Что такое отопление: Отопление — это… Что такое Отопление?
О системе отопления: составные части системы отопления
Вступление
Академическое определение системы отопления, звучит, как набор аппаратов, устройств и других элементов, собранных и предназначенных для выработки тепла и переносе тепла в помещение (обогрев). Для всех систем отопления, характерно большое количество элементов, которые отличаются по технологии работы. Выбор систем отопления большой и подбор системы отопления дома зависит от многих факторов, прежде всего от конструкции дома. Здесь учитывается всё: из чего сделаны стены дома, как они утеплены, какие в доме перекрытия и плиты перекрытия, как сделан фундамент и какова конструкция крыши. В этой статье познакомимся про составные части системы.
Составные части системы отопления
Основой любой отопительной системы является котел отопления. От отопительного котла тепловой носитель, а это вода или антифриз, двигаются по трубам и отдают тепло вашему дому через радиаторы отопления. Вода двигается (циркулирует) в системе принудительно (при помощи насоса) или без него. Система отопления дома сложное сборное технологическое устройство, в которое входит масса необходимых элементов. Кроме котла, труб отопления, батарей отопления (радиаторов) не обойтись без расширительного бака, который компенсирует температурное расширение нагретой воды, без соединительных элементов для труб (фитингов), без клапанов и многих других сантехнических элементов.
Как подразделяются системы отопления
В зависимости от способа циркуляции воды (антифриза) в системе, системы отопления делятся на системы с принудительной и естественной циркуляцией.
При принудительной циркуляции движение теплоносителя осуществляется при помощи циркуляционного насоса. В такой системе есть возможность поддерживать температуру в доме по комнатно, также технологически нужны трубы меньшего диаметра для теплопровода, срок работы котла значительно увеличивается, потому что уменьшается разница между температурами выходящей (горячей) воды из котла и возвращающейся в него (остывшей) водой системы. Но такая система возможна только в домах, где есть электричество. Для работы насоса в доме необходимо электричество.
В системах отопления с естественной циркуляцией электричество не требуется. Теплоноситель циркулирует в системе из-за разницы в плотности горячей и холодной воды. Горячая вода легче холодной, поэтому она поднимается по системе, Далее отдавая тепло помещениям, вода охлаждается и опускается опять в отопительный бак для нагрева. К сожалению, такая система, тяжело настраивается и требует для монтажа трубы большого диаметра.
Отопительные системы закрытого и открытого типа
В зависимости от типа расширительного бака, отопительные системы могут быть закрытого и открытого типа.
В отопительной системе закрытого типа, для компенсации расширения нагретого теплоносителя применяется мембранный расширительный бак. В системе открытого типа используется расширительный бак открытого типа.
Если расширительный бак открытого типа нужно устанавливать в наивысшей точке системы, то место установки мембранного бака (закрытой системы отопления) значения не имеет. Это преимущество дает возможность устанавливать расширительный бак рядом с котлом, что значительно облегчает монтаж и техническое обслуживание системы. Также в закрытой системе отопления нет контакта теплоносителя с воздухом, и есть возможность, при необходимости повышать давление, что позволяет избежать воздушных пробок в системе.
©Obotoplenii.ru
Другие статьи по теме: Монтаж отопления
Что такое отопление? Отопление — это просто!
Возможность подключиться к центральному отоплению радует многих домовладельцев. Но так ли эта система удобна и выгодна, как может показаться? И главное: какой способ подключения выбрать, чтобы свести все риски и неудобства к минимуму? Существует два способа: напрямую или через тепловой пункт. Рассмотрим достоинства и недостатки каждого из них.
На фото:
Две схемы: в чем отличие?
Прямое подключение: отопление это просто. При этом способе жидкость в систему отопления коттеджа поступает напрямую из общей городской или поселковой теплосети.
Что такое отопление по непрямой схеме: нужен индивидуальный тепловой пункт. При этой схеме жидкость из центральной теплосети, прежде чем попасть в систему отопления дома, проходит через отдельный теплообменник. Он, в свою очередь, находится в индивидуальном тепловом пункте (ИТП). Несмотря на слово «индивидуальный» в названии, подобный тип подключения практически никогда не применяется только для одного дома: ИТП обычно бывает единым для всего поселка или для нескольких домов.
При непрямой схеме теплоноситель не зависит от жидкости в центральной сети. Он циркулирует в системе отопления дома по замкнутому кругу. Нагрев осуществляется при помощи специальных теплообменников, в большинстве своем устроенных по принципу «труба в трубе»: именно здесь происходит передача тепла от центральной теплосети к индивидуальной (внутри дома).
Прямое подключение |
|
|
|
Подключение через теплообменник |
|
|
|
В статье использованы изображения: purmo.com
Что такое байпас и зачем он нужен?
В организации отопления очень важно найти баланс: в помещении должно быть комфортно вне зависимости от температуры воздуха на улице. Нередко бывает так, что с наступлением оттепели в доме или в офисе становится слишком душно, а резкое понижение температуры воздуха негативно сказывается на температуре внутри помещения. Байпас – идеальное решение, чтобы сохранять комфорт при любых погодных условиях и облегчить эксплуатацию отопительных приборов, ведь в однотрубных системах центрального отопления он позволяет установить теплорегулятор.
Что представляет собой байпас?
По сути, байпас – это перемычка в виде отрезка трубы. Она устанавливается между прямой и обратной проводкой любого стандартного радиатора отопления. Диаметр байпаса должен быть на 1 размер меньше, чем диаметр труб подводки. Это необходимо для сбалансированного распределения теплоносителя между самим байпасом и отопительным прибором.
Таким образом решается сразу две важных задачи: с одной стороны вся система продолжает бесперебойно работать даже в период ремонта оборудования, с другой – появляется возможность управлять потоками теплоносителя.
Использование байпаса. Два основных случая
Случай 1
Однотрубная система отопления хоть и устарела морально, но все равно еще достаточно часто используется в зданиях постройки прошлого века. Минус не только в том, что нередко система не в состоянии обеспечить необходимый уровень тепла, но иногда ее работа бывает слишком эффективна: в помещении очень душно и находиться там некомфортно. Установка байпаса – самое простое и эффективное решение в этой ситуации. Установка устройства даст возможность регулировать температуру в доме.
Трехходовой или радиаторный терморегулятор может изменять количество теплоносителя между отопительным прибором и стояком. Байпас необходим для того, чтобы распределить теплоноситель между ними. Получается, что байпас позволяет транспортировать теплоноситель одновременно по стояку и к отопительному прибору. Также при отсутствии этого элемента было бы невозможно осуществить ремонт батареи без отключения целого участка системы.
Случай 2
Нередко в современных отопительных системах нельзя обойтись без использования циркуляционного насоса. В этом случае система становится энергозависимой, ведь без электричества насос работать не сможет. Спасительная роль байпаса в этом случае важна и одновременно проста, ведь как только пропадет свет, достаточно перекрыть краны подачи теплоносителя на насос и открыть кран на центральной трубе. Байпас, снабженный клапаном, может выполнить данные процедуры автоматически. Эти простые действия способны перевести систему отопления в режим естественной циркуляции.
Снижение энергозатрат
Еще одно преимущество использования байпаса в однотрубной системе отопления, при использовании терморегуляторов – возможность снизить счета за отопление. Дело в том, в этом случае эффективность использования теплоносителя повышается в среднем на 30%. Это значит, что и эффективность теплоотдачи у радиаторов отопления повышается процентов на 10. Значение может показаться не очень ощутимым, но если посчитать объемы «лишней» энергии, за которую платит сам потребитель, то в денежном эквиваленте получается приличная сумма.
Заключение
Строго говоря, байпас не является обязательным элементом в отопительной системе, но желателен. Вполне возможно, что пользу от него никогда ощутить и не случится, особенно если у вас новый дом с двухтрубной системой центрального отопления. В противном случае байпас может сэкономить массу времени, денег и сил, если возникнет необходимость замены радиаторов отопления.
Водяное отопление: преимущества и недостатки
Рассмотрим, чем отличается водяное отопление от других видов отопления домов, в чем его особенности, какие недостатки, и есть ли перспективы применения в жилом строительстве.
Что такое система водяного отопления
В основе систем водяного отопления лежит принцип конвекционного переноса тепла от жидкого теплоносителя – воды или пара окружающему воздуху. Котел греет воду, горячая вода или пар поступают в трубы и радиаторы, установленные по всем помещениям дома. После чего тепло от горячих ребер или секций радиаторов конвекционным путем распространяется вверх. На его место снизу вдоль пола подтягивается холодный воздух, и нагреваясь уходит верх.Существуют системы водяного отопления, где организована принудительная циркуляция воды, и системы с гравитационной циркуляцией (самотечные). В первых воду заставляет циркулировать в замкнутой системе циркуляционный насос, во вторых – вода движется самотеком по трубам с небольшим уклоном. Различают также 1-трубные и 2-хтрубные схемы разводки.
До недавнего времени паровое отопление было достаточно популярным. Но в последнее десятилетие, когда все коммунальные технологии ориентированы на энергосбережение, становятся популярными более экономичные низкотемпературные системы теплоснабжения.
Особенности и недостатки парового отопления
Рассмотрим, как организовано отопление зданий паром, как внедрить паровое отопление, его плюсы и минусы. Воду до парообразного состояния (более 100 градусов) подогревает котел, после чего горячий пар под высоким давлением поступает в трубы и батареи, расположенные во всех помещениях здания. Там пар нагревает радиаторы, тепло отдается окружающей среде – воздуху, пар охлаждается и вода конденсатом поступает назад в котел.
Наиболее часто в домах с паровым отоплением устанавливались комплекты чугунных радиаторов, соединенных стальными трубами.
Для работы с паром не допускается применять пластиковые трубы, поскольку они не рассчитаны на высокие давления и температуры.
Современный радиатор парового отопления может быть изготовлен из чугуна, стали или алюминиевых сплавов, он отличается прочностью и рассчитан на высокие давления.
Достоинства
- Паровое отопление организовывается на любом котле, догревающем воду до пара, – на дровах, мазуте, угле или газе.
- Горячая вода или пар – самый доступный и теплоноситель.
- Быстрый прогрев батарей.
- Простота монтажа.
Недостатки
- Паровые радиаторы подвержены высокому давлению пара и высокой температуре.
- Существует опасность поражения людей и имущества при прорывах теплосети парового отопления.
- При установке требуется специальное помещение для котла и нормативная вентиляция.
- Угроза прорыва перегретого пара из трещин в трубах или радиаторах.
- Больше прогревается верхняя часть помещений, а не пространство у пола.
- Недостаточный контроль за температурой в помещениях.
- Перегретый теплоноситель угрожает коррозией и сокращает срок службы системы радиаторов.
- К недостаткам относят и громоздкость котлов, и неконтролируемость парового отопления.
Раньше под паровым отоплением понимали централизованное теплоснабжение многоквартирных и частных домов. В последнее десятилетие вместо нагретого пара с температурой выше ста градусов в централизованных или индивидуальных системах теплоснабжения чаще применяют подогретую воду. Это исключает возможность ожогов при прорыве теплотрассы или радиатора.
Изучив плюсы и минусы парового отопления, переходим к более современным системам водяного отопления.
Водяная система отопления: плюсы и минусы
Водяное отопление дома, где в качестве источника тепла используется газовый, твердотопливный или электрический котел, имеет множество достоинств. Такая система индивидуального обогрева и приготовления горячей воды особенно выгодна для внедрения в частных домах. Вода, прогреваемая котлом до температуры 50 – 80 градусов, принудительно или естественным путем циркулирует в системе радиаторов или в контурах теплого пола. Такое автономное теплоснабжение более экономично, поскольку не требуется подогрев воды до парообразного состояния, нет длинных теплотрасс и потерь тепла. В качестве доводчиков тепла разрешено использовать современные стальные или чугунные радиаторы, а также радиаторы из алюминиевых сплавов. Разводку выполняют медными, стальными или пластиковыми трубами.
Как провести водяное отопление в частном доме? Еще десять лет назад, когда газ был подешевле, угля хватало, проблем это не вызывало. Сейчас, тенденции энергосбережения выходят на первый план и экономия ископаемых видов топлива становится все более популярной и необходимой. Для теплоснабжения частных домов все чаще вместо газовых и электрических котлов устанавливают тепловые насосы, наиболее экономичные в эксплуатации и полнофункциональные источники тепла, горячей воды и холода.
В качестве систем распределения тепла в спальне, ванной, на кухне, в гостиной или детской
устанавливаются системы водяных теплых полов, нагревающие слой воздуха в нижней, самой комфортной для людей, части комнат. Для улучшения теплоотдачи выбирают покрытия пола с высокими показателями теплопроводности, например плитку. Кроме плитки на «теплые полы» укладывают и деревянные покрытия, и линолеум, и ковролин.Достоинства
- Водяное отопление в частном доме с циркуляционными насосами и двухтрубной схемой соединения радиаторов равномерно прогревает все комнаты.
- Термостаты настенные и встроенные, термоголовки и автоматика современного котла точно поддерживают нужную температуру в отдельных комнатах.
- Возможность устройства индивидуального автономного отопления в квартирах многоэтажного дома, спроектированного под такой вид отопления.
- Часто реализуются проекты водяного отопления с системами теплых полов и контурами радиаторов.
- Теплые полы с водой в качестве теплоносителя гораздо дешевле в эксплуатации, чем электрические обогреватели.
- Бесшумная работа систем водяного отопления в отличие от воздушных систем.
- Вода в системе водяного индивидуального отопления циркулирует по замкнутому кругу, не откладываются осадок или загрязнения из общей сети.
Недостатки
- Высокие текущие затраты на обогрев при работе с газовым или электрическим котлом из-за высоких тарифов.
- Угроза прорыва и затопления из-за повреждения системы водяных теплых полов, труб или радиаторов.
- Высокие требования к проектированию систем, обслуживанию и ремонту газовых котлов и твердотопливных котлов, необходимость разрешений от электросетей для установки электрокотла.
- Есть угроза замерзания воды в трубах и радиаторах в зимний период, когда дом не отапливается.
- Недолгий срок эксплуатации котельного оборудования: до 10-15 лет.
- Монтаж проводят только квалифицированные специалисты.
Современное водяное отопление частного дома
Водяное отопление в частном коттедже или особняке, на даче или в квартире имеет свои недостатки. Однако такие системы теплоснабжения продолжают устанавливать и в возводимых новых домах, и в реконструируемых зданиях. Вода, как доступный и дешевый теплоноситель с высокими показателями теплоемкости, остается незаменимой в современном жилом строительстве. Остается выбрать только наиболее экономичный в работе источник тепла. И в настоящее время для этих целей все чаще выбирают тепловые насосы «воздух-вода». Это наиболее выгодный вариант с наивысшими показателями энергоэффективности.
Тепловые насосы обогревают дом или квартиру в 3-5 раз дешевле, чем любые другие источники тепла. В теплонасосных системах теплоноситель для водяного теплого пола и радиаторов подогревается до 45-55 градусов, что сокращает энергозатраты на отопление и подогрев воды.
Кроме того, работая с водяными вентиляторными доводчиками – фанкойлами, они охлаждают помещения дома в летний период, поддерживая комфортную температуру.
Интеллектуальные пульты управления позволяют программировать режимы для каждого помещения в отдельности или для дома в целом.
Низкотемпературные системы тепло-холодоснабжения, реализованные по системе «тепловой насос — водяные теплые полы — фанкойлы», имеют перспективы для широкого внедрения и являются наиболее экономичным климатическим оборудованием для комфорта летом и зимой.
Выводы
Водяное отопление не теряет актуальности и остается выгодным и в настоящее время. Выбирая современные источники тепла – конденсационные газовые котлы, котлы на биотопливе, современные тепловые насосы, вы получаете экономичную и удобную систему отопления с наивысшим уровнем комфорта.
Отопление
10 июля 2018 года Конституционный Суд РФ провозгласил Постановление по делу о проверке конституционности ч. 1 ст. 157 ЖК РФ, абз. 3 и 4 п. 42(1) Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах, утв. ПП РФ от 06.05.2011 N 354 (далее – Правила 354). В частности, проверяемыми нормами установлено, что в многоквартирном доме (МКД), который оборудован общедомовым прибором учета (ОПУ) тепловой энергии и в котором не все жилые или нежилые помещения оборудованы индивидуальными приборами учета (ИПУ) тепловой энергии, размер платы за коммунальную услугу по отоплению в помещении определяется исходя из показаний ОПУ, без учета показаний ИПУ (формулы 3, 3.1, 3.2 Приложения 2 к Правилам 354). То есть, в случае отсутствия ИПУ отопления хотя бы в одном помещении МКД, показания ни одного из ИПУ, установленных в других помещениях этого МКД, к расчету не принимаются. Проверив конституционность указанных норм, КС установил, что «оспариваемые нормы в своей взаимосвязи и по смыслу, придаваемому им правоприменительной практикой, не соответствуют Конституции РФ», аргументировав свою позицию следующим образом: «Из-за одного или немногих пользователей, не поддерживающих счетчик в исправном состоянии, все остальные жильцы дома вынуждены оплачивать коммунальную услугу вне зависимости от реальных объемов потребления ими тепла. Это нарушает конституционные принципы равенства, правовой определенности, справедливости и соразмерности, а также баланс публичных и частных интересов». Суд указал, что «Федеральному законодателю надлежит внести необходимые изменения в действующее правовое регулирование, предусмотрев более эффективный и справедливый порядок определения платы за тепловую энергию».
Расчет стоимости отопления, в том числе в случае наличия в доме ОПУ и отсутствия хотя бы в одном помещении дома ИПУ, вызывает неизменно много вопросов – гораздо больше, чем в отношении прочих коммунальных услуг. Связано это с рядом технических особенностей отопления, повлекших за собой и юридические особенности – регулирование порядка расчета стоимости отопления отличается от всех остальных коммунальных услуг. В том числе, отопление неоднократно рассматривалось в публикациях на сайте АКАТО – например, в статьях от 27.07.2016, от 19.12.2016, от 28.08.2017, от 12.12.2017, от 26.02.2018.
В данной статье попробуем разобраться в этих технических и юридических особенностях, а также попытаемся оценить последствия Постановления КС РФ.
Суть коммунальной услуги по отоплению
Коммунальная услуга по отоплению заключается в подаче в помещения МКД теплоэнергии для нагрева воздуха, стен, прочих поверхностей внутри помещения. Тепло подается путем циркуляции в системе отопления нагретого теплоносителя (воды), который, имея более высокую температуру, чем окружающий воздух, в соответствии с законами физики (более нагретое тело отдает тепло менее нагретому) отдает тепло в этот окружающий воздух.
При этом отдача тепла от теплоносителя, циркулирующего в системе отопления, происходит следующими способами:
1) Передача тепла теплопроводностью
Данная передача тепла происходит при непосредственном физическом контакте элементов внутридомовой системы отопления с конструктивными элементами дома, в том числе: в местах соприкосновения трубопроводов отопления со стенами, в местах прокладки трубопроводов через стены и перекрытия, внутри строительных конструкций дома, через крепления трубопроводов к несущим конструкциям дома.
Теплопроводностью передается значительный объем теплоэнергии. Можно привести пример из бытовой жизни – для более эффективной сушки мокрого белья его размещают непосредственно на полотенцесушителе или радиаторе отопления, обеспечивая физический контакт с нагревательным элементом, имеющем более высокую температуру, чем температура воздуха, стен и иных поверхностей в помещении.
2) Передача тепла конвекцией
Указанный вид теплопередачи обеспечивается с помощью воздуха, выступающего в качестве «посредника» между источником тепла (элементы системы отопления) и потребителями тепла (стены, иные поверхности конструкций помещения, инвентарь, утварь, предметы, имеющиеся в помещении и т.п.). Воздух, получая тепло непосредственно от источника (элемент системы отопления), перемещается, обеспечивая перенос тепла в отдаленные от источника тепла части помещений и в помещения, не содержащие элементов внутридомовой системы отопления.
Именно конвективный теплообмен обеспечивает обогрев помещений, в которых не имеется никаких элементов системы отопления (например, коридоры в квартирах, чуланы), а также помещений, входящих в состав общего имущества – лестничных маршей, лестничных клеток, подвалов и т.п. Очевидно, что подъезды являются отапливаемыми, даже если в них отсутствуют трубопроводы или радиаторы системы отопления – например, при температуре уличного воздуха зимой –30°С, в подъезде температура воздуха выше, и эта повышенная температура обеспечивается именно за счет конвективного теплообмена.
3) Передача тепла излучением
Этот вид теплопередачи заключается в передаче тепла от источника к потребителю, находящемуся в зоне прямой видимости, при отсутствии непосредственного физического контакта. Тепло передается посредством излучения через оптически проницаемую среду.
Для понимания сути теплопередачи излучением можно рассмотреть передачу тепла от Солнца к Земле. Понятно, что наиболее заметно излучение при очень высокой температуре источника тепла. Излучение от элементов системы внутридомовой системы отопления менее значительно, чем от Солнца, но все-таки имеется. Невооруженным взглядом увидеть это излучение невозможно, но при использовании специальных приборов – тепловизоров – его прекрасно видно.
Немаловажно понимать, что источником тепла для отопления помещения МКД является не конкретно радиатор отопления, а вся внутридомовая система отопления дома в целом, каждый ее элемент, к которым, в числе прочих, относятся и радиаторы.
Пункт 6 Правил содержания общего имущества в МКД, утв. ПП РФ от 13.08.2006 N 491 (далее – Правила 491) устанавливает: «6. В состав общего имущества включается внутридомовая система отопления, состоящая из стояков, обогревающих элементов, регулирующей и запорной арматуры, коллективных (общедомовых) приборов учета тепловой энергии, а также другого оборудования, расположенного на этих сетях».
Из данной нормы следует, что сам по себе радиатор отопления не является теплопотребляющей установкой (энергопринимающим устройством), поскольку он является лишь частью внутридомовой системы отопления. Поэтому заявления о наличии или отсутствии в конкретном помещении МКД теплопотребляющих устройств несостоятельны, так как теплопотребляющей установкой (в том числе, в терминологии Федерального закона от 27.07.2010 N190-ФЗ) является вся внутридомовая система отопления дома, предназначенная для обеспечения нормативной температуры воздуха во всех помещениях дома.
Коммунальная услуга по отоплению является особым видом коммунальной услуги, важнейшее отличие этой коммунальной услуги от других заключается в отсутствии конкретной точки потребления услуги. Например, для водоснабжения определяется точка водоразбора, для электроснабжения определяется точка подключения электрооборудования, а для отопления точки потребления услуги не определяется.
При этом исключить теплоотдачу на отдельных участках теплосети невозможно. Применение изолирующих материалов может снизить эту теплоотдачу, но довести ее до нуля невозможно. Тепло, в том числе, распространяется через стены между помещениями МКД и через наружные стены дома. Например, обследования энергоэффективности дома проводятся с помощью тепловизоров – осмотр наружных стен дома через тепловизор дает наглядное представление о том, что тепло излучается как через неплотности (швы между панелями, щели в окнах и дверях), так и непосредственно через стены.
Поскольку тепло передается от более нагретого тела к менее нагретому, при этом существуют несколько способов теплопередачи, среди которых большую роль играет конвекция, позволяющая осуществлять теплообмен в отсутствие непосредственного физического контакта, вне зон прямой видимости между источником и потребителем тепла, из указанных обстоятельств следует, что между помещениями дома идет постоянный теплообмен, в том числе помещения, вообще не оборудованные источниками тепла, не оборудованные хоть какими-то элементами внутридомовой системы отопления, все равно получают тепло из других помещений дома – как через стены и перегородки, так и с нагретыми воздушными массами через отверстия и неплотности. Указанные физические особенности используются, в том числе, при проектировании систем отопления домов – например, отопление подвалов, необходимое для недопущения образования влаги (росы) на металлических трубах, что способствует коррозии этих труб, осуществляется не путем размещения в них радиаторов отопления, а путем оборудования специальных продухов, обеспечивающих циркуляцию через подвальные помещения нагретого воздуха, отапливающего эти помещения.
Отопление с точки зрения жилищного законодательства РФ
В силу особых физических свойств тепла определен особый порядок расчета объема потребления теплоэнергии на отопление, отличный от других коммунальных услуг.
Жилищное законодательство РФ рассматривает весь МКД как единый теплотехнический объект, в который поступает теплоэнергия с целью отопления помещений этого дома – и жилых, и нежилых помещений, и помещений в составе общего имущества. Тепло распространяется внутри дома от всех элементов системы отопления, от каждого ее участка, и распространяется по всем помещениям, независимо от наличия или отсутствия в конкретных помещениях радиаторов отопления, трубопроводов (стояков или лежаков) системы отопления, их изолированности.
Как уже отмечено выше, в соответствии с п.6 Правил 491 обогревающие элементы (радиаторы) и трубопроводы (стояки) являются частями системы отопления, которая относится к общему имуществу. В силу прямого указания части 4 статьи 37 ЖК РФ выдел в натуре долей в праве собственности на общее имущество недопустим, а следовательно, нельзя признавать исключительное право собственности собственников отдельных помещений на отдельные элементы внутридомовой системы отопления.
Поскольку внутридомовая система отопления является неделимой, входит в состав общего имущества и предназначена для обеспечения нормальной температуры воздуха во всех помещениях МКД, при этом к внешним сетям теплоснабжения подключается именно внутридомовая система отопления, то именно эта система отопления и является теплопотребляющей установкой, а вовсе не ее отдельные элементы (в том числе радиаторы), размещенные в тех или иных помещениях дома.
Тепло не может не потребляться в отдельных, обособленных помещениях, оно потребляется абсолютно во всех без исключения помещениях, в том числе в помещениях, входящих в состав общего имущества – именно исходя из принципа обеспечения нормального температурного режима во всех без исключения помещениях МКД проектируются системы отопления таких домов.
Определить, сколько конкретно теплоэнергии потреблено в тех или иных жилых и нежилых помещениях, а сколько тепла потреблено в помещениях из состава общего имущества, с технической точки зрения крайне затруднительно. Именно поэтому абзац 2 пункта 40 Правил 354 устанавливает: «Потребитель коммунальной услуги по отоплению вне зависимости от выбранного способа управления многоквартирным домом вносит плату за эту услугу совокупно без разделения на плату за потребление указанной услуги в жилом или нежилом помещении и плату за ее потребление в целях содержания общего имущества в многоквартирном доме».
Из приведенной нормы следует два вывода:
1) Каждый потребитель обязан оплачивать не только тот объем теплоэнергии, который потреблен непосредственно в его помещении, но и оплачивать теплоэнергию, потребленную в целях содержания общего имущества. То есть, даже если предположить, что в помещении, принадлежащем потребителю, теплоэнергия на отопление не потребляется, такой потребитель все равно обязан оплатить долю в стоимости теплоэнергии, потребленной в целях содержания общего имущества.
2) Жилищное законодательство не содержит формул, позволяющих отдельно рассчитать объем теплоэнергии, потребленной в помещении потребителя, и отдельно рассчитать объем теплоэнергии, потребленной в целях содержания общего имущества. Объем теплоэнергии на отопление, подлежащий оплате потребителем, рассчитывается совокупно, без разделения на индивидуальное и общедомовое потребление.
Необходимо обратить внимание, что для случая, когда МКД оборудован ОПУ тепла и все (100%!) помещений дома (и жилые, и нежилые!) оборудованы ИПУ тепла, расчет стоимости отопления ведется по формуле 3.3 Приложения 2 к Правилам 354, и в этом случае объем теплоэнергии, подлежащий оплате потребителем, складывается из объема, определенного по ИПУ, и объема, определенного как разница между ОПУ и суммой ИПУ, распределенного среди жилых и нежилых помещений дома пропорционально их площади. Эту вторую составляющую условно можно считать объемом теплоэнергии в целях содержания общего имущества, она даже обозначается в формуле 3.3 Приложения 2 к Правилам 35 символом «VОДН», хотя и не называется именно как «теплоэнергия на общедомовые нужды (ОДН)», поскольку такой коммунальной услуги не существует, и плата за отопление в соответствии с ранее процитированным абзацем 2 пункта 40 Правил 354 вносится совокупно, без разделения на составляющие.
Кроме того, важно отметить следующие имеющие существенное значение положения Правил 354:
1) абсолютно все формулы расчета платы за отопление, утвержденные Правилами 354, устанавливают одинаковый порядок расчета стоимости отопления как для жилых, так и для нежилых помещений;
2) во всех формулах расчета платы за отопление, предусмотренных Правилами 354 для случаев наличия ОПУ (формулы 3, 3.1, 3.3), и в формуле расчета корректировки платы за отопление (формула 3.2) используется величина «общая площадь всех жилых и нежилых помещений в многоквартирном доме», обозначенная «Sоб».
Из вышесказанного следует, что действующее жилищное законодательство РФ устанавливает в качестве принципов расчета стоимости отопления:
1) Принцип распределения всего объема теплоэнергии, потребленной в МКД на отопление, среди собственников всех жилых и нежилых помещений, пропорционально площади указанных помещений;
2) Принцип единообразия порядка расчета стоимости отопления для жилых и нежилых помещений;
3) Использование в расчетах общей площади всех помещений дома – как жилых, так и нежилых (за исключением площади помещений из состава общего имущества), независимо от технических характеристик элементов внутридомовой системы отопления в конкретных помещениях, в том числе таких характеристик, как наличие или отсутствие в помещениях радиаторов отопления, количество радиаторов, наличие или отсутствие в помещениях трубопроводов (стояков или лежаков), наличие или отсутствие изоляции на указанных трубопроводах.
Приведенную позицию подтверждает Верховный суд РФ, в Решении от 25.04.2018 N АКПИ18-146 указывая:
«Отопление является одним из видов коммунальных услуг и предусматривает подачу по централизованным сетям теплоснабжения и внутридомовым инженерным системам отопления тепловой энергии, обеспечивающей поддержание в жилом доме, в жилых и нежилых помещениях в многоквартирном доме, в помещениях, входящих в состав общего имущества в многоквартирном доме, нормальной температуры воздуха. Потребитель коммунальной услуги по отоплению согласно абзацу второму пункта 40 Правил вносит плату за эту услугу совокупно без разделения на плату за потребление указанной услуги в жилом или нежилом помещении и за содержание общего имущества в многоквартирном доме. Данное правовое регулирование соответствует действующему законодательству.
…
Предусмотренный порядок расчета размера платы за коммунальную услугу по отоплению обусловлен общим принципом распределения объема тепловой энергии, израсходованного на обеспечение нормативной температуры воздуха в помещениях многоквартирного дома, и, как следствие, распределения размера платы за коммунальную услугу по отоплению пропорционально площади помещений в многоквартирном доме. Определено это тем, что многоквартирный дом отапливается целиком, как единый объект с учетом сохранения (обеспечения) теплового баланса всего жилого здания.
…
Услуга по отоплению предоставляется как для индивидуального жилого помещения, так и для общего имущества многоквартирного дома. Отказ от индивидуального потребления услуги отопления не прекращает потребление услуги теплоснабжения на общедомовые нужды…».
Определением от 24.11.2017 № 302-ЭС17-17003 ВС РФ подтвердил правильность выводов АС Восточно-Сибирского округа, который в Постановлении от 03.08.2017 по делу №А19-7954/2016 установил:
«В письме от 02.09.2016 № 28483-АЧ/04 Министерства строительства и жилищно-коммунального хозяйства Российской Федерации, разъяснено, что в соответствии с пунктом 42.1 и 43 Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных постановлением Правительства Российской Федерации от 06.05.2011 № 354 (далее — Правила № 354), а также в соответствии с показателем площади помещений, используемым для определения размера платы за коммунальную услугу по отоплению в расчетных формулах приложения № 2 к Правилам № 354, размер платы за коммунальную услугу по отоплению подлежит определению в одинаковом установленном Правилами № 354 порядке (с применением соответствующих расчетных формул) во всех жилых и нежилых помещениях многоквартирного дома, вне зависимости от условий отопления отдельных помещений в многоквартирном доме, в том числе в отсутствии обогревающих элементов, установленных в помещении, присоединенных к централизованной внутридомовой инженерной системе отопления, при подключении многоквартирного дома к централизованной системе теплоснабжения».
Важно обратить внимание, что действующее жилищное законодательство РФ не содержит понятия «отапливаемое помещение», не определяет это понятие, не устанавливает критериев отнесения помещений к отапливаемым или неотапливаемым.
Минстрой России многократно разъяснял, что порядок расчета стоимости отопления одинаков для всех жилых и нежилых помещений МКД, не зависит от наличия или отсутствия радиаторов в этих помещениях, при этом отнесение помещений к отапливаемым или неотапливаемым с целью разрешения вопроса правомерности предъявления к оплате собственникам таких помещений теплоэнергии на отопление не основано на законе, поскольку оплата отопления должна осуществляться всеми без исключения собственниками помещений в доме.
В письме от 15.09.2017 N 33300-ОО/04 Минстрой указывает:
«В связи с тем, что многоквартирный дом отапливается в целом, как единый объект, начисление платы за отопление в помещениях, располагающихся в многоквартирном доме, осуществляется в соответствии с пунктами 42(1), 43 Правил №354.
Размер платы за коммунальную услугу зависит от площади помещения и тарифа на тепловую энергию… Начисление платы за отопление для собственников нежилых помещений осуществляется в соответствии с положениями Правил № 354».
В письме от 25.08.2017 N 30295-ОО/04 Минстрой указывает:
«Потребитель коммунальной услуги по отоплению вне зависимости от выбранного способа управления многоквартирным домом в соответствии с пунктом 40 Правил вносит плату за эту услугу совокупно без разделения на плату за потребление указанной услуги в жилом или нежилом помещении и плату за ее потребление в целях содержания общего имущества в многоквартирном доме.
…
В многоквартирном доме, который оборудован коллективным (общедомовым) прибором учета тепловой энергии и в котором не все жилые или нежилые помещения оборудованы индивидуальными и (или) общими (квартирными) приборами учета (распределителями) тепловой энергии, размер платы за коммунальную услугу по отоплению в помещении определяется по формулам 3, 3(1) и 3(2) приложения № 2 к Правилам исходя из показаний коллективного (общедомового) прибора учета тепловой энергии».
В письме от 11.08.2017 N 28569-ДБ/04 Минстрой указывает:
«В многоквартирных домах, оборудованных общим прибором учета тепловой энергии, но в котором не все жилые и не жилые помещения оборудованы индивидуальными приборами учета тепловой энергии, рассчитать количество потраченной тепловой энергии на индивидуальное потребление и потребление на общедомовые нужды в таком многоквартирном доме не представляется возможным, расчет размера платы осуществляется исходя из суммарного объема (количества) потребленной за расчетный период тепловой энергии, определенного по показаниям коллективного (общедомового) прибора учета тепловой энергии, которым оборудован многоквартирный дом, пропорционально площади жилого (нежилого) помещения.
Следует отметить, что данный подход связан с тем, что многоквартирный дом отапливается в целом, как единый объект.
…
Необходимо отметить, что официальное определение «отапливаемое помещение» отсутствует в законодательстве…
В силу физических свойств тепловой энергии, на поддержание определенной температуры воздуха в помещении влияют такие конструктивные и технические параметры многоквартирного дома, как материал стен, крыши, объем жилых помещений, площадь ограждающих конструкций, окон и т.д.
Следовательно, может возникнуть ситуация, при которой в помещении, в котором непосредственно не установлены отопительные приборы, поддерживается температура, идентичная температуре смежных отапливаемых помещений.
Таким образом, не представляется возможным определить неотапливаемое помещение и вычленить его площадь для определения отличного от установленного размера платы за коммунальную услугу по отоплению.
…
Обращаем Ваше внимание, что согласно подпункту «в» пункта 35 Правил № 354 потребитель не вправе самовольно демонтировать или отключать обогревающие элементы, предусмотренные проектной и (или) технической документацией на многоквартирный или жилой дом…».
В письме от 02.09.2016 N 28483-АЧ/04 Минстрой указывает:
«В соответствии с пунктом 42.1 и 43 Правил N 354, а также в соответствии с показателем площади помещений, используемым для определения размера платы за коммунальную услугу по отоплению в расчетных формулах приложения N 2 к Правилам N 354, размер платы за коммунальную услугу по отоплению подлежит определению в одинаковом установленном Правилами N 354 порядке (с применением соответствующих расчетных формул) во всех жилых и нежилых помещениях многоквартирного дома, вне зависимости от условий отопления отдельных помещений в многоквартирном доме, в том числе в отсутствии обогревающих элементов, установленных в помещении, присоединенных к централизованной внутридомовой инженерной системе отопления, при подключении многоквартирного дома к централизованной системе теплоснабжения» (Примечание > > >).
Последствия Постановления Конституционного суда
КС РФ, провозглашая Постановление от 10.07.2018 № 30-П, указал:
«Некоторые положения данных Правил [354] фактически привели к поощрению недобросовестного поведения части потребителей… Отсутствие экономических стимулов к обеспечению сохранности счетчиков является препятствием к достижению приоритетных целей и задач государства по энергосбережению. Из-за одного или немногих пользователей, не поддерживающих счетчик в исправном состоянии, все остальные жильцы дома вынуждены оплачивать коммунальную услугу вне зависимости от реальных объемов потребления ими тепла…
Федеральному законодателю надлежит внести необходимые изменения в действующее правовое регулирование, предусмотрев более эффективный и справедливый порядок определения платы за тепловую энергию. До внесения этих изменений плата за отопление в многоквартирных домах со счетчиками тепла, где в отдельных помещениях не обеспечена их сохранность, должна исчисляться по модели, установленной абзацем 4 пункта 421 Правил предоставления коммунальных услуг. При этом для конкретных помещений, в которых соответствующие приборы неисправны или утрачены, вместо их показаний необходимо принимать в расчет норматив потребления коммунальной услуги по отоплению».
Необходимо отметить ряд любопытных деталей:
1. Суд рассмотрел случай, когда ИПУ тепла были установлены в помещениях МКД, а потом часть из них вышла из строя. Случай, когда такими ИПУ помещения не были оборудованы вообще, не рассматривался – то есть, для тех помещений, в которых ИПУ отопления никогда не было, порядок расчета остается прежним.
Следовательно, Постановление КС РФ должно привести к «разделению» установленного Правилами 354 порядка расчета платы за отопление в МКД, который оборудован ОПУ теплоэнергии и в котором не все помещения оборудованы ИПУ теплоэнергии, на два варианта: существующий порядок расчета сохраняется, если в каком-либо помещении МКД никогда не было ИПУ, и новый порядок расчета вводится для случая, если все помещения дома были оборудованы ИПУ, а потом в каких-либо из помещений ИПУ вышли из строя.
2. Суд установил необходимость использовать вместо показаний неисправного или утраченного ИПУ норматив потребления. Но поскольку плата вносится совокупно, норматив учитывает не только объем потребления тепла в помещении, но и объем потребления тепла на общедомовые нужды (ОДН). При этом формула 3.3 Приложения 2 к Правилам 354 устанавливает, что стоимость отопления складывается из стоимости отопления, потребленного непосредственно в помещении потребителя, и доли в стоимости объема теплоэнергии, рассчитанного как разность между общим объемом потребления теплоэнергии всем домом и суммой объемов тепла, потребленных в помещениях этого дома (условно назовем этот объем «отопление на ОДН»).
Таким образом, собственники помещений, ИПУ в которых вышли из строя, согласно порядку расчета, установленному КС РФ, обязаны оплачивать «отопление на ОДН» дважды: один раз в составе нормативного объема, второй раз – отдельно, в том же порядке, что и собственники помещений с ИПУ. Можно предположить, что таким образом осуществляется некое «наказание» недобросовестных собственников, допустивших неисправность или утрату ИПУ, однако, такое «наказание» не совсем согласуется с позицией КС РФ, предписавшего предусмотреть «более эффективный и справедливый порядок определения платы за тепловую энергию».
Важно отметить, что для потребителей, оплачивающих отопление по схеме «норматив + VОДН», создается экономический стимул для выхода из строя ОПУ теплоэнергии – ведь в случае утраты ОПУ такие потребители вместо объема «норматив + VОДН» начнут оплачивать только нормативный объем, а составляющая платы «VОДН» будет исключена. Интересно, намеренно ли Конституционный суд создал для потребителей, которых он сам же назвал недобросовестными (поскольку они не обеспечили сохранность ИПУ), экономический стимул для уничтожения ОПУ?
А может, КС предполагает, что должны утверждаться нормативы потребления теплоэнергии конкретно в помещениях МКД, без учета «отопления на ОДН»?
Но во-первых, порядок расчета такого норматива не предусмотрен законом (например, ПП РФ от 23.05.2006 N306 порядка установления и определения такого норматива не содержит). Во-вторых, с учетом описанных выше особенностей коммунальной услуги по отоплению это будет крайне затруднительно сделать – точно рассчитать, сколько тепла из общего объема, поступившего в дом, расходуется на отопление непосредственно помещений, а сколько расходуется на обогрев общего имущества, технически невозможно. Собственно, поэтому отопление оплачивается «совокупно без разделения на плату за потребление указанной услуги в жилом или нежилом помещении и плату за ее потребление в целях содержания общего имущества в многоквартирном доме». В случае же введения нормативов потребления «отопления помещений» и «отопления на ОДН» такие нормативы однозначно будут выбраны наугад и никакого физического смысла иметь не будут.
Дополнительно стоит заметить, что в связи с высокой политизированностью сферы ЖКХ и нежеланием органов госвласти каким-либо образом обострять ситуацию в этой сфере, во многих регионах России утверждены крайне низкие нормативы потребления коммунальных услуг, в связи с чем оплата теплоэнергии по нормативу может оказаться ниже, чем оплата по ИПУ. В таком случае ни о какой справедливости, конечно же, говорить нельзя.
3. В связи с тем, что неприменимость в расчетах показаний ИПУ теплоэнергии в случае отсутствия такого ИПУ хотя бы в одном помещении МКД признана Конституционным судом несправедливой (пусть пока только для случая выхода из строя ранее имеющихся ИПУ), при этом КС установил необходимость применения норматива потребления теплоэнергии для помещений, в которых ИПУ вышел из строя (и вопрос, что это за норматив – существующий сейчас и учитывающий совокупный объем потребления тепла и в помещении, и на ОДН, или все-таки некий новый норматив, который должен учитывать потребление тепла исключительно в помещении – остается открытым), возникновение проблемы разделения потребленной теплоэнергии на потребленную внутри помещения (и определенную по ИПУ или по нормативу) и потребленную при содержании и использовании общего имущества МКД («отопление на ОДН»), представляется если не неизбежным, то весьма вероятным. Если тенденция, заложенная в Постановлении КС РФ, будет сохранена, то впоследствии вполне возможно возникновение обязанности учета показаний ИПУ и в случае отсутствия ОПУ, и тогда определение и утверждение нормативов потребления «отопления помещений» и «отопления на ОДН» станет однозначно необходимо.
Как уже сказано ранее, сделать это будет крайне затруднительно. Кроме того, неизбежно возникнет вопрос, будет ли включаться «отопление на ОДН» в состав содержания жилья? И как отреагируют жильцы на повышение стоимости содержания в связи с таким включением? А ведь повышение стоимости содержания может быть и в два раза, и больше – учитывая, что примерно половину стоимости всех жилищно-коммунальных составляет стоимость отопления.
Заключение
В статье разъяснены принципы предоставления коммунальной услуги по отоплению помещений МКД – с точек зрения как законов физики, так и действующего законодательства РФ. Отопление является особым видом коммунальной услуги, его важнейшее отличие от других коммунальных услуг заключается в отсутствии конкретной точки потребления услуги, что порождает необходимость установления особого порядка расчета стоимости и объема потребления теплоэнергии на отопление. Именно этот особый порядок вызывает множество вопросов, в том числе неоднократно изучался вопрос, который рассмотрел Конституционный суд в Постановлении от 10.07.2018 № 30-П.
Постановление КС РФ представляется непродуманным. Судом не учтены технические особенности коммунальной услуги по отоплению, фактически признан несправедливым установленный в данный момент принцип распределения объема тепловой энергии, израсходованного на обеспечение нормативной температуры воздуха в помещениях дома, и распределения размера платы за коммунальную услугу по отоплению пропорционально площади помещений в МКД. Постановление КС РФ создает ряд вопросов, разрешение которых представляется непростым.
Весьма туманным остается механизм реализации этого решения. Фактически не отменяются действующие нормы, но вводится новая норма для случая утраты ИПУ на период, пока законодатель во исполнение Постановления КС РФ не внесет «необходимые изменения в действующее правовое регулирование, предусмотрев более эффективный и справедливый порядок определения платы за тепловую энергию».
Скачать Постановление КС РФ от 10.07.2018 № 30-П > > >
Что такое отопление, для чего нужно отопление — Блог о строительстве и ремонте
Что такое отопление, для чего нужно отопление.
Вопрос «что такое отопление» на первый взгляд кажется банальным и даже странным. Ведь каждому школьнику известно, для чего нужно отопление, что такое отопление и когда оно наиболее актуально. Тем не менее, все еще встречаются люди, которые не до конца понимают сути такого понятия как теплопотери и их неизбежности.
Самой первой системой отопления был костер в пещере древнего человека. С появлением огня человек понял, что с холодом можно бороться только теплом от огня, а с появлением первого так сказать жилья в виде пещер или палаток, — начал активно работать над сохранением этого тепла в своем жилище. Это стало началом такого модного в наше время направления человеческой деятельности, как энергосбережение. С расселением людей в холодные широты системы отопления совершенствовались, жилье утеплялось. Постоянно расширялся и расширяется до сегодняшнего времени «ассортимент» источников тепла, — от сжигания соломы, дерева и газа до энергии атома, солнца, инфракрасного излучения, паралельно расширяется и ассортимент материалов для утепления.
Что побудило и побуждает столь бурное развитие человеческой мысли и ради чего человек так много своего интеллекта вкладывал и вкладывает в это направление своей деятельности, в отопление? Ответ банален и прост — это обычный холод и извечное стремление человека к уюту и теплу в своем доме, как теперь принято говорить, к хорошему микроклимату в нем, к комфорту. А в настоящее время появился еще один стимул, — истощение и постоянное дорожание традиционных источников тепла.
Как известно, любое помещение предназначено для защиты от окружающей среды с его атмосферными явлениями, низкой или слишком высокой температурой, действием ветра и солнца. Состоит помещение, как тоже всем известно, из наружных ограждений, — окон, дверей, стен, крыш, полов, перекрытий и т.п. Каждое из этих ограждений имеет свои определенные свойства и способность удерживать или пропускать тепло. Когда в помещении есть любой источник тепла и мы хотим поддерживать в нем определенную температуру, а вне помещения температура значительно ниже, тогда тепло через наружные ограждения, вследствие разности температур выходит наружу. И чем больше эта разница, тем большее количество теплоты покидает здание. Это собственно и есть теплопотери помещения . Теплопотери можно уменьшить, улучшая качество материалов наружных ограждений или увеличивая их толщину, но такое улучшение или увеличение имеет определенный экономический и теплофизический предел целесообразности. Наружные ограждения должны «дышать», — впитывать и пропускать наружу влагу и газы. Теплопотери необратимы при любой толщине ограждения или его качестве, но человек во-первых, кроме тепла, нуждается в свежем воздухе, а во-вторых, вследствие своей жизнедеятельности сам выделяет тепло, влагу и различные газы. Собственно, теплопотери через удаление отработанного воздуха из помещения составляют существенную долю от общих теплопотерь и от этого никуда не денешься.
Теплопотери и отопление.
Итак, главная задача отопления — компенсировать все теплопотери помещения для поддержания в нем оптимальной температуры. Выражаясь по-научному, отопление — это обогрев помещений здания с целью компенсации в них теплопотерь и поддержания соответствующих температурных параметров.
Работа отопления характеризуется определенной периодичностью в течение года и переменным характером потребляемой мощности источника тепла. Это зависит, прежде всего, от метеорологических условий и климата местности, в которой расположено отапливаемое здание. Очевидно, что с понижением температуры наружного воздуха количество тепла, поступающего через отопление должно увеличиваться, а при повышении температуры наружного воздуха и влияния солнечной радиации, — наоборот, уменьшаться. И если в древности человек при необходимости мог подложить в костер дров, или потушить его, досыпать в печь угля или торфа, то современные системы отопления позволяют проводить процесс регулирования подачи тепла в помещение в автоматическом режиме, в зависимости от температуры наружного воздуха.
Разнообразие видов и систем отопления на сегодняший день очевидно. Очень бурно развиваются технологии и оборудование систем отопления, и это вызвано, в первую очередь экономическими факторами.
что это такое и принцип обогрева
Мы все уже привыкли к центральному отоплению в наших квартирах. Однако наши родители, возможно, еще помнят, что несколько десятилетий назад, квадратные метры в многоэтажных домах обогревали с помощью индивидуальных газовых колонок, а кое-где для этого использовались даже дровяные печи и «буржуйки». Все это говорит о том, что все-таки для нашей страны центральное отопление явление достаточно новое, и появилось оно во времена СССР.
Однако в первое время да во многих местах до сих пор такой вид обогрева жилища мало устраивает население. И связано это, в первую очередь, с невозможностью его регулировки. Так, при включении обычно в квартирах очень жарко, хотя зима толком еще и не наступила. А вот при сильных морозах тепла часто не хватает, особенно на верхних этажах.
Что такое центральное отопление, его прошлое и будущее
Не секрет, что восемьдесят процентов современного жилого фонда (здания, построенные до 2000 года) обеспечены именно таким типом центрального отопления, то есть без возможности регулировки. Более того, цена такого обогрева постоянно растет, плюс приходится нести дополнительные расходы за тепло, если в томе не установлены специальные счетчики – за обогрев мест общего пользования, например. Есть конечно и улучшения, но начались перемены относительно недавно, и ситуация меняется крайне медленно. Но если вам надоело чего-то хорошего ждать от коммунальщиков, то кое-что вам вполне по силам сделать и самим. Об этом мы также расскажем в данной статье.
Но сначала более подробно о том, какая ситуация складывается сейчас. Многие, наверное, обратили внимание, что примерно в январе-феврале радиаторы буквально раскаляются, вследствие чего воздух в квартире становится абсолютно сухим. От этого, кстати, не только трудно дышать, но и вянут цветы. А если открыть форточку, то в жилище проникнет ледяной воздух, и комфортней точно не станет. Задумывались ли вы, почему так получается?
Однако такая ситуация только на первый взгляд может кому-то показаться непонятной. Все дело в том, что вся такая система обогрева регулируется централизовано. Так, на центральной ТЭЦ оператор регулирует подачу горячей воды в трубы в зависимости от температуры воздуха. А далее теплоноситель поступает в отдельные котельные в районах, где его температура уже регулируется отдельно для каждого дома, но также в зависимости от температуры воздуха.
Радиатор старого образца
При этом важно понимать, что за минимум по нормативам берутся цифры для самых крупных зданий населенного пункта, например, школ и больниц. А связано это с тем, что на таких объектах требуется и больше энергии, чтобы протопить большое здание и получить комфортную температуру. Вот и получается, что в таких зданиях температура получается оптимальная, а в домах, расположенных рядом – очень жарко.
Более того, ситуация в отопительных системах каждого многоэтажного дома – идентичная. То есть, чтобы нормально обогреть высокие этажи приходится сильно топить, в результате чего на первых этажах становится слишком тепло и даже жарко.
В свете всего вышесказанного можно прийти к однозначному выводу: старая система центрального отопления малопригодна для условий современного густонаселенного города. И даже если где-то и была предусмотрена возможность индивидуальной регулировки – простой вентиль – то с годами эксплуатации запорные устройства просто вышли из строя либо были удалены из-за постоянных протеканий. Такая система централизованного обогрева никак индивидуальные потребности населения в тепле, конечно, не учитывает. Ее еще называют «системой без отрицательной обратной связи».
Положительные стороны
Но на деле не все так плохо, как могло быть; и обладает центральное отопление своими плюсами. Прежде всего, центральная система отопления позволяет использовать самое дешевое топливо, доступное в том или ином регионе. Так, во многих городских котельных до сих пор используют мазут или каменный уголь, а также и их более дешевые аналоги вроде отходов от лесопроизводства. Но все чаще можно встреть подстанции, работающее на газу. Это топливо более экономичное; к тому же обходится это дешевле, чем подключать к газовому обогреву каждую квартиру.
Следующий плюс, которым обладает система центрального отопления, это довольно высокая надежность – если соответствующие службы все вовремя делают, конечно. А потому если все мероприятия, связанные с ремонтом и испытанием системы прошли в срок, вы можете быть уверены почти на сто процентов в том, что в холодное время в доме будет тепло.
Экологическая обстановка в вашем районе не ухудшается, поскольку обычно котельные используют более или менее безопасные для окружающей среды виды топлива.
Ну и последний плюс, который вытекает из уже явного минуса – невозможности регулировки. Мы говорим сейчас о простоте использования. И вам действительно не нужно ни о чем задумываться, если вы пользуетесь централизованным обогревов. Ведь радиаторы всегда выдают одну и ту же температуру, обеспечивая дом теплом.
Что изменилось к лучшему
Современные многоэтажные дома все чаще проектируются так, чтобы предусмотреть возможность регулируемого потребления отопления. И в принципе хозяин каждой квартиры может сам определить для себя потребительскую норму. Более того, современный отопительный узел – это целая система энергосберегающего оборудования, автоматика в которой контролирует и корректирует подачу тепла в дом. Вообще, это называется индивидуальный тепловой пункт, но есть такой пока не в каждом новом доме.
Кроме того, в центральном отоплении используются и новые котлы, с возможностью контроля и регулировки давления и температуры на входе в дом, и на выходе из него. А в самом доме коммунальщики все чаще устанавливают тепловые датчики, при помощи которых регулируют режим теплоснабжения. Но и в каждой современной квартире уже устанавливает специальный клапан для регулировки режима теплоподачи.
Замена радиаторов отопления
Все это говорит о том, что современные системы центрального отопления практически полностью отвечают потребностям большинства жильцов за счет:
- возможности хотя бы минимальной, но регулировки;
- простоты использования;
- надежности;
- безопасности.
Такие преимущества часто заставляют задуматься граждан перед тем, как перейти на автономный обогрев в квартире.
YouTube responded with an error: The request cannot be completed because you have exceeded your <a href=»/youtube/v3/getting-started#quota»>quota</a>.
Система парового отопления может быть гравитационной или принудительного типа. В гравитационной системе паропровод и труба, по которой проходит конденсат, находится под наклоном. На пар и на жидкость действуют силы гравитации, которые заставляют теплоноситель и…Читать далее »
При массовом строительстве многоквартирных домов в Ленинграде требовалось использовать экономичную и эффективную систему отопления. Остановились на однотрубной схеме парового обогрева. В дальнейшем дома перевели на систему жидкостного отопления. Из-за своей…Читать далее »
Паровое отопление разрешено обустраивать только в частных коттеджах под ответственность хозяина. В многоквартирных домах данная система обогрева запрещена по причине частой аварийности. Чтобы избежать внештатных ситуаций, необходимо сделать определённые расчёты,…Читать далее »
В загородных домах, в которых проживание в зимний период осуществляется непостоянно, хозяева наведываются время от времени, удобнее установить паровое отопление. Главное преимущество обогрева заключается в том, что при включении система нагревается быстро, температура…Читать далее »
В гаражах, которые находятся гаражных обществах, редко проводят централизованное отопление. Автолюбители для обогрева приспосабливают различные устройства, которые могут провоцировать пожар. Обогревают помещение калориферами и воздушными пушками, но они снижают…Читать далее »
Традиционно в банях отводят 3 помещения: парилку, моечную и комнату отдыха. Самым простым отопительным агрегатом является печка-каменка. Она состоит из камеры сгорания, на которой укладывается металлический лист с камнями. Камни нагреваются и отдают тепло помещению. Жар…Читать далее »
Для обогрева дачи паровое отопление является оптимальным вариантом. Схема несложная. Её вполне можно собрать самостоятельно. Необходимо лишь правильно подобрать оборудование к системе. Преимущество отопления состоит в том, что магистраль легко эксплуатировать. При…Читать далее »
На приусадебных участках дачники и подворцы часто устанавливают теплицы. Уже ранней весной в них начинают высаживать овощи, зелень, цветы. В открытом грунте высадку производят в середине или в конце мая, в зависимости от региона. Чтобы рассада получала достаточно тепла, в…Читать далее »
Система отопления предполагает содержания в магистрали теплоносителя. При паровом обогреве теплоносителем является пар. Для его циркуляции в трубах используют принудительную или гравитационную методику монтажа. Чтобы повысить эффективность циркуляции теплоносителя,…Читать далее »
В небольших дачных домиках, которые состоят из одной комнаты. Используют прямое электрическое отопление. Обогрев производится отдельным электрическим прибором. В частных домах, которые имеют несколько комнат, обустраивают паровую или водяную систему отопления. Она…Читать далее »
определение отопления по The Free Dictionary
n. 1. Физикаа. Форма энергии, связанная с кинетической энергией атомов или молекул и способная передаваться через твердые и жидкие среды посредством теплопроводности, через жидкие среды посредством конвекции и через пустое пространство посредством излучения.
г. Передача энергии от одного тела к другому в результате разницы температур или изменения фазы.
2. Ощущение или восприятие такой энергии, как тепло или жар.
3. Аномально высокая температура тела, как от жара.
4.а. Состояние горячего.
г. Степень тепла или жара: горелка была на слабом огне.
5.а. Обогрев комнаты или здания печью или другим источником энергии: Дом стоил дешево, но тепло было дорого.
г. Печь или другой источник тепла в комнате или здании: когда мы вернулись с работы, отопление было включено.
6. Жаркое время года; период жаркой погоды.
7.а. Интенсивность по страсти, эмоциям, цвету, внешнему виду или эффекту.
г. Самый напряженный или активный этап: пылающий бой.
г. Ощущение жжения во рту, вызванное пряным вкусом пищи.
8. Эструс.
9. Одно из попыток или попыток.
10.а. Спорт и игры Один из нескольких раундов соревнования, например гонки.
г. Предварительный конкурс для определения финалистов.
11. Неформальный Давление; стресс.
12. Сленга. Активизация деятельности полиции по преследованию преступников.
г. Полиция. Используется с .
13. Сленг Негативные комментарии или враждебная критика: жар прессы вынудил сенатора уйти в отставку.
14. Сленг Огнестрельное оружие, особенно пистолет.
v. обогрев , обогрев , обогрев
Словарь английского языка American Heritage®, пятое издание. Авторские права © 2016 Издательская компания Houghton Mifflin Harcourt.Опубликовано Houghton Mifflin Harcourt Publishing Company. Все права защищены.
Урок физики
Ранее в этом уроке было дано пять словарных определений температуры. Их было:
- Степень жара или холода тела или окружающей среды.
- Мера тепла или холода предмета или вещества по отношению к некоторому стандартному значению.
- Мера средней кинетической энергии частиц в образце вещества, выраженная в единицах или градусах, обозначенных на стандартной шкале.
- Мера способности вещества или, в более общем смысле, любой физической системы передавать тепловую энергию другой физической системе.
- Любая из различных стандартизированных числовых мер этой способности, например шкала Кельвина, Фаренгейта и Цельсия.
Как уже упоминалось, первые два пункта имеют довольно очевидное значение. Третий пункт — тема предыдущей страницы этого урока. Пятым пунктом было определение, с которого мы начали, когда обсуждали температуру и работу термометров; это была тема второй страницы этого урока.Это оставляет нам четвертый пункт — определение температуры с точки зрения способности вещества передавать тепло другому веществу. Эта часть Урока 1 посвящена пониманию того, как относительная температура двух объектов влияет на направление передачи тепла между двумя объектами.
Представьте себе очень горячую кружку кофе на столешнице вашей кухни. В целях обсуждения мы скажем, что чашка кофе имеет температуру 80 ° C и что окружающая среда (столешница, воздух на кухне и т. Д.)) имеет температуру 26 ° C. Как вы думаете, что произойдет в этой ситуации? Я подозреваю, что вы знаете, что чашка кофе со временем будет постепенно остывать. При температуре 80 ° C кофе пить не посмеет. Даже кофейная кружка будет слишком горячей, чтобы ее можно было дотронуть. Но со временем и кофейная кружка, и кофе остынут. Скоро он будет пригоден для питья. А если устоять перед соблазном выпить кофе, в конечном итоге он достигнет комнатной температуры. Кофе охлаждается от 80 ° C до примерно 26 ° C.Так что же происходит с течением времени, чтобы кофе остыл? Ответом на этот вопрос могут быть как макроскопические , так и макрочастицы в природе.
На макроскопическом уровне мы бы сказали, что кофе и кружка передают тепло окружающей среде. Эта передача тепла происходит от горячего кофе и горячей кружки к окружающему воздуху. Тот факт, что кофе снижает температуру, является признаком того, что средняя кинетическая энергия его частиц уменьшается.Кофе теряет энергию. Кружка тоже понижает температуру; средняя кинетическая энергия его частиц также уменьшается. Кружка тоже теряет энергию. Энергия, теряемая кофе и кружкой, передается в более холодную среду. Мы называем эту передачу энергии от кофе и кружки окружающему воздуху и столешнице теплом. В этом смысле тепло — это просто передача энергии от горячего объекта к более холодному.
Теперь давайте рассмотрим другой сценарий — банку с холодным напитком, установленную на той же кухонной стойке.В целях обсуждения мы скажем, что крышка и банка, в которой она содержится, имеют температуру 5 ° C, а окружающая среда (столешница, воздух на кухне и т. Д.) Имеет температуру 26 ° C. Что произойдет с холодной банкой со временем? Еще раз, я подозреваю, что вы знаете ответ. И холодная закуска, и контейнер нагреются до комнатной температуры. Но что заставляет эти объекты, температура которых ниже комнатной, повышать свою температуру? Ускользает ли холод от шипучки и ее контейнера? Нет! Не существует таких вещей, как — холодный уход или — утечка .Скорее, наше объяснение очень похоже на объяснение, используемое для объяснения того, почему кофе остывает. Есть теплообмен.
Со временем температура крышки и контейнера повышается. Температура повышается с 5 ° C до почти 26 ° C. Это повышение температуры является признаком того, что средняя кинетическая энергия частиц внутри хлопка и контейнера увеличивается. Чтобы частицы внутри хлопка и контейнера увеличили свою кинетическую энергию, они должны откуда-то получать энергию.Но откуда? Энергия передается из окружающей среды (столешница, воздух на кухне и т. Д.) В виде тепла. Как и в случае с охлаждающей кофейной кружкой, энергия передается от объектов с более высокой температурой к объекту с более низкой температурой. Еще раз, это известно как тепло — передача энергии от объекта с более высокой температурой к объекту с более низкой температурой.
Другое определение температурыОба этих сценария можно резюмировать двумя простыми утверждениями.Объект снижает свою температуру, выделяя энергию в виде тепла в окружающую среду. И объект увеличивает свою температуру, получая энергию в виде тепла от окружающей среды. И , разогревающий , и , охлаждающий объектов работают одинаково — за счет передачи тепла от объекта с более высокой температурой к объекту с более низкой температурой. Итак, теперь мы можем осмысленно переформулировать определение температуры. Температура — это мера способности вещества или, в более общем смысле, любой физической системы передавать тепловую энергию другой физической системе.Чем выше температура объекта, тем больше у него тенденция к передаче тепла. Чем ниже температура объекта, тем больше у него тенденция оказаться на принимающем конце теплопередачи.
Но, возможно, вы спрашивали: что происходит с температурой окружающей среды? Повышается ли температура столешницы и воздуха на кухне, когда кружка и кофе остывают? Уменьшается ли температура на столешнице и в воздухе на кухне, когда банка с крышкой нагревается? Ответ: да! Доказательство? Просто прикоснитесь к столешнице — она должна быть прохладнее или теплее, чем до того, как кофейная кружка или баночка были помещены на столешницу.А как насчет воздуха на кухне? Теперь представить убедительное доказательство этого немного сложнее. Тот факт, что объем воздуха в комнате такой большой и энергия быстро рассеивается от поверхности кружки, означает, что изменение температуры воздуха на кухне будет аномально небольшим. На самом деле будет пренебрежимо малым . Прежде чем произойдет заметное изменение температуры, должно быть намного больше теплопередачи.
При обсуждении охлаждения кофейной кружки столешница и воздух на кухне упоминались как окружение .В подобных дискуссиях по физике принято использовать мысленную структуру системы и окружения . Кофейная кружка (и кофе) будут рассматриваться как система , а все остальное во вселенной будет рассматриваться как окружение . Чтобы не усложнять задачу, мы часто сужаем диапазон окружения от остальной вселенной до тех объектов, которые непосредственно окружают систему. Такой подход к анализу ситуации с точки зрения системы и окружения настолько полезен, что мы будем применять этот подход до конца этой главы и следующей.
А теперь представим третью ситуацию. Предположим, что небольшая металлическая чашка с горячей водой помещена в большую чашку из пенополистирола с холодной водой. Предположим, что температура горячей воды изначально составляет 70 ° C, а температура холодной воды во внешней чашке изначально составляет 5 ° C. И давайте предположим, что обе чашки оснащены термометрами (или датчиками температуры), которые измеряют температуру воды в каждой чашке с течением времени. Как вы думаете, что произойдет? Прежде чем читать дальше, подумайте над вопросом и дайте какой-нибудь ответ.Когда холодная вода нагревается, а горячая — остывает, их температура будет одинаковой или другой? Будет ли холодная вода нагреваться до более низкой температуры, чем температура, до которой остывает горячая вода? Или по мере того, как происходит потепление и похолодание, будут ли их температуры пересекаться друг с другом ?
К счастью, это эксперимент, который можно провести, и на самом деле он проводился много раз. График ниже представляет собой типичное представление результатов.
Как видно из графика, горячая вода остыла примерно до 30 ° C, а холодная вода нагрелась примерно до такой же температуры. Тепло передается от высокотемпературного объекта (внутренняя емкость с горячей водой) к низкотемпературному объекту (внешняя емкость с холодной водой). Если мы обозначим внутреннюю чашу с горячей водой как , систему , то мы можем сказать, что существует поток тепла от системы к окружающей среде .Пока существует разница температур между системой и окружающей средой, между ними существует тепловой поток. Поначалу тепловой поток идет быстрее, о чем свидетельствует более крутой наклон линий. Со временем разница температур между системой и окружающей средой уменьшается, а скорость теплопередачи снижается. Это обозначается более пологим наклоном двух линий. (Подробная информация о скорости теплопередачи будет обсуждаться позже в этом уроке.) В конце концов, система и окружающая среда достигают одинаковой температуры, и теплопередача прекращается.Говорят, что именно в этот момент два объекта достигли теплового равновесия.
В нашей главе об электрических цепях мы узнали, что разница в электрическом потенциале между двумя местоположениями вызывает поток заряда по проводящему пути между этими местоположениями. Пока сохраняется разность электрических потенциалов, будет существовать поток заряда. Теперь в этой главе мы узнаем аналогичный принцип, связанный с потоком тепла.Разница температур между двумя местоположениями вызовет поток тепла по (теплопроводящему) пути между этими двумя местоположениями. Пока сохраняется разница температур, будет происходить поток тепла. Этот поток тепла продолжается до тех пор, пока два объекта не достигнут одинаковой температуры. Когда их температуры становятся равными, считается, что они находятся в тепловом равновесии, и поток тепла больше не происходит.
Этот принцип иногда называют нулевым законом термодинамики.Этот принцип был формализован в виде закона после того, как были открыты первый, второй и третий законы термодинамики . Но поскольку закон казался более фундаментальным, чем три ранее открытых, он был назван «нулевой закон » . Все объекты подчиняются этому закону — стремлению к тепловому равновесию. Он представляет собой ежедневную задачу для тех, кто хочет контролировать температуру своего тела, еды, напитков и своего дома. Мы используем лед и изоляцию, чтобы наши холодные напитки оставались холодными, и мы используем изоляцию и непрерывные импульсы микроволновой энергии, чтобы горячие напитки оставались горячими.Мы оборудуем наши автомобили, наши дома и офисные здания кондиционерами и вентиляторами, чтобы они оставались прохладными в теплые летние месяцы. И мы оборудуем эти же автомобили и здания печами и обогревателями, чтобы согревать их в холодные зимние месяцы. Всякий раз, когда температура какой-либо из этих систем отличается от температуры окружающей среды и не является полностью изолированной от окружающей среды (идеальная ситуация), тепло будет течь. Этот тепловой поток будет продолжаться до тех пор, пока система и окружающая среда не достигнут одинаковых температур.Поскольку эти системы имеют значительно меньший объем, чем окружающие, будут более заметные и существенные изменения температуры этих систем.
Теория калорийностиУченые давно задумались о природе тепла. В середине XIX века наиболее распространенным понятием тепла было то, что оно ассоциировалось с жидкостью, известной как калорийность. Известный химик Антуан Лавуазье полагал, что существует две формы калорийности — та, которая скрыта или хранится в горючих материалах, и другая, которая является ощутимой и наблюдаемой при изменении температуры.Для Лавуазье и его последователей сжигание топлива привело к выделению этого скрытого тепла в окружающую среду, где, как было замечено, это вызвало изменение температуры окружающей среды. Для Лавуазье и его последователей жар всегда присутствовал — либо в скрытой, либо в ощутимой форме. Если в горячем чайнике вода остыла до комнатной температуры, это объяснялось перетеканием калорий из горячей воды в окружающую среду.
Согласно теории теплоты, тепло составляло , материал по природе.Это была физическая субстанция. Было шт., . Как и все вещи в мире Лавуазье, калорийность была консервированным веществом. Подобно нашему современному взгляду на тепло, взгляд калориста заключался в том, что если калорийность выделялась одним объектом, то она была получена другим объектом. Общее количество калорий никогда не менялось; он просто переносился с одного объекта на другой и трансформировался из одного типа (скрытого) в другой (осмысленный). Но в отличие от нашего современного взгляда на тепло, калорийность была реальной физической субстанцией — жидкостью, которая могла перетекать от одного объекта к другому.И в отличие от наших современных взглядов, тепло всегда присутствовало в той или иной форме. Наконец, с современной точки зрения, тепло присутствует только при передаче энергии. Бессмысленно говорить о том, что тепло все еще существует, когда два объекта пришли в тепловое равновесие. Тепло — это не что-то, что содержится в объекте; скорее это что-то переданное между объектами. Когда передача прекращается, тепла больше не существует.
Падение теории калорийностиХотя всегда существовали альтернативы теории калорийности, она была наиболее распространенной до середины 19 века.Одним из первых вызовов теории калорийности стал англо-американский ученый Бенджамин Томпсон (он же граф Рамфорд). Томпсон был одним из первых ученых, которым поручили расточить стволы орудий для британского правительства. Томпсон был поражен высокими температурами, достигаемыми пушками, и стружкой, которая проливалась из пушек во время процесса бурения. В одном эксперименте он погрузил пушку в резервуар с водой во время процесса бурения и заметил, что тепло, выделяемое в процессе бурения, способно вскипятить окружающую воду в течение нескольких часов.Томпсон продемонстрировал, что это тепловыделение происходило в отсутствие каких-либо химических или физических изменений в составе пушки. Он объяснил возникновение тепла трением между пушкой и буровым инструментом и утверждал, что это не могло быть результатом перетекания жидкости в воду. В 1798 году Томпсон опубликовал статью, в которой оспаривалось мнение о том, что тепло — это сохраняемая жидкость. Он выступал за с механической точки зрения тепла, предполагая, что его происхождение связано с движением атомов, а не с переносом жидкости.
Английский физик Джеймс Прескотт Джоуль продолжил то, на чем остановился Томпсон, нанеся ряд роковых ударов по теории калорийности посредством серии экспериментов. Джоуль, в честь которого теперь названа стандартная метрическая единица измерения энергии, провел эксперименты, в которых он экспериментально связал количество механической работы с количеством тепла, передаваемого от механической системы. В одном эксперименте Джоуль позволил падающим весам вращать гребное колесо, которое было погружено в резервуар с водой.Справа изображен чертеж аппарата (из Викимедиа; общественное достояние). Падающие грузы действовали на гребное колесо, которое, в свою очередь, нагревало воду. Джоуль измерял как количество выполненной механической работы, так и количество тепла, полученного водой. Подобные эксперименты, демонстрирующие, что тепло может генерироваться электрическим током, нанесли еще один удар по мысли о том, что тепло — это жидкость, которая содержится в веществах и всегда сохраняется.
Как мы подробно узнаем в следующей главе, объекты обладают внутренней энергией.В химических реакциях часть этой энергии может выделяться в окружающую среду в виде тепла. Однако эта внутренняя энергия не является материальной субстанцией или жидкостью, содержащейся в объекте. Это просто потенциальная энергия, хранящаяся в связях, которые удерживают частицы внутри объекта вместе. Тепло или тепловая энергия — это форма, которой эта энергия обладает, когда она передается между системами и окружающей средой . В тепле нет ничего материального. Это не консервируемая субстанция и не жидкость.Тепло — это форма энергии, которая может передаваться от одного объекта к другому или даже создаваться за счет потери других форм энергии.
Итак, температура — это мера способности вещества или, в более общем смысле, любой физической системы передавать тепловую энергию другой физической системе. Если два объекта — или система и ее окружение — имеют разную температуру, то у них разная способность передавать тепло. Со временем будет перетекать энергия от более горячего объекта к более холодному.Этот поток энергии называется теплом. Тепловой поток заставляет более горячий объект остывать, а более холодный — нагреваться. Поток тепла будет продолжаться, пока они не достигнут той же температуры. В этот момент два объекта установили тепловое равновесие друг с другом.
В следующей части этого урока мы исследуем механизм теплопередачи. Мы рассмотрим различные методы, с помощью которых тепло может передаваться от объекта к объекту или даже от одного места внутри объекта к другому.Мы узнаем, что макроскопическое можно объяснить с точки зрения микроскопического.
Проверьте свое понимание
1. Для каждого из следующих обозначений системы и окружающей среды укажите направление теплового потока: от системы к окружающей среде или от окружающей среды к системе.
Система | Окрестности | Dir’n of Heat Transfer | |
а. | Гостиная (T = 78 ° F) | Наружный воздух | |
г. | Гостиная | Чердак | |
г. | Чердак | Наружный воздух |
2. Учитель химии утверждает, что теплосодержание конкретного вещества составляет 246 кДж / моль. Учитель химии утверждает, что вещество содержит тепло? Объясните, что подразумевается под этим утверждением.
3.Объясните, почему высококачественные термосы имеют вакуумную подкладку, которая является основным компонентом их изоляционных свойств.
Отопление | процесс или система
Отопление , процесс и система повышения температуры замкнутого пространства с основной целью обеспечения комфорта жителей. Регулируя температуру окружающей среды, отопление также служит для поддержания структурных, механических и электрических систем здания.
В термоэлектрической генерирующей системе источник тепла — обычно работающий на угле, масле или газе — используется внутри котла для преобразования воды в пар высокого давления. Пар расширяется и вращает лопатки турбины, которая вращает якорь генератора, вырабатывая электроэнергию. Конденсатор преобразует оставшийся пар в воду, а насос возвращает воду в бойлер.
Encyclopædia Britannica, Inc.Историческое развитие
Самым ранним способом обогрева салона был открытый огонь.Такой источник, наряду с соответствующими методами, такими как камины, чугунные печи и современные обогреватели, работающие на газе или электричестве, известен как прямое отопление, поскольку преобразование энергии в тепло происходит на обогреваемом участке. Более распространенная форма отопления в наше время известна как центральное или косвенное отопление. Он заключается в преобразовании энергии в тепло в источнике вне, отдельно от обогреваемого объекта или объектов или расположенных внутри них; Получающееся тепло передается на объект через текучую среду, такую как воздух, вода или пар.
За исключением древних греков и римлян, большинство культур полагалось на методы прямого нагрева. Древесина была первым топливом, хотя в местах, где требовалось только умеренное тепло, таких как Китай, Япония и Средиземноморье, использовался древесный уголь (сделанный из дерева), потому что он производил гораздо меньше дыма. Дымоход, или дымоход, который сначала был простым отверстием в центре крыши, а затем поднимался прямо из камина, появился в Европе в 13 веке и эффективно устранял дым и испарения огня из жилого помещения.Закрытые печи, по-видимому, впервые использовались китайцами около 600 г. до н.э. и в конечном итоге распространились по России в северную Европу, а оттуда в Америку, где Бенджамин Франклин в 1744 году изобрел улучшенную конструкцию, известную как печь Франклина. Печи гораздо менее расходуют тепло, чем камины, потому что тепло огня поглощается стенками печи, которые нагревают воздух в комнате, а не пропускают вверх по дымоходу в виде горячих дымовых газов.
Центральное отопление, кажется, было изобретено в Древней Греции, но именно римляне стали лучшими инженерами-теплотехниками древнего мира с их системой гипокауста.Во многих римских зданиях полы из мозаичной плитки поддерживались колоннами внизу, которые создавали воздушные пространства или каналы. На участке, расположенном в центре всех отапливаемых комнат, сжигали древесный уголь, хворост и, в Британии, уголь, а горячие газы уходили под полы, нагревая их в процессе. Однако система гипокауста исчезла с упадком Римской империи, и центральное отопление было восстановлено только 1500 лет спустя.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчасЦентральное отопление снова стало использоваться в начале 19 века, когда промышленная революция вызвала увеличение размеров зданий для промышленности, жилых помещений и сферы услуг. Использование пара в качестве источника энергии предложило новый способ обогрева фабрик и заводов, когда пар передавался по трубам. Котлы, работающие на угле, подавали горячий пар в помещения с помощью стоячих радиаторов. Паровое отопление долгое время преобладало на североамериканском континенте из-за очень холодных зим.Преимущества горячей воды, которая имеет более низкую температуру поверхности и более мягкий общий эффект, чем пар, начали осознаваться примерно в 1830 году. В системах центрального отопления двадцатого века обычно используется теплый воздух или горячая вода для передачи тепла. В большинстве недавно построенных американских домов и офисов теплый воздух вытеснил пар, но в Великобритании и на большей части европейского континента горячая вода заменила пар в качестве предпочтительного метода отопления; канальный теплый воздух там никогда не был популярен. Большинство других стран приняли американские или европейские предпочтения в методах отопления.
Системы центрального отопления и топливо
Важнейшими компонентами системы центрального отопления являются устройства, в которых можно сжигать топливо для выработки тепла; среда, транспортируемая по трубам или каналам для передачи тепла в обогреваемые помещения; и излучающее устройство в этих пространствах для выделения тепла либо конвекцией, либо излучением, либо обоими способами. Принудительное распределение воздуха перемещает нагретый воздух в пространство с помощью системы воздуховодов и вентиляторов, которые создают перепады давления. Лучистое отопление, напротив, предполагает прямую передачу тепла от излучателя к стенам, потолку или полу замкнутого пространства независимо от температуры воздуха между ними; Излучаемое тепло устанавливает цикл конвекции во всем пространстве, создавая в нем равномерно нагретую температуру.
Температура воздуха, солнечное излучение, относительная влажность и конвекция влияют на конструкцию системы отопления. Не менее важным соображением является объем физической активности, который ожидается в конкретной обстановке. В рабочей атмосфере, в которой напряженная деятельность является нормой, человеческое тело выделяет больше тепла. В качестве компенсации температура воздуха поддерживается на более низком уровне, что позволяет рассеивать лишнее тепло тела. Верхний предел температуры 24 ° C (75 ° F) подходит для сидячих рабочих и домашних жилых помещений, а нижний предел температуры 13 ° C (55 ° F) подходит для лиц, выполняющих тяжелую ручную работу.
При сгорании топлива углерод и водород реагируют с атмосферным кислородом с выделением тепла, которое передается из камеры сгорания в среду, состоящую из воздуха или воды. Оборудование устроено так, что нагретая среда постоянно удаляется и заменяется охлаждающей подачей — , т. Е. путем циркуляции. Если среда является воздухом, оборудование называется топкой, а если среда — водой, бойлером или водонагревателем. Термин «бойлер» более правильно относится к сосуду, в котором производится пар, а «водонагреватель» — к сосуду, в котором вода нагревается и циркулирует ниже ее точки кипения.
Природный газ и мазут являются основными видами топлива, используемыми для производства тепла в котлах и печах. Они не требуют труда, за исключением периодической очистки, и они обрабатываются полностью автоматическими горелками, которые могут регулироваться термостатом. В отличие от своих предшественников, угля и кокса, после использования не остается остаточной золы для утилизации. Природный газ вообще не требует хранения, а нефть перекачивается в резервуары для хранения, которые могут быть расположены на некотором расстоянии от отопительного оборудования.Рост объемов отопления на природном газе был тесно связан с увеличением доступности газа из сетей подземных трубопроводов, надежностью подземных поставок и чистотой сжигания газа. Этот рост также связан с популярностью систем теплого воздуха, к которым особенно хорошо подходит газовое топливо и на долю которых приходится большая часть природного газа, потребляемого в жилых домах. Газ легче сжигать и контролировать, чем нефть, пользователю не нужен резервуар для хранения и он платит за топливо после того, как он его использовал, а доставка топлива не зависит от капризов моторизованного транспорта.Газовые горелки обычно проще, чем те, которые требуются для жидкого топлива, и имеют мало движущихся частей. Поскольку при сжигании газа выделяются ядовитые выхлопные газы, газ из обогревателей должен выводиться наружу. В местах, недоступных для трубопроводов природного газа, сжиженный нефтяной газ (пропан или бутан) доставляется в специальных автоцистернах и хранится под давлением в доме до тех пор, пока он не будет готов к использованию так же, как природный газ. Нефтяное и газовое топливо во многом обязано своим удобством автоматической работе их теплоцентралей.Эта автоматизация основана в первую очередь на термостате, устройстве, которое, когда температура в помещении упадет до заданной точки, активирует печь или котел до тех пор, пока потребность в тепле не будет удовлетворена. Автоматические отопительные установки настолько тщательно защищены термостатами, что предвидятся и контролируются почти все мыслимые обстоятельства, которые могут быть опасными.
Определение: тепло | Информация об открытой энергии
Тепло — это форма энергии, которая передается между системами или объектами с разными температурами (течет от высокотемпературной системы к низкотемпературной системе).Также называется тепловой энергией или тепловой энергией. Тепло обычно измеряется в британских тепловых единицах, калориях или джоулях. Тепловой поток или скорость, с которой тепло передается между системами, имеет те же единицы, что и мощность: энергия в единицу времени (Дж / с). [1] [2] [3] [4]
Определение Википедии
- В термодинамике тепло — это энергия, передаваемая в термодинамическую систему или из нее посредством иных механизмов, кроме термодинамической работы или передачи вещества.Различные механизмы передачи энергии, определяющие тепло, изложены в следующем разделе этой статьи. Как и термодинамическая работа, теплопередача — это процесс, в котором участвует более одной системы, а не свойство какой-либо одной системы. В термодинамике энергия, передаваемая в виде тепла (функция процесса), способствует изменению кардинальной энергетической переменной состояния системы, например ее внутренней энергии или, например, ее энтальпии. Это следует отличать от концепции тепла как свойства изолированной системы в обычном языке.Количество энергии, переданной в виде тепла в процессе, — это количество переданной энергии, исключая любую выполненную термодинамическую работу и любую переданную энергию, содержащуюся в веществе. Для точного определения тепла необходимо, чтобы оно происходило по пути, который не включает перенос вещества. Хотя не сразу по определению, но в особых видах процессов, количество энергии, переданной в виде тепла, можно измерить по ее влиянию на состояния взаимодействующих тел. Например, в особых обстоятельствах, соответственно, теплопередача может быть измерена по количеству растаявшего льда или по изменению температуры тела, окружающего систему.Такие методы называются калориметрией. Традиционный символ, используемый для обозначения количества тепла, переданного в термодинамическом процессе, — Q. В качестве количества энергии (передаваемой) единицей тепла в системе СИ является джоуль (Дж). В термодинамике тепло — это энергия, передаваемая в или из термодинамической системы с помощью механизмов, отличных от термодинамической работы или переноса вещества. Различные механизмы передачи энергии, определяющие тепло, изложены в следующем разделе этой статьи. Как и термодинамическая работа, теплопередача — это процесс, в котором участвует более одной системы, а не свойство какой-либо одной системы.В термодинамике энергия, передаваемая в виде тепла, способствует изменению кардинальной энергетической переменной состояния системы, например, ее внутренней энергии или, например, ее энтальпии. Это следует отличать от концепции тепла как свойства изолированной системы в обычном языке. Количество энергии, переданной в виде тепла в процессе, — это количество переданной энергии, исключая любую выполненную термодинамическую работу и любую переданную энергию, содержащуюся в веществе. Для точного определения тепла необходимо, чтобы оно происходило по пути, который не включает перенос вещества.Хотя не сразу по определению, но в особых видах процессов, количество энергии, переданной в виде тепла, можно измерить по ее влиянию на состояния взаимодействующих тел. Например, в особых обстоятельствах, соответственно, теплопередача может быть измерена по количеству растаявшего льда или по изменению температуры тела, окружающего систему. Такие методы называются калориметрией. Обычный символ, используемый для обозначения количества тепла, переданного в термодинамическом процессе, — Q.В качестве количества энергии (передаваемой) единицей тепла в системе СИ является джоуль (Дж). В термодинамике тепло — это энергия, передаваемая в термодинамическую систему или из нее посредством иных механизмов, кроме термодинамической работы или передачи вещества. Как и термодинамическая работа, теплопередача — это процесс, в котором участвует более одной системы, а не свойство какой-либо одной системы. В термодинамике энергия, передаваемая в виде тепла, способствует изменению кардинальной энергетической переменной состояния системы, например его внутренняя энергия или его энтальпия.Это следует отличать от концепции тепла как свойства изолированной системы. Количество энергии, переданной в виде тепла в процессе, — это количество переданной энергии, исключая любую термодинамическую работу и любую энергию, содержащуюся в переданном веществе. Для точного определения тепла необходимо, чтобы оно происходило по пути, который не включает перенос вещества. В особых видах процессов количество энергии, переданной в виде тепла, можно измерить по ее влиянию на состояния взаимодействующих тел, например.грамм. количество растаявшего льда или изменение температуры тела в окружающей системе. Такие методы называются калориметрией. Обычный символ, используемый для обозначения количества тепла, переданного в термодинамическом процессе, — Q. В качестве количества энергии (передаваемой) единицей тепла в системе СИ является джоуль (Дж).
Определение Reegle
- Также известен как
- Тепловая энергия
- Связанные термины
- Теплообменник, тепловой насос, централизованное теплоснабжение, природный газ, энергия, тепловая энергия, энергия, система, тепловой насос, топливный элемент
Список литературы
- ↑ http: // www.engineeringtoolbox.com/heat-work-energy-d_292.html
- ↑ http://205.254.135.24/tools/glossary/index.cfm?id=H
- ↑ http://thermalenergy.org/heattransfer.php
- ↑ http://www1.eere.energy.gov/site_administration/glossary.html
Что такое тепло? — Определение и объяснение — Видео и стенограмма урока
Тепловое расширение
Тепловое расширение — это явление, которое имеет место в твердых телах, жидкостях и газах.Почти все вещества расширяются при повышении температуры, если они не ограничиваются каким-либо образом. Примеры включают нагрев воздуха в воздушном шаре, который заставляет шар расширяться и подниматься, и ртуть в термометре, которая поднимается в ответ на тепло. Металлические стержни также используются во множестве приложений. Например, металлические стержни или полосы, которые используются в качестве компенсаторов на концах секций моста, объясняют расширение стальных мостов в жаркую погоду. Количество происходящего расширения и то, как мы его прогнозируем, зависит от вещества.Например, твердый металлический стержень обычно линейно расширяется и увеличивается в длине, тогда как жидкости и газы увеличиваются в объеме. Во всех трех случаях тепловое расширение происходит в ответ на повышение температуры, и полезные устройства используют эту концепцию.
Термодинамика
Термодинамика — это изучение тепла и его преобразования в механическую энергию. Есть четыре закона термодинамики, но мы сосредоточимся здесь только на двух основных законах: первом законе и втором законе.
Первый закон гласит, что изменение внутренней энергии вещества равно произведенной над ним работе плюс переданное ему тепло. Математически мы используем уравнение:
дельта U = работа + Q
Внутренняя энергия — это сумма кинетической и потенциальной энергий всех атомов и молекул в веществе. Значение первого закона термодинамики состоит в том, что есть два способа повысить температуру вещества:
1) подвергая его воздействию другого вещества, имеющего более высокую температуру, и
2) Выполняя определенные виды работы с веществом. вещество
Трение и сжатие газов — два примера способов повышения температуры рабочим методом.Поршни в двигателях внутреннего сгорания используют эту концепцию. Воздух сжимается в цилиндре поршнем, который повышает температуру почти в двадцать семь раз по сравнению с несжатым состоянием.
Второй закон гласит, что тепло не может передаваться от более холодного тела к более горячему без работы стороннего агента. Другими словами, невозможно построить устройство, которое будет многократно извлекать тепло из источника и доставлять механическую энергию без отвода тепла в резервуар с более низкой температурой.Прекрасным примером является тепловая машина, о которой мы поговорим позже в этом уроке.
Теплообмен
Теплообмен происходит с помощью трех механизмов: теплопроводность , конвекция и излучение .
- Проводимость — это передача тепла между атомами и молекулами в прямом контакте
- Конвекция — это передача тепла за счет движения самого нагретого вещества, например, токами в жидкости
- Излучение — это передача тепла посредством электромагнитных волн
Пример теплопроводности — нагрев кастрюли с водой на электрической плите.Дно сковороды соприкасается с горячей плитой. Тепло течет от конфорки ко дну сковороды и даже вверх по стенкам и, возможно, к ручке. Электропроводность также возникает между поддоном и водой, которые также контактируют друг с другом. Примером конвекции является система воздушного отопления. Теплый воздух выдувается и смешивается с более холодным воздухом, вызывая нагрев более холодного воздуха более теплым воздухом. Пример передачи тепла излучением — солнце или горячий огонь. Солнце излучает электромагнитные волны, которые нагревают землю, как огонь, который нагревает ваши руки или тело, когда вы приближаетесь.Также используются комбинации этих механизмов. Примером может служить отопление дома, в котором используются все три принципа. Использование теплоизоляции в доме фактически снижает передачу тепла от горячих поверхностей внутри дома к более холодным поверхностям снаружи. Система приточной вентиляции наряду с пропусканием солнечного света в дом также может быть использована внутри.
Удельная теплоемкость
Удельная теплоемкость , или просто удельная теплоемкость, — это количество тепла, необходимое для повышения температуры единицы массы (например,г., один грамм, один килограмм и т. д.) вещества на 1 градус Цельсия. Удельная теплоемкость чистой воды составляет 4180 джоулей на килограмм-градус Цельсия, что означает, что для повышения температуры 1 килограмма чистой воды на 1 градус Цельсия требуется 4180 джоулей энергии. Практическое использование самой теплоемкости немного, поэтому ее обычно используют для расчета других величин. Одно сравнение различных удельных температур показывает, что энергия, необходимая для нагрева пяти чашек воды до кипения, примерно такая же, как энергия, необходимая для разгона небольшого автомобиля до 60 миль в час.
Тепловые двигатели
Тепловой двигатель — это устройство, преобразующее тепло в механическую энергию. Он поглощает тепло от горячего источника, такого как горящее топливо, преобразует часть этой энергии в полезную механическую энергию и выводит оставшуюся энергию в виде тепла в некоторый резервуар с более низкой температурой. Тепловой двигатель — это реализация второго закона термодинамики. Ископаемые виды топлива, такие как уголь, нефть и природный газ, обычно используются в качестве источника энергии для тепловых двигателей. Бензиновые, дизельные и реактивные двигатели, а также угольные электростанции являются примерами тепловых двигателей.Согласно второму закону, не вся энергия, вложенная в тепловую машину, превращается в полезную механическую работу. Другими словами, ни одно устройство не может преобразовать 100% подводимого тепла в механическую энергию. Следовательно, тепловой двигатель имеет определенный КПД, который описывает, сколько тепла он может преобразовать в полезную мощность. Математически формула выглядит так:
КПД = (выход энергии / потребляемая энергия) x 100
Например, если устройство имеет КПД 50%, оно преобразует половину входящей энергии в механическую, а другая половина тратится впустую.Максимальный КПД теплового двигателя, который получил название КПД Карно в честь французского инженера Сади Карно, зависит от температуры источника тепла и резервуара с более низкой температурой.
Резюме урока
Тепло и температура часто используются как взаимозаменяемые, но на самом деле это две разные вещи. Тепло — это энергия, которая передается от двух веществ при разных температурах и течет от горячего к холодному. Температура — это мера того, насколько горячее или холодное вещество.На этом уроке также было изучено несколько практических применений тепла, в том числе тепловое расширение , первый и второй законы термодинамики , теплопередача , удельная теплоемкость и тепловые двигатели .
Словарь и определения
- Тепло : форма энергии, которая передается между двумя веществами при разных температурах
- Температура : мера горячего или холодного материи
- Тепловое расширение : явление, имеющее место в твердых телах, жидкостях и газах; он включает расширение веществ при повышении их температуры
- Термодинамика : изучение тепла и его преобразования в механическую энергию
- Первый закон термодинамики : изменение внутренней энергии вещества равно произведенной над ним работе плюс переданное ему тепло
- Второй закон термодинамики : тепло не может передаваться от более холодного тела к более горячему без помощи внешнего агента
- Проводимость : передача тепла между атомами и молекулами при прямом контакте
- Конвекция : передача тепла за счет движения самого нагретого вещества, например, токами в жидкости
- Излучение : передача тепла посредством электромагнитных волн
- Удельная теплоемкость : количество тепла, необходимое для повышения температуры единицы массы
- Тепловой двигатель : устройство, преобразующее тепло в механическую энергию
Результаты обучения
Цель этого урока — помочь вам подготовиться к:
- Уметь различать тепло и температуру
- Обсудить процесс теплового расширения
- Назовите два закона термодинамики
- Укажите три механизма, с помощью которых происходит передача тепла
- Обратите внимание на функции теплообменников и тепловых двигателей
Определение тепла по Merriam-Webster
\ ˈHēt \непереходный глагол
1 : стать теплым или горячим подогрев воды в чайнике
2 : начать портиться от жары
переходный глагол
1 : для разогрева или нагрева разогреть банку супа разогреть духовку до 350 градусов
2 : возбудить были разгорячены его волнующими словами 1а (1) : состояние горячего : тепло снег тает под жарким солнцем(2) : заметная или заметная степень жара. Жара была сильной.
б : патологическое превышение температуры тела жар лихорадки
c : жаркое место или ситуация выйти из жары
г (1) : период жары непрерывная жара
(2) : одна полная операция по приготовлению чего-то теплого или горячего. также : количество нагретого таким образом материалае (1) физика : добавленная энергия, которая заставляет вещества повышаться в температуре, плавиться, испаряться, расширяться или претерпевать любые из различных других связанных изменений, которая течет к телу при контакте с телами или излучением от них при более высоких температурах, и которая может производиться в тело (как при сжатии)
(2) физика : энергия, связанная со случайными движениями молекул, атомов или более мелких структурных единиц, из которых состоит материя.
ж : внешний вид, состояние или цвет чего-либо, указывающий на его температуру когда пруток нагревается до надлежащего сварочного тепла
2а : интенсивность чувства или реакции : страсть ответил с большим жаромб : высота или напряжение действия или состояния в пылу битвы
c : сексуальное возбуждение, особенно у млекопитающих женского пола. как животное в тепле конкретно : течка3 : одно непрерывное усилие: например,
а : один раунд соревнования (например, гонка), состоящий из двух или более раундов для каждого участника. выиграл два заезда из трех
б : один из нескольких предварительных конкурсов, проводимых для устранения менее компетентных претендентов. выиграл второй заезд, но в финальной гонке финишировал третьим
4 : острота аромата Добавьте немного кайенского перца, чтобы усилить огонь.
5а сленг(1) : Активизация правоохранительной деятельности или расследования подождал, пока не погаснет жара
Что такое тепло? — Определение от WhatIs.com
ОтТепло — это передача кинетической энергии от одной среды или объекта к другой или от источника энергии к среде или объекту. Такая передача энергии может происходить тремя способами: излучением, проводимостью и конвекцией.
Стандартной единицей тепла в Международной системе единиц (СИ) является калория (кал), которая представляет собой количество энергии, необходимое для повышения температуры одного грамма чистой жидкой воды на один градус Цельсия, при условии, что температура воды выше точки замерзания и ниже точки кипения.Иногда килокалория (ккал) указывается как единица тепла; 1 ккал = 1000 кал. (Это так называемая диетическая калория.) Реже используется британская тепловая единица (BTU). Это количество тепла, необходимое для повышения температуры одного фунта чистой жидкой воды на один градус по Фаренгейту.
Примером нагрева за счет излучения является воздействие инфракрасной (ИК) энергии при попадании на поверхность. ИК — это электромагнитное поле, способное передавать энергию от источника, такого как камин, к месту назначения, например к поверхностям в комнате.Радиация не требует промежуточной среды; это может происходить через вакуум. Он отвечает за нагревание Земли солнцем.
Тепло за счет теплопроводности происходит, когда две материальные среды или объекты находятся в прямом контакте, и температура одного выше, чем температура другого. Температуры имеют тенденцию выравниваться; таким образом, теплопроводность заключается в передаче кинетической энергии от более теплой среды к более холодной. Примером может служить погружение охлажденного тела человека в горячую ванну.
Тепло за счет конвекции возникает, когда движение жидкости или газа переносит энергию из более теплой области в более холодную. Хорошим примером конвекции является тенденция теплого воздуха подниматься и холодного опускаться, что уравнивает температуру воздуха в помещении с горячей печью. Считается, что тепловая конвекция (наряду с теплопроводностью) происходит внутри Земли, передавая кинетическую энергию от внутреннего ядра через внешнее ядро и мантию к коре.