия, а свинец имеет удельную теплоемкость 128 джоулей / кг градусов C.
Калькулятор тепловой энергии
Для расчета энергии, необходимой для повышения температуры вещества с известной массой, используется формула удельной теплоемкости:
Q — переданная энергия в джоулях, м — масса вещества в кг, c — удельная теплоемкость в Дж / кг градусов C, а ΔT — изменение температуры в градусах C в формуле удельной теплоемкости.
Калькулятор тепловыделения
Представьте, что 100 г кислоты были смешаны со 100 г щелочи, что привело к повышению температуры с 24 до 32 градусов Цельсия.
Уравнение реакции нейтрализации между кислотой и щелочью может быть уменьшено до:
H + + OH — -> h3O
Используемая формула: Q = mc ∆T
Масса = м = 100 г + 100 г / 1000 г на кг = 0,2 г (одна значащая цифра)
Удельная теплоемкость воды = c = 4,186 Дж / кг градусов C
Изменение температуры = ΔT = 24 градуса C — 32 градуса C = -8 градусов C
Q = (0.2 кг) (4 186 Дж / кг градусов C) (-8 градусов C)
Q = -6 688 Дж, что означает, что выделяется 6 688 джоулей тепла.
Тепло, работа и энергия
Тепло (энергия)
Единица измерения тепла (или энергии) в системе СИ составляет джоуль (Дж) .
С разницей температур
Другими единицами измерения тепла являются британская тепловая единица — Btu (количество тепла для подъема 1 фунта воды на 1 o F ) и Калорийность (количество тепла, чтобы поднять 1 грамм воды на 1 o C ( или 1 K )).
калорий определяется как количество тепла, необходимое для изменения температуры одного грамма жидкой воды на один градус Цельсия (или один градус Кельвина).
1 кал = 4,184 Дж
1 Дж = 1 Вт · с
= (1 Вт · с) (1/3600 ч / с)
= 2,78 10 -4 Вт · ч
= 2,78 10 -7 кВтч
Тепловой поток (мощность)
Теплопередача только в результате разницы температур называется тепловым потоком . Единицы СИ для теплового потока: Дж / с или Вт (Вт) — то же, что и мощность. Один ватт определяется как 1 Дж / с .
Удельная энтальпия
Удельная энтальпия — это мера полной энергии в единицах массы. Обычно используется единица СИ: Дж / кг или кДж / кг .
Термин относится к общей энергии, обусловленной давлением и температурой текучей среды (например, воды или пара) в любой данный момент времени и при любых условиях.В частности, энтальпия — это сумма внутренней энергии и работы, совершаемой под действием приложенного давления.
Тепловая мощность
Тепловая мощность системы составляет
- количество тепла, необходимое для изменения температуры всей системы на один градус .
Удельная теплоемкость
Удельная теплоемкость (= удельная теплоемкость) — это количество тепла, необходимое для изменения температуры одна единица массы вещества на один градус .
Удельная теплоемкость может быть измерена в Дж / г K, Дж / кг K , кДж / кг K, кал / гK или БТЕ / фунт o F и более .
Никогда не используйте табличные значения теплоемкости без проверки единиц фактических значений!
Удельную теплоемкость для обычных продуктов и материалов можно найти в разделе «Свойства материала».
Удельная теплоемкость — постоянное давление
Энтальпия — или внутренняя энергия — вещества зависит от его температуры и давления.
Изменение внутренней энергии относительно изменения температуры при фиксированном давлении — это удельная теплоемкость при постоянном давлении — c p .
Удельная теплоемкость — постоянный объем
Изменение внутренней энергии относительно изменения температуры при фиксированном объеме — это удельная теплоемкость при постоянном объеме — c v .
Если давление не является чрезвычайно высоким, работой, выполняемой приложением давления к твердым телам и жидкостям, можно пренебречь, а энтальпия может быть представлена только компонентом внутренней энергии.Можно сказать, что теплота постоянного объема и теплоты постоянного давления равны.
Для твердых и жидких веществ
c p = c v (1)
Удельная теплоемкость представляет собой количество энергии, необходимое для подъема 1 кг вещества к 1 o C (или 1 K) , и ее можно рассматривать как способность поглощать тепло. Единицы измерения удельной теплоемкости в системе СИ составляют Дж / кг · К (кДж / кг, o C) .Вода имеет большую удельную теплоемкость 4,19 кДж / кг o C по сравнению со многими другими жидкостями и материалами.
- Вода — хороший теплоноситель!
Количество тепла, необходимое для повышения температуры
Количество тепла, необходимое для нагрева объекта от одного температурного уровня до другого, может быть выражено как:
Q = c p m dT ( 2)
, где
Q = количество тепла (кДж)
c p = удельная теплоемкость (кДж / кг · К)
м масса = )
dT = разница температур между горячей и холодной стороной (K)
Пример воды для отопления
Рассмотрим энергию, необходимую для нагрева 1.0 кг воды от 0 o C до 100 o C при удельной теплоемкости воды 4,19 кДж / кг o C :
Q = (4,19 кДж / кг o C ) (1,0 кг) ((100 o C) — (0 o C))
= 419 (кДж)
Работа
С технической точки зрения работа и энергия — одно и то же, но работа — это результат, когда направленная сила (вектор) перемещает объект в одном направлении.
Объем выполненной механической работы можно определить с помощью уравнения, полученного из ньютоновской механики
Работа = Приложенная сила x Расстояние, перемещенное в направлении силы
или
W = F л (3)
, где
W = работа (Нм, Дж)
F = приложенная сила (Н)
l = пройденная длина или расстояние (м)
Рабочий стол также может быть описан как произведение приложенного давления и перемещенного объема:
Работа = Приложенное давление x Вытесненный объем
или
W = p A l (3b)
где
p = приложенное давление (Н / м 2 , Па)
A = под давлением площадь (м 2 )
l = длина или расстояние, на которое зона давления перемещается под действием приложенной силы (м)
Пример — Работа, выполняемая силой
Работа, выполняемая силой 100 Н перемещение тела 50 м можно рассчитать как
W = (100 Н) (50 м)
= 5000 (Нм, Дж)
Единица измерения — джоуль, J, который определяется как количество работы, выполненной, когда сила 1 ньютон действует на расстоянии 1 м в направлении силы.
1 Дж = 1 Нм
Пример — Работа под действием силы тяжести
Работа, выполненная при подъеме массы 100 кг на высоте 10 м может быть рассчитана как
W = F г ч
= mgh
= (100 кг) (9,81 м / с 2 ) (10 м)
= 9810 (Нм, J)
, где
F г = сила тяжести — или вес (Н)
г = ускорение свободного падения 9.81 (м / с 2 )
h = высота (м)
В британских единицах измерения единичная работа выполняется при весе 1 фунт f (фунт-сила) поднята вертикально против силы тяжести на расстояние 1 фут . Единица называется фунт-фут .
Поднят объект массой 10 снарядов 10 футов . Проделанная работа может быть рассчитана как
W = F г h
= m g h
= (10 пробок) (32.17405 фут / с 2 ) (10 футов)
= 3217 фунтов f футов
Пример — Работа, связанная с изменением скорости
Работа, выполненная при массе 100 кг ускоряется от от скорости 10 м / с до скорости 20 м / с можно рассчитать как
W = (v 2 2 — v 1 2 ) м / 2
= ((20 м / с) 2 — (10 м / с) 2 ) (100 кг) / 2
= 15000 (Нм, Дж)
где
v 2 = конечная скорость (м / с)
v 1 = начальная скорость (м / с)
Energy
Energy — это способность делать работа (перевод с греческого — «работа внутри»).Единицей измерения работы и энергии в системе СИ является джоуль, определяемый как 1 Нм .
Движущиеся объекты могут выполнять работу, потому что обладают кинетической энергией. («кинетический» означает «движение» по-гречески).
Количество кинетической энергии, которой обладает объект, можно рассчитать как
E k = 1/2 мВ 2 (4)
, где
м = масса объекта (кг)
v = скорость (м / с)
Энергия положения уровня (запасенная энергия) называется потенциальной энергией.Это энергия, связанная с силами притяжения и отталкивания между объектами (гравитация).
Полная энергия системы складывается из внутренней, потенциальной и кинетической энергии. Температура вещества напрямую связана с его внутренней энергией. Внутренняя энергия связана с движением, взаимодействием и связыванием молекул внутри вещества. Внешняя энергия вещества связана с его скоростью и местоположением и является суммой его потенциальной и кинетической энергии.
Урок физики
На предыдущей странице мы узнали, что тепло делает с объектом, когда оно накапливается или выделяется. Прирост или потеря тепла приводят к изменениям температуры, изменению состояния или выполнения работы. Тепло — это передача энергии. Когда объект приобретает или теряет его, внутри этого объекта будут соответствующие изменения энергии. Изменение температуры связано с изменением средней кинетической энергии частиц внутри объекта. Изменение состояния связано с изменением внутренней потенциальной энергии, которой обладает объект.А когда работа сделана, происходит полная передача энергии объекту, над которым она выполняется. В этой части Урока 2 мы исследуем вопрос Как можно измерить количество тепла, получаемого или выделяемого объектом?
Удельная теплоемкость
Предположим, что несколько объектов, состоящих из разных материалов, нагреваются одинаково. Будут ли предметы нагреваться одинаково? Ответ: скорее всего, нет.Разные материалы будут нагреваться с разной скоростью, потому что каждый материал имеет свою удельную теплоемкость. Удельная теплоемкость относится к количеству тепла, необходимому для изменения температуры единицы массы (скажем, грамма или килограмма) на 1 ° C. В учебниках часто указывается удельная теплоемкость различных материалов. Стандартные метрические единицы — Джоуль / килограмм / Кельвин (Дж / кг / К). Чаще используются единицы измерения — Дж / г / ° C. Используйте виджет ниже, чтобы просмотреть удельную теплоемкость различных материалов.Просто введите название вещества (алюминий, железо, медь, вода, метанол, дерево и т. Д.) И нажмите кнопку «Отправить»; результаты будут отображаться в отдельном окне.
Удельная теплоемкость твердого алюминия (0,904 Дж / г / ° C) отличается от удельной теплоемкости твердого железа (0,449 Дж / г / ° C). Это означает, что для повышения температуры данной массы алюминия на 1 ° C потребуется больше тепла, чем для повышения температуры той же массы железа на 1 ° C.Фактически, для повышения температуры образца алюминия на заданное количество потребуется примерно вдвое больше тепла по сравнению с тем же изменением температуры того же количества железа. Это связано с тем, что удельная теплоемкость алюминия почти вдвое больше, чем у железа.
Теплоемкость указана из расчета на грамм или на килограмм . Иногда значение указывается на основе на моль , и в этом случае оно называется молярной теплоемкостью. Тот факт, что они перечислены на основе на количество , является показателем того, что количество тепла, необходимое для повышения температуры вещества, зависит от того, сколько в нем вещества.Эту истину, несомненно, знает всякий, кто варил на плите кастрюлю с водой. Вода закипает при температуре 100 ° C на уровне моря и при слегка пониженной температуре на возвышенностях. Чтобы довести кастрюлю с водой до кипения, ее сначала нужно поднять до 100 ° C. Это изменение температуры достигается за счет поглощения тепла горелкой печи. Быстро замечаешь, что для того, чтобы довести до кипения полную кастрюлю с водой, требуется значительно больше времени, чем для того, чтобы довести до кипения наполовину полную. Это связано с тем, что полная кастрюля с водой должна поглощать больше тепла, чтобы вызвать такое же изменение температуры.Фактически, требуется вдвое больше тепла, чтобы вызвать такое же изменение температуры в двойной массе воды.
Удельная теплоемкость также указана на основе на K или на ° C . Тот факт, что удельная теплоемкость указана из расчета на градус , указывает на то, что количество тепла, необходимое для повышения данной массы вещества до определенной температуры, зависит от изменения температуры, необходимого для достижения этой конечной температуры.Другими словами, важна не конечная температура, а общее изменение температуры. Для изменения температуры воды с 20 ° C до 100 ° C (изменение на 80 ° C) требуется больше тепла, чем для повышения температуры того же количества воды с 60 ° C до 100 ° C (изменение на 40 ° C). ° С). Фактически, для изменения температуры данной массы воды на 80 ° C требуется вдвое больше тепла по сравнению с изменением на 40 ° C. Человек, который хочет быстрее довести воду до кипения на плите, должен начать с теплой водопроводной воды вместо холодной.
Это обсуждение удельной теплоемкости заслуживает одного заключительного комментария. Термин «удельная теплоемкость» в некоторой степени похож на неправильное обозначение . Этот термин означает, что вещества могут обладать способностью удерживать вещь , называемую теплотой. Как уже говорилось ранее, тепло — это не то, что содержится в объекте. Тепло — это то, что передается к объекту или от него. Объекты содержат энергию в самых разных формах. Когда эта энергия передается другим объектам с другой температурой, мы называем переданную энергию теплом или тепловой энергией .Хотя это вряд ли приживется, более подходящим термином будет удельная энергоемкость.
Удельная теплоемкость позволяет математически связать количество тепловой энергии, полученной (или потерянной) образцом любого вещества, с массой образца и ее результирующим изменением температуры. Связь между этими четырьмя величинами часто выражается следующим уравнением.
Q = м • C • ΔT
где Q — количество тепла, переданного объекту или от него, m — масса объекта, C — удельная теплоемкость материала, из которого состоит объект, а ΔT — результирующее изменение температуры объекта. Как и во всех других ситуациях в науке, значение дельта (∆) для любой величины вычисляется путем вычитания начального значения количества из окончательного значения количества. В этом случае ΔT равно T final — T initial .При использовании приведенного выше уравнения значение Q может быть положительным или отрицательным. Как всегда, положительный и отрицательный результат расчета имеет физическое значение. Положительное значение Q указывает, что объект получил тепловую энергию из окружающей среды; это соответствовало бы повышению температуры и положительному значению ΔT. Отрицательное значение Q указывает на то, что объект выделяет тепловую энергию в окружающую среду; это соответствовало бы снижению температуры и отрицательному значению ΔT.
Знание любых трех из этих четырех величин позволяет человеку вычислить четвертое количество. Обычная задача на многих уроках физики включает решение проблем, связанных с отношениями между этими четырьмя величинами. В качестве примеров рассмотрим две проблемы ниже. Решение каждой проблемы разработано для вас. Дополнительную практику можно найти в разделе «Проверьте свое понимание» внизу страницы.
Пример задачи 1 |
Как и любая проблема в физике, решение начинается с определения известных величин и соотнесения их с символами, используемыми в соответствующем уравнении. В этой задаче мы знаем следующее:
м = 450 г
C = 4,18 Дж / г / ° C
Т начальная = 15 ° С
T окончательная = 85 ° C
Мы хотим определить значение Q — количество тепла.Для этого мы использовали бы уравнение Q = m • C • ΔT. Буквы m и C известны; ΔT можно определить по начальной и конечной температуре.
T = T окончательный — T начальный = 85 ° C — 15 ° C = 70 ° C
Зная три из четырех величин соответствующего уравнения, мы можем подставить и решить для Q.
Q = m • C • ΔT = (450 г) • (4,18 Дж / г / ° C) • (70 ° C)
Q = 131670 Дж
Q = 1.3×10 5 J = 130 кДж (округлено до двух значащих цифр)
Пример задачи 2 |
По сравнению с предыдущей проблемой это гораздо более сложная проблема. По сути, эта проблема похожа на две проблемы в одной. В основе стратегии решения проблем лежит признание того, что количество тепла, потерянного водой (Q water ), равно количеству тепла, полученного металлом (Q metal ). Поскольку значения m, C и ΔT воды известны, можно рассчитать Q water .Это значение воды Q равно значению металла Q . Как только значение металла Q известно, его можно использовать со значением m и ΔT металла для расчета металла Q . Использование этой стратегии приводит к следующему решению:
Часть 1: Определение потерь тепла водой
Дано:
м = 50,0 г
C = 4,18 Дж / г / ° C
Т начальная = 88,6 ° С
Т финал = 87.1 ° С
ΔT = -1,5 ° C (T окончательный — T начальный )
Решить для Q воды :
Q вода = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (-1,5 ° C)
Q вода = -313,5 Дж (без заземления)
(Знак — означает, что вода теряет тепло)
Часть 2: Определите стоимость металла C
Дано:
Q металл = 313.5 Дж (используйте знак +, так как металл нагревается)
m = 12,9 г
Т начальная = 26,5 ° С
T окончательная = 87,1 ° C
ΔT = (T конечный — T начальный )
Решить для металла C :
Переставьте Q металл = m металл • C металл • ΔT металл , чтобы получить металл C = Q металл / (m металл • ΔT металл )
C металл = Q металл / (м металл • ΔT металл ) = (313.5 Дж) / [(12,9 г) • (60,6 ° C)]
C металл = 0,40103 Дж / г / ° C
C металл = 0,40 Дж / г / ° C (округлено до двух значащих цифр)
Жара и изменения состояния
Приведенное выше обсуждение и соответствующее уравнение (Q = m • C • ∆T) связывает тепло, полученное или потерянное объектом, с результирующими изменениями температуры этого объекта. Как мы узнали, иногда тепло накапливается или теряется, но температура не меняется.Это тот случай, когда вещество претерпевает изменение состояния. Итак, теперь мы должны исследовать математику, связанную с изменениями состояния и количества тепла.
Чтобы начать обсуждение, давайте рассмотрим различные изменения состояния, которые можно наблюдать для образца вещества. В таблице ниже перечислены несколько изменений состояния и указаны имена, обычно связанные с каждым процессом.
Процесс | Изменение состояния |
Плавка | От твердого до жидкого |
Замораживание | От жидкости к твердому веществу |
Испарение | От жидкости к газу |
Конденсация | Газ — жидкость |
Сублимация | Твердое тело в газ |
Депонирование | Газ в твердое вещество |
В случае плавления, кипения и сублимации к образцу вещества должна быть добавлена энергия, чтобы вызвать изменение состояния.Такие изменения состояния называют эндотермическими. Замораживание, конденсация и осаждение экзотермичны; энергия высвобождается образцом материи, когда происходят эти изменения состояния. Таким образом, можно заметить, что образец льда (твердая вода) тает, когда его помещают на горелку или рядом с ней. Тепло передается от горелки к образцу льда; энергия приобретается льдом, вызывая изменение состояния. Но сколько энергии потребуется, чтобы вызвать такое изменение состояния? Есть ли математическая формула, которая могла бы помочь в определении ответа на этот вопрос? Безусловно, есть.
Количество энергии, необходимое для изменения состояния образца материи, зависит от трех вещей. Это зависит от того, что такое субстанция, от того, сколько субстанции претерпевает изменение состояния, и от того, какое изменение состояния происходит. Например, для плавления льда (твердая вода) требуется другое количество энергии, чем для плавления железа. И для таяния льда (твердая вода) требуется другое количество энергии, чем для испарения того же количества жидкой воды. И, наконец, для плавления 10 требуется другое количество энергии.0 граммов льда по сравнению с таянием 100,0 граммов льда. Вещество, процесс и количество вещества — это три переменные, которые влияют на количество энергии, необходимое для того, чтобы вызвать конкретное изменение состояния. Используйте виджет ниже, чтобы исследовать влияние вещества и процесса на изменение энергии. (Обратите внимание, что теплота плавления — это изменение энергии, связанное с изменением состояния твердое-жидкое.)
Значения удельной теплоты плавления и удельной теплоты парообразования указаны из расчета на количество .Например, удельная теплота плавления воды составляет 333 Дж / грамм. Чтобы растопить 1,0 грамм льда, требуется 333 Дж энергии. Чтобы растопить 10 граммов льда, требуется в 10 раз больше энергии — 3330 Дж. Такое рассуждение приводит к следующим формулам, связывающим количество тепла с массой вещества и теплотой плавления и испарения.
Для плавления и замораживания: Q = m • ΔH сварка
Для испарения и конденсации: Q = m • ΔH испарение
, где Q представляет количество энергии, полученной или высвобожденной во время процесса, m представляет собой массу образца, ΔH fusion представляет собой удельную теплоту плавления (на грамм) и ΔH испарения представляет собой удельную теплоту плавления. испарение (из расчета на грамм).Подобно обсуждению Q = m • C • ΔT, значения Q могут быть как положительными, так и отрицательными. Значения Q положительны для процесса плавления и испарения; это согласуется с тем фактом, что образец вещества должен набирать энергию, чтобы плавиться или испаряться. Значения Q отрицательны для процесса замораживания и конденсации; это согласуется с тем фактом, что образец вещества должен терять энергию, чтобы замерзнуть или конденсироваться.
В качестве иллюстрации того, как можно использовать эти уравнения, рассмотрим следующие два примера задач.
Пример задачи 3 |
Уравнение, связывающее массу (48,2 грамма), теплоту плавления (333 Дж / г) и количество энергии (Q): Q = m • ΔH fusion .Подстановка известных значений в уравнение приводит к ответу.
Q = м • ΔH сварка = (48,2 г) • (333 Дж / г)
Q = 16050,6 Дж
Q = 1,61 x 10 4 Дж = 16,1 кДж (округлено до трех значащих цифр)
Пример Задачи 3 включает в себя довольно простой расчет типа plug-and-chug. Теперь мы попробуем Пример задачи 4, который потребует более глубокого анализа.
Пример задачи 4 |
В этой задаче лед тает, а жидкая вода остывает. Энергия передается от жидкости к твердому телу. Чтобы растопить твердый лед, на каждый грамм льда необходимо передать 333 Дж энергии. Эта передача энергии от жидкой воды ко льду охлаждает жидкость.Но жидкость может охладиться только до 0 ° C — точки замерзания воды. При этой температуре жидкость начнет затвердевать (замерзнуть), а лед полностью не растает.
Мы знаем следующее о льду и жидкой воде:
Информация о льду:
м = 50,0 г
ΔH плавление = 333 Дж / г
Информация о жидкой воде:
С = 4.18 Дж / г / ° C
Т начальная = 26,5 ° С
T окончательная = 0,0 ° C
ΔT = -26,5 ° C (T окончательная — T начальная )
Энергия, полученная льдом, равна энергии, потерянной из воды.
Q лед = -Q жидкая вода
Знак — указывает, что один объект получает энергию, а другой объект теряет энергию. Мы можем вычислить левую часть приведенного выше уравнения следующим образом:
Q лед = m • ΔH fusion = (50.0 г) • (333 Дж / г)
Q лед = 16650 Дж
Теперь мы можем установить правую часть уравнения равной m • C • ΔT и начать подставлять известные значения C и ΔT, чтобы найти массу жидкой воды. Решение:
16650 Дж = -Q жидкая вода
16650 Дж = -м жидкая вода • C жидкая вода • ΔT жидкая вода
16650 Дж = -м жидкая вода • (4.18 Дж / г / ° C) • (-26,5 ° C)
16650 Дж = -м жидкая вода • (-110,77 Дж / ° C)
м жидкая вода = — (16650 Дж) / (- 110,77 Дж / ° C)
м жидкая вода = 150,311 г
м жидкая вода = 1,50×10 2 г (округлено до трех значащих цифр)
Еще раз о кривых нагрева и охлаждения
На предыдущей странице Урока 2 обсуждалась кривая нагрева воды.Кривая нагрева показывала, как температура воды увеличивалась с течением времени по мере нагрева образца воды в твердом состоянии (т. Е. Льда). Мы узнали, что добавление тепла к образцу воды может вызвать либо изменение температуры, либо изменение состояния. При температуре плавления воды добавление тепла вызывает преобразование воды из твердого состояния в жидкое состояние. А при температуре кипения воды добавление тепла вызывает преобразование воды из жидкого состояния в газообразное.Эти изменения состояния произошли без каких-либо изменений температуры. Однако добавление тепла к образцу воды, не имеющей температуры фазового перехода, приведет к изменению температуры.
Теперь мы можем подойти к теме кривых нагрева на более количественной основе. На диаграмме ниже представлена кривая нагрева воды. На нанесенных линиях есть пять помеченных участков.
Три диагональных участка представляют собой изменения температуры образца воды в твердом состоянии (участок 1), жидком состоянии (участок 3) и газообразном состоянии (участок 5).Две горизонтальные секции представляют изменения в состоянии воды. На участке 2 проба воды тает; твердое вещество превращается в жидкость. В секции 4 образец воды подвергается кипению; жидкость превращается в газ. Количество тепла, передаваемого воде в секциях 1, 3 и 5, связано с массой образца и изменением температуры по формуле Q = m • C • ΔT. А количество тепла, переданного воде в секциях 2 и 4, связано с массой образца и теплотой плавления и испарения по формулам Q = m • ΔH fusion (раздел 2) и Q = m • ΔH испарение (раздел 4).Итак, теперь мы попытаемся вычислить количество тепла, необходимое для перевода 50,0 граммов воды из твердого состояния при -20,0 ° C в газообразное состояние при 120,0 ° C. Для расчета потребуется пять шагов — по одному шагу для каждого раздела приведенного выше графика. Хотя удельная теплоемкость вещества зависит от температуры, в наших расчетах мы будем использовать следующие значения удельной теплоемкости:
Твердая вода: C = 2,00 Дж / г / ° C
Жидкая вода: C = 4,18 Дж / г / ° C
Газообразная вода: C = 2.01 Дж / г / ° C
Наконец, мы будем использовать ранее сообщенные значения ΔH fusion (333 Дж / г) и ΔH испарения (2,23 кДж / г).
Раздел 1 : Изменение температуры твердой воды (льда) с -20,0 ° C до 0,0 ° C.
Используйте Q 1 = m • C • ΔT
, где m = 50,0 г, C = 2,00 Дж / г / ° C, T начальная = -200 ° C и T конечная = 0,0 ° C
Q 1 = m • C • ΔT = (50.0 г) • (2,00 Дж / г / ° C) • (0,0 ° C — -20,0 ° C)
Q 1 = 2,00 x10 3 Дж = 2,00 кДж
Раздел 2 : Таяние льда при 0,0 ° C.
Используйте Q 2 = m • ΔH сварка
, где m = 50,0 г и ΔH плавление = 333 Дж / г
Q 2 = м • ΔH плавление = (50,0 г) • (333 Дж / г)
Q 2 = 1,665 x10 4 Дж = 16.65 кДж
Q 2 = 16,7 кДж (округлено до 3 значащих цифр)
Раздел 3 : Изменение температуры жидкой воды с 0,0 ° C на 100,0 ° C.
Используйте Q 3 = m • C • ΔT
, где m = 50,0 г, C = 4,18 Дж / г / ° C, T начальная = 0,0 ° C и T конечная = 100,0 ° C
Q 3 = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (100,0 ° C — 0,0 ° C)
Q 3 = 2.09 x10 4 Дж = 20,9 кДж
Раздел 4 : Кипячение воды при 100,0 ° C.
Использовать Q 4 = m • ΔH испарение
, где m = 50,0 г и ΔH испарение = 2,23 кДж / г
Q 4 = m • ΔH испарение = (50,0 г) • (2,23 кДж / г)
Q 4 = 111,5 кДж
Q 4 = 112 кДж (округлено до 3 значащих цифр)
Раздел 5 : Изменение температуры жидкой воды со 100.От 0 ° C до 120,0 ° C.
Используйте Q 5 = m • C • ΔT
, где m = 50,0 г, C = 2,01 Дж / г / ° C, T начальная = 100,0 ° C и T конечная = 120,0 ° C
Q 5 = m • C • ΔT = (50,0 г) • (2,01 Дж / г / ° C) • (120,0 ° C — 100,0 ° C)
Q 5 = 2,01 x10 3 J = 2,01 кДж
Общее количество тепла, необходимое для превращения твердой воды (льда) при -20 ° C в газообразную воду при 120 ° C, является суммой значений Q для каждого участка графика.То есть
Q итого = Q 1 + Q 2 + Q 3 + Q 4 + Q 5
Суммирование этих пяти значений Q и округление до нужного количества значащих цифр приводит к значению 154 кДж в качестве ответа на исходный вопрос.
В приведенном выше примере есть несколько особенностей решения, над которыми стоит задуматься:
- Первое: длинная задача была разделена на части, каждая из которых представляет собой одну из пяти частей графика.Поскольку было вычислено пять значений Q, они были обозначены как Q 1 , Q 2 и т. Д. Этот уровень организации требуется в многоступенчатой задаче, такой как эта.
- Секунда: Внимание было уделено знаку +/- на ΔT. Изменение температуры (или любой величины) всегда рассчитывается как конечное значение величины за вычетом начального значения этой величины.
- Третий: На протяжении всей задачи внимание уделялось подразделениям.Единицы Q будут либо в Джоулях, либо в килоджоулях, в зависимости от того, какие количества умножаются. Отсутствие внимания к устройствам — частая причина сбоев в подобных проблемах.
- Четвертый: На протяжении всей задачи внимание уделялось значащим цифрам. Хотя это никогда не должно становиться основным акцентом какой-либо проблемы в физике, это, безусловно, деталь, на которую стоит обратить внимание.
Здесь, на этой странице, мы узнали, как рассчитать количество тепла, задействованного в любом процессе нагрева / охлаждения и в любом процессе изменения состояния.Это понимание будет иметь решающее значение, когда мы перейдем к следующей странице Урока 2, посвященной калориметрии. Калориметрия — это наука, связанная с определением изменений энергии системы путем измерения теплообмена с окружающей средой.
Проверьте свое понимание
1. Вода имеет необычно высокую удельную теплоемкость. Какое из следующих утверждений логически следует из этого факта?
а.По сравнению с другими веществами горячая вода вызывает сильные ожоги, потому что хорошо проводит тепло.
б. По сравнению с другими веществами вода при нагревании быстро нагревается до высоких температур.
c. По сравнению с другими веществами, образец воды требует значительного количества тепла, чтобы изменить ее температуру на небольшое количество.
2. Объясните, почему в больших водоемах, таких как озеро Мичиган, в начале июля может быть довольно прохладно, несмотря на то, что температура наружного воздуха около или выше 90 ° F (32 ° C).
3. В таблице ниже описан термический процесс для различных объектов (выделен красным жирным шрифтом). Для каждого описания укажите, набирается или теряется тепло объектом, является ли процесс эндотермическим или экзотермическим, и является ли Q для указанного объекта положительным или отрицательным значением.
Процесс | Получено или потеряно тепло? | Эндо- или экзотермический? | Вопрос: + или -? | |
а. | Кубик льда помещают в стакан с лимонадом комнатной температуры, чтобы охладить напиток. | |||
г. | Холодный стакан лимонада стоит на столе для пикника под жарким полуденным солнцем и нагревается до 32 ° F. | |||
г. | Конфорки на электроплите выключаются и постепенно остывают до комнатной температуры. | |||
г. | Учитель вынимает из термоса большой кусок сухого льда и опускает его в воду. Сухой лед возгоняется, образуя газообразный диоксид углерода. | |||
e. | Водяной пар в увлажненном воздухе ударяется о окно и превращается в каплю росы (каплю жидкой воды). |
4. Образец металлического цинка массой 11,98 грамма помещают в баню с горячей водой и нагревают до 78,4 ° C. Затем его удаляют и помещают в чашку из пенополистирола, содержащую 50,0 мл воды комнатной температуры (T = 27,0 ° C; плотность = 1,00 г / мл). Вода прогревается до температуры 28.1 ° С. Определите удельную теплоемкость цинка.
5. Джейк достает из туалета банку с газировкой и выливает ее в чашку со льдом. Определите количество тепла, теряемого содой комнатной температуры при плавлении 61,9 г льда (ΔH fusion = 333 Дж / г).
6. Теплота сублимации (ΔH сублимация ) сухого льда (твердый диоксид углерода) составляет 570 Дж / г. Определите количество тепла, необходимое для превращения 5,0-фунтового мешка сухого льда в газообразный диоксид углерода.(Дано: 1,00 кг = 2,20 фунта)
7. Определите количество тепла, необходимое для повышения температуры 3,82-граммового образца твердого пара-дихлорбензола с 24 ° C до жидкого состояния при 75 ° C. Пара-дихлорбензол имеет температуру плавления 54 ° C, теплоту плавления 124 Дж / г и удельную теплоемкость 1,01 Дж / г / ° C (твердое состояние) и 1,19 Дж / г / ° C (жидкое состояние).
Энергия, необходимая для нагрева воды
Количество энергии, необходимое для нагрева воды, пропорционально разнице температур чего?
Q = m⋅Cp⋅ΔTГде…
м = масса нагретой воды
Cp = теплоемкость воды (1 БТЕ / фунт ºF)
ΔT = разница температур.
Не забудьте согласовать единицы измерения. Поскольку C p измеряется в фунтах, масса нагретой воды также должна измеряться в фунтах. Таким образом, если вы знаете только количество галлонов, вы должны преобразовать его в фунты. Один галлон воды = около 8,3 фунта, поэтому умножьте количество галлонов на 8,3, чтобы определить вес в фунтах.Пример 1
По оценкам Министерства энергетики США, семья из четырех человек, принимающая душ в течение 10 минут в день, потребляет около 700 галлонов горячей воды в неделю.Вода для душа поступает в дом при температуре 55ºF и ее необходимо нагреть до 120ºF.
Чтобы рассчитать необходимое количество тепла, определите переменные:
м = масса нагретой воды = 700 галлонов = 5810 фунтов
C p — теплоемкость воды = 1 БТЕ / фунт ºF (дано)
ΔT = разность температур = 120 ºF — 55 ºF
Тепловая энергия, необходимая для нагрева 700 галлонов, может быть рассчитана следующим образом:
Требуемое количество тепла = 5810 фунтов x 1 БТЕ / фунт ºF x (120 ºF — 55 ºF)
Требуемое количество тепла = 5810 фунтов x 65 ºF
Требуемое количество тепла = 377 650 БТЕ / неделя
Потребность в тепле на один год:
377650 БТЕ / неделя x 52 недели / год = 19 637 800 БТЕ / год или 5755 кВт · ч
Предполагается, что стоимость природного газа составляет 10 долларов США за MMBTU (1 MMBTU = 1000000 BTU), а стоимость электроэнергии равна 0.092 за кВтч, затраты на газ составят 196,37 долларов, а затраты на электроэнергию — 529,46 долларов. Понятно, что электрическое тепло дороже природного газа.
Пример 2
Оцените% экономии энергии электрического водонагревателя, который нагревает 100 галлонов воды в день, когда температура устанавливается на 110 ° вместо 120 ° F. Подвал отапливается и имеет температуру 65 ° F. Срок службы водонагревателя — около 10 лет. Используйте соответствующую стоимость электроэнергии и сравните эксплуатационные расходы.
Требуемое количество тепла (БТЕ) = m x C p x (разница температур)
Где C p — теплоемкость воды (1 БТЕ / фунт / фут), а m — масса воды (предположим, что 1 галлон содержит 8,3 фунта воды, а 3,412 БТЕ = 1 кВт · ч)
Решение:
Энергия, необходимая для нагрева воды до 120 ° F :
= м × Cp × ΔT
= 100 галдаев × 8,3 фунт-галл︸м × 1 БТЕЛб ° F︸Cp × (120-65) ° F︸ΔT
= 100 галдей × 8,3 фунта × 1 БТЕ фунт ° F × (120-65) ° F
= 45 650 БТЕ / день
В год необходимое количество энергии:
45 650 БТЕ в день × 365 дней в году = 16 662 250 БТЕ в год
За 10-летний период необходимая энергия составляет 166 622 500 БТЕ, что равно 48 834 кВтч.
166 622 500 БТЕ × 1 кВт · ч 4412 БТЕ = 48 834 кВт · ч
Эксплуатационные расходы в течение срока службы:
48834 кВтч2 × 0,09 USD кВтч = 4395,06 USD
Энергия, необходимая для нагрева воды до 110 ° F :
= м × Cp × ΔT
= 100 галдей × 8,3 фунт-галл︸м × 1 БТЕЛб ° F︸Cp × (110-65) ° F︸ΔT
= 100 галдей × 8,3 фунта × 1 БТЕ / фунт ° F × (110-65) ° F
= 37 350 БТЕ / день
В год необходимое количество энергии:
37350 БТЕ в день × 365 дней в году = 13 632 750 БТЕ в год
За 10-летний период необходимая энергия составит 136 327 500 БТЕ, что равно 39 995 кВтч.
136,327,500 БТЕ × 1 кВтч 4412 БТЕ = 39,995 кВтч
Эксплуатационные расходы в течение всего срока службы:
39 955 кВтч2 × 0,09 доллара США за кВтч = 3595,95 доллара США
Расчетная экономия энергии,% :
4395,06 долл. США — 3595,95 долл. США = экономия 799,11 долл. США
799,11 $ 4395,06 $ = 18,2% экономии
.