Вес фундамента – ., ,

Содержание

Расчет нагрузки на фундамент — калькулятор веса дома.

 

Высота цоколя, (м) =

Материал цоколя: Кирпич полнотелый, 250 ммКирпич полнотелый, 380 ммКирпич полнотелый, 510 ммКирпич полнотелый, 640 ммКирпич полнотелый, 770 ммМонолитный железобетон, 200 ммМонолитный железобетон, 300 ммМонолитный железобетон, 400 ммМонолитный железобетон, 500 ммМонолитный железобетон, 600 ммМонолитный железобетон, 700 ммМонолитный железобетон, 800 мм

Материал наружной отделки цоколя: — Не учитывать —Виниловый сайдингДекоративная штукатуркаДоски из фиброцементаИскусственный каменьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаФасадные панели (цокольный сайдинг)

Наружные стены дома:

Высота наружных стен дома, (м) =

Суммарная площадь фронтонов дома, (м²) =

Суммарная площадь оконных и дверных проёмов в наружных стенах, (м²) =

Материал наружных стен дома: Арболит D600, 300 ммАрболит D600, 400 ммБрус 150х150Брус 200х200Газо-, пенобетон D300, 300 ммГазо-, пенобетон D400, 200 ммГазо-, пенобетон D400, 300 ммГазо-, пенобетон D400, 400 ммГазо-, пенобетон D500, 200 ммГазо-, пенобетон D500, 300 ммГазо-, пенобетон D500, 400 ммГазо-, пенобетон D600, 200 ммГазо-, пенобетон D600, 300 ммГазо-, пенобетон D600, 400 ммГазо-, пенобетон D800, 200 ммГазо-, пенобетон D800, 300 ммГазо-, пенобетон D800, 400 ммКаркасные стены, 150 ммКирпич полнотелый, 250 ммКирпич полнотелый, 380 ммКирпич полнотелый, 510 ммКирпич пустотелый, 250 ммКирпич пустотелый, 380 ммКирпич пустотелый, 510 ммЛСТК, 200 ммМонолитный бетон, 150 ммМонолитный бетон, 200 ммОцилиндрованное бревно, 220 ммОцилиндрованное бревно, 240 ммОцилиндрованное бревно, 260 ммОцилиндрованное бревно, 280 ммПоризованные керамические блоки, 250 ммПоризованные керамические блоки, 380 ммПоризованные керамические блоки, 440 ммПоризованные керамические блоки, 510 ммСтены из СИП-панелей, 174 мм

Материал отделки фасада дома: — Не учитывать —Виниловый сайдингДекоративная штукатуркаДоски из фиброцементаИскусственный каменьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаФасадные панели (цокольный сайдинг)

Материал внутренней отделки наружных стен: — Не учитывать —ГВЛ до 12,5 ммГипсокартон до 12,5 ммДеревянная вагонкаШтукатурка до 10 ммШтукатурка до 20 ммШтукатурка до 30 мм

Внутренние перегородки дома:

Несущие перегородки:

Общая длина несущих перегородок, (м) =

Высота несущих перегородок, (м) =

Общая площадь дверных проёмов в несущих перегородках, (м²) =

Материал несущих перегородок: Арболит D600, 300 ммАрболит D600, 400 ммБрус 150х150Брус 200х200Газо-, пенобетон D300, 300 ммГазо-, пенобетон D400, 200 ммГазо-, пенобетон D400, 300 ммГазо-, пенобетон D400, 400 ммГазо-, пенобетон D500, 200 ммГазо-, пенобетон D500, 300 ммГазо-, пенобетон D500, 400 ммГазо-, пенобетон D600, 200 ммГазо-, пенобетон D600, 300 ммГазо-, пенобетон D600, 400 ммГазо-, пенобетон D800, 200 ммГазо-, пенобетон D800, 300 ммГазо-, пенобетон D800, 400 ммКаркасные стены, 150 ммКирпич полнотелый, 250 ммКирпич полнотелый, 380 ммКирпич полнотелый, 510 ммКирпич пустотелый, 250 ммКирпич пустотелый, 380 ммКирпич пустотелый, 510 ммЛСТК, 200 ммМонолитный бетон, 150 ммМонолитный бетон, 200 ммОцилиндрованное бревно, 220 ммОцилиндрованное бревно, 240 ммОцилиндрованное бревно, 260 ммОцилиндрованное бревно, 280 ммПоризованные керамические блоки, 250 ммПоризованные керамические блоки, 380 ммПоризованные керамические блоки, 440 ммПоризованные керамические блоки, 510 ммСтены из СИП-панелей, 174 мм

Отделка несущих перегородок: — Не учитывать —ГВЛ до 12,5 ммГипсокартон до 12,5 ммДеревянная вагонкаШтукатурка до 10 ммШтукатурка до 20 ммШтукатурка до 30 мм

 

Не несущие перегородки:

Общая длина не несущих перегородок, (м) =

Высота не несущих перегородок, (м) =

Общая площадь дверных проёмов в не несущих перегородках, (м²) =

Материал не несущих перегородок: Арболит D600, 300 ммАрболит D600, 400 ммБрус 150х150Брус 200х200Газо-, пенобетон D300, 300 ммГазо-, пенобетон D400, 200 ммГазо-, пенобетон D400, 300 ммГазо-, пенобетон D400, 400 ммГазо-, пенобетон D500, 200 ммГазо-, пенобетон D500, 300 ммГазо-, пенобетон D500, 400 ммГазо-, пенобетон D600, 200 ммГазо-, пенобетон D600, 300 ммГазо-, пенобетон D600, 400 ммГазо-, пенобетон D800, 200 ммГазо-, пенобетон D800, 300 ммГазо-, пенобетон D800, 400 ммКаркасные стены, 150 ммКирпич полнотелый, 250 ммКирпич полнотелый, 380 ммКирпич полнотелый, 510 ммКирпич пустотелый, 250 ммКирпич пустотелый, 380 ммКирпич пустотелый, 510 ммЛСТК, 200 ммМонолитный бетон, 150 ммМонолитный бетон, 200 ммОцилиндрованное бревно, 220 ммОцилиндрованное бревно, 240 ммОцилиндрованное бревно, 260 ммОцилиндрованное бревно, 280 ммПоризованные керамические блоки, 250 ммПоризованные керамические блоки, 380 ммПоризованные керамические блоки, 440 ммПоризованные керамические блоки, 510 ммСтены из СИП-панелей, 174 мм

Отделка не несущих перегородок: — Не учитывать —ГВЛ до 12,5 ммГипсокартон до 12,5 ммДеревянная вагонкаШтукатурка до 10 ммШтукатурка до 20 ммШтукатурка до 30 мм

Выберите вид Вашей крыши:

Односкатная
Двухскатная
Ломаная
Вальмовая
Шатровая
Другая сложная форма


Материал кровли: МеталлочерепицаПрофнастилЛистовое оцинкованное железо с фальцамиШиферОндулинМягкая (гибкая) черепицаЦементная или керамическая черепицаКомпозитная черепицаДвойной слой рубероида


Утеплитель расположен:

между стропилами
на чердачном перекрытии

Для определения снеговой нагрузки на крышу дома, используя карту веса снегового покрова:

Выберите номер Вашего снегового региона: 1 район 2 район 3 район 4 район 5 район 6 район 7 район 8 район

Для увеличения изображения кликните по нему!

Цокольное перекрытие:

Тип перекрытия (пол первого этажа): Утеплённое по деревянным балкамПлиты бетонные многопустотные, 220 ммПлиты бетонные многопустотные облегченные, 160 ммМонолитное железобетонное либо полы по грунту, 200 ммМонолитное железобетонное либо полы по грунту, 150 мм

Стяжка на полу первого этажа: Стяжка отсутствуетСухая стяжка с элементами пола из ГВЛЦементно-песчаная стяжка до 50 ммЦементно-песчаная стяжка до 100 мм

 

Межэтажное перекрытие между 1-м и 2-м этажами:

Тип перекрытия (пол второго этажа): Перекрытие отсутствуетУтеплённое по деревянным балкамПлиты бетонные многопустотные, 220 ммПлиты бетонные многопустотные облегченные, 160 ммМонолитное железобетонное, 200 ммМонолитное железобетонное, 150 мм

Стяжка на полу второго этажа: Стяжка отсутствуетСухая стяжка с элементами пола из ГВЛЦементно-песчаная стяжка до 50 ммЦементно-песчаная стяжка до 100 мм

 

Межэтажное перекрытие между 2-м и 3-м этажами:

Тип перекрытия (пол третьего этажа): Перекрытие отсутствуетУтеплённое по деревянным балкамПлиты бетонные многопустотные, 220 ммПлиты бетонные многопустотные облегченные, 160 ммМонолитное железобетонное, 200 ммМонолитное железобетонное, 150 мм

Стяжка на полу третьего этажа: Стяжка отсутствуетСухая стяжка с элементами пола из ГВЛЦементно-песчаная стяжка до 50 ммЦементно-песчаная стяжка до 100 мм

 

Чердачное перекрытие:

Тип чердачного перекрытия: Перекрытие отсутствуетУтеплённое по деревянным балкамПлиты бетонные многопустотные, 220 ммПлиты бетонные многопустотные облегченные, 160 ммМонолитное железобетонное, 200 ммМонолитное железобетонное, 150 мм

moi-domostroi.ru

Собственный вес фундамента составит

Вес грунта составит

(3,6)

Общая нагрузка:

(3,7)

Среднее давление под подошвой фундамента

(3,8)

Так как Рср=264,47кПа<R=471.31кПа – условие необходимое для расчета по деформациям, выполняется.

3.3 Расчет основания по деформациям

Задача расчета по деформациям состоит в том, чтобы не допустить такие деформации основания, при которых нарушается нормальная эксплуатация надземных конструкций. Основное условие расчета определяется выражением:

S£Su (3.11)

где: S – совместная деформация основания и сооружения, определяемая расчетом;

Su – предельное допустимое значение деформации основания, определяемое по таблице 19[1].

Осадка основания S с использованием расчетной схемы в виде линейно-деформируемого полупространства определяется методом послойного суммирования по формуле

, (3.12)

где b=0,8 – безразмерный коэффициент;

szp, i – среднее напряжение в i-ом слое;

hi – толщина i-го слоя;

Ei – модуль деформации i-го слоя грунта.

Нижняя граница сжимаемой толщи основания принимается на глубине Z=Hc от подошвы фундамента, где выполняется условие

szp= 0,2szq (3.13)

Вертикальные природные напряжения szq на некоторой глубине Z от поверхности грунта определяют по формуле

, (3.14)

где gi – удельный вес грунта i-го слоя;

hi– толщина i-го грунта;

n – число слоев грунта в пределах глубины Z. Удельный вес грунтов залегающих ниже уровня подземных вод, но выше водоупора, должен приниматься с учетом взвешивающего действия воды, т.е.

(3.15)

где gsi, ei– соответственно удельный вес частиц грунта и коэффициент пористости i-го слоя грунта;

gw=10 кН/м3 – удельный вес воды.

Дополнительные вертикальные напряжения от внешней нагрузки определяют по формуле

szp=a×P0 (3.16)

где Р0ср-szg,0 – дополнительное вертикальное давление на основание;

Рср – среднее давление под подошвой фундамента;

szg,0 – вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента;

a — коэффициент, учитывающий уменьшение дополнительных напряжений по глубине. Значения a приведены в таблице 20[1].

Определим осадку ленточного фундамента шириной 1,2м, среднее давление по подошве фундамента Рср= 264,47 кПа, глубина заложения — 1,5м. Инженерно-геологические условия в соответствии с инженерно–геологическим разрезом (смотри графическую часть), физико-механические характеристики грунта в соответствии с данными, полученными после уплотнения лёссового грунта песчаными сваями.

Строим эпюру распределения вертикальных напряжений от собственного веса в пределах глубины 6×b =6 ×2,1м =12,6м ниже подошвы фундамента согласно формуле (20). Толщу грунта ниже подошвы фундамента разбиваем на слои:

В результате уплотнения двух слоёв лёссового грунта песчаными сваями получили один слой пористостью =0,65 и т/м3 ; обратная засыпка выполнена песком средней крупности с т/м3

Вертикальное напряжение от собственного веса грунта определим по формуле:

σzq = Σ γi · hi; (3.14)

— по подошве фундамента:

σzq0 = 19,8·1,5 = 29,7 кПа 0,2σzq0 = 5,94 кПа

— на глубине 0,48м ниже подошвы фундамента:

σzq1= 29,7+19,8 ·0,48 = 39,204 кПа 0,2σzq1 = 7,84 кПа

— на глубине 1,96м ниже подошвы фундамента:

σzq2= 39,204 +19,8 ·0,48 = 48,708 кПа 0,2σzq1 = 9,74 кПа

— на глубине 1,44м ниже подошвы фундамента:

σzqw = 48,708 +19,8 ·0,48 = 58,212 кПа 0,2σzqw = 11,64 кПа

и так далее, расчёты сведены в таблицу 4.

Определяем дополнительное (к природному) вертикальное напряжение в грунте под подошвой фундамента:

σzр0 = Рср— σzq0 = 264,47 — 29,7 = 234,77 кПа (3.17)

Далее строим эпюру распределения дополнительных (к боковому) вертикальных напряжений в грунте по формуле (3.16), где a определяем в зависимости от Чтобы избежать интерполяции зададимсяz = hi.

Вычисления сведем в таблицу 4. Осадку определим по формуле (3.12) в пределах сжимаемой толщи, т.е. до точки пересечения эпюр sZpi =0,2sZqi. Эпюры sZqi , 0,2sZqi и sZpi показаны в графической части.

Таблица 4— К расчету осадки фундамента мелкого заложения под стакан

п/п

Наименование

грунта

i

м

σzqi

кПа

0,2·σzqi

кПа

hi

м

zi

м

ξi

α

σzpi

кПа

Si

м

1

Супесь, уплотнённая песчаными сваями

Е = 16 МПа

11,8

29,7

39,204

48,708

58,212

67,716

77,22

86,724

96,228

105,732

115,236

124,74

134,244

143,748

153,252

5,94

7,84

9,74

11,64

13,54

15,44

17,34

19,25

21,15

23,05

24,95

26,85

28,75

30,65

0

0,48

0,48

0,48

0,48

0,48

0,48

0,48

0,48

0,48

0,48

0,48

0,48

0,48

0

0,48

0,96

1,44

1,92

2,4

2,88

3,36

3,84

4,32

4,8

5,28

5,76

6,24

0

0,8

1,6

2,4

3,2

4,0

4,8

5,6

6,4

7,2

8

8,8

9,6

10,4

1

0,881

0,642

0,477

0,374

0,306

0,258

0,223

0,196

0,175

0,158

0,143

0,132

0,122

234,77

206,83

150,72

111,99

87,80

71,84

60,57

52,35

46,01

41,08

37,09

33,57

30,99

28,64

0,005299

0,004291

0,003153

0,002397

0,001916

0,001589

0,001355

0,001180

0,001045

0,000938

0,000848

0,000775

0,000716

sZpi =0,2sZqi=29,318кПа при z=5,92м.

Суммируем осадку в пределах сжимаемой толщи Hl=5,92м.

Si=0,005299+0,004291+0,003153+0,002397+0,001916+0,001589+0,001355+0,001180+0,001045+0,000938+0,000848+0,000775+0,000723=0,026мм=2,6см

< Su=8см.

Следовательно, основное условие расчета по 2-ой группе предельных состояний удовлетворяется.

studfiles.net

Калькулятор Вес-Дома-Онлайн v.1.0 — Сбор нагрузок на фундамент

ШАГ 1. План дома

Расчет общей длины стен

Добавить параллельные оси между А-Г 012

Добавить перпендик. оси между Б-Г 012

Добавить перпендик. оси между В-Г 012

Добавить перпендик. оси между Б-В 012

Добавить перпендик. оси между А-Б 012

Размеры дома

Внимание! Наружные стены по осям А и Г являются несущими (нагрузки от крыши и плит перекрытия).

Длина А-Г, м

Длина 1-2, м

Колличество этажей 1 + чердачное помещение2 + чердачное помещение3 + чердачное помещение

ШАГ 2. Сбор нагрузок

Крыша

Форма крыши ДвускатнаяПлоская

Материал кровли ОндулинМеталлочерепицаПрофнастил, листовая стальШифер (асбестоцементная кровля)Керамическая черепицаЦементно-песчанная черепицаРубероидное покрытиеГибкая (мягкая) черепицаБитумный листКомпозитная черепица

Снеговой район РФ 1 район — 80 кгс/м22 район — 120 кгс/м23 район — 180 кгс/м24 район — 240 кгс/м25 район — 320 кгс/м26 район — 400 кгс/м27 район — 480 кгс/м28 район — 560 кгс/м2

Наведите курсор на нужный участок карты для увеличения.

Чердачное помещение (мансарда)

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен (фронтонов) Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Эксплуатационная нагрузка, кг/м2 90 кг/м2 — для холодного чердака195 кг/м2 — для жилой мансарды

3 этаж

Высота 3-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

2 этаж

Высота 2-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

1 этаж

Высота 1-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммПолы по грунтуЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Цоколь

Высота цоколя, м м

Материал цоколя Не учитыватьКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич полнотелый, 640ммКирпич полнотелый, 770ммЖелезобетонное монолитное, 200ммЖелезобетонное монолитное, 300ммЖелезобетонное монолитное, 400ммЖелезобетонное монолитное, 500ммЖелезобетонное монолитное, 600ммЖелезобетонное монолитное, 700ммЖелезобетонное монолитное, 800мм


Внутренняя отделка

Общая толщина стяжки, мм Не учитывать50мм100мм150мм200мм250мм300мм

Выравнивание стен Не учитыватьШтукатурка, 10ммШтукатурка, 20ммШтукатурка, 30ммШтукатурка, 40ммШтукатурка, 50ммГипсокартон, 12мм


Распределение нагрузок на стены

Коэффициент запаса 11.11.21.31.41.5

www.gvozdem.ru

Вес фундамента дома

 

Методика ориентировочного расчета минимальной достаточной ширины мелкозаглубленного ленточного фундамента.

Данная методика определения минимальной достаточной ширины мелкозаглубленного ленточного фундамента основана на представлении о том, что величина удельной нагрузки на единицу площади подлежащего под фундаментом грунта должна быть меньше несущей способности (расчетного сопротивления основания) подлежащего под фундаментом грунта. Разница между нагрузкой от дома и несущей способностью грунта должна быть как минимум  на 30% больше в пользу несущей способности грунтов (коэффициент запаса прочности для бетонных конструкций, отливаемых на стройплощадке).
Для определения выяснения минимальной достаточной ширины малозаглубленного ленточного фундамента, исходя из несущей способности подлежащих грунтов, необходимо решить уравнение:


Мертвый вес здания
+ Полезный вес мебели и оборудования
+ Снеговая нагрузка
+ Ветровая нагрузка

Х 1,3 =

Ширина фундамента
Х  Длина фундамента
Х   Расчетное сопротивление грунта

Из этого уравнения мы можем посчитать суммарную нагрузку от здания, взять пробы грунта и выяснить их расчетное сопротивление и отсюда вычислить требуемую площадь основания фундамента.
Мертвый вес здания — это сумма весов всех строительных элементов конструкции дома. Чтобы рассчитать их нужно воспользоваться нижеприведенными справочными таблицами.  

Таблица №21.  Нагрузка от 1 квадратного метра стены зданий


Материал стен

кгс/м2

Деревянные каркасно-панельные, толщиной 150 мм с минераловатным утеплителем

30-50

Из блоков ячеистого бетона плотностью 500-600 кг/м3 сплошной кладки, толщиной, мм: 200, 250, 300, 350

100-120 125-150 150-180 175-210

Из опилкобетона, толщиной 350 мм

300-400

Из керамзитобетона, толщиной 350 мм

400-500

Из шлакобетона, толщиной 400 мм

500-600

Из эффективного кирпича, толщиной, мм: 380, 510, 640

500-600 650-750 800—900

Из полнотелого кирпича сплошной кладки, толщиной, мм: 250, 380, 510

450-500 700-7501 900- 1000

Вес окон и дверей при расчете не учитывается, а площадь стен считается без учета дверных, оконных и иных проемов.


Допустим, у нас одноэтажный газобетонный дом размером 10 м  на 10 м, с площадью стен первого этажа и площадью фронтонов  140 м2 . По таблице № 9 один квадратный метр стены из газобетона плотностью 600 кг/м3  с толщиной  стен 30 см даст нагрузку в 180 кгс/м2. Все стены дадут нагрузку на основание  180 кгс/м2 х 140 м2= 25200  кгс.

К нагрузке от стен дома на основание  добавляем нагрузку от конструкций  перекрытий. Определяем нагрузку от перекрытий по следующей таблице:

Таблица №22.  Нагрузка от 1 м2 перекрытий пролетом до 4, 5 м


Тип перекрытия

кгс/м2

Чердачное по деревянным балкам, плотностью, кг/м3, не более:

 

200

70-100

300

100-150

500

150-200

Цокольное по деревянным балкам, плотностью, кг/м3, не более:

 

200

100-150

300

150-200

500

200-300

Цокольное железобетонное

300-500

При площади дома в 100 м2  и одном этаже мы имеем цокольное железобетонное перекрытие весом 100 м2 х 400 кг = 40000 кг и чердачное перекрытие весом 100 м2 х 150 кг = 15000 кг.
Суммарный вес перекрытий дома 55000 кг

Чтобы вычислить нагрузку от кровли нам нужно сложить вес собственно стропильной системы с весом кровельного материала и прибавить нормативную снеговую нагрузку. Вес стропильной системы вычисляется из объема пиломатериалов и их удельного веса (500-550 кг/м3). Вес пиломатериалов можно вычислить из таблиц:

Таблица №23.  Таблица количества бруса в кубическом метре пиломатериалов


Размер бруса (мм)

количество бруса при длине 6 м в кубометре пиломатериалов

объем одного бруса длиной 6 м (м3)

100 х 100

16,6

0,06

100 х 150

11,1

0,09

100 х 200

8,3

0,12

150 x 150

7,4

0,135

150 х 200

5,5

0,18

150 х 300

3,7

0,27

200 х 200

4,1

0,24

Таблица №24.  Таблица количества досок в кубическом метре пиломатериалов


размер доски (мм)

количество досок при длине 6 м в кубометре пиломатериалов

объем одной доски длиной 6 м (м3)

25 х 100

66,6

0,015

25 х 150

44,4

0,022

25 х 200

33,3

0,03

40 х 100

41,6

0,024

40 х 150

27,7

0,036

40 х 200

20,8

0,048

50 х 50

66,6

0,015

50 х 100

33,3

0,03

50 х 150

22,2

0,045

50 х 200

16,6

0,06

50 х 250

13,3

0,075

Наш дом имеет кровлю площадью 150 м2 . Угол наклона кровли более 30 градусов. Площадь проекции крыши на основание 120 м2 . 
Допустим,  на стропильную систему дома по системе наслонные стропила планируется 32 доски сечением 200 мм х 50 мм и 10 брусов сечением 150 мм на 100 мм.  10 брусов по таблице № 10 имеют объем 10 х  0,09 м3 = 0,9 м3 . 32 доски по таблице №11 имеют объем 32 х 0,06 м3 = 1,92 м3  
Суммарный объем древесины стропильной системы 0,9 м3 + 1,92 м3 = 2,82м3   Ориентировочный вес пиломатериалов равен 550 кг /м3  х 2,82м3   = 1551 кг. На обрешетку пойдет 44 доски 2, 5 мм х 150 мм, что составляет 1 м3 и весит еще 550 кг. Общий суммарный вес стропильной системы = 2101 кг

К весу стропильной системы прибавляем вес кровельного покрытия

Таблица №25.  Таблица значений веса кровельных покрытий

Вид кровельного материала

Вес 1 м2 (кг)

 

Рулонная битумно-полимерная кровля

4-8

 

Битумно-полимерная мягкая черепица

7-8

 

Ондулин

3-4

 

Металлочерепица

4-6

 

Профлист, Оцинкованная сталь, Фальцевая кровля

4-6

 

Цементно-песчаная черепица

40-50

 

Керамическая черепица

35-40

 

Шифер

10-14

 

Сланцевая кровля

40-50

 

Медь

8

 

Зеленая кровля

80-150

 

Мы покрываем крышу металлочерепицей: Площадь кровли 150 м2 при весе 6 кг/м2 дает вес 900 кг.
Также на утепление кровли у нас уйдет около 120 м2  базальтовой ваты Роквул толщиной 20 см, что оставит 24м3  базальтовой ваты плотностью 35 кг/м3 , которые весят 840 кг.

Можно считать сразу и суммарную нагрузку от кровельной конструкции с учетом веса стропильной системы и кровельного материала по таблице

Таблица №26. Нагрузка от 1 м2 горизонтальной проекции кровли


Тип кровли

кгс/м2

Покрытие рубероидом в 2 слоя

30-50

Керамическая черепица при уклоне 45°

60-80

Кровельная сталь при уклоне 27 °

20-30

Асбестоцементные листы при уклоне 30°

40-50

 

Нормативная снеговая нагрузка отличается для разных климатических районов. Районы по различной снеговой нагрузке категорий от I до VIII указаны в картах  «Изменений, внесенных в СНиП 2.01.07-85 Нагрузки и воздействия». Мы приводим таблицу с выборочным указанием населенных пунктов и значениями расчетной снеговой нагрузки с запасом прочности с коэффициентом 1,4.

Таблица №27.  Таблица значений расчетной снеговой нагрузки на проекцию кровли  с запасом прочности с коэффициентом 1,4

Климатический район строительства

Города

Расчетная снеговая нагрузка (кг/м2)

I

Астрахань, Улан-Удэ

80

II

Майкоп, Нальчик, Хабаровск, Владивосток, Якутск, Мирный, Иркутск

120

III

Москва, Владимир Великий Новгород, Красноярск, Сызрань

180

IV

Санкт Петербург, Хатанга, Кемерово, Нижний Новгород

240

V

Пермь, Уфа, Анадырь, Сургут, Нижневартовск, Петрозаводск, Мурманск, Магадан

320

VI

Усинск, Красновишерск, Кизел

400

VII

Петропавловск-Камчатский

480

VIII

Апатиты, Норильск, Снежнегорск, Кропоткин, Чара, Байкальск, Горно-Алтайск, Теберда

560

     

 

Наш дом находится в Санкт-Петербурге (IV климатический район) и нормативная снеговая нагрузка составляет 240 кг/м2 . На весь дом в пересчете на горизонтальную проекцию крыши 120м2  расчетная снеговая нагрузка составит 28 800 кг.

dom.dacha-dom.ru

Расчет нагрузки на фундамент — Самая лучшая система расчета нагрузки

Расчет нагрузки на фундамент необходим для правильного выбора его геометрических размеров и площади подошвы фундамента. В конечном итоге, от правильного расчета фундамента зависит прочность и долговечность всего здания. Расчет сводится к определению нагрузки на квадратный метр грунта и сравнению его с допустимыми значениями.

Для расчета необходимо знать:

  • Регион, в котором строится здание;
  • Тип почвы и глубину залегания грунтовых вод;
  • Материал, из которого будут выполнены конструктивные элементы здания;
  • Планировку здания, этажность, тип кровли.

Исходя из требуемых данных, расчет фундамента или его окончательная проверка производится после проектирования строения.

Попробуем рассчитать нагрузку на фундамент для одноэтажного дома, выполненного из полнотелого кирпича сплошной кладки, с толщиной стен 40 см. Габариты дома – 10х8 метров. Перекрытие подвального помещения – железобетонные плиты, перекрытие 1 этажа – деревянное по стальным балкам. Крыша двускатная, покрытая металлочерепицей, с уклоном 25 градусов. Регион – Подмосковье, тип грунта – влажные суглинки с коэффициентом пористости 0,5. Фундамент выполняется из мелкозернистого бетона, толщина стенки фундамента для расчета равна толщине стены.

Определение глубины заложения фундамента

Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.

Таблица 1 – Справочные данные о глубине промерзания грунта

Справочная таблица для определения глубины заложения фундамента по регионам

Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.

Таблица 2 – Зависимость глубины заложения фундамента от типа грунта

Зависимость глубины заложения фундамента от типа грунта

Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.

Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.

Расчет нагрузки кровли

Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.

Таблица 3 – Удельный вес разных видов кровли

Справочная таблица — Удельный вес разных видов кровли

  1. Определяем площадь проекции кровли. Габариты дома – 10х8 метров, площадь проекции двускатной крыши равна площади дома: 10·8=80 м2.
  2. Длина фундамента равна сумме двух длинных его сторон, так как двускатная крыша опирается на две длинные противоположные стороны. Поэтому длину нагруженного фундамента определяем как 10·2=20 м.
  3. Площадь нагруженного кровлей фундамента толщиной 0,4 м: 20·0,4=8 м2.
  4. Тип покрытия – металлочерепица, угол уклона – 25 градусов, значит расчетная нагрузка по таблице 3 равна 30 кг/м2.
  5. Нагрузка кровли на фундамент равна 80/8·30 = 300 кг/м2.

Расчет снеговой нагрузки

Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.

Таблица — расчет снеговой нагрузки на фундамент

  1. Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
  2. Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м2.
  3. Снеговая нагрузка для Подмосковья по карте равна 126 кг/м2. Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м2.

Расчет нагрузки перекрытий

Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.

Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.

Таблица 4 – Удельный вес перекрытий

Таблица расчет веса перекрытий и их нагрузка на фундамент

  1. Площадь перекрытий равна площади дома – 80 м2. В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
  2. Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
  3. Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
  4. Суммируем их и находим нагрузку на 1 м2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м2.

Расчет нагрузки стен

Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.

Таблица 5 – Удельный вес материалов стен

Таблица — Удельный вес стен

  1. Площадь стен равна высоте здания, умноженной на периметр дома: 3·(10·2+8·2)=108 м2.
  2. Объем стен – это площадь, умноженная на толщину, он равен 108·0,4=43,2 м3.
  3. Находим вес стен, умножив объем на удельный вес материала из таблицы 5:   43,2·1800=77760 кг.
  4. Площадь всех сторон фундамента равна периметру, умноженному на толщину: (10·2+8·2)·0,4=14,4 м2.
  5. Удельная нагрузка стен на фундамент равна 77760/14,4=5400 кг.

Предварительный расчет нагрузки фундамента на грунт

Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.

Таблица 6 – Удельная плотность материалов фундамента

Таблица — удельная плотность материало для грунта

  1. Площадь фундамента – 14,4 м2, глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м3.
  2. Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
  3. Нагрузка на грунт: 36360/14,4=2525 кг/м2.

Расчет общей нагрузки на 1 м2 грунта

Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.

Условное расчетное сопротивление грунта R0 определяют по таблицам  СНиП 2.02.01—83 «Основания зданий и сооружений».

  1. Суммируем вес крыши, снеговую нагрузку, вес перекрытий и стен, а также фундамента на грунт: 300+1386+7000+5400+2525=16 611 кг/м2=17 т/м2.
  2. Определяем условное расчетное сопротивление грунта по таблицам СНиП 2.02.01—83. Для влажных суглинков с коэффициентом пористости 0,5 R0 составляет 2,5 кг/см2, или 25 т/м2.

Из расчета видно, что нагрузка на грунт находится в пределах допустимой.

stroyvopros.net

Расчет фундамента под дом

Для того, чтобы сорудить фундамент для дома необходимо предварительно выбрать его вид и расчитать размеры, которые будут обеспечивать надежность всей конструкции. В данной статье мы рассмотрим, как  можно сделать упрощенный расчет фундамента под дом, в случае если нет возможности обратиться к специалистам.

 

 

 

 

Содержание статьи:

>Что включает расчет

>Расчет ленточного фундамента

>Расчет нагрузки на основание

>Определение сопротивления грунта

>Расчет мелкозаглубленного

>Расчет столбчатого

>Расчет свайного

>>Видео по теме

 

Обычно расчет фундамента для дома  включает в себя следующие расчеты:

  • по несущей способности грунта на участке строительства;
  • на деформацию грунта.

Здесь мы будем рассматривать расчет фундамента, только исходя из несущей способности грунта, так как он более прост и может быть выполнен самостоятельно. Подобный расчет позволяет понять общие принципы конструирования  фундамента  и позволяет  довольно  достоверно вычислить основные размеры будущего фундамента под дом.

Такой расчет условно можно разбить на два этапа:

  • Вычисление веса всех конструкций будущего дома, снеговой и полезной нагрузки, а также удельного давления на грунт в подошве будущего фундамента.
  • Расчет и уточнение размеров будущего фундамента.

Ниже мы рассмотрим оба эти этапа на примере заглубленного ленточного фундамента. Таким способом можно, например, сделать расчет фундамента под кирпичный дом. Кроме этого, рассмотрим особенности расчетов других видов фундамента:  ленточного мелкозаглубленного, столбчатого и свайного.

Ленточный фундамент, особенно заглубленный, отличается достаточно большим весом и затратами на его сооружение. В то же время, он может выдерживать большие нагрузки от веса тяжелых зданий. Нагрузка на основание такого фундамента состоит из веса конструкций дома, снеговой, полезной нагрузки и веса самого фундамента.

Расчет нагрузки на основание фундамента

Для того, чтобы определить вес всего дома необходимо определить вес отдельных его элементов, включая и фундамент. Элементы, которые определяют нагрузку на подошву фундамента следующие:

  • сам фундамент вместе с цоколем;
  • цокольное перекрытие и полы;
  • стены и внутренние перегородки;
  • внутренняя и наружная отделка стен, а также тепло- и гидроизоляция;
  • окна и двери;
  • межэтажные и чердачные перекрытия;
  • элементы крыши и кровля;
  • межэтажные лестницы.

Для того чтобы определить вес всех этих конструкций необходимо вычислить их объем и умножить на удельный вес или плотность (кг/м3) материалов из которых они сделаны. Вычислить объем будет проще, если составить эскиз каждого элемента в отдельности. Если это конструкция прямоугольной формы, то вычислить объем не составить труда. Если же форма сложной конфигурации, то её необходимо разбить на простые формы, вычислить их объем отдельно, а потом всё суммировать и найти вес .

Удельный вес или плотность (кг/м3) материалов можно взять из справочной литературы или легко найти в интернете. Можно также рассчитать вес конструкций исходя из их удельного веса (веса 1 м2 площади крыши и перекрытий или же 1 м3 стен), которые можно также взять из справочной литературы, интернета или же из приведенных ниже таблиц.

Удельная нагрузка от горизонтальной проекции кровли

Тип кровли

кгс/м2

Металлочерепица или ондулин при угле наклона крыши до 27°

30

Рубероид в 2 слоя при угле наклона 10°

40

Шифер при угле наклона 30°

50

Черепица керамическая  при угле наклона 45°

80

Удельная нагрузка от перекрытий

Тип перекрытия

кгс/м2

Деревянное по деревянным балкам, плотностью 200-300 кг/м3

100 — 150

Деревянное по стальным балкам

200

Железобетонное

500

Удельная нагрузка от 1м3 стен

Материал стен

кгс/м3

Каркасные

300

Бревно или брус

600

Газобетон, пеноблок

600

шлакоблок

1200

ракушечник

1500

пустотелый кирпич

1400

полнотелый кирпич сплошной кладки

1800

 

Для определения предварительного веса фундамента сначала принимаем его размеры приблизительно, исходя из его вида, материала и глубины заложения. Если это ленточный фундамент глубокого заложения, то его высота должна зависит он вида и характеристики грунта, уровня подземных вод и глубины промерзания в данной местности, а ширину можно принять – не меньше толщины стен, которые он будет удерживать.

Ширина подошвы фундамента может быть такой же, как и его верхнее основание или большей (если фундамент будет расширяться книзу). Длина фундамента вычисляется по эскизу, в соответствии с размерами будущего дома. Умножив все эти принятые значения, получим предварительный объем фундамента. Для того, чтобы узнать его вес, умножим найденный объем на плотность материала, из которого планируется его сооружать. Плотность некоторых материалов приведена ниже.

Материал

Плотность кг/м3

Бутовый камень, полнотелый кирпич

1600 — 1700

Мелкозернистый бетон (без щебня)

1800 — 1900

Бетон на щебне

2200 — 2300

Железобетон

2400 — 2500

 

Важным параметром для дальнейшего расчета фундамента являться ширина его подошвы (Ш). Умножив её на длину фундамента (Д) получим площадь подошвенной части, от которой напрямую зависит удельное давление дома на грунт.

Снеговая нагрузка

Для того, чтобы узнать снеговую нагрузку необходимо умножить площадь крыши на значение веса снегового покрова, которое зависит от района строительства и угла наклона крыши. Средние значения удельного веса снежного покрова приведены  ниже:

Для юга России и Украины

—  50 кг/м2

Для средней полосы России и севера Украины

— 100 кг/м2

Для сервера России

— 200 кг/м2

При расчете это значение умножается на поправочный коэффициент, который зависит от угла наклона крыши и имеет значение от 0 (60о и больше) до 1 (25о и меньше). Для углов наклона крыши между значениями 25о и 60о значение коэффициента принимается методом экстраполяции (1/35 на 1о ).

Полезная нагрузка

Полезная нагрузка – это вес всей мебели, отопительных приборов, бытовых устройств и оборудования, а также максимального количества людей, которые могут находиться в доме одновременно. Чаще всего, принимается среднее удельное значение этой нагрузки — 180 кг/м2 и умножается на общую площадь дома.

Удельное давление на подошву фундамента

Для того, чтобы получить  общую нагрузку на подошву фундамента необходимо сложить все полученные ранее значения: вес всех элементов дома, снеговую и полезную нагрузку, а также вес самого фундамента. Разделив полученное значение (в тоннах)  на площадь подошвы фундамента (в м2), получим удельное давление на грунт под подошвой фундамента дома (Р, т/м2).

Определение сопротивления грунта и уточнение размеров фундамента

 

Расчетное сопротивление грунта (R, т/м2)– это величина удельных нагрузок (Р), которую тот выдерживает без осадки. Для обеспечения надежности фундамента дома необходимо, чтобы удельное давление дома на грунт под подошвой фундамента было меньше расчетного сопротивления этого грунта.

Значение расчетного сопротивления разных грунтов можно узнать из нормативной документации. Для этого необходимо знать, к какой категории относится грунт, залегающий под подошвой будущего фундамента. Например, для некоторых грунтов это значение (R, т/м2) может быть:

  • щебень (галька) 40-60;
  • гравий 35-50;
  • крупный песок 50-60;
  • средний песок 40-50;
  • супесь 20-30;
  • суглинок 20-30;
  • глина 20-60.

Для того, чтобы фундамент мог иметь запас прочности, желательно, чтобы расчетное сопротивление грунта в его подошве было на 15-20% больше удельного давления дома.

Тип грунта – как его определить самостоятельно?

Категорию грунта можно определить по результатам геологических исследований, что было бы наилучшим вариантом, или же  самостоятельно, выкопав для этого контрольный шурф размерами около 0,8 х 0,8 м до глубины подошвы будущего фундамента.

Отличить между собой щебень, песок и глинистый грунт можно даже визуально. Сложнее отличить похожие между собой грунты: супесь, суглинок и глину

По мере проходки шурфа, через каждые 0,5 м необходимо отобрать пробы грунта. При этом их нужно маркировать и поместить в закрытые емкости. После завершения отбора проб проводятся исследования для определения их вида. Небольшой объем грунта из пробы необходимо увлажнить и скатать из него жгут диаметром 10-15 мм, который скручивается в кольцо. Если при изгибании в кольцо жгут рассыплется, то скорее всего отобранный  грунт – супесь, если же разделится на 2-3 части – суглинок, а если останется целым – глина.

При возникновении сомнений в правильности определения типа грунта, лучше выбирать меньшее значение расчетного сопротивления грунта, лучше пусть подошва фундамента будет немного шире, с запасом, чем наоборот.

Если на участке грунт  биогенного происхождения (торфяник, ил), засоленный, набухающий или такой, что вызывает сомнения, то лучше для определения его типа пригласить специалистов.

Уточнение размеров фундамента

По результатам расчетов необходимо произвести уточнение предварительно выбранных размеров фундамента. В том случае если R оказалась больше Р на 15-20% — условие выполнено и ничего менять не нужно. Если же R меньше  этого значения – необходимо увеличить ширину, а значит и площадь подошвы фундамента, а если R больше чем на 20% превышает Р, то можно её уменьшить.

Так как изменение ширины подошвы приведет к изменению веса фундамента и поэтому необходимо будет сделать проверочный расчет.

Расчет мелкозаглубленного ленточного фундамента также основан на учете нагрузки от  дома, несущей способности грунта, его глубины промерзания и свойств, а также материала самого фундамента. От обычного заглубленного такой фундамент отличается меньшей глубиной заложения, которая, как правило, меньше глубины промерзания в данной местности. Кроме этого, особенностью такого фундамента является то, что песчано-гравийная подушка в его основании имеет довольно большую высоту и может занимать до 50% глубины его заложения.

При расчете такого вида ленточного фундамента определяют: необходимую глубину его заложения, высоту цоколя над землей и ширину.

Глубина заложения мелкозаглубленного ленточного фундамента

 

Глубина заложения такого фундамента фундамента зависит от степени пучинистости грунта, глубины его промерзания, а также глубины грунтовых вод. Ниже приведены рекомендации по выбору глубины заложения мелкозаглубленного фундамента, в зависимости от типа грунта и глубины его промерзания.

Глубина промерзания разных типов грунтов, м                                     Глубина заложения, м

Непучинистый грунт:                            Слабопучинистый грунт:           
до 2 м                                                                       до 1 м                                                     0,5
до 3 м                                                                     до 1,5 м                                                    0,7
более 3 м                                                          от 1,5 до 2,5 м                                                1,0
—                                                                        от 2,5 до 3,5 м                                                1,5

Стоит также отметить, что наличие высокого уровня грунтовых вод может  сделать невозможным выбор мелкозаглубленного ленточного фундамента для дома.

Высота надземной части мелкозаглубленного фундамента

 

Максимальная высота ленточного мелкозаглубленного фундамента над землей, то есть высота его цоколя, не должна быть больше его ширины умноженной на 4. При этом надземная часть не должна быть больше  подземной части такого фундамента.  Наиболее распространен вариант устройства мелкозаглубленного ленточного фундамента, когда наземная и подземная его часть (без учета подушки) в пределах 50 см, если это позволяют характеристики грунтов на участке строительства.

Ширина фундамента

 

Как правило, ширина мелкозаглубленного ленточного фундамента принимается не меньше толщины опираемой на него стены. Минимальная ширина для легких садовых и хозяйственных сооружений – 25 см, для  дома – 30 см. После предварительного выбора ширины фундамента, её необходимо проверить на соответствие несущей способности грунта под его подошвой. Удельная нагрузка от дома не должна быть больше 70% несущей способности грунта. Если предварительно выбранная ширина фундамента не удовлетворяет это требование, то её необходимо увеличить.

Для расчета столбчатого фундамента под дом необходимо выбрать сечение столбов и расстояние между ними, которое, чаще всего выбирают в пределах 2 м. Количество столбов будет зависеть  от размеров здания, его формы и конструкции, а также от расстояния между столбами. Перед расчетом, также как и в случае с ленточным фундаментом, необходимо составить подробный эскиз – план будущего столбчатого фундамента.

После этого рассчитываем общую нагрузку от веса дома и удельную нагрузку на подошву фундамента. Для этого общую нагрузку без веса самого фундамента необходимо разделить  на общую длину фундамента. Полученный результат умножаем на расстояние между столбами и добавляем вес одного столба. Если по столбам устраивается ростверк, то его вес необходимо учитывать при подсчете общей нагрузки.

Для того, чтобы узнать вес одного столба необходимо вычислить его объем и умножить на плотность материала, из которого он будет изготовлен. После этого необходимо вычислить опорную поверхность подошвы столба и умножить её на несущую способность грунта под ней.  Полученный результат должен превышать нагрузку, которая действует на столб на 15-20%.  Если же это условие не выполняется, то необходимо увеличить ширину опоры столбов или уменьшить между ними расстояние, т. е. увеличить их количество.

Расчет свайного фундамента под дом  ставит своей целью определение необходимого диаметра, длины, количества и шага свай, а также правильного их размещения по периметру фундамента и внутри дома.  Все эти показатели вычисляются в соответствии с весом дома, характеристиками грунта и глубиной его промерзания. С упрощенным расчетом такого типа фундамента можно ознакомиться в статье « Упрощенный расчет свайного фундамента».

Видео по теме:

Вместе с этим материалом часто читают:

Как сделать фундамент под дом своими руками

Строительство фундамента дома своими руками

Свайно ленточный фундамент своими руками

< Предыдущая   Следующая >

www.postroj-dom.ru

Ленточный фундамент – расчет на примере

Расчет ленточного фундамента состоит из двух основных этапов – сбора нагрузок и определения несущей способности грунта. Соотношение нагрузки на фундамент к несущей способности грунта определит требуемую ширину ленты.

Толщина стеновой части принимается в зависимости от конструктива наружных стен. Армирование обычно назначается конструктивно (от четырех стержней Ф10мм для одноэтажных газоблочных/каркасных и до шести продольных стержней Ф12мм для кирпичных зданий в два этажа с мансардой). Расчет диаметров и количества арматурных стержней выполняется только для сложных геологических условий.

Абсолютное большинство он-лайновых калькуляторов фундаментов позволяют всего лишь определить требуемое количество бетона, арматуры и опалубки при заранее известных габаритных параметрах фундамента. Немногие калькуляторы могут похвастаться сбором нагрузок и/или определением несущей способности грунта. К сожалению, алгоритмы работы таких калькуляторов не всегда известны, а интерфейсы зачастую непонятны.

Точный результат можно получить с помощью методики расчёта, изложенный в строительных нормах и правилах. Например, СП 20.13330.2011 «Нагрузки и воздействия», СП 22.13330.2011 «Основания зданий и сооружений». С помощью первого документа будем собирать нагрузки, второго – определять несущую способность грунта. Эти своды правил представляют собой актуализированные (обновленные) редакции старых советских СНиПов.

Сбор нагрузок

Сбор нагрузок осуществляется суммированием их каждого вида (постоянные, длительные, кратковременные) с умножением на грузовую площадь. При этом учитываются коэффициенты надежности по нагрузке.

Значения коэффициентов надежности по нагрузке согласно СП 20.13330.2011.

Нормативные значения полезных нагрузок в зависимости от назначения помещения согласно СП 20.13330.2011.

К постоянным нагрузкам относят собственный вес конструкций. К длительным – вес не несущих перегородок (применительно к частному строительству). Кратковременными нагрузками является мебель, люди, снег. Ветровыми нагрузками можно пренебречь, если речь не идет о строительстве высокого дома с узкими габаритами в плане. Разделение нагрузок на постоянные/временные необходимо для работы с сочетаниями, которыми для простых частных строений можно пренебречь, суммируя все нагрузки без понижающих коэффициентов сочетания.

По своей сути сбор нагрузок представляет собой ряд арифметических действий. Габариты конструкций умножаются на объемный вес (плотность), коэффициент надежности по нагрузке. Равномерно распределенные нагрузки (полезная, снеговая, вес горизонтальных конструкций) формируют опорные реакции на нижележащих конструкциях пропорционально грузовой площади.

Сбор нагрузок разберем на примере частного дома 10х10, один этаж с мансардой, стены из газоблока D400 толщиной 400мм, кровля симметричная двускатная, перекрытие из сборных железобетонных плит.

Схема грузовых площадей для несущих стен в уровне перекрытия первого этажа (в плане.

Схема грузовых площадей для несущих стен в уровне кровли (в разрезе.

Некоторую сложность представляет собой сбор снеговой нагрузки. Даже для простой кровли согласно СП 20.13330.2011 следует рассматривать три варианта загружения:

Схема снеговых нагрузок на кровлю.

Вариант 1 рассматривает равномерное выпадение снега, вариант 2 – не симметричное, вариант 3 – образование снегового мешка. Для упрощения расчёта и для формирования некоторого запаса несущей способности фундаментов (особенно он необходим для примерного расчёта) можно принять максимальный коэффициент 1,4 для всей кровли.

Конечным результатом для сбора нагрузок на ленточный фундамент должна быть линейно распределенная (погонная вдоль стен) нагрузка, действующая в уровне подошвы фундамента на грунт.

Таблица сбора равномерно распределенных нагрузок

Наименование нагрузкиНормативное значение, кг/м2Коэффициент надежности по нагрузкеРасчётное значение нагрузки, кг/м2
Собственный вес плит перекрытия2751,05290
Собственный вес напольного покрытия1001,2120
Собственный вес гипсокартонных перегородок501,365
Полезная нагрузка2001,2240
Собственный вес стропил и кровли1501,1165
Снеговая нагрузка100*1,4 (мешок)1,4196

Всего: 1076 кг/м2

Нормативное значение снеговой нагрузки зависит от региона строительства. Его можно определить по приложению «Ж» СП 20.13330.2011. Собственные веса кровли, стропил, напольного перекрытия и перегородок взяты ориентировочно, для примера. Эти значения должны определяться непосредственным вычислением веса того или иного конструктива, или приближенным определением по справочной литературе (или в любой поисковой системе по запросу «собственный вес ххх», где ххх – наименование материала/конструкции).

Рассмотрим стену по оси «Б». Ширина грузовой площади составляет 5200мм, то есть 5,2м. Умножаем 1076кг/м2*5,2м=5595кг/м.

Но это ещё не вся нагрузка. Нужно добавить собственный вес стены (надземной и подземной части), подошвы фундамента (ориентировочно можно принять её ширину 60см) и вес грунта на обрезах фундамента.

Для примера возьмем высоту подземной части стены из бетона в 1м, толщина 0,4м. Объемный вес неармированного бетона 2400кг/м3, коэффициент надежности по нагрузке 1,1: 0,4м*2400кг/м3*1м*1,1=1056кг/м.

Верхнюю часть стены примем в примере равной 2,7м из газобетона D400 (400кг/м3) той же толщины: 0,4м*400кг/м3*2,7м*1,1=475кг/м.

Ширина подошвы условно принята 600мм, за вычетом стены в 400мм получаем свесы общей суммой 200мм. Плотность грунта обратной засыпки принимается равной 1650кг/м3 при коэффициенте 1,15 (высота толща определится как 1м подземной части стены минус толщина конструкции пола первого этажа, пусть будет в итоге 0,8м): 0,2м**1650кг/м3*0,8м*1,15=304кг/м.

Осталось определить вес самой подошвы при её обычной высоте (толщине) в 300мм и весе армированного бетона 2500кг/м3: 0,3м*0,6м*2500кг/м3*1,1=495кг/м.

Суммируем все эти нагрузки: 5595+1056+475+304+495=7925кг/м.

Более подробная информация о нагрузках, коэффициентах и других тонкостях изложена в СП 20.13330.2011.

Расчёт несущей способности грунта

Для расчёта несущей способности грунта понадобятся физико-механические характеристики инженерно-геологических элементов (ИГЭ), формирующих грунтовый массив участка строительства. Эти данные берутся из отчета об инженерно-геологических изысканиях. Оплата такого отчёта зачастую окупается сторицей, особенно это касается неблагоприятных грунтовых условий.

Среднее давление под подошвой фундамента не должно превышать расчётное сопротивление основания, определяемого по формуле:

Формула определения расчетного сопротивления грунта основания.

Для этой формулы существует ряд ограничений по глубине заложения фундаментов, их размеров и т.д. Более подробная информация изложена в разделе 5 СП 22.13330.2011. Ещё раз подчеркнем, что для применения данной расчётной методики необходим отчет об инженерно-геологических изысканиях.

В остальных случаях с некоторой степенью приближенности можно воспользоваться усредненными значениями в зависимости от типов ИГЭ (супеси, суглинки, глины и т.п.), приведенными в СП 22.133330.2011:

Расчетные сопротивления крупнообломочных грунтов.

Расчетные сопротивления песчаных грунтов.

Расчетные сопротивления глинистых грунтов.

Расчетные сопротивления суглинистых грунтов.

Расчетные сопротивления заторфованных песков.

Расчетные сопротивления элювиальных крупнообломочных грунтов.

Расчетные сопротивления элювиальных песков.

Расчетные сопротивления элювиальных глинистых грунтов.

Расчетные сопротивления насыпных грунтов.

В рамках примера зададимся суглинистым грунтом с коэффициентом пористости 0,7 при значении числа пластичности 0,5 – при интерполяции это даст значение R=215кПа или 2,15кг/см2. Самостоятельно определить пористость и число пластичности очень сложно, для приблизительной оценки стоит оплатить взятие хотя бы одного образца грунта со дна траншеи специалистом лаборатории, выполняющей изыскания. В общем и целом для суглинистых грунтов (самый распространенный тип) чем выше влажность, тем выше значение числа пластичности. Чем легче грунт уплотняется, тем выше коэффициент пористости.

Определение требуемой ширины подошвы («подушки») ленточного фундамента

Требуемая ширина подошвы определяется отношением расчетного сопротивления основания к линейно распределенной нагрузке.

Ранее мы определили погонную нагрузку, действующую в уровне подошвы фундамента – 7925кг/м. Принятое сопротивление грунта у нас составило 2,15кг/см2. Приведём нагрузку в те же единицы измерения (метры в сантиметры): 7925кг/м=79,25кг/см.

Ширина подошвы ленточного фундамента составит: (79,25кг/см) / (2,15 кг/см2)=36,86см.

Ширину фундамента обычно принимают кратной 10см, то есть округляем в большую сторону до 40см. Полученная ширина фундамента характерна для легких домов, возводимых на достаточно плотных суглинистых грунтах. Однако по конструктивным соображениям в некоторых случаях фундамент делают шире. Например, стена будет облицовываться фасадным кирпичом с утеплением толщиной 50мм. Требуемая толщина цокольной части стены составит 40см газобетона + 12см облицовки + 5см утеплителя = 57см. Газобетонную кладку на 3-5см можно «свесить» по внутренней грани стены, что позволит уменьшить толщину цокольной части стены. Ширина подошвы должна быть не менее этой толщины.

Осадка фундамента

Ещё одной жестко нормируемой величиной при расчёте ленточного фундамента является его осадка. Её определяют методом элементарного суммирования, для которого вновь понадобятся данные из отчета об инженерно-геологических изысканиях.

Формула определения средней величины осадки по схеме линейно-деформируемого слоя (приложение Г СП 22.13330.2011).

Схема применения методики линейно-деформируемого слоя.

Исходя из опыта строительства и проектирования известно, что для инженерно-геологических условий, характерных отсутствием грунтов с модулем деформации менее 10МПа, слабых подстилающих слоев, макропористых ИГЭ, ряда специфичных грунтов, то есть при относительно благоприятных условиях расчёт осадки не приводит к необходимости увеличения ширины подошвы фундамента после расчёта по несущей способности. Запас по расчётной осадке по отношению к максимально допустимой обычно получается в несколько раз. Для более сложных геологических условий расчёт и проектирование фундаментов должен выполняться квалифицированным специалистом после проведения инженерных изысканий.

Заключение

Расчёт ленточного фундамента выполняется согласно действующим строительным нормам и правилам, в первую очередь СП 22.13330.2011. Точный расчёт фундамента по несущей способности и его осадки невозможен без отчета об инженерно-геологических изысканиях.

Приближенным образом требуемая ширина ленточного фундамента может быть определена на основании усредненных показателей несущей способности тех или иных видов грунтов, приведенных в СП 22.13330.2011. Расчёт осадки обычно не показателен для простых, однородных геологических условий в рамках «частного» строительства (легких строений малой этажности).

Принятие решения о самостоятельном, приближенном, неквалифицированном расчёте ширины подошвы ленточного фундамента владельцем будущего строения неоспоримым образом возлагает всю возможную ответственность на него же.

Целесообразность применения он-лайн калькуляторов вызывает обоснованные сомнения. Правильный результат можно получить, используя методики расчёта, приведенные в нормах и справочной литературе. Готовые калькуляторы лучше применять для подсчета требуемого количества материалов, а не для определения ширины подошвы фундамента.

Точный расчет ленточного фундамент не так уж прост и требует наличия данных по грунтам, на которые он опирается, в виде отчета по инженерно-геологическим изысканиям. Заказ и оплата изысканий, а также кропотливый расчет окупятся сторицей правильно рассчитанным фундаментом, на который не будут потрачены лишние деньги, но который выдержит соответствующие нагрузки и не приведет к развитию недопустимых деформаций здания.

rems-info.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *