Расчет ширины ленточного фундамента: Ширина ленточного фундамента: как рассчитать

Содержание

Расчет ленточного фундамента: глубина, ширина, площадь подошвы

Перед тем как непосредственно приступить к возведению ленточного фундамента, необходимо узнать основные его параметры: глубину заложения и площадь основания. Начнем мы, пожалуй, с самого простого – с расчета глубины залегания.

Глубина и ширина фундамента

Глубина рассчитывается исходя из качественных показателей грунта и характеристики возводимого объекта. Так, если постройка массивная, например, двухэтажный кирпичный дом, то фундамент заглубляется вплоть до границы промерзания грунта (для надежности на 300 мм глубже), которая для каждого региона принимает свое значение. Часть фундамента изготавливают над нулевым уровнем на 300 мм. Итого, общая глубина для «тяжелых» сооружений и сложных грунтов составляет: ГПГ+600 мм, где ГПГ – глубина промерзания грунта. Для легких конструкций, например, деревянных домов, бань или когда возводится фундамент для забора, он может заглубляться всего на 500 мм. В этом случае предполагается, что вспучивание грунта будет протекать равномерно и не скажется на целостности постройки.

Что касается остальных размеров, то ширину каждой полосы, как правило, принимают равной 400 мм. Осталось только узнать общую площадь поверхности.

Расчет площади

Для чего необходимо рассчитывать площадь подошвы? Все очень просто! Всего лишь для того, чтобы определить номинальную площадь, благодаря которой возводимый объект будет устойчивым. Проще говоря – чтобы дом неравномерно не ушел в землю под действием суммарной нагрузки на грунт. Ведь постройка может не только выталкиваться вспученными грунтами во время их сезонного промерзания, но и за счет высоких нагрузок продавливать грунт. И та и другая ситуация чревата разрушением постройки.

Площадь подошвы фундамента (S) рассчитывается по следующей формуле:

S > k(n)*F/k(c)*R, где

k(n) – коэффициент надежности, который обычно принимают равным 1,2, т.е. запас площади равен 20%;
F – суммарная расчетная нагрузка на грунтовое основание. Сюда входит нагрузка от дома, фундамента, полезная нагрузка и т.д. – все, что способствует увеличению давления на опору ленточного фундамента;

k(c) – коэффициент условий работы, принимающий значение от 1 для глины пластичной и сооружений жесткой конструкции, имеющей каменные стены до 1,4 для крупного песка и не жестких конструкций;
R – расчетное сопротивление грунта (для некоторых приведено в таблице ниже).

Таким образом, единственным неизвестным для расчета площади остается общая нагрузка на грунт.

Нагрузка от дома и фундамента

В специальных справочниках вы можете найти средние значения удельных весов различных конструкций дома. Зная площадь этих элементов, несложно подсчитать и примерную нагрузку от них на грунтовое основание.

Также необходимо брать в расчет временные нагрузки, которые создаются, например, снежным покровом. Для средней полосы России удельную нагрузку снежного покрова принимают равной 100 кг на каждый квадратный метр кровли, для южной – 50, для северной – 190. Соответственно, эти величины нужно умножить на значение площади кровли.

Также нужно принимать во внимание нагрузку от фундамента. Но, т.к. для расчета этой нагрузки нам необходимо знать его площадь (для измерения объема, а затем и его массы), что в свою очередь усложняет работу формулы определения площади подошвы, принимаем фундамент с одной внутренней стеной и шириной полосы, равной 400 мм. Далее объем  умножаем на среднюю плотность железобетона (2400) и получаем нагрузку. Свайно-ленточный фундамент рассчитывается по более упрощенной схеме.

Осталось только сложить все нагрузки и подставить их в формулу, чтобы провести расчет общей площади ленточного фундамента и сделать корректировку на ширину каждой полосы и их длину.

Загрузка…

Определение ширины ленточного фундамента — Доктор Лом

Рисунок 345.1. Примерный план 1 этажа для расчета фундаментной плиты.

 При этом нагрузка на стены в сечении 3-3 составляла (для погонного метра стены):

А3 = 750 + 1872 + 3240 +364.5 = 6226.5 кг

С3 = 750 + 1872 + 3240 = 5862 кг

В3 = 750 + 1872 + 6480 +364.5 = 9466.5 кг

В сечении 1-1:

А1 = В1 = 750 + 1872 + 243 = 2865 кг

В сечении 2-2:

А2 = С2 = 750 + 1872 + 243 = 2865 кг

В2 = 750 + 1872 + 729 = 3351 кг

Примечание: данные нагрузки рассчитывались с учетом относительно небольшой высоты фундаментных стен — 0.5 м (их вес составлял 750 кг). И если фундамент будет заглубляться на 1 м и более, то значение нагрузок следует пересчитать. Например, при высоте фундамента 1 м расчетная нагрузка на основание под стенами составит:

А3 = 750 + 6226.5 = 6976.5 кг

С3 = 750 + 5862 = 6612 кг

В3 = 750 + 9466.5 = 10216.5 кг

В сечении 1-1:

А1 = В1 = 750 + 2865 = 3615 кг

В сечении 2-2:

А2 = С2 = 750 + 2865 = 3615 кг

В2 = 750 + 3351 = 4101 кг

Очень часто строители-непрофессионалы делают подошву ленточного фундамента под все стены одной ширины, а иногда и просто льют фундамент без подошвы. При достаточно прочных грунтах и небольших нагрузках на основание такое может быть допустимо, но вообще это очень большая ошибка.

Дело в том, что грунты под действием нагрузки от дома деформируются, проще говоря оседают. При этом чем меньше прочность грунтов под фундаментом, тем больше будет осадка, впрочем расчет осадки фундамента не является предметом рассмотрения данной статьи. Так вот, если делать подошву фундамента одинаковой ширины для всех стен, то осадка основания, например под внутренней стеной в сечении 3-3 будет почти в 3 раза больше, чем под наружными стенами в сечении 1-1. Более того, при неравномерной осадке фундамента в фундаменте возникают неучтенные ранее напряжения, при этом ленту фундамента под каждой из стен следует рассматривать как балку, лежащую на упругом основании, на которую действуют сосредоточенные нагрузки по концам (в углах дома) и(или) в пролете (пересечения наружных и внутренних стен).

Объективности ради добавлю, что подобную ошибку допускают не только строители-любители. Моя теща живет в сталинке — небольшом двухэтажном доме на 8 квартир, построенном после войны пленными немцами. Так вот когда я взялся выравнивать полы, то перепад отметок между одной из внутренних несущих стен и наружной стеной составлял около 10 см при расстоянии между стенами около 6 м, т.е. отметка пола возле внутренней стены была ниже отметки пола возле наружной стены. Полагаю, что виноваты в этом не кривые руки немцев или их нежелание хорошо работать, а наплевательское отношение инженера-конструктора к своим обязанностям. Впрочем, могу ошибаться.

Мы подобных ошибок допускать не будем и потому рассчитаем ширину подошвы фундамента для как минимум трех стен: 1 — наружных А3

и С3, 2 — внутренней В3 в сечении 3-3 и 3 — для наружных и внутренних в сечениях 1-1 и 2-2. А на разницу значений нагрузок на основание меньше 15% обращать внимания не будем.

А теперь собственно сам расчет

При рассмотрении 1 погонного метра длины ленточного фундамента (l = 1 м) формула вида

N/F = N/(lb) ≤ Ro

преобразуется в

N/b ≤ Ro

где N — нагрузка, действующая на 1 погонный метр основания.

При принятом расчетном сопротивлении грунта Ro = 1 кг/см2 или 10000 кг/м2 ширина b подошвы под стены должна составлять не менее:

b ≥ N/Ro

1(B3): 10216.5/10000 = 1.02 м

2(А3, С3): 6976.5/10000 = 0.7 м

3(А1, В1, А2, В2, С2): 4101/10000 = 0.41 м

Ну а чтобы не работать на пределе несущей способности грунта, с учетом возможной передачи нагрузки от наружных несущих стен со смещением от центра тяжести рассматриваемого сечения и с учетом расчетной ширины стены фундамента 0.5 м, увеличим ширину подошвы примерно в 1.25 раза (для большей надежности можно увеличить и в 1.5 раза, это кому как нравится). Тогда даже при очень низкой несущей способности грунта

1(B3): 10216.5/10000 = 1.25 м

2(А3, С3): 6976.5/10000 = 0.8 м

3(А1, В1, А2, В2, С2): 4101/10000 = 0.5 м

Вот собственно и весь расчет ширины подошвы фундамента. Как видим, для большинства стен фундамент можно действительно делать сплошным, а не ступенчатым и только под стены в сечении 3-3 требуется увеличение ширины фундамента. Причем при высоте подошвы 0.15 м и ширине фундаментной стены 0.5 м выступы подошвы под наружными стенами составят 0.15 м при высоте 0.2 м и с учетом перераспределения напряжений в теле фундамента армировать эти выступы не обязательно. А вот под внутренней стеной В

3 выступы подошвы составят (1.25 — 0.5)/2 = 0.375 м и если высоту выступов принять такой же 0.2 м, то необходимость армирования следует проверять расчетом.

Примечание: как правило без армирования можно обойтись, если высота подошвы в 1.1-1.3 раза больше выступа.

Чтобы сравнение с вариантом фундамента — монолитной плиты было корректным для расчетов будем использовать все тот же бетон класса В20. Выступы подошвы мы можем рассматривать как консольные балки длиной 0.375 м и высотой 0.15 м, на которые действует равномерно распределенная нагрузка q = 10000/1.25 = 8000 кг/м. Тогда максимальный момент составит

М = ql2/2 = 8000·0.3752/2 = 562.5 кгс·м или 56250 кгс·см

А0 = M/bh

20Rb = 56250/(100·122·117) = 0.033

Теперь по вспомогательной таблице 170.1 методом интерполяции значений:

Таблица 170.1. Данные для расчета изгибаемых элементов прямоугольного сечения, армированных одиночной арматурой

η = 0.943 и ξ = 0.034. Далее ограничимся простой проверкой, согласно таблице 220.1 граничное значение относительной высоты сжатой зоны бетона при арматуре А400 составляет ξR = 0.531 > ξ = 0.034, т.е. расчет можно продолжать, требование по относительной высоте сжатой зоны бетона нами не превышено. И тогда требуемая площадь сечения арматуры:

Fa = M/ηh0Rs = 56250/(0.983·12·3600) = 1.32 см2.

Если принять армирование 1 погонного метра консолей 5 стержнями Ø6 мм, то площадь сечения составит 1.42 см2.

Чтобы максимально упростить и ускорить работы по установке арматуры, можно использовать готовые сварные сетки, например из проволоки класса В500 (Вр1) с расчетным сопротивлением растяжению R

s = 415 МПа или 4230 кг/см2. Тогда

Fa = M/ηh0Rs = 56250/(0.983·12·4230) = 1.12 см2.

Тогда при ячейке 100х100 мм можно использовать сетки из проволоки Ø 4 мм, площадь сечения при этом составит 1.26 см2.

Примечание: конструктивное армирование стен ленточного фундамента мы здесь не рассматриваем, хотя оно никогда не помешает (мало ли чего может произойти с основанием: подмачивание, пучение, неравномерная осадка основания и др.). Тем не менее люди, строя свой первый в жизни дом и начитавшись форумов, стараются заложить такой арматуры как можно больше. Однако монолитный бетонный фундамент — достаточно прочное сооружение, намного более прочный, чем ленточный фундамент из бутового камня или сборный из блоков (в таких фундаментах продольного армирования по всей длине нет по умолчанию) при условии его заливки без технологических швов.

На всякий случай примем  продольное армирование стен фундаментной стены 6 стержнями Ø 12 мм с обвязкой хомутами из арматуры Ø 6 мм через каждые 0.5 м (общая длина хомутов примерно 3 м. Тогда для армирования фундамента потребуется примерно 6х(27 + 26 + 7) = 360 м арматуры Ø 12 мм общим весом 320 кг и 3х60х2 = 360 м арматуры Ø 6 мм общим весом 80 кг. Ориентировочно арматура обойдется в 300$.

Впрочем, если рассчитывать армирование фундамента на самое неблагоприятное стечение обстоятельств, в частности на неравномерную осадку основания под лентой фундамента, то потребуется арматура большего сечения.

Кроме того нам потребуется около 4 сварных сеток длиной 2 м и приблизительной стоимостью 10-20$. Примерный расход бетона составит 56х0.5х0.5 + 8(0.75 +0.3)0.2 = 14 + 1.68 = 15.7 м3. Это в 2.7 раза меньше бетона, чем при выполнении фундаментной монолитной плиты, ну а по расходу арматуры и говорить не приходится. Ориентировочно бетон обойдется в 800$, напомню мы сравниваем только подземные части фундаментов. Общая цена составит около 1100$.

Разница у нас получилась почти в 4 раза, правда и нагрузка на основание при фундаментной плите почти в 3 раза меньше. Впрочем расчет по прочности не считается обязательным при расчете фундаментов, а обязательным считается расчет по деформациям, в частности расчет осадки фундамента, но это отдельная тема.

Страница не найдена — ГидФундамент

Содержание статьи1 Об «устаревших»  стандартах2 О квалификации сварщика при армировании3 Основные критерии выбора способа фиксации арматуры Дискуссии на тему «вязать […]

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Страница не найдена — ГидФундамент

Содержание статьи1 Об «устаревших»  стандартах2 О квалификации сварщика при армировании3 Основные критерии выбора способа фиксации арматуры Дискуссии на тему «вязать […]

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Страница не найдена — ГидФундамент

Содержание статьи1 Об «устаревших»  стандартах2 О квалификации сварщика при армировании3 Основные критерии выбора способа фиксации арматуры Дискуссии на тему «вязать […]

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Расчет ширины ленточного фундамента дома

К разделам статьи:
Высота, длина и заглубление ленточного фундамента
Расчет ширины ленточного фундамента

Следующий компонент суммарной нагрузки, действующий вместе с мертвым весом строительных конструкций — это снеговая нагрузка. Снеговая нагрузка вовсе не стоит пренебрежительного отношения. Нагрузка от лежащего на крыше дома снега запросто может быть равной или даже превышать нагрузку на фундамент от собственно материала стен. К примеру, в Санкт Петербурге в одноэтажном доме площадью 100 м2 из газобетонных блоков толщиной 30 см вес стен составит примерно 25 тонн. При этом нагрузка от снега, который может разместиться снежной зимой на кровле площадью 150 м2 составит 28 тонн. Неплохо, не правда ли?

Нормативная снеговая нагрузка отличается для разных климатических районов России. Районы по различной снеговой нагрузке категорий от I до VIII указаны в картах «Изменений, внесенных в СНиП 2.01.07-85 Нагрузки и воздействия». Ниже приведена таблица с выборочным указанием населенных пунктов и значениями расчетной снеговой нагрузки с запасом прочности с коэффициентом 1,4.

Таблица №9  Таблица значений расчетной снеговой нагрузки на горизонтальную проекцию кровли  с запасом прочности с коэффициентом 1,4

Климатический район строительства 

Города

Расчетная снеговая нагрузка (кг/м2)

I

Астрахань, Улан-Удэ

80

II

Майкоп, Нальчик, Хабаровск, Владивосток, Якутск, Мирный, Иркутск

120

III

Москва, Владимир Великий Новгород, Красноярск, Сызрань

180

IV

Санкт Петербург, Хатанга, Кемерово, Нижний Новгород

240

V

Пермь, Уфа, Анадырь, Сургут, Нижневартовск, Петрозаводск, Мурманск, Магадан

320

VI

Усинск, Красновишерск, Кизел

400

VII

Петропавловск-Камчатский

480

VIII

Апатиты, Норильск, Снежнегорск, Кропоткин, Чара, Байкальск, Горно-Алтайск, Теберда

560

Ветровая нагрузка по СНиП 2.01.07-85 «Нагрузки и воздействия» пункт 10.14 при расчете крена фундаментов принимается как 30% от расчетной ветровой нагрузки.

Таблица 10. Расчетные ветровые нагрузки, действующие на профилированные настилы кровли, стен зданий и сооружений высотой до 10 м в соответствии со СНиП 2.01.07-85


Зона ветрового давления 

Города

Расчетная ветровая нагрузка (кг/м2)

Старая Русса, Коноша, Шарья, Мирный, Витим, Кропоткин

24

I

Москва, Кандалакша, Киров, Тула, Рязань, Улан-Удэ, Нижневартовск, Нижний Тагил, Тюмень, Казань, Пермь, Челябинск

32

II

Санкт Петербург, Иркутск, Жиганск, Хабаровск, Уфа, Астрахань

42

III

Оренбург, Сызрань, Кизляр, Кемерово, Абакан, Амурск, Хатанга

53

IV

Норильск, Усинск, Нарьян-Мар

67

V

Мурманск, Салехард

84

VI

Воркута, Амдерма

100

VII

Петропавловск-Камчатский

120

VII

Анадырь

>120

Один из вариантов ориентировочного расчета — вычисление ветровой нагрузки на фундамент с помощью эмпирической формулы:

Ветровая нагрузка = Площадь здания x (40 + 15 х Высота дома)

В упрощенной Британской методике расчета ширины ленточного фундамента ветровая нагрузка на один погонный метр фундамента считается как 102 кгс/м (1 кН/м).

 

Полезная нагрузка — это нагрузка, вклад в которую вносит всё, что наполняет дом и не является частью строительных конструкций: люди, мебель, оборудование.

Таблица 11. Расчетные полезные нагрузки, действующие на перекрытия в соответствии со СНиП 2.01.07-85


Здания и помещения

Расчетное значение нагрузки
(кг/м2)

Квартиры жилых зданий, детские дошкольные учреждения, дома отдыха, общежития, гостиницы и т.п.

195

Административные здания, учреждения, научные организации, классные помещения, бытовые помещения промышленных предприятий и общественных зданий

240

Кабинеты и лаборатории научных, лечебных и образовательных учреждений

240

Залы:
читальные
кафе, ресторанов, столовых
собраний, совещаний, зрительные, концертные, спортивные


240
360
480

Чердачные помещения

91

Перекрытия на участках с возможным скоплением людей

480

После того как посчитаны все планируемые нагрузки они суммируются:

Суммарная нагрузка на подлежащий грунт основания = метрвая нагрузка + полезная нагрузка + снеговая нагрузка + ветровая нагрузка

Полученная суммарная нагрузка умножается на коэффициент прочности 1,3 для дальнейших рачетов. Теперь необходимо выяснить несущую способность грунта, который подлежит под будущим мелкозаглубленным ленточным фундаментом.

Читать дальше про расчет ширины монолитного мелкозаглубленного ленточного фундамента

Вернуться к началу статьи

Расчет подошвы фундамента в Спб и Москве

Расчет ширины фундамента, подошвы, опорной части — актуально при выборе в качестве основного фундамента – железобетонной монолитной ленты. Если опорная часть фундамента рассчитана некорректно, то вес дома будет превышать сопротивление грунта, дом будет продавливать грунт под собой. При этом усадка, как правило, происходит неравномерно, и, как следствие, на фундаменте и кладке стен будут появляться структурные трещины.

Как правильно рассчитать фундамент самостоятельно, потратив для этого минимум времени? Тем более, что статистика показывает, что более 70% частных застройщиков не заказывают расчеты у конструкторов, а подбирают тип фундамента и его характеристики на свой страх и риск.

Расчет подошвы фундамента в данной статье позволит Вам за 5 минут получить все необходимые значения для выбора оптимального фундамента Вашего дома.

Одни только приведенные ниже расчеты не являются гарантией надежности фундамента. Кроме правильного расчета фундамента, необходимо профессиональное конструктивное решение (КЖ), качественное строительство, надежная консервация фундамента с противопучинистыми мероприятиями (если фундамент остается без нагрузок в зимний период) и правильная эксплуатация дома. Только при соблюдении всех этих условий фундамент будет надежным и долговечным.

Основная задача фундамента – принять нагрузки от дома, частично перераспределив их в своей толще и максимально равномерно передать их на грунтовое основание, расположенное под фундаментом. Поэтому в формуле расчета основания фундамента:

Sопоры фундамента > Р1(вес дома)2(сопротивление грунта) х 1,2 — представлены следующие показатели:

  1. Вес дома P 1 (тонна/м2) – сила, с которой дом давит вниз на грунт;
  2. Коэффициент надежности 1,2 — величина, показывающая способность конструкции выдерживать прилагаемые к ней нагрузки выше расчётных, предусмотренных нормами. Наличие запаса прочности обеспечивает дополнительную надёжность конструкции, чтобы избежать повреждений, разрушений в случае возможных ошибок проектирования, изготовления или эксплуатации.
  3. Сила сопротивления грунта P 2 (кг/см2) – обратная сила, направленная снизу-вверх. Не рекомендуется данную величину умножать на дополнительные коэффициенты, т.к. это приведет к уменьшению площади основания фундамента, снижая его несущую способность.

Для определения силы сопротивления грунта необходимо знать его состав. Для этого не обязательно делать геологию. Достаточно выкопать на участке яму глубиной до 1,5м и исследовать грунт тактильно и визуально. Наиболее распространенными в Московской и Ленинградской области являются следующие несущие грунты: 1) Глина; 2) Суглинок — если глинистая порода с примесью песка, где преобладает глина; 3) Супесь — если песок с примесью глины, где преобладает песок; 4) Песок.

Для расчетов мы будем использовать усредненные значения, которые показывают какое сопротивление имеет тот или иной грунт, т.е. какую несущую способность грунт способен предоставить на участке под строительство дома.

Р2глина = 6кг/см2  

Р2 песок = 4кг/см2

Для удобства и быстроты расчетов делим постоянные значения и получаем:

1,2коэф.надежности / Р2глина = 0,2

1,2коэф.надежности / Р2песок = 0,3

Отсюда выводим формулу расчет площади фундамента по весу дома:

Для глины: Sопоры фундамента > Р1 (вес дома) х 0,2

Для песка: Sопоры фундамента > Р1(вес дома) х 0,3

Как определить вес дома P1? Для этого выберите основной материал для строительства стен, затем весовую категорию коэффициент нагрузки из представленной ниже таблицы:

Материал несущих стен Коэффициент нагрузки Pср (тонн/м2)
Крупноформатный кирпич + облицовочный кирпич 3,5
Крупноформатный кирпич + штукатурка 3,2
Газобетон + облицовочный кирпич 3,1
Газобетон + штукатурка 2,8

Коэффициенты нагрузок учитывают все дополнительные нагрузки при эксплуатации дома.

Расчет ленточного фундамента пример:

Пример 1.

Исходные данные. Типовой проект одноэтажного дома из газобетона №62-09 общей площадью 113,09м2. Площадь застройки 157,14м2. Отделка – фасадная штукатурка. Длина несущих стен, включая внутренние = 79,64м. Несущий грунт на участке – глина.

Согласно таблице — дом соответствует 2-ой весовой категории. Получаем:

Р1 вес дома = 157,14 х 2 = 314,28 тонн. Перед постановкой в формулу переводим тонны в кг. Получаем вес дома = 314 280кг

Sопоры фундамента = Р1 (вес дома) х 0,4 = 314 280 х 0,4 = 125 712см2 = 12,57м2

12,57м2 – эта требуемая (Sнорм — нормативная) площадь опоры фундамента для данного конкретного проекта и условий строительства, необходимая для решения основной своей задачи (см. в начале статьи).

Следующим шагом мы проверяем соответствие фактической площади ленточного фундамента нормативной площади. Sфакт ≥ Sнорм

P — периметр, общая длина всех несущих стен по проекту составляет 79,64м.

Т — толщина стен ленточного фундамента должна быть не меньше толщины несущих стен. В данном проекте она составляет = 0,4м.

Вычисляем фактическую площадь Sфакт ленточного фундамента:

Sфакт = P х T = 79,64 х 0,4 = 31,86м2

Сравниваем 2 цифры и получаем: Sфакт > Sнорм. Т.о. данный фундамент в 2,5 раза превышает нормативные значения, поэтому полностью соответствует необходимым требованиям.

Пример 2.

Исходные данные. Типовой проект двухэтажного мансардного дома №62-09 общей площадью 113,6м2. Площадь застройки 93,57м2. Материал несущих стен — газобетон 400мм. Отделка – фасадная штукатурка. Длина несущих стен, включая внутренние = 59,17м. Несущий грунт на участке – песок.

Согласно таблице — дом соответствует 2-ой весовой категории. Получаем:

Р1 вес дома = 93,57 х 2 = 187,14 тонн. Т.к. дом 2х этажный умножаем 187,14 х 2 = 374,28 тонн. Перед постановкой в формулу переводим тонны в кг. Получаем вес дома = 374 280кг

Sопоры фундамента = Р1 (вес дома) х 0,6 = 374 280 х 0,6 = 224 568см2 = 22,57м2

14,97м2 – эта требуемая (Sнорм — нормативная) площадь опоры фундамента для данного конкретного проекта и условий строительства, необходимая для решения основной своей задачи (см. в начале статьи).

Следующим шагом мы проверяем соответствие фактической площади ленточного фундамента нормативной площади. Sфакт ≥ Sнорм

P — периметр, общая длина всех несущих стен по проекту составляет 59,17м.

Т — толщина стен ленточного фундамента должна быть не меньше толщины несущих стен. В данном проекте она составляет = 0,4м.

Вычисляем фактическую площадь Sфакт ленточного фундамента:

Sфакт = P х T = 59,17 х 0,6 = 35,5м2

Сравниваем 2 цифры и получаем: Sфакт > Sнорм. Т.о. данный фундамент превышает нормативные значения, поэтому полностью соответствует необходимым требованиям.

Примечание. При расчёте площади свайно-ростверкового фундамента 2/3 площади должно приходить на пятки столбчатого фундамента (свай).

Каковы требования к толщине ленточного фундамента?

🕑 Время считывания: 1 минута

Толщина ленточного фундамента зависит от ряда факторов, таких как состояние потери, типы грунта и глубина фундамента. Обсуждаются требования к толщине ленточного фундамента в зависимости от условий нагрузки и глубины фундамента.

Рис.1: Ленточный фундамент

Требования к толщине ленточного фундамента

Толщина ленточного фундамента, несущего легкие нагрузки Обычно толщина ленточного фундамента равна выступу от поверхности фундамента или стены, но не менее 150 мм.Эта минимальная толщина необходима для того, чтобы ленточный фундамент обладал достаточной жесткостью и, следовательно, мог перекрывать слабые карманы в грунте. В дополнение к тому, чтобы выдерживать продольную силу, создаваемую тепловым сжатием и расширением, а также перемещением влаги в опорной стене. Если тип грунта под фундаментом — глина, то набухание глины может быть большим и оказывать давление на фундамент. Что необходимо наложить минимальный предел на ленточный фундамент.

Толщина ленточного фундамента, выдерживающего тяжелые нагрузки Если ленточный фундамент выдерживает большие нагрузки, то толщина фундамента определяется его прочностью, чтобы выдерживать сдвиговые и изгибающие моменты, которые могут привести к разрушению выступа фундамента.Рисунок 2 объясняет разрушение при изгибе и сдвиге соответственно. Если арматура не заделана в ленточный фундамент, то разрушение основания ленточного фундамента будет определять его толщину.

Рис.2: Разрушение ленточного фундамента при изгибе и сдвиге

Разрушения при изгибе можно избежать, если использовать бетон достаточной толщины. можно применить ступенчатый или наклонный переход заданной толщины от лицевой стороны стены к нижней ширине. Иногда ленточный фундамент проектируют консервативно, выбирая толщину, предотвращающую развитие напряжения на обратной стороне ленты.Такая толщина обычно равна удвоенному выступу полосы. Однако учитывается 45-градусное распределение нагрузок в основании ленточного фундамента. И в соответствии с этим распределением нагрузки небольшое напряжение растяжения в основании фундамента допустимо, но его величина неизвестна.

Толщина глубокого и широкого ленточного фундамента Если глубина и ширина ленточного фундамента велики, необходимо учитывать экономичное использование бетона, учитывая толщину фундамента.Это связано с тем, что может использоваться значительное количество бетона, который не способствует передаче нагрузок от стены на грунт под фундаментом. Количество бетона, используемого при строительстве фундамента, можно уменьшить, ступенчато увеличивая выступ фундамента. Однако строительство опалубки для ступенчатого строительства будет дорогостоящим и может превышать стоимость дополнительного бетона, используемого, когда ступенчатые выступы не используются. Что касается наклонных выступов ленточного фундамента, это улучшит экономичность фундамента, если только коэффициент уклона не превышает одну вертикальную к трем горизонтальным.Если уклон проекции фундамента больше 1 по вертикали на 3 по горизонтали, то необходима опалубка, которая явно увеличивает стоимость строительства. В случае сильно нагруженного или широкого ленточного фундамента рекомендуется провести сравнение стоимости неармированного ленточного фундамента и армированного ленточного фундамента. Это связано с тем, что первое привело бы к большей экономии в этом случае, особенно когда глубина фундамента увеличивается, чтобы достичь сдутого слоя слабой почвы. К тому же стоимость бетона, используемого в случае неармированного бетона, меньше, чем у используемого в случае железобетонного ленточного фундамента.Потому что последний должен соответствовать требованиям прикладных норм, тогда как бетон в соотношении 1: 9 может использоваться для неармированного бетонного фундамента в неагрессивном грунте.

Инженер-строитель: Пример проектирования 3: Армированный ленточный фундамент.

Несущая стена одноэтажного дома должна опираться на широкий армированный ленточный фундамент.

Исследование участка выявило рыхлые и среднезернистые почвы от уровня земли до значительной глубины. Почва изменчива и имеет безопасную несущую способность от 75 до 125 кН / м2.Также были выявлены уязвимые места, где нельзя было рассчитывать на несущую способность.

Здание может опираться на грунтовые балки и сваи, снятые до прочного основания, но в этом случае выбрано решение — спроектировать широкий усиленный ленточный фундамент, способный перекрывать мягкий участок номинальной ширины.

Чтобы свести к минимуму дифференциальные осадки и учесть мягкие участки, допустимое давление в опоре будет ограничено до na = 50 кН / м2 на всем протяжении. Мягкие участки, встречающиеся во время строительства, будут удалены и заменены тощей бетонной смесью; Кроме того, фундамент будет рассчитан на пролет 2.5 м поперек предполагаемых впадин. Это значение было получено из руководящих указаний по местным впадинам, которые были даны позже на фундаментах плотов. Плита пола спроектирована так, чтобы ее можно было подвесить, хотя она будет залита с использованием земли в качестве несъемной опалубки.

Загрузки


Если фундамент и надстройка проектируются в соответствии с принципами предельного состояния, нагрузки должны храниться как отдельные необработанные характеристические мертвые и заданные значения (как указано выше) без учета фактора (как указано выше), как для расчета давления на опору фундамента, так и для проверок работоспособности.Затем, как обычно, нагрузки следует учесть при расчете отдельных элементов конструкции в предельном состоянии.

Для фундаментов, подверженных только статическим и прилагаемым нагрузкам, факторные нагрузки для расчета арматуры лучше всего выполнять путем выбора среднего коэффициента частичной нагрузки, γP, для покрытия как статических, так и накладываемых нагрузок надстройки из Рис. 11.22 (это копия Рис. 11.20 Условия расчета железобетонной полосы.).

Рис.11.22 Комбинированный частичный коэффициент запаса прочности по статическим + приложенным нагрузкам.
Из Рис. 11.22 , комбинированный частичный коэффициент запаса прочности по нагрузкам надстройки составляет γP = 1,46.

Вес основания и засыпки, f = средняя плотность × глубина
= 20 × 0,9
= 18,0 кН / м2

Это все статическая нагрузка, таким образом, комбинированный коэффициент частичной нагрузки для нагрузок на фундамент, γF = 1,4.

Определение ширины фундамента
Новые уровни земли аналогичны существующим, поэтому (вес) нового фундамента не требует дополнительной оплаты и может быть проигнорирован.

Минимальная ширина фундамента равна


Принять ленточный армированный фундамент шириной 1,2 м и глубиной 350 мм из бетона марки 35 ( см. Рис. 11.23 ).

Рис. 11.23 Пример расчета усиленного ленточного фундамента — нагрузки и опорные давления.


Реактивное расчетное давление вверх для расчета боковой арматуры
Боковой изгиб и сдвиг b = 1000 мм.

Таким образом, vu

Нагрузка для перекрытия углублений
В местах локального углубления фундамент действует как подвесная плита. Предельная нагрузка, вызывающая изгиб и сдвиг в фундаменте, — это общая нагрузка, т.е. нагрузка надстройки + нагрузка на фундамент, которая определяется как

.
Продольный изгиб и сдвиг из-за углублений
Предельный момент из-за перекрытия фундамента (предполагается, что он просто поддерживается) в локальной депрессии 2,5 м составляет Ширина для расчета арматуры b = B = 1200 мм.
Таким образом, vu

Впадина на углу здания
В предыдущих расчетах предполагалось, что впадина расположена под сплошным ленточным основанием. Углубление
могло также возникнуть в углу здания, где две опоры пересекались под прямым углом. Затем следует выполнить аналогичный расчет, чтобы обеспечить верхнее усиление обеих опор до консоли в этих углах.

Рис. 11.24 Пример расчета армированной ленточной опоры — арматура.

Bentley — Документация по продукту

MicroStation

Справка MicroStation

Ознакомительные сведения о MicroStation

Справка MicroStation PowerDraft

Ознакомительные сведения о MicroStation PowerDraft

Краткое руководство по началу работы с MicroStation

Справка по синхронизатору iTwin

ProjectWise

Справка службы автоматизации Bentley

Ознакомительные сведения об услуге Bentley Automation

Сервер композиции Bentley i-model для PDF

Подключаемый модуль службы разметки

PDF для ProjectWise Explorer

Справка администратора ProjectWise

Справка службы загрузки данных ProjectWise Analytics

Коннектор ProjectWise для ArcGIS — Справка по расширению администратора

Коннектор ProjectWise для ArcGIS — Справка по расширению Explorer

Коннектор ProjectWise для ArcGIS Справка

Коннектор ProjectWise для Oracle — Справка по расширению администратора

Коннектор ProjectWise для Oracle — Справка по расширению Explorer

Коннектор ProjectWise для справки Oracle

Коннектор управления результатами ProjectWise для ProjectWise

Справка портала управления результатами ProjectWise

Ознакомительные сведения по управлению поставками ProjectWise

Справка ProjectWise Explorer

Справка по управлению полевыми данными ProjectWise

Справка администратора геопространственного управления ProjectWise

Справка ProjectWise Geospatial Management Explorer

Сведения о геопространственном управлении ProjectWise

Модуль интеграции ProjectWise для Revit Readme

Руководство по настройке управляемой конфигурации ProjectWise

Справка по ProjectWise Project Insights

ProjectWise Plug-in для Bentley Web Services Gateway Readme

ProjectWise ReadMe

Матрица поддержки версий ProjectWise

Веб-справка ProjectWise

Справка по ProjectWise Web View

Справка портала цепочки поставок

Управление эффективностью активов

Справка по AssetWise 4D Analytics

Справка по услугам AssetWise ALIM Linear Referencing Services

AssetWise ALIM Web Help

Руководство по внедрению AssetWise ALIM в Интернете

AssetWise ALIM Web Краткое руководство, сравнительное руководство

Справка по AssetWise CONNECT Edition

AssetWise CONNECT Edition Руководство по внедрению

Справка по AssetWise Director

Руководство по внедрению AssetWise

Справка консоли управления системой AssetWise

Руководство администратора мобильной связи TMA

Справка TMA Mobile

Анализ моста

Справка по OpenBridge Designer

Справка по OpenBridge Modeler

Строительный проект

Справка проектировщика зданий AECOsim

Ознакомительные сведения AECOsim Building Designer

AECOsim Building Designer SDK Readme

Генеративные компоненты для справки проектировщика зданий

Ознакомительные сведения о компонентах генерации

Справка по OpenBuildings Designer

Ознакомительные сведения о конструкторе OpenBuildings

Руководство по настройке OpenBuildings Designer

OpenBuildings Designer SDK Readme

Справка по генеративным компонентам OpenBuildings

Ознакомительные сведения по генеративным компонентам OpenBuildings

Справка OpenBuildings Speedikon

Ознакомительные сведения OpenBuildings Speedikon

OpenBuildings StationDesigner Help

OpenBuildings StationDesigner Readme

Гражданское проектирование

Помощь в канализации и коммунальных услугах

Справка OpenRail ConceptStation

Ознакомительные сведения по OpenRail ConceptStation

Справка по OpenRail Designer

Ознакомительные сведения по OpenRail Designer

Справка по конструктору надземных линий OpenRail

Справка OpenRoads ConceptStation

Ознакомительные сведения по OpenRoads ConceptStation

Справка по OpenRoads Designer

Ознакомительные сведения по OpenRoads Designer

Справка по OpenSite Designer

Файл ReadMe для OpenSite Designer

Строительство

ConstructSim Справка для руководителей

ConstructSim Исполнительное ReadMe

ConstructSim Справка издателя i-model

Справка по планировщику ConstructSim

ConstructSim Planner ReadMe

Справка стандартного шаблона ConstructSim

ConstructSim Work Package Server Client Руководство по установке

Справка по серверу рабочих пакетов ConstructSim

ConstructSim Work Package Server Руководство по установке

Справка управления SYNCHRO

SYNCHRO Pro Readme

Энергия

Справка по Bentley Coax

Bentley Communications PowerView Help

Ознакомительные сведения о Bentley Communications PowerView

Справка по Bentley Copper

Справка по Bentley Fiber

Bentley Inside Plant Help

Справка конструктора Bentley OpenUtilities

Ознакомительные сведения о Bentley OpenUtilities Designer

Справка по подстанции Bentley

Ознакомительные сведения о подстанции Bentley

Справка по OpenComms Designer

Ознакомительные сведения о конструкторе OpenComms

Справка OpenComms PowerView

Ознакомительные сведения OpenComms PowerView

Справка инженера OpenComms Workprint

OpenComms Workprint Engineer Readme

Справка подстанции OpenUtilities

Ознакомительные сведения о подстанции OpenUtilities

PlantSight AVEVA Diagrams Bridge Help

PlantSight AVEVA PID Bridge Help

Справка по экстрактору мостов PlantSight E3D

Справка по PlantSight Enterprise

Справка по PlantSight Essentials

PlantSight Открыть 3D-модель Справка по мосту

Справка по PlantSight Smart 3D Bridge Extractor

Справка по PlantSight SPPID Bridge

Promis.e Справка

Promis.e Readme

Руководство по установке Promis.e — управляемая конфигурация ProjectWise

Руководство пользователя sisNET

Руководство по настройке подстанции

— управляемая конфигурация ProjectWise

Инженерное сотрудничество

Справка рабочего стола Bentley Navigator

Геотехнический анализ

PLAXIS LE Readme

Ознакомительные сведения о PLAXIS 2D

Ознакомительные сведения о программе просмотра вывода 2D PLAXIS

Ознакомительные сведения о PLAXIS 3D

Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS

PLAXIS Monopile Designer Readme

Управление геотехнической информацией

Справка администратора gINT

Справка gINT Civil Tools Pro

Справка gINT Civil Tools Pro Plus

Справка коллекционера gINT

Справка по OpenGround Cloud

Гидравлика и гидрология

Справка Bentley CivilStorm

Справка Bentley HAMMER

Справка Bentley SewerCAD

Справка Bentley SewerGEMS

Справка Bentley StormCAD

Справка Bentley WaterCAD

Справка Bentley WaterGEMS

Проектирование шахты

Справка по транспортировке материалов MineCycle

Ознакомительные сведения по транспортировке материалов MineCycle

Моделирование мобильности

LEGION 3D Руководство пользователя

Справка по подготовке САПР LEGION

Справка по построителю моделей LEGION

Справка по API симулятора LEGION

Ознакомительные сведения об API симулятора LEGION

Справка по симулятору LEGION

Моделирование

Bentley Посмотреть справку

Ознакомительные сведения о Bentley View

Морской структурный анализ

SACS Close the Collaboration Gap (электронная книга)

Ознакомительные сведения о SACS

Анализ напряжений в трубах и сосудов

AutoPIPE Accelerated Pipe Design (электронная книга)

Советы новым пользователям AutoPIPE

Краткое руководство по AutoPIPE

AutoPIPE & STAAD.Pro

Завод Дизайн

Ознакомительные сведения об экспортере завода Bentley

Bentley Raceway and Cable Management Help

Bentley Raceway and Cable Management Readme

Bentley Raceway and Cable Management — Руководство по настройке управляемой конфигурации ProjectWise

Справка по OpenPlant Isometrics Manager

Ознакомительные сведения о диспетчере изометрических данных OpenPlant

Справка OpenPlant Modeler

Ознакомительные сведения для OpenPlant Modeler

Справка по OpenPlant Orthographics Manager

Ознакомительные сведения для менеджера орфографии OpenPlant

Справка OpenPlant PID

Ознакомительные сведения о PID OpenPlant

Справка администратора проекта OpenPlant

Ознакомительные сведения для администратора проекта OpenPlant

Техническая поддержка OpenPlant Support

Ознакомительные сведения о технической поддержке OpenPlant

Справка PlantWise

Ознакомительные сведения о PlantWise

Реальность и пространственное моделирование

Справка по карте Bentley

Справка по мобильной публикации Bentley Map

Ознакомительные сведения о карте Bentley

Справка консоли облачной обработки ContextCapture

Справка редактора ContextCapture

Файл ознакомительных сведений для редактора ContextCapture

Мобильная справка ContextCapture

Руководство пользователя ContextCapture

Справка Декарта

Ознакомительные сведения о Декарте

Справка карты OpenCities

Ознакомительные сведения о карте OpenCities

OpenCities Map Ultimate для Финляндии Справка

Карта OpenCities Map Ultimate для Финляндии Readme

Структурный анализ

Справка OpenTower iQ

Справка по концепции RAM

Справка по структурной системе RAM

STAAD Close the Collaboration Gap (электронная книга)

STAAD.Pro Help

Ознакомительные сведения о STAAD.Pro

STAAD.Pro Physical Modeler

Расширенная справка по STAAD Foundation

Дополнительные сведения о STAAD Foundation

Детализация конструкций

Справка ProStructures

Ознакомительные сведения о ProStructures

ProStructures CONNECT Edition Руководство по внедрению конфигурации

ProStructures CONNECT Edition Руководство по установке — Управляемая конфигурация ProjectWise

Что нужно знать о ленточном железобетонном фундаменте :: EPLAN.ДОМ

Монолитный ленточный фундамент — самый распространенный тип фундамента в жилищном строительстве. Разобьем его на кости.

В результате расчета получаем ширину подошвы фундамента, то есть ширину основания фундамента. Это основная ценность, обеспечивающая надежность нашего фонда. Ширина подошвы может быть разной. Предположим, что она будет максимальной под несущей средней стеной (поскольку плита перекрытия опирается на обе стороны, нагрузка наибольшая), а под торцевыми самонесущими стенами она будет минимальной (плита перекрытия не будет упираться на них вообще).

В этой статье я не буду рассматривать расчет фундамента. Допустим, мы провели анализ и получили данные размеров и армирования. Но мы рассмотрим результаты расчета, чтобы понять, что получено и что нужно учесть при проектировании фундамента.

Ширина фундамента — это основная и самая важная величина. Если вы думаете о земле как о водной поверхности и о фундаменте как о путях жизни, легко представить, как все зависит от ширины этих «поплавков».«Чем больше площадь поплавка, тем меньше шансов, что он утонет. Стены нагружены по-разному: одни стены поддерживают крышу, другие — пол, а некоторые — почти ничего, но сама стена имеет вес.

Ширина фундамента — это основная и самая важная величина.

И если у них будет такое же и даже узкое основание «поплавков» под ними, то дом утонет, что приведет к разрушению, потому что более тяжелые стены начнут «уходить под воду». «перед более легкими.Это создаст перекосы, и стены потрескаются — зданию не избежать обрушения. Если все не так плохо, и наш дом не уйдет под воду из-за более широкой опоры, а сделан опять же не расчетом, а на глаз, то есть риск более медленного разрушения.

Разработчики часто допускают такую ​​ошибку: фундамент шире по периметру дома, а средняя стена (я не понимаю их логику) ставится на более узкую основу. Однако максимальное количество плит ложится на центральную стену дома.В результате площади фундамента «плывет» под средней стеной не хватает, и он начинает постепенно «уходить под воду». Одновременно внешние стены с большей уверенностью держатся за свои более широкие полосы, но самый слабый элемент цепи начинает тянуть их вниз. В результате — опять трещины, потому что нагрузка даже от одной «тонущей» стены не мала — это просто невыносимая многотонная нагрузка для соседних стен и фундаментов.

Другой пример.

По результатам расчетов опоры бывают очень разные (по ширине) из-за очень разных нагрузок.И трудолюбивый дизайнер решил сделать фундамент одинаковой ширины для всего дома. Что будет в этом случае? Скажу одно: трещины появятся гораздо позже, чем в здании со слабым фундаментом, но вероятность их появления все же есть. А причина здесь в других осадках.

Независимо от того, какой у вас фундамент, почва под ним со временем будет проседать. Это нормально. Я видел старые вековые дома, которые провалились в землю до подоконников.В общем, факт просадки есть у всех фундаментов. И это зависит от двух вещей: нагрузки и ширины опоры. Если нагрузка одинаковая, то опора должна быть одинаковой ширины. Если давление под стенами другое, ширина опоры должна быть меньше или больше. Что произойдет, если ширина основания будет такой же при других нагрузках? В месте с большей нагрузкой фундамент будет больше прогибаться. Напротив, в зоне меньшей нагрузки он будет меньше провисать. Если осадка фундамента небольшая, конструкции выдержат.Но с годами накапливаются осадки, и в какой-то момент в самых слабых местах (например, возле окон) это может привести к диагональным трещинам, которые отрывают провисшую часть дома от не провисающей части. Они могут, правда, и не возникнуть, но зачем нам эта лотерея?

Таким образом, используя простую аналогию, мы представили, как фундамент работает на земле.

Вывод: делаем ширину подошвы по расчету и спим спокойно.

Толщина подошвы.

Он меньше влияет на судьбу дома, но его стоимость также важна.

Если фундамент будет слишком тонким, фундамент рухнет. Если он будет слишком толстым — мы получим от застройщика перерасход материалов и денег.
В среднем толщина фундамента составляет 250-300 мм. Это наиболее распространенное значение для жилых домов. Откуда это взялось?

По результатам расчета ширины основания мы имеем значение ширины основания и реакцию грунта под основанием.Что это? Стена давит на нижнюю сторону с определенной силой N. В то же время земля создает противодавление R, которое удерживает наш фундамент «на плаву». Но сама основа зажата между двумя силами N и R, и ее основная задача — не разрушиться, как показано на рисунке.

Трещина в основании

Для этого при расчете проектировщик выбирает толщину основания и его арматуру. В противном случае (как видно из рисунка) мы получим гораздо более узкую основу и два бесполезных, закопанных в землю фрагмента фундамента.И как мы уже проанализировали, более узкий подвал быстрее «уйдет на дно», т.е. результат: снова трещины. Поэтому тем, кто хочет сэкономить и сделать фундамент тоньше, необходимо произвести расчет (по двум предельным состояниям и обязательно — по раскрытию трещины) и выбрать толщину фундамента и арматуру.

3. Армирование фундамента. На самом деле это неприхотливо, но следует учесть несколько моментов.

Во-первых, армирование неразрывно связано с толщиной основания — чем больше толщина, тем меньше арматуры и наоборот.

По сути, укрепление камбаловидной мышцы представляет собой сетку, уложенную вдоль дна. Иногда стержни в этой сетке имеют одинаковый диаметр. Иногда стержни в этой сетке бывают одного диаметра (причем небольшого), иногда разного. И есть случаи, когда больший диаметр укладывается в продольном направлении (вдоль стены), а есть случаи, когда он укладывается в поперечном направлении.А теперь разберемся.

— Если грунты хорошие, фундамент узкий, нагрузки небольшие, то фундамент фундамента укрепляют конструкционной арматурой. Обычно это №3 или №4 с шагом 200-300 мм в двух направлениях.

— Если полоса широкая, арматура в ней устанавливается по расчету и может быть значительных диаметров. В этом случае рабочая арматура в полосе поперечная, большего диаметра. Это армирование поглощает нагрузку противодавления почвы, о которой мы говорили выше.Если полоса достаточно широкая и нагрузки на фундамент достаточно велики, диаметр арматуры может быть № 5 или № 6 — расчет покажет.

— При просадочных грунтах; неравномерные, существенно меняющиеся нагрузки по полосе; неравномерно сложенные грунты под зданием (например, локальные включения другого грунта или насыпных грунтов) или другие неблагоприятные факторы, которые могут вызвать неравномерную осадку здания, в этом случае рабочая арматура в полосе продольная.В случае деформации грунта под днищем эта арматура защитит фундамент от трещин и разрушения. Рассчитать диаметр и шаг такой арматуры очень сложно, потому что предсказать процессы в грунте в цифрах практически невозможно. Поэтому арматуру конструктор закладывает, исходя из опыта (в пределах разумного, ведь чем больше запас, тем надежнее, но дороже). Я бы порекомендовал в таких неблагоприятных случаях использовать арматуру диаметром не менее №4 с шагом 6-8 дюймов.

Следует отметить, что установка продольной рабочей арматуры не отменяет поперечную — расчетом. Наоборот.

И еще один нюанс: рабочая арматура ставится ближе к краю секции. Его очень просто запомнить, потому что правило легко объясняется. Основное значение при расчете арматуры — это рабочая высота сечения элемента. Чем он больше, тем лучше работает конструкция.

На рисунке показаны два варианта, когда значение hc отличается на диаметр арматуры.Казалось бы, не много — ну а что поделаешь эти 1/2 «? Но в некоторых ситуациях их не хватает, и приходится устанавливать арматуру большего диаметра или увеличивать толщину конструкции. К тому же любой опытный человек, увидевший халатность дизайнера в этом вопросе, может сделать вывод, что он не разбирается в деталях расчета, то есть не имеет достаточного опыта в этом вопросе.

Итак, мы рассмотрели все составляющие ленточного фундамента. Надеюсь, что эта статья поможет вам не ошибиться при выборе между экономичностью и надежностью.Хорошей постройки!


Какой фундамент для моего дома лучше всего?

Стоит ли проводить геологические исследования перед строительством дома или нет?

Экономическая стена на фундаментном фундаменте

ФУНДАМЕНТ

Выбор типа фундамента

Выбор подходящего тип фундамента определяется некоторыми важными факторами, такими как

  1. Характер конструкции
  2. Нагрузки от структура
  3. Характеристики недр
  4. Выделенная стоимость фундаменты

Поэтому решить о тип фундамента, необходимо проведение геологоразведочных работ.Тогда почва характеристики в зоне поражения под зданием должны быть тщательно оценен. Допустимая несущая способность пораженного грунта затем следует оценить слои.

После этого исследования можно было затем решите, следует ли использовать фундамент неглубокий или глубокий.

Фундаменты мелкого заложения, такие как опоры и плоты дешевле и проще в исполнении. Их можно было бы использовать, если бы выполняются следующие два условия;

  1. Наложенное напряжение (Dp) вызванная зданием, находится в пределах допустимой несущей способности различных слоев почвы, как показано на рис.1.

Это условие выполнено когда на рисунке 1 меньше и меньше, меньше и меньше и так далее.

  1. Здание выдержало ожидаемая осадка по данному типу фундамента

Если один или оба из этих двух условия не могут быть выполнены использование глубоких фундаментов должно быть считается.

Глубокие фундаменты используются, когда верхние слои почвы мягкие и имеется хороший несущий слой на разумная глубина.Толщина грунта, лежащего под несущим слоем, должна быть достаточная прочность, чтобы противостоять наложенным напряжениям (Dp) из-за нагрузок, передаваемых на опорный слой, как показано на рисунке 2.

Глубокие фундаменты обычно сваи или опоры, которые передают нагрузку здания на хорошую опору страта. Обычно они стоят дороже и требуют хорошо обученных инженеров для выполнять.

Если исследуемые слои почвы мягкий на значительной глубине, и на разумных глубины, можно использовать плавучие фундаменты.

построить плавающий фундамент, масса грунта, примерно равная весу Предлагаемое здание будет демонтировано и заменено зданием. В в этом случае несущее напряжение под зданием будет равно весу удаленной земли (γD) что меньше

(q a = γD + 2C)

а также Дп будет равно нулю.Это означает, что несущая способность под здания меньше чем (q a ), и ожидаемое поселение теоретически равно нуль.

Наконец, инженер должен подготовить смету стоимости наиболее перспективного типа фундамента что представляет собой наиболее приемлемый компромисс между производительностью и Стоимость.

Фундамент мелкого заложения

Фундаменты неглубокие — это те выполняется у поверхности земли или на небольшой глубине.Как упоминалось ранее в предыдущей главе фундаменты мелкого заложения использовались при грунтовых разведка доказывает, что все слои почвы, затронутые зданием, могут противостоять наложенным напряжениям (Dp) не вызывая чрезмерных заселений.

Фундаменты мелкого заложения либо опоры или плоты.

Опоры

Фундамент является одним из старейший и самый популярный вид фундаментов мелкого заложения.Опора — это увеличение основания колонны или стены с целью распределения нагрузка на поддерживающий грунт при давлении, соответствующем его свойствам.

Типы опор

Существуют разные виды опоры, соответствующие характеру конструкции. Подножки можно классифицировать на три основных класса

Настенный или ленточный фундамент

Он проходит под стеной мимо его полная длина, как показано на рис.3. обычно используется в несущей стене типовые конструкции.

Изолированный фундамент колонны

Он действует как основание для колонны. Обычно применяется для железобетонных зданий типа Скелтон. Оно может принимать любую форму, например квадратную, прямоугольную или круглую, как показано на рисунке 4.

Инжир.4 Типовые раздвижные опоры

Комбинированная опора колонны

Это комбинированное основание для внешней и внутренней колонн здания, рис.5. Он также используется когда две соседние колонны здания находятся рядом друг с другом , что их опоры перекрывают друг друга

Распределение напряжений под опорами

Распределение напряжений под опорами считается линейным, хотя на самом деле это не так. Ошибка участие в этом предположении невелико, и на него можно не обращать внимания.

Загрузить сборники

Нагрузки, влияющие на обычные типы строений:

  1. Постоянная нагрузка (D.L)
  2. Живая нагрузка (L.L)
  3. Ветровая нагрузка (W.L)
  4. Землетрясение (E.L)

Статическая нагрузка

Полная статическая нагрузка, действующая на элементы конструкции следует учитывать при проектировании.

Живая нагрузка

Маловероятно, что полная интенсивность динамической нагрузки будет действовать одновременно на всех этажах многоэтажный дом.Следовательно, своды правил допускают определенные снижение интенсивности динамической нагрузки. Согласно египетскому кодексу на практике допускается следующее снижение временной нагрузки:

или . перекрытий Снижение временной нагрузки%

Земля нулевой этаж%

1 ул нулевой этаж%

2 nd этаж 10.0%

3 рд этаж 20,0%

4 этаж 30,0%

5 эт и более 40,0%

Временная нагрузка не должна снижаться в течение склады и общественные здания, такие как школы, кинотеатры и больницы.

Ветровые и землетрясения нагрузки

Когда здания высокие и узкие, Необходимо учитывать ветровое давление и землетрясение.

Допущение, использованное при проектировании спреда Опоры

Теория анализа эластичности указывает на что распределение напряжений под симметрично нагруженными фундаментами не является униформа. Фактическое распределение напряжений зависит от типа материала. под опорой и жесткостью опоры. Для опор на рыхлых не связный материал, зерна почвы имеют тенденцию смещаться вбок на края из-под груза, тогда как в центре почва относительно ограничен.Это приводит к диаграмме давления, примерно такой, как показано на рисунке 6. Для общего случая жестких оснований на связных и несвязных материалов, Рис.6 показывает вероятное теоретическое распределение давления. Высокое краевое давление можно объяснить тем, что краевой сдвиг должен иметь место до урегулирования.

Потому что давление интенсивность под опорой зависит от жесткости опоры, тип почвы и состояние почвы, проблема в основном неопределенный.Обычно используется линейное распределение давления. под фундаментом, и в этом тексте будет следовать этой процедуре. В в любом случае небольшая разница в результатах проектирования при использовании линейного давления распределение

Допустимые опорные напряжения под опорами

Коэффициент запаса прочности при расчете допустимая несущая способность под фундаментом должна быть не менее 3 если учитываемые при расчете нагрузки равны статической нагрузке + пониженная живая нагрузка.Коэффициент запаса прочности не должен быть меньше 2, когда рассматривается наиболее тяжелое состояние нагрузки, а именно: статическая нагрузка + полный рабочий ток. нагрузка + ветровая нагрузка или землетрясения.

Нагрузки на надстройку обычно рассчитывается на уровне земли. Если указано допустимое допустимое давление на опору, оно должно быть уменьшено на объем бетона. под землей на единицу площади основания, умноженную на разница между удельным весом бетона и грунта.Если принять равной среднюю плотность грунта и бетона рис.7, тогда следует уменьшить на

Конструктивное исполнение раздвижных опор

Для опоры на ноги следующие позиции следует рассматривать как

1 ножницы

Напряжения сдвига съедали обычно контролировать глубину расставленных опор.Критическое сечение для широкой балки сдвиг показан на рис.8-а. Находится на расстоянии d от колонны или стены. лицо. Значения касательных напряжений приведены в таблице 1. разрез для продавливания сдвига (двусторонний диагональный сдвиг) показан на рис. 8-б. Он находится на расстоянии d / 2 от лицевой стороны колонны. Это предположение в соответствии с Кодексом Американского института бетона (A.CI).

Таблица 1): допустимые напряжения в бетоне и арматуре: —

Виды напряжений

условное обозначение

Допустимые напряжения в кг / см 2

Прочность куба

f у.е.

180

200

250

300

Осевой комп.

f co

45

50

60

70

Простые изгибающие и эксцентрические усилия с большим эксцентриситетом

ж в

70

80

95

105

Напряжения сдвига

Плиты и опоры без армирования.

Другие участники

Элементы с армированием

в 1

в 1

в 2

7

5

15

8

6

17

9

7

19

9

7

21

Пробивные ножницы

q cp

7

8

9

10

Армирование

Низкоуглеродистая сталь 240/350

Сталь 280/450

Сталь 360/520

Сталь 400/600

f с

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

Пробивные ножницы обычно контролировать глубину разложенных опор.Из принципов статики Рис. 8-б , сила на критическом участке сдвига равна силе на опора за пределами секции сдвига, вызванная чистым давлением грунта f n .

где q p = допустимое напряжение сдвига при штамповке

= 8 кг / см 2 (для куба сила = 160)

f n = чистое давление на грунт

b = Сторона колонны

d = глубина продавливания

Можно предположить, что критический участок для продавливания сдвига находится на торце колонны, и в этом случае допустимое напряжение сдвига при штамповке можно принять равным 10.0 кг / см 2 (для прочности куба = 160).

Фундамент обычно проектируется чтобы гарантировать, что глубина будет достаточно большой, чтобы противостоять сдвигу бетона без армирования полотном ..

2- Облигация

Напряжение связи рассчитывается как

.

где поперечная сила Q равна взятые в том же критическом сечении для изгибающего момента или при изменении бетонное сечение или стальная арматура.Для опор постоянное сечение, сечение для склеивания находится на лицевой стороне колонны или стены. В арматурный стержень должен иметь достаточную длину г г , Рис.9, чтобы избежать выдергивания (разрыва соединения) или раскалывание бетона. Значение d d вычисляется следующим образом:

Для первого расчета возьмем f s равно допустимой рабочей стресс.Если рассчитанный d d есть больше имеющихся d d затем пересчитайте d d взяв f с равно действительному напряжению стали.

Допустимая стоимость облигации напряжение q b следующие

3- Изгибающий момент

Критические разделы для изгибающий момент определяется по рис.10 следующим образом:

Для бетонной стены и колонны, это сечение берется на лицевой стороне стены или колонны рис.10-а.

Для кладки стены этот участок берется посередине между серединой и краем стены Рис.10-б.

Для стальной колонны этот раздел расположен на полпути между краем опорной плиты и лицевой стороной столбец Рис.(10-с).

Глубина, необходимая для сопротивления изгибающий момент

4- Опора на опору

Когда железобетон колонна передает свою нагрузку на опору, сталь колонны, которая несущий часть груза, не может быть остановлен на опоре, так как это может привести к чрезмерной нагрузке на бетон в зоне контакта колонны.Следовательно, это необходимо для передачи части нагрузки, переносимой стальной колонной, на напряжение сцепления с основанием за счет удлинения стальной колонны или дюбеля. С Рис.11:

куда f s — фактическое напряжение стали

5- Обычная бетонная опора под R.C. Основание

Распространенной практикой является размещение простой бетонный слой под железобетонным основанием. Этот слой около 20 см. до 40 см. Проекция C плоского бетонного слоя зависит от его толщины t. Ссылаясь на Рис.12, максимальный изгибающий момент на единицу длины в сечении a-a равно

Где f n = чистое давление почвы.

Максимальное растягивающее напряжение внизу раздела а-а это:

ДИЗАЙН R.C. СТЕНА:

Основание стены представляет собой полосу из железобетон шире стены. На Рис.13 показаны различные типы стеновые опоры. Тип, показанный на рис. 13-а, используется для опор, несущих легкие. нагрузки и размещены на однородном грунте с хорошей несущей способностью.Тип, показанный в Рис. 13-б используется, когда грунт под фундаментом неоднородный и разная несущая способность. Используется тип, показанный на рисунках 13-c и 13-d. для тяжелых нагрузок.

Процедура проектирования:

Рассмотрим 1.0 метров в длину стена.

1. Найдите P на уровне земли.

2. Найти, если дано, то оно сокращается или вычисляется P T .

3. Вычислить площадь опоры

Если напряжение связи небезопасно, либо увеличиваем за счет использования стальных стержней меньшего диаметра, либо увеличивать ∑ О глубина d.Сгибая вверх стальная арматура по краям фундамента помогает противостоять сцеплению стрессы. Диаметр основной стальной арматуры не должен быть меньше более 12 мм. Для предотвращения растрескивания из-за неравномерного оседания под стеной Само по себе дополнительное армирование используется, как показано на рис. 13-c и d. это принимается как 1,0% от поперечного сечения бетона под стеной и распределяется одинаково сверху и снизу.

19.Проверить анкерный залог

Конструкция одностоечной опоры

одноколонный фундамент обычно квадратный в плане, прямоугольный фундамент — используется, если есть ограничение в одном направлении или если поддерживаемые столбцы слишком удлиненный.прямоугольное сечение. В простейшем виде они состоят из единой плиты ФИг.15-а. На рис. 15-б изображена колонна на пьедестале. опора, пьедестал обеспечивает глубину для более благоприятной передачи нагрузки и во многих случаях

требуется чтобы обеспечить необходимую длину для дюбелей. Наклонные опоры, такие как те, что на Рис. 15-c

Методика проектирования опор квадратной колонны

Американец Кодексы практики равно момент около критического сечения y-y чистого напряжения, действующего на вылупился.area abcd Рис. 16-a. Согласно континентальным кодексам практики M max . равно любому; момент действия чистых напряжений на заштрихованной области abgh, показанной на рис. 16-b, около критического сечения y-y или 0,85 момент результирующих напряжений, действующих на площадь abcd на рис. 16-а. о г-у.

8.Определите необходимую глубину сопротивления пробивке d p .

9. Рассчитайте d м , глубину сопротивления

b = B, сторона опоры в соответствии с Американскими нормами практики

.

b = (b c + 20) см где b c — сторона колонны по континентальному Кодексы практики.

Следует отметить, что d м вычисленное континентальным методом, больше, чем вычисленное американским кодом. Большая глубина уменьшит количество стальной арматуры и обычно соответствует глубине, необходимой для штамповки. Американский код дает меньший d м с более высоким значением стальной арматуры, но с использованием высокопрочной стали, площадь стальной арматуры может быть уменьшена. В этом тексте изгибающий момент рассчитывается в соответствии с Американскими нормами, а b равно принимается либо равным b c + 20, когда используется обычная сталь, либо равно B при использовании стали с высоким пределом прочности.

Глубина основания d может быть принимает любое значение между двумя значениями, вычисленными двумя вышеуказанными методами. Это Следует отметить, что при одном и том же изгибающем моменте большая глубина будет требуется меньшая площадь арматурной стали, которая может не удовлетворять требованиям минимальный процент стали. Также небольшая глубина потребует большой площади стали. особенно при использовании обычной низкоуглеродистой стали.

10. Выберите большее из d m или d p

11.Проверить d d , глубину установки дюбеля колонны.

Методика проектирования прямоугольных опор

Процедура такая же, как и квадратный фундамент. Глубина обычно контролируется пробивными ножницами, за исключением случаев, когда отношение длины к ширине велико, сдвиг широкой балки может контролировать глубина. Критические сечения сдвига находятся на расстоянии d по обе стороны от столбец Рис.17-а. Изгибающий момент рассчитывается для обоих направлений, вокруг оси 1-1 и вокруг оси b-b, как показано на рис. 17.b и c.

Армирование в длинном направление (сторона L) рассчитывается по изгибающему моменту и равномерно распределяется по ширине B. армирование в коротком направлении (сторона B) рассчитывается по изгибу момент М 11 .При размещении стержней в коротком направлении один необходимо учитывать, что опора, обеспечиваемая опорой колонны, является сосредоточены около середины, следовательно, зона опоры, прилегающая к колонна более эффективна в сопротивлении изгибу. По этой причине произведена регулировка стали в коротком направлении. Эта регулировка помещает процент стали в зоне с центром в колонне шириной, равной к длине короткого направления опоры.Остальная часть Арматура должна быть равномерно распределена в двух концевых зонах, рис.18. По данным Американского института бетона, процент стали в центральная зона выдается по:

где S = отношение длинной стороны к короткой сторона, L / B.

САМЕЛЛЫ

Одиночные опоры должны быть связаны вместе пучками, известными как семеллы, как показано на рис.19.a. Их функция нести стены первого этажа и переносить их нагрузки на опоры. Семелла могут предотвратить относительное оседание, если они имеют очень жесткое сечение. и сильно усиленный.

Семелле спроектирован как неразрезная железобетонная прямоугольная балка. несущий вес стены. Ширина семели равна ширина стены плюс 5 см и не должна быть меньше 25 см. Должно сопротивляться силам сдвига и изгибающим моментам, которым он подвергается, semelles должен

быть усиленным сверху и снизу для противодействия дифференциальным расчетам.равным усилением A s .

Верх уровень семелы должен быть на 20 см ниже уровня платформы. окружающие здание. Если уровень первого этажа выше уровень платформы, уровень внутренней полумельки можно принять 20 см. ниже уровня первого этажа

Опоры подвержены моменту

Введение

Многие основы сопротивляются в дополнение к концентрической вертикальной нагрузке, момент вокруг одной или обеих осей основания.Момент может возникнуть из-за нагрузки, приложенной не к центру основание. Примеры основ, которые должны противостоять моменту, — это основания для подпорные стены, опоры, опоры мостов и колонны фундаменты высотных зданий, где давление ветра вызывает заметный прогиб моменты у основания колонн.

Результирующее давление на почву под внецентренно нагруженным основанием считается совпадающим с осевым нагрузка P, но не с центром тяжести фундамента, что приводит к линейному неравномерное распределение давления.Максимальное давление не должно превышать максимально допустимое давление на почву. Наклон опоры из-за возможна более высокая интенсивность давления почвы на пятку. Это может быть уменьшенным за счет использования большого запаса прочности при расчете допустимого грунта давление. Глава 1, раздел «Опоры с эксцентрическими или наклонными нагрузками» обеспечивают снижение допустимого давления на грунт для внецентренно нагруженных опоры.

Опоры с моментами или эксцентриситетом относительно Одна ось

где P = вертикальная нагрузка или равнодействующая сила

е = Эксцентриситет вертикальной нагрузки или равнодействующей силы

q = интенсивность давления грунта (+ = сжатие)

и не должно быть больше допустимого

давление почвы q a

c-Нагрузка P за пределами средней

Когда нагрузка P находится за пределами средней трети, то есть е > L / 6, Уравнение7 указывает на то, что под опорой возникнет напряжение. Однако нет между почвой и основанием может возникнуть напряжение, поэтому напряжение напряжения не принимаются во внимание, а площадь основания, которая находится в натяжение не считается эффективным при несении нагрузки. Следовательно диаграмма давления на почву должна всегда находиться в сжатом состоянии, как показано на Рис.21-.c. Для в эксцентриситет е > L / 6 с участием относительно только одной оси, можно управлять уравнениями для максимальной почвы давление q 1 , найдя диаграмму давления сжатия, результирующая должна быть одинаковой и на одной линии действия нагрузки P.Этот диаграмма примет форму треугольника со стороной = q 1 и основанием =

Опоры с моментами или эксцентриситетом относительно обе оси

Для опор с моментами или эксцентриситет относительно обеих осей Рис. 22, давление может быть вычислено с помощью следующее уравнение

a- Нейтральная ось вне базы:

Если нейтральная ось находится снаружи основание, то все давление q находится в сжатом состоянии, и уравнение (9) имеет вид действительный.Расположение максимального и минимального давления на почву может быть определяется быстро, наблюдая направления моментов. Максимум давление q 1 находится в точке (1)

Рис.22-а и минимальный давление q 2 находится в точке (3). Давление q 1 и q 2 определяются из уравнения (9).

б- Нейтральная ось режет основание

Если нейтральная ось режет основание, то некоторый участок основания подвергается растяжению Рис.22. Как почва вряд ли захватит опору, чтобы удерживать ее на месте, поэтому диаграмму, показанную на рис. 22-б, и уравнение (9) использовать нельзя. Расчет Максимальное давление на почву должно зависеть от площади, фактически находящейся на сжатии. Диаграмма сжатия должна быть найдена таким образом, чтобы ее результирующая должны быть равны и на одной линии действия силы P. Простейший способ получить эту диаграмму — методом проб и ошибок следующим образом:

1- Находить давление почвы во всех углах, применяя уравнение.(9).

2- Определите положение нейтральной оси N-A (линия нулевого давления). Это не прямая линия, но предполагается, что это так. Поэтому необходимо найти только две точки, по одной на каждой соседней стороне. основания.

3- Выбрать другой нейтральная ось (N’-A ‘) параллельна (N-A), но несколько ближе к месту результирующей нагрузки P, действующей на опору.

4- Вычислить момент инерции сжатой области по отношению к N’-A ‘. В Самая простая процедура — нарисовать опору в масштабе и разделить площадь на прямоугольники и треугольники

4.4 КОНСТРУКЦИЯ ПРЕДНАЗНАЧЕННЫХ ФУНТОВ К МОМЕНТУ

Основная проблема в конструкция эксцентрично нагруженных опор — это определение распределение давления под опорами. Как только они будут определены, процедура проектирования будет аналогична концентрически нагруженным опорам, выбраны критические сечения и произведены расчеты напряжений из-за момент и сдвиг сделаны.

Где изгибающие моменты на колонне поступают с любого направления, например от ветровые нагрузки, квадратный фундамент; предпочтительнее, если не хватает места диктуют выбор прямоугольной опоры. Если изгибающие моменты действуют всегда в том же направлении, что и в колоннах, поддерживающих жесткие каркасные конструкции, опору можно удлинить в направлении эксцентриситета

Размеры фундамента B и L пропорциональны таким образом, чтобы максимальное давление на носке не превышает допустимого давления почвы.

Если колонна несет постоянный изгибающий момент, например, кронштейн, несущий длительной нагрузке, может оказаться преимуществом смещение колонны от центра на опоры так, чтобы эксцентриситет результирующей нагрузки был равен нулю. В этом случае распределение давления на основание будет равномерным. Долго носок опоры должен быть спроектирован как консоль вокруг сечение лицевой стороны колонны, Расчет глубины сопротивления пробивные ножницы и ножницы для широкой балки такие же, как при опоре фундаментов концентрические нагрузки

Поскольку изгибающий момент на основание колонны, вероятно, будет большим для этого типа фундамента, арматура колонны должна быть правильно привязана к фундаменту., Детали армирования для этого типа фундаментов показаны на рис.24.

Для квадратного фундамента это как правило, удобнее всего поддерживать одинаковый диаметр стержня и расстояние между ними направления во избежание путаницы при креплении стали.

Комбинированные опоры

Введение

В предыдущем разделе были представлены элементы оформления развязки и стены. опоры.В этом разделе рассматриваются некоторые из наиболее сложных проблемы с мелким фундаментом. Среди них есть опоры, поддерживающие более один столбец в ряд (комбинированные опоры), который может быть прямоугольным или трапециевидной формы, или две накладки, соединенные балкой, как ремешок опора. Эксцентрично нагруженные опоры и опоры несимметричной формы тоже будет рассмотрено.

Прямоугольные комбинированные опоры

Когда линии собственности, расположение оборудования, расстояние между колоннами и другие соображения. ограничить расстояние от фундамента в местах расположения колонн, возможное решение: использование фундамента прямоугольной формы.Этот тип фундамента может поддерживать два столбца, как показано на рисунках 25 и 26, или более двух столбцов с только небольшое изменение процедуры расчета. Эти опоры обычно проектируется, предполагая линейное распределение напряжений в нижней части основания, и если равнодействующая давления почвы совпадает с равнодействующая нагрузок (и центр тяжести опоры), грунт предполагается, что давление равномерно распределено, линейное давление Распределение подразумевает твердую опору на однородной почве.Настоящий опора, как правило, не жесткая, и давление под ней неравномерно, но Было обнаружено, что решения, использующие эту концепцию, являются адекватными. Этот Концепция также приводит к довольно консервативному дизайну.

Конструкция жесткой прямоугольной опоры заключается в определении расположение центра тяжести (cg) нагрузок на колонну и использование длины и такие размеры ширины, чтобы центр тяжести основания и центр силы тяжести колонны нагрузки совпадают.С размерами опоры установили, ножницы

можно подготовить диаграмму моментов, выбрать глубину сдвига (опять же является обычным, чтобы сделать глубину достаточной для сдвига без использования сдвига армирование, чтобы косвенно удовлетворить требованиям жесткости), и армирование сталь, выбранная для требований к гибке. Критические секции на сдвиг, оба диагональное натяжение и широкая балка, следует принимать, как указано в предыдущем раздел.Максимальные положительные и отрицательные моменты используются при проектировании армирующей стали, и в результате получится сталь как в нижней, так и в верхней части луч.

В коротком направлении очевидно, что вся длина не будет эффективен в сопротивлении изгибу. Эта зона, ближайшая к колонне, будет наиболее эффективен для изгиба, и рекомендуется использовать этот подход. Это в основном то, что Кодекс ACI определяет в Ст.15.4.4 для прямоугольного опоры

Если принять, что зона, в которую входят столбцы, больше всего эффективная, какой должна быть ширина этой зоны? Конечно, это должно быть что-то больше ширины столбца. Наверное, не должно быть больше ширина столбца плюс d до 1,5d, в зависимости от расположения столбца на основе аналитическая работа автора, отсутствие руководства по Кодексу и признание того, что дополнительная сталь «укрепит» зону и увеличит моменты в этой зоне и уменьшить момент выхода из зоны.Эффективная ширина при использовании этого метода проиллюстрирован на рис.27. Для оставшейся части фундамента в коротком направлении Кодекс ACI Должно использоваться требование для минимального процентного содержания стали (ст. 10.5 или 7.13).

При выборе размеров для комбинированного фундамента размер длины равен несколько критично, если желательно иметь диаграммы сдвига и момента математически близко как проверка ошибок.Это означает, что если длина точно вычисленное значение из местоположения cg столбцов, Эксцентриситет будет внесен в основание, что приведет к нелинейному диаграмма давления грунта. Однако фактическая длина в заводском состоянии должна быть округляется до практической длины, скажем, с точностью до 0,25 или 0,5 фута (от 7,5 до 15 см).

Нагрузки на колонну могут быть приняты как сосредоточенные нагрузки для расчета сдвига и диаграммы моментов.Для расчета значения сдвига и момента на краю (торце) столбца следует использовать. Результирующая ошибка при использовании этого подхода: незначительно Рис. (28)

Если основание нагружено более чем двумя колоннами, проблема все еще сохраняется. статически детерминированный; реакции (нагрузки на колонку) известны также как распределенная нагрузка, то есть давление грунта.

Методика расчета прямоугольной комбинированной опоры: —

Ссылаясь на Рис.29, этапы проектирования можно резюмировать следующим образом:

1- Найдите направление применения полученного R. Это исправление L / 2, поскольку y равно известные и ограниченные. Следует указать, что если длина L не равна точно рассчитанное значение, эксцентриситет будет введен в опоры, в результате чего получается нелинейная диаграмма давления грунта.Фактический как построенный длину, однако, следует округлить до практической длины, например, до ближайшие 5 см или 10 см.

максимальный + ve момент в точке K, где сила сдвига = ноль

6- Определите глубину сдвига. Принято делать глубину адекватной на сдвиг без использования сдвига армирование. Критическое сечение сдвига находится на расстоянии d от грани. столбца, имеющего максимум сдвиг, рис.30

7-Определить глубина продавливания сдвига для обеих колонн. По данным ACI, критическое сечение это на d / 2 от грани колонны. Рис.30.

9-д выбран наибольший из

т = д + 5-8 см.

11- Проверьте напряжения сцепления и длину анкеровки d.

12- Короткое направление:

Нагрузки на колонны распределяются поперечно поперечными балками (скрытыми), одна под каждым столбцом.Длина балок равна ширине балки. опоры B. Эффективную ширину поперечной балки можно принять как минимум из следующего:

а- Ширина колонны a + 2 d или ширина колонны a + d + проекция фундамента за столбцом y, рис.31.

б- Ширина подошвы

Следует отметить, что код ACI считает, что эффективная ширина поперечная балка равна ширине колонны a + d или ширине колонны a + d / 2 + y. Поперечный изгибающий момент M T1 в колонне (1) равен

Поперечная арматура должна быть распределена по полезной ширине. поперечной балки.Для остальной части фундамента минимум следует использовать процентную сталь. Напряжения связи и длина анкеровки d d , следует проверить.

Стойка комбинированная трапециевидная: —

Комбинированная трапециевидная опора для двух колонн, используемая, когда колонна несет самая большая нагрузка находится рядом с линией собственности, где проекция ограничена или когда есть ограничение на общую длину опоры.Ссылаясь на Рис.32 ,

Положение результирующей нагрузки на столбцы R определяет положение центриод трапеции. Длина L определяется, а площадь A равна вычислено из:

Процедура проектирования такая же, как и для прямоугольного комбинированного фундамента, за исключением того, что диаграмма сдвига будет кривой второй степени, а изгибающий момент — кривая третьей степени.

Конструкция ременных или консольных опор

Можно использовать ленточную опору. где расстояние между колоннами настолько велико, что комбинированная или трапециевидная опора становится довольно узкой, что приводит к высоким изгибающим моментам, или где, как в предыдущем разделе.

Ремешок основание состоит из двух опор колонн, соединенных элементом, называемым ремень, балка или консоль, передающая момент извне опора.На рис.33 показано ленточное основание. Поскольку ремешок предназначен для

момент, либо это должно быть образуются вне контакта с почвой или почву следует разрыхлить на на несколько дюймов ниже ремешка, чтобы ремешок не оказывал давления на грунт действуя по нему. Для простоты разбора, если ремешок есть. не очень долго, весом ремешка можно пренебречь.

При проектировании ленточной опоры сначала необходимо выровнять опоры.Это делается при условии, что равномерное давление грунта под основаниями; то есть 1 и 2 (Рис.33) действуют в центре тяжести опор.

Ремешок должен быть массивным член, чтобы это решение было действительным. Развитие уравнения 1 подразумевает жесткую вращение тела; таким образом, если ремешок не может передавать эксцентрик момент из столбца 1 без вращения, решение недействительно.Избегать рекомендуется вращение внешней опоры.

I ремень / I опора > 2

Желательно пропорции обе опоры так, чтобы B и q были как можно более равны для управления дифференциальные расчеты.

Методика проектирования опор ремня

реакция под интерьер опора будет уменьшена на такое же значение, как показано на Рис.33

1- Дизайн начинается с пробной стоимости

евро.

6- Убедитесь, что центр тяжести площадей двух опор совпадают с равнодействующей нагрузок на колонну.

7- Рассчитайте моменты и сдвиг в различных частях ремня. опора.

8- Дизайн ремешка

Ремешок представляет собой однопролетная балка нагружена вверх нагрузками, передаваемыми ей двумя опор и поддерживаются нисходящими реакциями по центральным линиям двух столбцы.Таким образом, нагрузка вверх по длине L равна R 1 / L. т / м ‘. Местоположение максимального момента получается приравниванием сдвига сила до нуля. Момент уменьшается к внутренней колонне и равен нулю. по центральной линии этого столбца. Следовательно, половина армирования ремня составляет снята с производства там, где больше нет необходимости, а вторая половина продолжается до внутренняя колонна. Проверьте напряжения сдвига и используйте хомуты и изогнутые стержни, если необходимо.

9- Конструкция наружной опоры

Внешняя опора действует точно так же, как настенный фундамент длиной, равной L. Хотя колонна расположен на краю, балансирующее действие ремня таково, что передать реакцию R 1 равномерно по длине L 1 Таким образом достигается желаемое равномерное давление почвы. Дизайн выполнен точно так же, как для настенного фундамента.

10- Дизайн межкомнатной опоры

Внутренняя опора может быть спроектирован как простой одноколонный фундамент. Основное отличие состоит в том, что Пробивные ножницы следует проверять по периметру fghj, рис.33.

ФУНДАМЕНТЫ

Введение

Фундамент плота непрерывные опоры, которые покрывают всю площадь под конструкцией и поддерживает все стены и колонны.Термин мат также используется для обозначения фундамента. этого типа. Обычно используется на почвах с низкой несущей способностью и там, где площадь, покрытая расстеленными опорами, составляет более половины площади, покрытой структура. Плотный фундамент применяется также там, где в грунтовой массе содержится сжимаемые линзы или почва достаточно неустойчива, так что дифференциал урегулирование будет трудно контролировать. Плот имеет тенденцию преодолевать мост неустойчивые отложения и уменьшает дифференциальную осадку.

Несущая способность плотов по песку

Биологическая способность основания на песке увеличивается по мере увеличения ширины. Благодаря большой ширине плота по сравнению с шириной обычной опоры, допустимая вместимость под плотом будет намного больше, чем под опорой.

Было замечено на практике что при допустимой несущей способности под плотом, равной удвоенной допустимая несущая способность определяется для обычной опоры.отдых на том же песке даст разумная и приемлемая сумма урегулирования.

Если уровень грунтовых вод находится на глубина равна или больше B, ширина плота, допустимая Несущая способность, определенная для сухих условий, не должна уменьшаться. Если есть вероятность, что уровень грунтовых вод поднимается, пока не затопит площадка, допустимая несущая способность следует уменьшить на 50%.Если уровень грунтовых вод находится на промежуточной глубине между B и основанием плот, следует сделать соответствующее уменьшение от нуля до 50%.

Несущая способность плотов по глине.

В глинах несущая способность не влияет на ширину фундамента. вместимость под плотом будет такая же, как и под обычным основанием.

Если предполагаемый дифференциал осадка под плотом более чем терпима или если вес здание, разделенное на его площадь, дает несущее напряжение больше, чем допустимая несущая способность, плавающий или частично плавающий фундамент должен быть на рассмотрении.

Выполнить плавающий фундамент, земляные работы должны проводиться до глубины D, на которой вес выкопанного Грунт равен весу конструкции, рисунок 2.В этом случае избыточное наложенное напряжение Δp на уровне фундамента равна нулю и, следовательно, здание не пострадает.

Если полный вес building = Q

и вес удаленной почвы = W с

и превышение нагрузки при уровень фундамента = Q e

\ Q e = QW s

В случае плавающего фундамента ;

Q = W с и, следовательно, Q e = Ноль

В случае частично плавающего фундамент, Q e имеет определенный значение, которое при делении на площадь основания дает допустимый подшипник емкость почвы;

Проектирование плотных фундаментов;

Плоты могут быть жесткими. конструкции (так называемый традиционный анализ), при которых давление грунта действует против плиты плота предполагается равномерно распределенным и равным общий вес постройки, деленный на площадь плота.Это правильно, если столбцы загружены более или менее одинаково и на равном расстоянии друг от друга, но на практике выполнить это требование сложно, поэтому допускается чтобы нагрузки на колонны и расстояния варьировались в пределах 20%. Однако если нисходящие нагрузки на одних участках намного больше, чем на других, это желательно разделить плот на разные части и оформить каждую зону на соответствующее среднее давление. Непрерывность плиты между такими области обычно предоставляются, хотя для областей с большими различиями в давление рекомендуется строить вертикальный строительный шов через плита и надстройка, чтобы учесть дифференциальную осадку.

В гибком плотном фундаменте дизайн не может быть основан только на требованиях к прочности, но это необходимо подвергнуться из-за прогнозируемого заселения. Толщина и количество армирования плота следует подбирать таким образом, чтобы предотвратить развитие трещин в плите. Поскольку дифференциальный расчет не учтено в конструктивном дизайне, принято усиливать плот с вдвое большей теоретической арматурой.Количество сталь может быть принята как 1% площади поперечного сечения, разделенной сверху и Нижний. Толщина плиты не должна превышать 0,01 от радиус кривизны. Толщина может быть увеличена возле колонн до для предотвращения разрушения при сдвиге.

Есть два типа плотных фундаментов:

1- Плоская плита перекрытия, которая представляет собой перевернутую плоскую плиту Рис.34-а. Если толщина плиты недостаточна, чтобы противостоять продавливанию под колонны, пьедесталы могут использоваться над плитой Рис. 34-.b или, ниже плиты, с помощью утолщение плоской плиты под колоннами, как показано на Рис. 34-c.

2- Плита и балка на плоту, есть. перевернутый R.C. пол, состоит из плит и балок, идущих вдоль колонны, рядами в обоих направлениях, Рис.34-d, он также называется ребристым матом. Если желателен сплошной пол в цоколь, ребра (балки) могут быть размещены под плитой, рис.34-е.

Конструкция плота плоской перекрытия

Плот, г. равномерной толщины, делится на полосы столбцов и средние полосы как показано на рис. 35-а. Ширина полосы столбцов равна b + 2d, где b = сторона колонки. Глубину плота d можно принять примерно равной 1/10 свободный промежуток между столбцами.Также ширину полосы столбца можно принять равно 3 б.

Планки колонн выполнены в виде неразрезные балки, нагруженные треугольными нагрузками, как показано на рис. 35-b. Сеть интенсивность равномерного восходящего давления f n под любой площадью, для Например, площадь DEFG можно принять равной одной четвертой общей нагрузки. на столбцах D, E, F и G, разделенных на площадь DEFG.

Суммарные нагрузки, действующие на планка колонны BDEQ, рис.35-a приняты в виде треугольных диаграмм нагружения, показанных на рис. 35-б. Общая нагрузка на деталь DE, P DE , принимается равной чистое давление, действующее на площадь DHEJ.

Конструкция жесткого плота (традиционный метод)

Размер плота устанавливается равнодействующая всех нагрузок и определяется давление грунта. вычислено в различных местах под основанием по формуле.

Плот подразделяется на ряд непрерывных полос (балок) с центром в рядах колонн, как показано на Рис.37.

Диаграммы сдвига и момента могут быть установлены с использованием либо комбинированного анализа фундамента, либо балочного момента коэффициент Коэффициенты момента балки. Коэффициент момента балки PI 2 /10 для длинных направлений и Для коротких направлений может быть принят PI 2 /8.Отрицательный и положительные моменты будем считать равными. Глубина выбрана так, чтобы удовлетворить требования к сдвигу без использования хомутов и растягивающей арматуры выбрано. Глубина обычно будет постоянной, но требования к стали могут варьироваться от полосы к полосе. Аналогично анализируется и перпендикулярное направление.

Конструкция плиты перекрытия и фермы (ребристый мат)

Если столбец загружается и интервалы равны или изменяются в пределах 20%, чистое восходящее давление f n действие на плот предполагается равномерным и равным Q / A.

где

Q = вес здания при на уровне земли, и

A = площадь плота (по за пределами внешних колонн).

Если это давление больше чем чистое допустимое давление на грунт, площадь плота должна быть увеличен до площади, достаточно большой, чтобы снизить равномерное давление на сетку допустимое значение. Этого можно добиться, выполнив выступ плиты за пределы внешняя грань внешних колонн.

Ссылаясь на Рис. 38, различные элементы плота могут иметь следующую конструкцию:

Конструкция плиты:

1-Расчет поперечных балок B 1 и B 2

Равномерно распределенная нагрузка / м ‘ на

Пусть R 1 и R 2 быть центральной реакцией балок B 1 и B 2 на центральная балка дальнего света B и 3 соответственно.Концевые балки B 1 несет только часть нагрузки, которую несет балка B 2 и, следовательно, центральная реакция R 1 принимается равной

KR 2 где K — коэффициент, основанный на сравнительной области, то

Также предполагается, что сумма центральных реакций от поперечных балок B 1 и B 2 равно суммарным нагрузкам от центральных колонн, таким образом,

2R 1 + 8R 2 = 2-пол. 1 + 2-пол. 2 (2)

Решение уравнений.(1) и (2), R 1 и R 2 может быть определен.

Изгибающий момент и сдвиг силовые диаграммы можно нарисовать, как показано на рис.39. Реакции R 1 и R 2 можно определить, приравняв сумму вертикальных сил до нуля. Центральное сечение балок при положительном изгибающем моменте может быть выполнен в виде Т-образной балки, так как плита находится на стороне сжатия. Разделы балки под центральной балкой B 3 должны быть прямоугольными. раздел.

2- Конструкция центральной главной балки B 3

Нагрузка, усилие сдвига, диаграммы и диаграммы изгибающего момента показаны на рис. 40-а. Раздел может быть выполнен в виде Т-образной балки.

3- Конструкция центральной главной балки B 4

Нагрузка, усилие сдвига, диаграммы изгибающих моментов представлены на рис.40-б Разрез может быть спроектирован как тавровая балка

Толщина ленточного фундамента | Строительство и проектирование ленточного фундамента

Ленточный фундамент изготавливается из непрерывной ленты, обычно из бетона.В основном они разрабатываются под несущими стенами. Эту непрерывную полосу можно использовать в качестве ровного основания, на котором сооружается стена, и она имеет ширину, необходимую для распространения нагрузки на фундамент на участок грунта, который может выдержать нагрузку, лишенную ненадлежащего уплотнения.

Ширина бетонного ленточного фундамента зависит от несущей способности основания, а также от нагрузки на фундамент. Ширина фундамента для аналогичной нагрузки будет уменьшена, если несущая способность основания будет больше.

Различные факторы, такие как ухудшение состояния, типы грунта и глубина фундамента, в основном влияют на толщину ленточного фундамента. Ниже приводится подробная информация о толщине ленточного фундамента в зависимости от условий нагрузки и глубины фундамента.

Толщина ленточного фундамента, несущего легкие нагрузки

Как правило, толщина ленточного фундамента эквивалентна выступу от поверхности основания или стены, но не менее 150 мм.Эта минимальная толщина необходима для того, чтобы ленточный фундамент имел достаточную твердость и, как следствие, мог склеивать слабые карманы в почве.

Кроме того, он противостоит продольной силе, возникающей в результате теплового сжатия и расширения, а также увеличения влажности опорной стены. Если тип грунтового основания — глина, то набухание глины должно быть большим и оказывать давление на фундамент. Следовательно, важно установить минимальный предел для ленточного фундамента.

Толщина ленточного фундамента, выдерживающего большие нагрузки

Если ленточный фундамент способен выдерживать большие нагрузки, то толщина фундамента определяется его прочностью с целью противодействия сдвиговым и изгибающим моментам, которые могут привести к обрушению выступа фундамента.

Если арматура не имплантирована в ленточный фундамент, разрушение основания ленточного фундамента будет регулировать его толщину.

Толщина бетона должна быть достаточной для устранения разрушения при изгибе. Ступенчатый или наклонный переход можно использовать до заданной толщины от лицевой стороны стены к нижней ширине.

Часто ленточный фундамент проектируется обычным образом, выбирая толщину, которая препятствует возникновению растяжения в основании ленты. Такая толщина обычно эквивалентна удвоенному выступу полосы.

И наоборот, обеспечивается 45-градусное распределение нагрузок у основания ленточного фундамента. Исходя из этого распределения нагрузки, небольшое напряжение растяжения у основания фундамента является допустимым, но его величина неизвестна.

Ленточный фундамент. Расчет и устройство ленточного фундамента. | Бетон

Строительство здания начинается с его фундамента — фундамента.Качественный и надежный фундамент для надежного строительства любого существования без риска обрушения. Самым распространенным стандартом для многих конструкций является непрерывный фундамент. Он отлично подходит для небольших деревянных заборов, суровых домов и многоэтажных домов.

Ленточный фундамент. Расчет и устройство ленточного фундамента. Это бетонная конструкция, которая закладывается в грунт по периметру возводимого сооружения с учетом капитальных надстроек и стен.Этот фундамент отличается большим количеством преимуществ — он легко, быстро и легко укладывается, идеально подходит для подземных гаражей, подвалов и цокольных этажей.

Существует четырех типов ленточных фундаментов. — Качественные, плоские, мелкозаглубленные и монтажные.

Ленточный мелкозаглубленный фундамент

Этот вид ленточного фундамента часто используется при строительстве небольших и простых коттеджей. Идеально подходит для построек из дерева, бруса, бревна и небольших домов из камня.Фундаменты такого типа кладут на глину или песок, глубина зависит от типа грунта. Средняя глубина кладки — шестьдесят сантиметров. Преимущества включают экономичность и простоту.

Утопленная ленточная основа

Заглубленный фундамент идеально подходит для тяжелых и массивных конструкций, больших зданий с потолками и массивными стенами, подвала и погреба. Во избежание неприятностей перед закладкой фундамента необходимо провести тщательный анализ почвы.Средняя глубина кладки на двадцать пять сантиметров превышает глубину промерзания почвы. Этот тип фундамента требует большего расхода материалов и затрат человеческого труда.

Монолитная ленточная основа

Нередко прочный фундамент используют для конструкций из бревна и световых домов. Хорошо подходит для почвы, имеющей высокую усадку, пушистых и мягких почв. Такой фундамент можно установить под любую форму здания. Монолитный ленточный фундамент представляет собой бетонную полосу по периметру дома.Он отличается прочностью, прочностью, не требует специального оборудования для укладки. Для устройства используют монолитный фундамент из бетона, пенобетона и железобетонного материала. Перед закладкой фундамента сначала проводится анализ грунта и рытье траншей целесообразно, после чего на дно котлована укладывается металлическая или деревянная арматурная опалубка, которая заливается бетоном. После усадки прочный фундамент не должен подниматься над землей более чем на тридцать сантиметров.

Сборная ленточная основа

Часто ленточный монтажный фундамент используют при строительстве малоэтажных домов.Даже для установки небольшого здания необходимо соорудить фундаментную подушку. Для устройства сборного фундамента необходимо подготовить бетонные блоки для надежного крепления, в которых используется цемент. Бывают фундаментные блоки пустотелые и сплошные. Первый выполнен из кремнезема и обычного бетона, а второй — из бутового и силикатного бетона.

с основанием

Для возведения фундамента с кирпичным цоколем используются надежные и устойчивые к воздействию окружающей среды материалы.Эти фундаменты отлично выдерживают ветер, осадки на здание и перепады температур. Качество используемых материалов зависит от сухости подвала и первого этажа. Заглушка — это конструкция, которая располагается в верхней части фундамента. Его строительство — дело ответственное и серьезное, требующее внимательного подхода.

Расчет ленточного фундамента

Для расчета ленточного фундамента необходимо заранее знать некоторые параметры — высоту заполнения, ширину и периметр возводимых на нем стен.Это необходимо для определения полного объема литья.

Например, прямоугольный ленточный фундамент имеет длину — десять метров, ширину — три с половиной метра, высоту отливки — двадцать сантиметров, ширину пояса (отливок) — 0,18 метра. Для определения количества следует умножить ширину периметра комнаты и стены на высоту отливки. V = 27 х 0,2 х 0,18 = 0,972 м3.

На этом расчет ленточного фундамента не заканчивается, теперь нужно определить количество внутри.Определяется умножением длины и ширины фундамента на высоту отливки: 10 х 3,5 х 0,2 = 7 м3. Из этого результата вычитается объем литья: 7 — 0, 97 = 6,03 м3. Таким образом, получаем объем, равный отливке 0,97 м3, а объем наполнителя — 6,03 м3.

Теперь нужно посчитать количество приспособлений, предназначенных для армирования. Если использовать арматуру диаметром двенадцать миллиметров, на которую будут уложены два турника и два вертикальных — Один стержень через два фута, при периметре мы получим 27 метров 54 метра арматуры по горизонтали.Считаем вертикальные столбцы: 54/2 +2 = 110 столбцов. Добавьте еще стержней по углам, витков — 114 бар. При высоте стержня — семьдесят сантиметров получается 114 х 0,7 = 79,8 погонных метра.

Последний этап — расчет опалубки. При его строительстве доски имеют толщину два с половиной сантиметра, длину — шесть метров и ширину — двадцать сантиметров. Рассчитываем площадь боковых поверхностей фундамента. Для этого периметр умножить на высоту отливки и двое (27 х 0.2) х 2 = 10,8 м2. Далее посчитайте площадь одной доски. Для этого длина доски умноженная на ее ширину 6 х 0,2 = 1,2 м2. Разделив площадь боковых поверхностей фундамента на площадь одной доски, получаем количество досок: 10,8: 1,2 = 9 штук. После проведения расчетов приступаем к заливке фундамента.

Устройство ленточного фундамента своими руками

Устройство ленточного фундамента своими руками для начала пробивки его оси, которое выполняется с помощью теодолита, после чего выкапывается траншея ленточного фундамента.Для этого ранее использовался ручной труд. Сегодня парк строительной техники разнообразен. Например, есть мини-экскаваторы, которые быстро и легко справятся с этой задачей.

Начинаем с засыпки траншеи песком, ее плотно утрамбовываем, сверху насыпаем щебень или щебень. Толщина каждого слоя около двадцати сантиметров. Сверху укладывается слой «под бетонку», то есть слой затирки десять сантиметров. После этого, в зависимости от погоды, фундамент держится более десяти дней.

Затем переходите к следующему этапу — укладке светильников внутри и снаружи. Прутья сообщаются между собой вязальной проволокой. При выборе клапана важно учитывать, что он имеет антикоррозийное покрытие. В зависимости от сложности возведенного пола и стены иногда необходимо сооружение армированного каркаса.

Следующий этап — установка опалубки для фундамента и бетонирование. В опалубке можно использовать разные материалы — фанеру, доски, шифер, металлический настил.

Завершающий этап устройства ленточного фундамента — заливка бетона в опалубку.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *