Как рассчитать объем помещения для отопления: Расчет отопления по объему помещения калькулятор
Расчет отопления по площади помещения
При замене батарей или переходе на индивидуальное отопление в квартире встает вопрос о том, как рассчитать количество радиаторов отопления и число секций приборов. Если мощность батарей окажется недостаточной, в холодное время года в квартире будет прохладно. Избыточное количество секций не только ведет к ненужным переплатам – при системе отопления с однотрубной разводкой жильцы нижних этажей останутся без тепла. Рассчитать оптимальную мощность и количество радиаторов можно, опираясь на площадь или объем комнаты, учитывая при этом особенности помещения и специфику разных видов батарей.
Расчет по площади
Наиболее распространенной и простой методикой является способ расчета мощности приборов, требуемой для обогрева, по площади обогреваемого помещения. Согласно усредненной норме, на отопление 1 кв. метр площади требуется 100 Вт тепловой мощности. В качестве примера рассмотрим комнату, имеющую площадь 15 кв. метров. Согласно данному методу, для ее обогрева потребуется 1500 Вт тепловой энергии.
При использовании данной методики нужно учесть несколько важных моментов:
- норма в 100 Вт на 1 кв. метр площади относится к средней климатической полосе, в южных регионах для обогрева 1 кв. метра помещения требуется меньшая мощность – от 60 до 90 Вт;
- для областей с суровым климатом и очень холодной зимой на обогрев 1 кв. метра требуется от 150 до 200 Вт;
- метод подходит для помещений со стандартной высотой потолков, не превышающей 3 метра;
- способ не учитывает потери тепла, которые будут зависеть от расположения квартиры, количества окон, качества утепления, материала стен.
Методика расчета по объему помещения
Способ расчетов с учетом объема потолка будет более точным: он учитывает высоту потолков в квартире и материал, из которого сделаны наружные стены. Последовательность вычислений будет следующей:
- Определяется объем помещения, для этого площадь комнаты умножается на высоту потолка. Для комнаты площадью 15 кв. м. и высотой потолка 2,7 м он будет равен 40,5 кубометрам.
- В зависимости от материала стен на обогрев одного кубометра воздуха тратится разное количество энергии. По нормам СНиП для квартиры в кирпичном доме этот показатель равен 34 Вт, для панельного дома – 41 Вт. Значит, полученный объем нужно умножить на 34 или на 41 Вт. Тогда для кирпичного здания на обогрев комнаты в 15 квадратов потребуется 1377 Вт (40,5*34), для панельного – 1660, 5 Вт (40,5*41).
Корректировка результатов
Любой из выбранных способов покажет лишь приблизительный результат, если не будут учитываться все факторы, влияющие на уменьшение или увеличение теплопотерь. Для точного расчета необходимо полученное значение мощности радиаторов умножить на приведенные ниже коэффициенты, среди которых нужно выбрать подходящие.
Окна
В зависимости от размеров окон и качества утепления через них помещение может терять 15–35% тепла. Значит, для вычислений мы будем использовать два связанных с окнами коэффициента.
Соотношение площади окон и пола в комнате:
- 10% – коэффициент 0,8;
- 20% – 0,9;
- 30% – 1,0;
- 40% – 1,1;
- 50% – 1,2.
Вид остекления:
- для окна с трехкамерным стеклопакетом или двухкамерным с аргоном – 0,85;
- для окна с обычным двухкамерным стеклопакетом – 1,0;
- для рам с обычным двойным остеклением – 1,27.
Стены и потолок
Потери тепла зависят от количества наружных стен, качества теплоизоляции и от того, какое помещение расположено над квартирой. Для учета этих факторов будет использоваться еще 3 коэффициента.
Число наружных стен:
- нет наружных стен, потери тепла отсутствуют – коэффициент 1,0;
- одна наружная стена – 1,1;
- две – 1,2;
- три – 1,3.
Коэффициент теплоизоляции:
- нормальная теплоизоляция (стена толщиной в 2 кирпича или слой утеплителя) – 1,0;
- высокая степень теплоизоляции – 0,8;
- низкая – 1,27.
Учет типа вышерасположенного помещения:
- отапливаемая квартира – 0,8;
- отапливаемый чердак – 0,9;
- холодный чердак – 1,0.
Высота потолков
Если вы пользовались способом расчета по площади для комнаты с нестандартной высотой стен, то для уточнения результата придется ее учесть. Коэффициент можно узнать следующим образом: имеющуюся высоту потолка разделить на стандартную высоту, которая равна 2,7 метра. Таким образом мы получим следующие цифры:
- 2,5 метра – коэффициент 0,9;
- 3,0 метра – 1,1;
- 3,5 метра – 1,3;
- 4,0 метра – 1,5;
- 4,5 метра – 1,7.
Климатические условия
Последний коэффициент учитывает температуру воздуха на улице в зимнее время. Отталкиваться будем от средней температуры в наиболее холодную неделю года.
- -10 °C – 0,7;
- -15 °C – 0,9;
- -20 °C – 1,1;
- -25 °C – 1,3;
- -35 °C – 1,5.
Расчет количества секций радиаторов
После того как нам стала известна мощность, требуемая для обогрева помещения, мы можем произвести расчет батарей отопления.
Для того чтобы рассчитать количество секций радиатора, нужно поделить рассчитанную общую мощность на мощность одной секции прибора. Для проведения вычислений можно пользоваться среднестатистическими показателями для разных типов радиаторов со стандартным осевым расстоянием, равным 50 см:
- для чугунных батарей примерная мощность одной секции составляет 160 Вт;
- для биметаллических – 180 Вт;
- для алюминиевых – 200 Вт.
Справка: осевое расстояние радиатора – это высота между центрами отверстий, через которые подается и отводится теплоноситель.
Для примера определим требуемое число секций биметаллического радиатора для комнаты площадью 15 кв. м. Предположим, что вы считали мощность простейшим способом по площади помещения. Делим требуемые для ее обогрева 1500 Вт мощности на 180 Вт. Полученное число 8,3 округляем – необходимое число секций биметаллического радиатора равно 8.
Важно! Если вы решили выбрать батареи нестандартного размера, узнайте мощность одной секции из паспорта прибора.
Зависимость от температурного режима системы отопления
Мощность радиаторов указывается для системы с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в среднетемпературном или низкотемпературном тепловом режиме, для подбора батарей с нужным количеством секций придется произвести дополнительные расчеты.
Для начала определим тепловой напор системы, который представляет собой разницу между средней температурой воздуха и батарей. За температуру приборов отопления берется среднее арифметическое от значений температуры подачи и отвода теплоносителя.
- Высокотемпературный режим: 90/70/20 (температура подачи — 90 °C, обратки —70 °C, за среднюю температуру в помещении принимается значение 20 °C). Тепловой напор рассчитаем так: (90 + 70) / 2 – 20 = 60 °С;
- Среднетемпературный: 75/65/20, тепловой напор – 50 °С.
- Низкотемпературный: 55/45/20, тепловой напор – 30 °С.
Чтобы узнать, сколько секций батареи вам понадобится для систем с тепловым напором 50 и 30, нужно умножить общую мощность на паспортный напор радиатора, а затем разделить на имеющийся тепловой напор. Для комнаты 15 кв.м. потребуется 15 секций алюминиевых радиаторов, 17 – биметаллических и 19 – чугунных батарей.
Для отопительной системы с низкотемпературным режимом вам потребуется в 2 раза больше секций.
Содержание:
1. Простые вычисления по площади
2. Рассмотрим метод вычислений для комнат с высокими потолками
3. Дополнительные параметры, которые нужно учесть
4. Специфика и другие особенности
5. Климатические зоны тоже важны
6. Выводы
Если у вас возникла необходимость замены старых, вышедших из строя радиаторов, или же вы собираетесь произвести установку новой системы в строящемся доме, следует знать, как произвести расчет отопления по площади помещения.
Чтобы работа системы была эффективной, следует точно определить количество секций устанавливаемых радиаторов, чтобы теплоотдача и прогревание были оптимальными.
Если секций будет недостаточно, то комната никогда не прогреется должным образом, а большое их количество приведет к неэкономному и чрезмерному расходованию тепла, и соответственно пагубно скажется на ваших финансах и бютжете. Потребности помещений стандартного типа и планировки можно определить с помощью довольно простых расчетов, а чтобы добиться большей точности, необходимо обязательно учитывать и некоторые дополнительные параметры и особенности.
Простые вычисления по площади
Вычислить величину батарей отопления для определенного помещения можно, ориентируясь на его площадь. Это самый простой способ – использовать сантехнические нормы, которые предписывают, что тепловой мощности 100 Вт в час нужно для обогрева 1 кв.м. Надо помнить, что этот метод используется для помещений, у которых потолки стандартной высоты (2,5-2,7 метра), а результат получается несколько завышенным.
К тому же он не учитывает таких особенностей, как:
- число окон и тип стеклопакетов на них;
- количество в комнате наружных стен;
- толщина стен здания и из какого материала они состоят;
- тип и толщина использованного утеплителя;
- диапазон температур в данной климатической зоне.
Тепло, которое для обогрева комнаты должны давать радиаторы: площадь следует умножить на тепловую мощность (100 Вт). К примеру, для комнаты в 18 кв.м требуется такая мощность батареи отопления:
18 кв.м х 100 Вт = 1800 Вт
То есть, в час для обогрева 18-ти квадратных метров необходимо 1,8 кВт мощности. Этот результат надо поделить на количество тепла, которое в час выделяет секция отопительного радиатора. Если данные в его паспорте указывают, что это составляет 170 Вт, то следующий этап вычислений выглядит так:
1800 Вт / 170 Вт = 10,59
Это число надо округлить до целого (обычно округляется в большую сторону) – получится 11. То есть, чтобы в комнате температура в отопительный сезон была оптимальной, необходимо установить радиатор отопления с 11-ю секциями.
Такой метод подходит только для вычисления величины батареи в помещениях с центральным отоплением, где температура теплоносителя не выше 70 градусов Цельсия.
Есть и более простой способ, который можно применять для обычных условий квартир панельных домов. В этом приблизительном расчете учитывается, что для обогрева 1,8 кв.м площади нужна одна секция. Другими словами, площадь помещения надо разделить на 1,8. Например, при площади 25 кв.м необходимо 14 частей:
25 кв.м / 1,8 кв.м = 13,89
Но такой метод расчета неприемлем для радиатора пониженной или повышенной мощности (когда средняя отдача одной секции варьируется в пределах от 120 до 200 Вт).
Рассмотрим метод вычислений для комнат с высокими потолками
Однако расчет отопления по площади не позволяет верно определить количество секций для комнат с потолками выше 3 метров. В этом случае надо применять формулу, учитывающую объем помещения. Для обогрева каждого кубического метра объема по рекомендациям СНИП необходим 41 Вт тепла. Так, для комнаты с потолками высотой 3 м и площадью 24 кв.м, расчет будет следующим:
24 кв.м х 3 м = 72 куб.м (объем комнаты).
72 куб.м х 41 Вт = 2952 Вт (мощность батареи для обогрева помещения).
Теперь следует узнать количество секций. В случае, если в документации радиатора указано, что теплоотдача одной его части в час составляет 180 Вт, надо разделить на это число найденную мощность батареи:
2952 Вт / 180 Вт = 16,4
Это число округляется до целого – получается, 17 секций, чтобы обогреть комнату объемом 72 куб.м.
Путём не сложных вычислений можно с лёгкостью определить нужные вам данные.
Дополнительные параметры, которые нужно учесть
Произведя примерный расчет количества секций радиаторов отопления для своей квартиры, не забудьте его откорректировать, приняв во внимание особенности помещения. Их нужно учитывать следующим образом:
- для угловой комнаты (две стены выходят на улицу) с одним окном мощность радиатора надо увеличить на 20%, а при двух окнах – на 30%;
- если радиатор монтируется в нише под окном, его теплоотдача снизится, это компенсируется увеличением мощности на 5%;
- на 10% следует увеличить, если окна выходят на северную либо северо-восточную сторону;
- экран, для красоты закрывающий радиаторы, «крадет» 15% их теплоотдачи, которые также надо учесть при расчете.
В самом начале следует рассчитать общее значение необходимой для помещения тепловой мощности, учитывая все наличествующие параметры и факторы. И лишь затем разделить это значение на количество тепла, которое выделяет в час одна секция. Результат при дробном значении, как правило, округляется до целого в большую сторону.
Специфика и другие особенности
Также возможна и другая специфика у помещений, для которых делается расчет, не все же они похожи и совершенно одинаковы. Это могут быть такие показатели как:
- температура теплоносителя меньше 70 градусов – число частей соответственно предстоит увеличить;
- отсутствие двери в проеме между двумя помещениями. Тогда требуется подсчитать общую площадь обоих помещений, чтобы вычислить количество радиаторов для оптимального обогрева;
- установленные на окнах стеклопакеты препятствуют потере тепла, следовательно, можно монтировать меньше секций батареи.
При замене старых чугунных батарей, которые обеспечивали нормальную температуру в комнате, на новые алюминиевые или биметаллические, калькуляция весьма проста. Умножитьте теплоотдачу одной чугунной секции (в среднем 150 Вт). Результат разделите на количество тепла одной новой части.
Климатические зоны тоже важны
Не для кого ни секрет, что в разных климатических зонах имеется разная потребность в обогреве, поэтому при проектировании проекта необходимо учитывать и эти показатели.
Климатические зоны также имеют свои коэффициенты:
- средняя полоса России имеет коэффициент 1,00, поэтому он не используется;
- северные и восточные регионы: 1,6;
- южные полосы: 0,7-0,9 (учитываются минимальные и среднегодовые температуры в регионе).
Данный коэффициент необходимо умножить на общую тепловую мощность, а полученный результат разделить на теплоотдачу одной части.
Выводы
Таким образом, расчет отопления по площади особых трудностей не представляет. Достаточно немного посидеть, разобраться и спокойно посчитать. С его помощью каждый владелец квартиры или дома может легко определить величину радиатора, который следует установить в комнате, кухне, ванной или в любом другом месте.
Если вы сомневаетесь в своих силах и знаниях – доверьте монтаж системы профессионалам. Лучше заплатить один раз профессионалам, чем сделать неправильно, демонтировать и повторно приступить к работе. Или же не сделать ничего вообще.
В продолжение темы: качественные межкомнатные двери www.dveri-tmk.ru помогут сохранить тепло в вашем доме или квартире. И упростить расчёты по площади отопления.
Содержание:
Чтобы работа отопительной системы в жилых или производственных помещениях, магазинах и офисах отличалась стабильностью, надежностью и бесшумностью, необходимо грамотно выполнить расчет количества тепла на отопление. Кроме того это поможет сократить энергозатраты и соответствующую статью расходов.
Последовательность выполнения расчетов
Расчет отопления по объему помещения выполняется в следующем порядке:
- Определение утечек тепла строения. Это нужно для определения мощности котла и установленных батарей. Тепловые потери следует рассчитывать для каждой комнаты, имеющей хотя бы одну внешнюю стену. Для проверки расчета нужно выполнить следующее: полученное значение разделить на площадь помещения. В результате должно получиться число, равное 50-150 Вт/м2. Это стандартные значения, к которым следует стремиться при расчетах. Большое отклонение от этих параметров приведет к увеличению стоимости всей отопительной системы.
- Выбор температурного режима. Европейские нормы отопления EN 442 устанавливают следующий режим температур: 750С в котле, 650С в батареях или радиаторах, 200С в помещении. Поэтому во избежание неприятных ситуаций необходимо принимать именно эти параметры.
- Расчет мощности батарей или радиаторов. Здесь за основу берутся данные по потерям тепла в отдельном помещении.
- Гидравлические расчеты. Это необходимо для создания эффективного отопления. Согласно гидравлическим расчетам определяется диаметр труб и параметры циркуляционного насоса.
- Следующим этапом расчета тепла на отопление является выбор типа котла. Он может быть промышленным или бытовым в зависимости от назначения отапливаемого помещения.
- Вычисление объема системы отопления . Это необходимо для определения объема расширительного бака или встроенного водяного бачка.
Тепловые расчеты
При составлении проекта отопительной системы большое значение имеет теплотехнический этап, для осуществления которого потребуются исходные данные, включая вопрос, как рассчитать объем помещения для отопления.
Начало работы
Во-первых, перед тем как посчитать расход тепла на отопление здания следует изучить проектную документацию, где имеются данные обо всех размерах каждого отдельного помещения, размеры окон и дверей.
Во-вторых, необходимо получить сведения о расположении дома относительно сторон света и климате местности.
В-третьих, нужно собрать данные о высоте стен и свойствах материала, который использовался для их изготовления.
В-четвертых, следует изучить параметры материалов пола и потолочного перекрытия.
После обработки всей информации можно начинать расчеты нагрузки отопления по площади. Кроме того, полученная информация пригодится при выполнении гидравлических расчетов. Выполняя расчет тепловой нагрузки на отопление здания, необходимо учитывать важные факторы.
Расчет отопления и нагрузки на отопление дома рассчитывают для того, чтобы узнать, какое количество тепла теряется в процессе эксплуатации дома, и определить основные параметры котла. В частности мощность агрегата отопления определяется по формуле:
Мк = Тп*1,2.
Здесь Мк – это мощность котла, Тп – количество уходящего тепла, а 1,2 — коэффициент запаса, в большинстве случаев — это 20%.
Коэффициент запаса необходим для компенсации непредвиденных потерь тепла, таких как плохая теплоизоляция окон и дверей, снижение температуры или давления в системе газоснабжения.
При выполнении расчета отопления производственного помещения по его объему следует понимать, что тепловые потери распределяются по зданию неравномерно. Удельная тепловая характеристика на отопление — важный параметр, который необходимо заранее учитывать при расчетах.
Средние значения каждого элемента строения следующие:
- На внешние стены приходится около 40% общих тепловых потерь.
- Через оконные проемы теряется до 20% тепла.
- Пол и потолочные перекрытия проводят до 10% тепла.
- Вентиляция и дверные проемы способствуют 20% теплопотерь.
Для определения количества теплопотерь применяется формула:
Тп = УДтп*Пл*К1*К2*К3*К4*К5*К6*К7.
Здесь каждый показатель определяется индивидуально.
УДтп – это удельное значение тепловых потерь, которое в большинстве случаев равно 100 Вт/м2.
Пл – это площадь помещения.
К1 – коэффициент, значение которого зависит от вида окон. При установленных традиционных окнах коэффициент равен 1,27. Для двухкамерных стеклопакетов в расчет берется значение 1, для трехкамерных аналогов – 0,85.
К2 – степень теплоизоляции стен. Следует принимать во внимание толщину и коэффициент теплопроводности материалов, из которых изготовлены стены, пол и потолок. Для блочных или панельных домов из бетона используется значение от 1,25 до 1,5. Для строений из бруса или бревен – 1,25. Для пенобетонных блоков берут коэффициент 1. Для кладки в 1,5 кирпича – 1,5, в 2,5 кирпича – 1,1.
К3 – соотношение площадей окон и пола. Это значение считается очень важным при расчете расхода тепла на отопление: чем больше объем окон относительно площади пола, тем больше теплопотери. Если отношение площадей окон и пола составляет 10-20%, то следует использовать для расчетов коэффициент 0,8-1. Для отношения 21-30% берут значение 1,1-1,2. При отношении площадей от 31 до 50% коэффициент равен 1,3-1,5.
К4 – минимальное температурное значение с внешней стороны дома. Всем понятно, что с понижением температуры воздуха снаружи строения теплопотери увеличиваются. Для температуры до -100С следует брать коэффициент 0,7, а при температуре от -10 до -15 градусов используется значение 0,8-0,9. При морозе до -250С берется коэффициент 1-1,1. Если снаружи очень холодно, до -35 градусов, то при расчете используют значение 1,2-1,3.
К5 – количество внешних стен строения. Этот фактор оказывает существенное влияние на количество уходящего тепла. Если внешняя стена одна, то коэффициент равен 1, если стены две, то берется значение 1,2. Для трех внешних стен применяют значение 1,22, а для четырех – 1,33.
К6 – количество этажей здания. Этажность здания также имеет значение при расчетах тепловых потерь. Если здание имеет более двух этажей, то расчеты ведутся с учетом коэффициента 0,82. При наличии теплого чердака следует применять коэффициент 0,91, если чердачное помещение не утеплено, то цифру меняют на 1.
К7 – высота помещения. От высоты стен коэффициент зависит следующим образом: для 2,5 метров -1, для 3 метров – 1,05, для 3,5 метров – 1,1, для 4 метров – 1,15, для 4,5 метров – 1,2.
Чтобы понять применение коэффициентов, можно выполнить примерные расчеты для определенного строения с конкретными параметрами:
- Остекление выполнено тройными стеклопакетами, К1 равен 0,85.
- Дом из бруса, следовательно, К2 равен 1,25.
- Площадь оконных проемов и пола находятся в соотношении 30%, то есть К3 = 1,2.
- Самая низкая температура с внешней стороны дома – около -25 градусов, К4 = 1,1.
- Дом имеет три внешние стороны, К5 = 1,22.
- Строение одноэтажное с утепленным чердачным помещением, К6 равен 0,91
- Высота стен составляет 3 метра, К7 = 1,05.
- Площадь дома 100 м2.
Подставляя данные в формулу, получаем следующее:
Тп = 100*100*0,85*1,25*1,2*1,1*1,22*0,91*1,05 = 16349,0828.
Следовательно, тепловые потери составят примерно 16,5 КВт. Известное значение теплопотерь позволяет выполнить расчет мощности котла по приведенной формуле:
Мк = 17,5*1,2=21 КВт.
Гидравлические расчеты для системы отопления
Расчеты такого типа помогают правильно подобрать трубы для системы отопления, в частности определить их длину и сечение. Также от этого зависит эффективность работы системы, так как можно легко рассчитать основные параметры насосного оборудования.
Гидравлические расчеты необходимы для определения следующих параметров:
Расход воды в отопительной системе. Для этого применяют формулу:
М = Q/Cp*DPt,
где Q – общая мощность отопительной системы, Ср – удельная теплоемкость воды, которая в большинстве случаев равна 4,19 КДж, DPt – разница между температурами на входе в котел и на выходе из него.
Чтобы определить расход воды на одном из участков трубопровода, можно воспользоваться аналогичным способом. При этом следует выбирать участки с одинаковой скоростью теплоносителя. Затем определяют общую мощность всех приборов отопления и подставляют в формулу. Важно выполнить расчет всех участков между радиаторами. Немаловажна и формула расчета тепловой энергии, которую тоже стоит использовать.
Известная величина расхода теплоносителя в системе позволяет определить его скорость. Для этого используется такая формула:
V = M/P*F.
Здесь М – расход теплоносителя на определенном участке, Р – показатель его плотности, F – площадь поперечного сечения трубы. Для определения последнего параметра применяется формула: 3,14r/2, где буквой r обозначен внутренний диметр трубы.
Потери напора теплоносителя при трении в трубе. Вычислить этот параметр можно по формуле:
DPptp = R*L.
Здесь буквой R обозначены удельные потери при трении, L – длина участка трубы.
Кроме этого следует выполнить расчет снижения напора в местах, где теплоноситель встречает препятствие, в частности речь идет о различной запорной арматуре и фитингах. Для расчета также существует определенная формула, в которой необходимо перемножить плотность воды, ее скорость и общую сумму коэффициентов сопротивлений на определенном участке.
Выполнив сложение значений на каждом участке между приборами отопления, важно сравнить полученный результат с контрольными параметрами. Для эффективной работы циркуляционного насоса утеря напора на длинных участках трубопровода не должна быть больше 20 КПа, а скорость перемещения воды должна составлять не более 1,5 метров в секунду. При повышенных значениях теплоноситель будет двигаться очень шумно. Кроме того согласно Санитарным Нормам указанная скорость теплоносителя предотвращает появление воздуха в системе.
Определение параметров труб
Сечение трубы и материал, из которого они изготовлены, также имеют значение при расчете тепла для обогрева помещения. Они зависят от суммарной мощности радиаторов:
- Если мощность не превышает 4,5 КВт, то можно для системы отопления использовать металлопластиковые трубы диаметром 16 мм.
- Аналогичные трубы диаметром 20 мм могут применяться в системах, мощность которых лежит в пределах 5-8 КВт.
- Металлопластик диаметром 32 мм подходит для отопления, мощность радиаторов которого составляет 13-21 КВт.
- Трубы из полипропилена диаметром 25 мм будут безупречно справляться со своими функциями, если мощность батарей составляет от 6 до 11 КВт.
Если минимальное значение мощности равно 16 КВт, а максимальное – 28 КВт, то следует приобретать полипропиленовые трубы, диаметр которых составляет 40 мм.
Расчет мощности обогревателя
1. Укажите разницу между уличной температурой и нужной температурой воздуха внутри помещения, °C (Например, если внутри помещения требуется +22°C при -20°C снаружи, то разница температур составит 22 + 20 = 42 °C) |
2. Укажите объем помещения в м 3 (Например, помещение 25 м 2 , высота потолков 3,0 метра. Объем помещения=25*3,0=75м 3) |
3. Выберите тип изоляции здания |
очень хорошая изоляция — хорошо изолированные жилые здания, толщина стены два-три кирпича, стеклопакеты (жилые и административные здания) хорошая изоляция — стандартные здания, толщина стены — два кирпича (хорошо утепленные промышленные помещения, стандартные кирпичные здания) слабая изоляция — слабо утепленные здания, толщина стены — кирпич (ангары типа «сэндвич», гаражи, промышленные здания, бытовки и т.д.) без изоляции — здания и сооружения без теплоизоляции |
Обогреватели в наше время пользуются широким спросом и как основные источники тепла, и как дополнительные. С наступлением неизбежного похолодания, они становятся очень актуальными. Бывают случаи отключения отопления или недостаточного обогрева помещения, поэтому ваш комфорт частично зависит от применения обогревателя , который лучше иметь под рукой в зимний период. Разновидностей обогревателей множество, и из этого множества нужно выбрать наиболее подходящий и удовлетворяющий вашим запросам вариант. Мощность — важнейшая характеристика обогревателя, от нее в целом зависит эффективность его работы. Расчет мощности обогревателя сводится к расчету (в полностью неотаплиевом помещении) 1 кВт на 10 кв. м площади помещения с высотой 3 м. В случае, когда обогреватель используется в качестве дополнительного источника, мощность определяется в зависимости от необходимой разницы температур, которую нужно компенсировать. Учитывается при этом также размер, расположение окон, их количество, материал стен, их толщина, конструкция перекрытия. То есть нужно учесть всевозможные потери тепла в помещении. При основательном обогреве дома лучше всего воспользоваться услугами профессионалов, которые подскажут, какие обогреватели нужно использовать и места их расположения. Необходимо обратить внимание на то, содержит ли обогреватель регулятор мощности, что является очень удобным в условиях меняющихся температур и позволяет использовать максимум мощности только когда это особенно нужно. При выборе обогревателя важно проанализировать все влияющие на обогрев факторы, определить количество необходимых обогревателей, их расположение в помещении и мощности каждого. В случае если мощность будет больше необходимой, это повлечет за собой убытки, а при меньшей мощности не достигнется желаемая эффективность обогрева. При выборе обогревателя кроме мощности выбирается еще и его тип, с разнообразными функциями и возможностями.
В зависимости от мощности, разновидности обогревателей, размеров, форм, принципа действия различают несколько видов обогревателей : масляные радиаторы, электрические обогреватели, конвекторы, тепловентиляторы, инфракрасные обогреватели.
Масляные радиаторы имеют свое разнообразие моделей. Эти модели отличаются количеством секций, температурой нагрева и мощностью. Причем, величина мощности тем больше, чем больше секций по количеству. Представляют собой масляные обогреватели системы в виде батарей, заполненных маслом. Принцип действия основан на нагреве масла, которое в свою очередь передает тепло поверхности обогревателя, которая выполнена из металлического материала. Некоторые модели таких обогревателей имеют термостат, регулирующий температуру самостоятельно, вентилятор, распространяющий тепло по всему помещению и еще несколько положительных качеств. Нагреваются они максимум до 150 градусов, это хорошее качество для обогрева, но при этом, являющееся и недостатком — можно обжечься. Электрические обогреватели за счет потребления электроэнергии считаются достаточно дорогими в использовании, но широко распространены в наше время за счет легкости использования. Важно помнить про необходимость того, что совокупность мощностей всех имеющихся обогревателей была меньше мощности источника питания в помещении. Данный тип обогревателя не нагревается выше 60 градусов, что исключает возможность получения ожогов. Тепловентиляторы имеют небольшую мощность и рассчитаны на недолгую работу. Это вентиляторы с накаливающейся спиралью. Поток воздуха у тепловентиляторов направлен в одну сторону, то есть обогревают только часть помещения, где находятся. В большинстве случаев, тепловентиляторы применяются в офисах, где эффективность отопления очень сомнительна. Конвекторы — электрические обогреватели с естественной циркуляцией воздуха. Они неспособны быстро обогревать помещения, только поддерживать определенную температуру. Бывают разных мощностей, чем и различаются в цене. Инфракрасные обогреватели также работают от электросети. Производят тепло они путем испускания электромагнитных волн, при котором происходит излучение тепла. Нагревают вначале предметы, на которые направлен обогреватель, например, стены, мебель, которые в свою очередь нагревают помещение. Располагают такие обогреватели на потолке на определенном расстоянии от головы человека. Различаются модели таких обогревателей по мощности и расположению потолка. То есть каждый обогреватель имеет свою определенную мощность. При мощности обогревателя 800 Вт его необходимо устанавливать минимум на расстоянии 0,7 метра от головы человека, а обогреватели мощностью 2-4 кВт на расстоянии около 2 метров.
Для комфортного использования в будущем, если вы решили использовать обогреватель, важно сразу сделать правильный выбор. Выбор зависит от множества разных факторов, важнейшим из которых является мощность обогревателя . От мощности обогревателя прямо зависит площадь помещения, обогреваемая им. Для обычных квартир и коттеджей мощность обогревателя должна быть 1 кВт на 10 квадратных метров. Если же вам нужен электрический обогреватель только для дополнительного обогрева, то в этом случае достаточно будет использовать обогреватель мощностью от 1,0 до 1,5 кВт на комнату площадью 20 — 25 квадратных метров. Мощность обогревателя зависит от площади обогреваемого помещения. Примерный расчет мощности необходимого вам обогревателя сделать очень легко. Если помещение не отапливается вообще, но с хорошей теплоизоляцией, на площадь около 10-12 кв. м требуется обогреватель мощностью около 1000 Вт. Для обогрева помещений с отоплением (офиса, квартиры) площадью 20-25 кв. м нужно 1000-1500 Вт. Очень распространенным считается тепловолновой обогреватель, который спокойно обогревает помещения в 1,5-2 раза большее, чем обогреватели такой же мощности. Такой обогреватель преимущественно подходит для обогрева любой площади.
Перед выбором типа обогревателя вначале обязательно нужно рассчит
Расчет отопления включает в себя несколько этапов:
- расчет теплопотерь, показывающих, какое количество тепла из-за конструктивных особенностей помещений и материалов, из которого изготовлен дом, «уходит» в окружающую среду
- расчет необходимой мощности отопительного оборудования, на основании которого подбирается такая мощность отопительного котла, которая позволит отоплению работать эффективно и стабильно, не расходуя при этом излишних ресурсов, но имея запас мощности на работу в условиях нетипично холодных температур и подготовку горячей воды (если это необходимо)
- гидравлические расчеты отвечают за выбор оптимального варианта разводки труб отопления, подбор подходящих труб, насосов, запорных элементов и фитингов, определяют необходимый объем расширительных баков
Одина из главных составляющих расчета и проектирования системы отопления – определение верной требуемой мощности отопительного оборудования.
Расчет тепловых потерь дома производится на основе информации о планировке дома, размеров помещений, расположения окон и дверей, используемых при строительстве дома материалов и утеплителей. Профессиональный расчет теплопотерь производят наши инженеры и проектировщики, исходя из данных таблиц со свойствами различных материалов.
Упрощенная формула расчета необходимой тепловой мощности для отопления одного помещения выглядит так:
Тепловая мощность, требуемая на обогрев одного помещения = Резервный коэффициент * Количество ватт на отопление одного метра помещения * Площадь помещения * Коэффициент теплопотерь через окна * Коэффициент соотношения площади окон * Коэффициент теплопотерь через стены * Коэффициент зимних температур воздуха * Коэффициент наружных стен * Коэффициент потолка * Коэффициент высоты потолка * Коэффициент ГВС
Соответственно, для определения общей тепловой мощности, требуемой для отопления дома, необходимо сложить расчетные показатели тепловых мощностей отдельных помещений.
Резервный коэффициент необходим для обеспечения запаса мощности на случай сильных морозов, в которые системе отопления для поддержания в доме комфортной температуры придется работать с увеличенной мощностью. Как правило, этот коэффициент при расчете принимается равным 1,2
Количество ватт на отопление одного метра помещения зависит от типа комнаты и ее назначения. Стандартное на отопление 1 м2 требуется 100 ватт. Если помещение планируется нежилым (кладовая, прачечная и т.д.), это значение можно уменьшить. Для ванных комнат, детских и любых других помещений, где комфортной является температура воздуха чуть выше, чем в остальных комнатах этот показатель следует увеличить.
Коэффициент теплопотерь через окна зависит от формата и качества стеклопакетов, установленных в доме. Для самых простых однокамерных окон этот коэффициент при расчете равен 1,27, для двухкамерного стеклопакета – 1, для трехкамерного – 0,85
Коэффициент соотношения площади окон определяется соотношением площади окон в помещении к площади помещения (по полу) и составляет, в зависимости от соотношения:
- при соотношении 10% — 0,8
- 20% — 1,0
- 30% — 1,2
- 40% — 1,4
- 50% — 1,5
Этот коэффициент наглядно показывает, насколько тепловая мощность системы отопления дома с обычными окнами может отличаться о дома с панорамным остеклением.
Коэффициент теплопотерь через стены зависит от того материала, из которого изготовлены стены дома и наличия теплоизоляции в стенах. Для самых распространенных материалов стен этот коэффициент расчета отопления будет таким:
- кирпичных стен (в два кирпича) с утеплителем 150 мм – 0,85
- кирпичных стен (в два кирпича) без утеплителя – 1,1
- пенобетонных блоков – 1
- бревна (сруб) – 1,25
- обычного бетона без утепления – 1,5
Коэффициент зимних температур воздуха соответствует усредненному показателю отрицательных температур самого холодного месяца (как правило, января или февраля)
- для -15°С он составляет 0,9
- для -20°С – 1
- для -25°С – 1,1
Коэффициент наружных стен зависит от того, какое количество стен помещения является наружными, т.е. не смежными с другими помещениями.
- если в помещении всего одна стена является наружной, коэффициент будет равен 1
- для двух стен – 1,2
- для трех – 1,22
Коэффициент потолка учитывается в расчете отопления таким образом:
- если над помещением есть неотапливаемое помещение (чердак, мансарда) – 1
- если над помещением есть утепленный чердак – 0,9
- если над помещением располагается отапливаемая комната – 0,82
Коэффициент высоты потолка определяет в расчете зависимость необходимой по тепловым расчетам мощности системы отопления от объема воздуха в помещении, определяемого высотой потолка. Чем выше потолки, тем большее количество тепловой мощности потребуется для отопления.
- для комнат со стандартной высотой потолков 2,5 метра этот коэффициент будет равен 1
- для потолков 3 метра – 1,05
- для потолков 5 метров – 1,1
Коэффициент ГВС
Для проживания в доме помимо отопления необходима также и система горячего водоснабжения. Проще и выгоднее всего организовать ее не отдельными водонагревательными элементами, а с помощью комбинации работы отопительного котла и бойлера косвенного нагрева. При такой схеме вода будет нагреваться за счет прохождения через бойлер теплоносителя системы отопления, что потребует увеличения мощности отопительного оборудования. При организации горячего водоснабжения от отопительного котла коэффициент ГВС для формулы расчета будет составлять от 1,2 до 1,3 (в зависимости от количества проживающих в доме потребителей горячей воды).
По усредненным показателям, без проведения каких-либо расчетов требуемую мощность системы отопления дома определяют как 1 кВт на каждые 10 квадратных метров, добавляя в получившейся цифре 20-30% на горячее водоснабжение.
(с) https://amikta.ru/otoplenie/raschet-otopleniya/
Вопрос о расчете размера платы за отопление является очень важным, так как суммы по данной коммунальной услуге потребители получают зачастую довольно внушительные, в то же время не имея никакого понятия, каким образом производился расчет.
С 2012 года, когда вступило в силу Постановление Правительства РФ от 06 мая 2011 №354 «О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов» порядок расчета размера платы за отопление претерпел ряд изменений.
Несколько раз менялись методики расчета, появлялось отопление, предоставленное на общедомовые нужды, которое рассчитывалось отдельно от отопления, предоставленного в жилых помещениях (квартирах) и нежилых помещениях, но затем, в 2013 году отопление вновь стали рассчитывать как единую коммунальную услугу без разделения платы.
Расчет размера платы за отопление менялся с 2017 года, и в 2019 году порядок расчета вновь изменился, появились новые формулы расчета размера платы за отопление, в которых разобраться обычному потребителю не так уж и просто.
Для того чтобы рассчитать размер платы за отопление по своей квартире и выбрать нужную формулу расчета необходимо, в первую очередь знать:
1. Имеется ли на Вашем доме централизованная система теплоснабжения?
Это означает поступает ли тепловая энергия на нужды отопления в Ваш многоквартирный дом уже в готовом виде с использованием централизованных систем или тепловая энергия для Вашего дома производится самостоятельно с использованием оборудования, входящего в состав общего имущества собственников помещений в многоквартирном доме.
2. Оборудован ли Ваш многоквартирный дом общедомовым (коллективным) прибором учета, и имеются ли индивидуальные приборы учета тепловой энергии в жилых и нежилых помещениях Вашего дома?
Наличие или отсутствие общедомового (коллективного) прибора учета на доме и индивидуальных приборов учета в помещениях Вашего дома существенно влияет на способ расчета размера платы за отопление.
3. Каким способом Вам производится начисление платы за отопление – в течение отопительного периода либо равномерно в течение календарного года?
Способ оплаты за коммунальную услугу по отоплению принимается органами государственной власти субъектов Российской Федерации. То есть, в различных регионах нашей страны плата за отопление может начисляться по разному — в течение всего года или только в отопительный период, когда услуга фактически предоставляется.
4. Имеются ли в Вашем доме помещения, в которых отсутствуют приборы отопления (радиаторы, батареи), или которые имеют собственные источники тепловой энергии?
Именно с 2019 года в связи с судебными решениями, процессы по которым проходили в 2018 году, в расчете стали участвовать помещения, в которых отсутствуют приборы отопления (радиаторы, батареи), что предусмотрено технической документацией на дом, или жилые и нежилые помещения, переустройство которых, предусматривающее установку индивидуальных источников тепловой энергии, осуществлено в соответствии с требованиями к переустройству, установленными действующим на момент проведения такого переустройства законодательством Российской Федерации. Напомним, что ранее методики расчета размера платы за отопление не предусматривали для таких помещений отдельного расчета, поэтому начисление платы осуществлялось на общих основаниях.
Для того чтобы информация по расчету размера платы за отопление была более понятна, мы рассмотрим каждый способ начисления платы отдельно, с применением той или иной формулы расчета на конкретном примере.
При выборе варианта расчета необходимо обращать внимание на все составляющие, которые определяют методику расчета.
Ниже представлены различные варианты расчета с учетом отдельных факторов, которые и определяют выбор расчета размера платы за отопление:
Расчет №1 Размер платы за отопление в жилом/нежилом помещении, ОДПУ на многоквартирном доме отсутствует, расчет размера платы осуществляется в течение отопительного периода. Ознакомиться с порядком и примером расчета →
Расчет №2 Размер платы за отопление в жилом/нежилом помещении, ОДПУ на многоквартирном доме отсутствует, расчет размера платы осуществляется в течение календарного года (12 месяцев). Ознакомиться с порядком и примером расчета →
Расчет №3 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета во всех жилых/нежилых помещениях отсутствуют, плата за отопление производится в течение отопительного периода. Ознакомиться с порядком и примером расчета →
Расчет №3-1 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета во всех жилых/нежилых помещениях отсутствуют, плата за отопление производится равномерно в течение календарного года. Ознакомиться с порядком и примером расчета →
Расчет №4 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета установлены не во всех помещениях многоквартирного дома, плата за отопление производится в течение отопительного периода. Ознакомиться с порядком и примером расчета →
Расчет №4-1Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета установлены не во всех помещениях многоквартирного дома, плата за отопление производится в течение календарного года. Ознакомиться с порядком и примером расчета →
Расчет №5 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета установлены всех жилых/нежилых помещениях многоквартирного дома. Ознакомиться с порядком и примером расчета →
Читайте также:
Объем свежего воздуха (подпиточного воздуха), необходимый для надлежащей вентиляции помещения, определяется размером и использованием помещения — типично нет. людей в космосе, если курение разрешено или нет, и загрязнение окружающей среды от процессов.
В приведенной ниже таблице указаны скорости воздухообмена (воздухообмен в час), обычно используемые в различных типах помещений и зданий.
Здание / помещение | Скорость воздухообмена — n — (1 / ч) |
---|---|
Все помещения в целом | мин. 4 |
Сборочные залы | 4 — 6 |
Чердачные помещения для охлаждения | 12 — 15 |
Аудитории | 8 — 15 |
Пекарни | 20 — 30 |
Банки | 4 — 10 |
Парикмахерская Магазины | 6 — 10 |
Бары | 20 — 30 |
Салоны красоты | 6 — 10 |
Котельные | 15 — 20 |
Боулинг | 10 — 15 |
Кафетерии | 12 — 15 |
Церкви | 8 — 15 |
Классы | 6 — 20 |
Клубы | 12 |
Клубы | 20 — 30 |
Коктейльные залы | 20 — 30 |
Компьютерные комнаты | 15 — 20 |
Здания суда | 4 — 10 |
Залы для танцев | 6 — 9 |
Стоматологические центры | 8 — 12 |
Универмаги | 6 — 10 |
Столовые | 12 -15 |
Столовые (рестораны) | 12 |
Магазины одежды | 6 — 10 |
Магазины наркотиков | 6 — 10 |
Машинные отделения | 4 — 6 |
Производственные здания, рядовые | 2 — 4 |
Здания завода, с дымом или влагой | 10 — 15 |
Пожарные части | 4 — 10 |
Литейные заводы | 15 — 20 |
Гальванические заводы | 20 — 30 |
Ремонт гаражей | 20 — 30 |
Гаражное хранение | 4 — 6 |
Дома, ночное охлаждение | 10 — 18 |
Больничные палаты | 4 — 6 |
Ювелирные магазины | 6 — 10 |
Кухни | 15 — 60 |
Прачечные | 10 — 15 |
Библиотеки публичные | 4 |
Обеденные залы | 12 -15 |
Обеды | 12 -15 |
Ночные клубы | 20 — 30 |
Механические цеха | 6 — 12 |
Торговые центры | 6 — 10 |
Медицинские центры | 8 — 12 |
Медицинские клиники | 8 — 12 |
Медицинские учреждения | 8 — 12 |
Мельницы бумажные | 15 — 20 |
Мельницы текстильные общего назначения | 4 |
Мельницы текстильные красильные дома | 15 — 20 |
Муниципальные здания | 4 — 10 |
Музеи | 12 -15 |
Офисы государственные | 3 |
Офисы частные | 4 |
Малярные мастерские | 10 — 15 |
Бумажные фабрики | 15 — 20 |
Фото темных комнат | 10 — 15 |
6 — 10 | |
Полицейские участки | 4 — 10 |
Почтовые отделения | 4 — 10 |
Птичники | 6 — 10 |
Прецизионное производство | 10 — 50 |
Насосные станции | 5 |
Железнодорожные магазины | 4 |
Резиденции | 1 — 2 |
Рестораны | 8 — 12 |
Розничная торговля | 6 — 10 |
Школьные классы | 4 — 12 |
Магазины обуви | 6 — 10 |
Торговые центры | 6 — 10 |
Магазины, машины | 5 |
Магазины, краски | 15 — 20 |
Магазины деревообрабатывающие | 5 9 0027 |
Подстанция электрическая | 5 — 10 |
Супермаркеты | 4 — 10 |
Бассейны | 20 — 30 |
Текстильные фабрики | 4 |
Текстильные фабрики красильные дома | 15 — 20 |
Ратуши | 4 — 10 |
Таверны | 20 — 30 |
Театры | 8 — 15 |
Трансформаторные комнаты | 10 — 30 |
Турбинные комнаты, электрические | 5 — 10 |
Склады | 2 |
Залы ожидания, общественные | 4 |
Склады | 6 — 30 |
Деревообрабатывающие цеха | 8 |
Помните о местных правилах и нормах.
Подача свежего воздуха — подпиточного воздуха — в помещение на основании таблицы, приведенной выше, может быть рассчитана как
q = n V (1)
, где
q = подача свежего воздуха (фут 3 / ч, м 3 / ч)
n = скорость смены воздуха (ч -1 )
V = объем помещения (футы 3 , м 3 )
Пример — Подача свежего воздуха в публичную библиотеку
Подача свежего воздуха в публичную библиотеку объемом 1000 м 3 можно рассчитать как
Q = (4 ч -1 ) (1000 м 3 )
= 4000 м 3 / ч
Калькулятор объема воздуха
Частота замены воздуха в минутах
«Частота замены воздуха» в минутах может быть рассчитана как
9062 2 n м = 60 / n (2)
, где
n м = частота замены воздуха (минуты)
.Если вы хотите узнать, как расходуется энергия в комнате, вам придется использовать немного математики, но не бойтесь; вам не нужно углубляться в ваше исчисление средней школы. Расчет включает в себя выяснение, сколько устройств у вас есть и требования к мощности каждого из них — в ваттах. Вы также должны знать, сколько времени вы используете каждое устройство, и это может быть трудно измерить, если вы не наблюдаете за комнатой.Вам может понадобиться помощь одного или нескольких подключаемых измерителей мощности.
Проверьте мощность всех лампочек, которые вы используете в комнате, и подсчитайте время наработки каждого из них на каждый день. Умножьте мощность и время использования — в часах — чтобы получить показатель суточной мощности для каждого источника света в ватт-часах. Сложите эти числа вместе, чтобы получить суточную цифру для освещения комнаты.
Рассчитайте энергопотребление каждого прибора, который вы часто используете в комнате, например, телевизор или обогреватель помещения.Проверьте этикетку соответствующего устройства на предмет энергопотребления. Эта информация обычно находится сзади, возле шнура питания. Оцените количество времени, в течение которого прибор включен, и выполните те же вычисления, что и для освещения.
Контролируйте холодильник или другое устройство, которое часто включается и выключается с помощью измерителя энергопотребления. Отключите прибор, включите прибор и включите прибор в прибор. Проверьте его через несколько дней и разделите число на счетчике на количество дней, прошедших с момента его мониторинга.Чтобы получить максимальную точность, проверьте счетчик в то же время суток, когда вы его подключили.
Переместите счетчик на другие розетки, чтобы проверить все приборы, которые постоянно подключены. Некоторые из них потребляют энергию, даже если они не подключены. т, и это фантомное питание является частью вашего потребления энергии.
Суммируйте данные по суточным расходам для всех приборов и добавьте их к освещению. Умножьте цифру на 30, а затем разделите на 1000, чтобы рассчитать энергию, потребляемую в этой комнате за месяц в киловатт-часах.
Расчет объема | SkillsYouNeed
На этой странице объясняется, как рассчитать объем твердых объектов, т. Е. Сколько вы можете вписать в объект, если, например, вы наполнили его жидкостью.
Площадь — это мера того, сколько места есть в двухмерном объекте (подробнее см. На нашей странице: Расчет площади).
Объем — это мера пространства в трехмерном объекте. Наша страница о трехмерных формах объясняет основы таких форм.
В реальном мире вычисление объема, вероятно, не то, что вы будете использовать так часто, как вычисление площади.
Однако это все еще может быть важно. Возможность подсчитать объем позволит вам, например, определить, сколько места у вас есть при переезде, сколько вам нужно офисного пространства или сколько варенья вы можете поместить в банку.
Это также может быть полезно для понимания того, что означают средства массовой информации, когда они говорят о пропускной способности плотины или стока реки.
Примечание к блокам
Площадь выражается в квадратных единицах, потому что это два измерения, умноженные вместе.
Объем выражается в кубических единицах, потому что это сумма трех измерений (длина, ширина и глубина), умноженных вместе. Кубические единицы включают 3 см, 3 м и кубические футы.
ВНИМАНИЕ!
Объем также можно выразить как емкость жидкости.
Метрическая система
В метрической системе объем жидкости измеряется в литрах, что прямо сопоставимо с кубическим измерением, поскольку 1 мл = 1 см 3 .1 литр = 1000 мл = 1000 см 3 .
Imperial / English Система
В имперско-английской системе эквивалентными измерениями являются жидкие унции, пинты, кварты и галлоны, которые нелегко перевести в кубические футы. Поэтому лучше придерживаться жидких или твердых единиц объема.
Для получения дополнительной информации см. Нашу страницу по системам измерения
Основные формулы для расчета объема
Объем твердых веществ на основе прямоугольника
В то время как основная формула для площади прямоугольной формы имеет длину × ширины, основная формула для объема равна длине × ширины × высоты.
То, как вы ссылаетесь на различные измерения, не меняет вычисления: вы можете, например, использовать «глубину» вместо «высоты». Важно то, что три измерения умножаются вместе. Вы можете умножать в любом порядке, который вам нравится, поскольку это не изменит ответ (см. Нашу страницу на умножение для получения дополнительной информации).
Коробка с размерами 15 см в ширину, 25 см в длину и 5 см в высоту имеет объем:
15 × 25 × 5 = 1875 см 3
Объем Призм и Цилиндров
Эта базовая формула может быть расширена, чтобы охватить объем цилиндров и призмы тоже.Вместо прямоугольного конца у вас просто есть другая форма: круг для цилиндров, треугольник, шестиугольник или, действительно, любой другой многоугольник для призмы.
Эффективно для цилиндров и призм объем — это площадь одной стороны, умноженная на глубину или высоту фигуры.
Таким образом, основная формула для объема призм и цилиндров:
Площадь концевой формы × высота / глубина призмы / цилиндра.
Объем Конусов и Пирамид
Тот же принцип, что и выше (ширина × длина × высота), применяется для вычисления объема конуса или пирамиды, за исключением того, что, поскольку они достигают точки, объем является лишь частью общего объема, который был бы, если бы они продолжались в той же форме, насквозь.
Объем конуса или пирамиды составляет ровно одну треть от того, что было бы для коробки или цилиндра с таким же основанием.
Таким образом, формула:
Площадь основания или концевой формы × высота конуса / пирамиды × 1 / 3
Обратитесь к нашей странице Расчет площади , если вы не помните, как рассчитать площадь круга или треугольника.
Например, чтобы вычислить объем конуса с радиусом 5 см и высотой 10 см:Площадь внутри круга = πr2 (где π (pi) составляет приблизительно 3.14 и r — радиус окружности).
В этом примере площадь основания (окружности) = πr 2 = 3.14 × 5 × 5 = 78,5 см 2 .
78,5 × 10 = 785
785 × 1/3 = 261,6667 см 3
Объем шара
Как и в случае с кругом, вам нужно π (pi), чтобы вычислить объем сферы.
Формула 4/3 × π × радиус 3 .
Вам может быть интересно, как вы могли бы определить радиус шара.Если не вставлять в нее вязальную спицу (это эффективно, но очень важно для мяча!), Есть более простой способ.
Вы можете измерить расстояние вокруг самой широкой точки сферы, например, с помощью рулетки. Этот круг является окружностью и имеет такой же радиус, как и сама сфера.
Окружность круга рассчитывается как 2 x π x радиуса.
Чтобы рассчитать радиус от окружности вы:
Разделите окружность на (2 x π) .
проработанных примеров: расчет объема
Пример 1
Рассчитайте объем цилиндра длиной 20 см, круговой конец которого имеет радиус 2,5 см.
Сначала отработайте площадь одного из круглых концов цилиндра.
Площадь круга составляет πr 2 (π × , радиус × , радиус). π (pi) составляет приблизительно 3,14.
Таким образом, площадь конца:
3.14 х 2,5 х 2,5 = 19,63 см 2
Объем — это площадь конца, умноженная на длину, и поэтому:
19,63 см 2 x 20 см = 392,70 см 3
Пример 2
Что больше по объему: сфера с радиусом 2 см или пирамида с квадратным основанием 2,5 см и высотой 10 см?
Сначала определите объем сферы .
Объем сферы 4/3 × π × радиус 3 .
Объем сферы, следовательно:
4 ÷ 3 x 3,14 × 2 × 2 × 2 = 33,51 см 3
Затем отработать объем пирамиды .
Объем пирамиды составляет 1/3 × площадь основания × высота.
Площадь основания = длина × ширина = 2,5 см × 2,5 см = 6,25 см 2
Объем, следовательно, 1/3 x 6,25 × 10 = 20.83см 3
Сфера, следовательно, больше по объему, чем пирамида.
Расчет объема нерегулярных твердых веществ
Так же, как вы можете рассчитать площадь неправильных двумерных фигур, разбив их на обычные, вы можете сделать то же самое, чтобы рассчитать объем неправильных твердых тел. Просто разбейте твердое вещество на более мелкие части, пока не получите только твердые частицы, с которыми вы можете легко работать.
Работал пример
Рассчитайте объем водяного цилиндра общей высотой 1 м, диаметром 40 см, верхняя часть которого полусферическая.
Сначала вы делите фигуру на две части: цилиндр и полусферу (полусферы).
Объем сферы 4/3 × π × радиус 3 . В этом примере радиус составляет 20 см (половина диаметра). Поскольку вершина полусферическая, ее объем будет вдвое меньше, чем у полной сферы. Объем этого раздела формы, следовательно:
0,5 × 4/3 × π × 203 = 16,755.16 см 3
Объем цилиндра — это площадь основания × высота.Здесь высота цилиндра — это общая высота за вычетом радиуса сферы, которая составляет 1–20 см = 80 см. Площадь базы № 2 .
Объем цилиндрической секции этой формы, следовательно, составляет:
80 × π × 20 × 20 = 100 530,96 см 3
Таким образом, общий объем этого контейнера для воды составляет:
100 530,96 + 16,755,16 = 117 286,12 см 3 .
Это довольно большое число, поэтому вы можете преобразовать его в 117.19 литров путем деления на 1000 (так как в литре 1000 см 3 ). Тем не менее, было бы совершенно правильно выразить это как cm 3 , так как проблема не требует, чтобы ответ был выражен в какой-либо конкретной форме.
В заключение…
Используя эти принципы, при необходимости вы теперь сможете рассчитать объем практически всего в вашей жизни, будь то упаковочный ящик, комната или водяной цилиндр.
,- Образование
- Наука Физика
- Как рассчитать скрытое тепло, необходимое для изменения фазы
Стивен Хольцнер
В физике л atent heat — это тепло на килограмм, которое вы должны добавить или удалить, чтобы объект изменил свое состояние; другими словами, скрытое тепло — это тепло, необходимое для изменения фазы.Единицы измерения — джоули на килограмм (Дж / кг) в системе MKS (метр-килограмм-секунда).
Физики распознают три типа скрытой теплоты, соответствующие изменениям фазы между твердым телом, жидкостью и газом:
Скрытая теплота плавления, л ф . Это тепло на килограмм, необходимое для изменения между твердой и жидкой фазами, когда вода превращается в лед или лед превращается в воду.
Скрытая теплота испарения, L v . Это тепло на килограмм, необходимое для изменения между жидкой и газовой фазами, например, когда вода кипит или когда пар конденсируется в воду.
Скрытая теплота сублимации, л с . Это тепло на килограмм, необходимое для изменения между твердой и газовой фазами, как при испарении сухого льда.
Вот формула для теплообмена при фазовых переходах, где
м, — масса, а л, — скрытая теплота:
Здесь L занимает место
и c (удельная теплоемкость) в формуле изменения температуры.
Предположим, вы находитесь в ресторане со стаканом 100,0 граммов воды комнатной температуры, 25 градусов по Цельсию, но вы бы предпочли ледяную воду при температуре 0 градусов по Цельсию.Сколько льда вам нужно? Вы можете найти ответ, используя тепловые формулы как для изменения температуры, так и для изменения фазы.
Вы достаете свой буфер обмена, полагая, что тепло, поглощаемое тающим льдом, должно равняться теплу, потерянному водой, которую вы хотите охладить. Вот тепло, которое теряет вода, которую вы охлаждаете:
T — конечная температура, а T 0 — начальная температура.
Подключение числа говорит вам, сколько тепла необходимо потерять воде:
Итак, сколько льда растопит это количество тепла? То есть, сколько льда при 0 градусах по Цельсию нужно добавить, чтобы охладить воду до 0 градусов по Цельсию? Это будет следующая сумма, где L f — скрытая теплота плавления для льда:
Вы знаете, что это должно быть равным теплу, потерянному водой, поэтому вы можете установить его равным
Другими словами,
«Простите меня», — говорите вы официанту.«Пожалуйста, принесите мне ровно 31,0 грамма льда точно при 0 градусах Цельсия».
Об авторе книги
Стивен Хольцнер, доктор философии, работал в журнале PC Magazine и работал на факультете Массачусетского технологического института и Корнельского университета. Он написал Физика II для чайников , Основы физики для чайников и Квантовая физика для чайников .
,