Как рассчитать количество арматуры на фундамент: Калькулятор расчета арматуры для фундамента
Калькулятор расчета арматуры для фундамента
Главная Калькулятор арматуры для фундаментаЧтобы рассчитать сколько вам потребуется арматуры, для строительства фундамента разных конфигураций и размеров, воспользуйтесь нашим калькулятором.
Вы купили участок и начинаете строительство. Взяли пробы грунта и сделали план будущей постройки. Теперь вам нужно определиться с фундаментом дома, незаменимой составляющей которого является строительная арматура для фундамента.
Как понять, подойдет ли ленточный сборный фундамент, или придется делать заливной. Никому не охота переплачивать и тратить свои силы, если это нерационально. Обратитесь в нашу компанию и мы посоветуем, как лучше сделать основу под дом и какие материалы выбрать. Наши специалисты подскажут, какой фундамент необходим именно для вашего строительства. У нас громадный выбор различных марок бетона, железобетонных изделий всевозможного назначения, в том числе и арматура — расчет арматуры для фундамента вы можете выполнить у нас на сайте и, конечно, здесь же доступен прайс с ценами.
Остановили свой выбор на сборном фундаменте — добро пожаловать к нам: железобетонные блоки будут доставлены вам со склада в необходимом количестве. Но надежнее и долговечнее будет ленточный фундамент, купить подходящую арматуру для которого вы можете в компании «Омега Бетон»
Цены на арматуру для фундамента:
АРМАТУРА А3 А500С | |||
Диаметр мм | Цена за 1 тонну | Диаметр мм | Цена за 1 тонну |
6мм-6м | 28500 | 20мм11,7м | 26600 |
8мм-6м | 28300 | 22мм-11,7м | 26600 |
10мм-6м | 28600 | 25мм-11,7м | 26600 |
12мм-11,7м | 27600 | 28мм-11,7м | 26600 |
14мм-11,7м | 26600 | 32мм-11,7м | 26600 |
16мм-11,7м | 26600 | 36мм-11,7м | 26600 |
18мм-11,7м | 26600 | 40мм-11,7м | 26600 |
Доставка по городу и области (выполняется шаландами и манипуляторами): от 5500 руб |
Смотреть полный прайс-лист на черный металлопрокат
Сделать заказ
Заливка бетонного фундамента
Для заливки фундамента необходимо использовать специальную арматуру. Но ее не так просто выбрать. Как купить качественную арматуру для фундамента так, что бы она подходила именно для вашего дома и не слишком дорого стоила? Ведь тут важно знать, нужно ли приобретать пруты с периодичным профилем, или взять гладкие и сэкономить деньги.
Специалисты нашей фирмы с удовольствием расcчитают необходимое количество материала и посоветуют, какой диаметр прута нужен в вашем случае. Также проследят, чтобы класс прочности и эксплуатационные особенности полностью удовлетворяли вашим потребностям.
Способы скрепления арматуры для фундамента
Теперь когда арматура для фундамента у вас на участке, нужно строить каркас. Для соединения кусков стали используют два способа:
- Сварка;
- Связка проволокой.
Если использовать сварку, то это должен делать хороший специалист. Большая нагрузка вместе с усадкой, при неправильно сваренных швах, могут привести к разрушению основы. Такой метод соединения в основном используют при строительстве больших объектов: там и диаметр арматуры для фундамента больше, и работают профессионалы.
Связывать стальную арматуру практичней, быстрее и проще. Каркас станет пластичнее и сможет легко перенести усадку грунта или другие дополнительные нагрузки.
Проволоку для связки приобретайте тоже у нас.
Удачного строительства!!!
Сделать заказ
Строительство ленточного фундамента своими руками
Как известно, ленточный фундамент отличается надежностью и долговечностью, независимо от того, что вы строите: дом, гараж, баню или дачный домик. Такое широкое применение ленточного фундамента обусловлено его универсальностью и доступной ценовой политикой. Идею возведения ленточного фундамента своими силами может воплотить каждый из нас, имея огромное желание, базовые навыки строительных работ, набор инструментов под рукой и необходимые технические средства. На первом этапе нужно выбрать между мелкозаглубленным и заглубленным ленточным фундаментом.
Мелкозаглубленный ленточный фундамент
Мелкозаглубленный фундамент — очень выгодное решение, чтобы сэкономить финансовые средства и ваше драгоценное время. Для его обустройства не требуется котлован большой глубины. Используется он для облегченных конструкций небольшой площади. Профессионалы рекомендуют возведение мелкозаглубленных фундаментов для стройки:
- домов из дерева
газобетонных сооружений или зданий, построенных из газобетонных и пенобетонных блоков, высота которых не превышает 2 этажа- Каркасных домов по «Канадской технологии»
- монолитных зданий с несъёмной опалубкой
- небольших сооружений, построенных из камня
Глубина мелкозаглубленного фундамента достигает полметра.
Заглубленный ленточный фундамент
Применяется для постройки сооружений, которые имеют тяжёлые стены, бетонные перекрытия, подвал или подземный гараж. Заглубленный ленточный фундамент так же находится на определенной глубине, которую необходимо рассчитать заранее, для этого определяется уровень промерзания грунта, затем отнимается 30 см. от полученного результата и на этом уровне закладывается фундамент.
Подготовка к работе
Чтобы возвести ленточный фундамент самому, первым делом необходимо провести тщательное планирование, все материалы следует сразу завезти на строительную площадку и разместить неподалеку от стройки. Для расчетов всех необходимых размеров и материалов вам поможет калькулятор ленточного фундамента, арматуры и опалубки.
Разметка
Перед постройкой ленточного фундамента, необходимо убрать с места мусор и начать разметку, нанося на земле как внешние, так и внутренние границы будущего фундамента. Сделать это легко, используя колышки или прутья арматуры и веревки (как вариант – леска, проволока), но эффективней всего будет воспользоваться специальными приборами, такими как лазерные нивелиры. Помните, что сильные погрешности в разметке очень заметно отразятся на внешнем виде готовой постройки.
Для достижения идеально ровной разметки, нужно:
- определить ось сооружения, которое будет строиться
- при помощи отвеса наметить угол, от него под углом 90º натянуть веревку к ещё двум углам сооружения
- используя угольник, определить ещё один угол
- совершить проверку углов, ориентируясь на диагонали. Если проверка дала положительные результаты – натянуть между ними веревку
- взяться за внутреннюю разметку, отступая от внешней разметки на расстояние толщины будущего фундамента
Когда разметка позади, следует изучить перепады поверхности на месте постройки и выбрать самую низкую точку для отсчёта глубины траншеи и исключения разницы в высоте фундамента. Если здание будет маленькое, то глубина котлована может составлять 40 см. Для рытья котлована можно использовать обычную лопату и свои собственные силы, а можно воспользоваться услугами экскаватора, который сэкономит много времени и сил, но даже в таком случае не обойтись без лопаты для финишного выравнивания. Не стоит прикидывать глубину на глаз, используйте водяной уровень.
Устройство подушки и гидроизоляция ленточного фундамента
Когда траншея будет готова, следует уложить песчаную подушку с добавлением гравия. Рекомендованная высота каждого слоя составляет 120-150 мм. После этого каждый слой необходимо пролить водой и утрамбовать для увеличения плотности. Чтобы изолировать готовую подушку, нужно на неё выложить прочную гидроизоляционную пленку. Так же возможно использование специального геотекстиля, который благодаря своим армирующим свойствам увеличивает общую прочность фундамента. Альтернативный вариант: заливка чернового бетонного раствора. В этом случае нужно ждать неделю, чтобы бетон схватился.
Установка опалубки ленточного фундамента
Опалубка сооружается из струганных досок, толщина которых составляет приблизительно 40-50 мм. Можно использовать для этой цели шифер, устойчивую к влаге фанеру или листы ОСБ.
Когда возводите опалубку, всё время контролируйте вертикальность. Рекомендованная высота каркаса над землёй равна 30 см. Это нужно, чтоб обустроить небольшой цоколь. В опалубке укладываются асбестобетонные трубы для завода в здание канализации и водопровода.
Проложите между бетоном и опалубкой полиэтиленовую пленку, это позволит защитить опалубку от загрязнения и использовать ее после разбора для других целей.
Опалубка может быть снята по истечению 4-6 дней после заливки бетона. После этого проводится обратная засыпка. Желательно использовать глину или песок для прилегающих слоев. Глину следует хорошо утрамбовывать, а песок утрамбовывать и проливать водой.
Укладка арматуры
Следующий шаг – установка арматуры. Арматурные стержни сечением 10-12 мм связываются специально предназначенной вязальной проволокой так, чтобы стороны квадратных ячеек равнялись 30-40 см. Арматуру возможно использовать как стальную, так и стеклопластиковую. При использовании стеклопластиковой, необходимо выбирать ее характеристики, которые будут эквивалентны стальной арматуры необходимого диаметра, это можно уточнить у производителей.
Не используйте для крепления арматуры сварочный аппарат, чтобы избежать коррозии в местах сварки. Размещая арматуру в траншее, следите за отступами от краев. Оптимальный отступ – 50 мм. В этом случае арматура разместится в максимально эффективном месте монолита.
Вентиляция и коммуникации
Арматура связана и уложена на дно котлована. Далее необходимо обеспечить вентиляцию фундамента и также оставить технологические отверстия для коммуникаций в здание. Возьмите часть асбоцементной или пластиковой трубы и привяжите его к арматуре. Чтобы избежать заполнения труб раствором, заполните их песком.
Канализация и водопровод – также неотъемлемая часть дома. В этом случае нужно принимать во внимание отчёты об уровне промерзания грунтов в вашем регионе в зимнее время, и проводить эти системы ниже. Конечно же, они расположатся и ниже вашего фундамента.
Заливка бетоном ленточного фундамента
Опалубку заполняют бетоном постепенно. Толщина слоев составляет 15-20 см и трамбуются они специальным инструментом – деревянной трамбовкой, либо глубинным вибратором. Таким образом, вы избежите пустот и увеличите общую прочность.
Вы можете заказать готовую бетонную смесь с завода или сделать самому, используя бетономешалку. Пропорция цемента, песка и щебня такова: 1:3:5.
Не стоит экономить на фундаменте! Для заливки фундамента ответственных построек обязательно заказывайте бетон на крупных предприятиях.
Слой от слоя не должен отличаться составом. Если работы проводятся в холодную погоду и при низких температурах, следует применять подогреватель бетона и морозостойкие добавки, такие как, например хлористый кальций, либо обычную поваренную соль до -10 градусов, из расчета 1.5% от веса цемента. Бетон может расслаиваться, если лить раствор с высоты, которая превышает 1,5 метра, что плохо повлияет на конечную прочность.
Утепление фундамента своими руками
Утеплить фундамент самому не сложно, современный рынок заполнен теплоизолирующими материалами. На практике проверено, что для утепления хороши такие методы:
Первый вариант.
Во время строительства вокруг фундамента с внешней или внутренней стороны нужно просыпать керамзитом на толщину 0,5-1 м. Если толщина будет меньше указанной, вы не достигнете высокой эффективности. Этот способ менее эффективен, так как керамзит теряет свои теплоизолирующие свойства при впитывании влаги.
Второй вариант.
С внешней стороны вокруг фундамента поместить вспененный пенополистирол. Толщина его должна быть не менее 5-10 см. Это – лучшее средства для повышения теплоизоляции фундамента. Для крепления пенополистирола используйте пластмассовые дюбеля. Дрелью сверлите отверстие, размещаете дюбель и вбиваете его молотком. Теплопроводность пенополистирола разная в зависимости от марки плотности, поэтому при покупке нужно обращать внимание на его плотность, лучше всего подойдет средняя плотность.
Для утепления фундаментов эффективней всего использовать экструдированный пенополистирол, так он меньше всего впитывает влагу.
Одним из эффективных вариантов утепления является несъемная опалубка из экструдированного пенополистирола. Но в таком случае необходимо очень хорошо зафиксировать листы, что бы их не выдавило бетоном.
Третий вариант.
После набора прочности, на готовый фундамент по бокам распыляется пенополиуретан, он равномерно покрывает всю площадь не оставляя ни единого прохода для влаги. Но такой способ наиболее затратен, так как не обойтись без вызова специалиста со специальным оборудованием. Так же пенополиуретан достаточно быстро разрушается под действием солнечных лучей, распадаясь на вредные для человека микроэлементы.
Также помните, что утеплять фундамент следует уже после гидроизоляции.
Окончание работ
После заливки бетона, его необходимо закрыть пленкой для предотвращения высушивания и оставить набирать прочность минимум на 2 недели. 99% набор прочности бетона происходит в течении 28 дней. В холодную погоду обязательно используйте противоморозные добавки, так как при отрицательных температурах вода превращается в лед и бетон перестает набирать прочность, а также полностью теряет эту способность даже после оттаивания.
В жаркую погоду необходимо иногда поливать твердеющий бетон водой, так как при излишнем испарении влаги, цемент перестает набирать прочность и превращается в пыль.
Теперь, ознакомившись со всей необходимой информацией, вы сможете своими руками возвести ленточный фундамент, утеплить его и быть уверенным, что он сделан на совесть!
Видео строительства ленточного фундамента своими руками на дачном участке
Как рассчитать количество арматуры для заливки фундамента?
Казалось бы, всем понятно, что прочность и долговечность фундамента — это основа будущего дома. Ошибки, допущенные на этапе проектирования, армирования и заливки фундамента, в дальнейшем исправить практически невозможно. Поэтому во избежание трещин в фундаменте под действием нагрузок и движения грунта необходимо правильно рассчитать количество бетона, который будет работать на сжатие, а также количество и диаметр арматуры, которая будет работать на растяжение. В комплексе правильный расчет арматуры и четкое выполнение работ согласно проекту обеспечит вашему дому надежный фундамент на долгие годы.
Фундаменты бывают разные, и расчет арматуры для каждого из них проводится по отдельной схеме:
- Ленточный фундамент — наиболее популярный вид фундамента для частных домов.
- Свайный буронабивной — используется на слабом грунте при глубине промерзания до 1,5 метров.
- Свайно-ростверковый — это сочетание свай и железобетонной ленты, которое обходится дешевле ленточного фундамента, но при этом отлично себя показывает на склонах и при подвижной почве.
- Столбчатый фундамент — применим для легких домов и построек.
- Плитный фундамент – самый прожорливый в плане использования бетона и арматуры фундамент, который очень дорого обходится в частном домостроении.
Чтобы материал был более полезен для тех, кто пытается произвести расчет количества и диаметра арматуры самостоятельно, мы проведем расчет на примере ленточного фундамента под дачный дом 6 на 8 метров, а потом сравним расход арматуры на этот же проект с плитным и столбчатым фундаментом.
• АРМАТУРУ РИФЛЕНУЮ А3 • ВЯЗАЛЬНУЮ ПРОВОЛОКУ • СВАРНУЮ СЕТКУ Первый поставщик проката. Низкие оптовые и розничные цены. Консультация по выбору. Оформление заказа на сайте и в офисе. Нарезка в размер. Доставка по Беларуси, в том числе, и в выходные дни. |
Схемы армирования ленточного фундамента
Для расчета количества и диаметра арматуры в первую очередь нужно определиться со схемой армирования фундамента. В зависимости от нагрузки на фундамент и пучинистости грунта для строительства частных домов чаще всего применяют армирование:
- Четырьмя стержнями арматуры;
- Шестью стержнями арматуры;
- Восемью стержнями арматуры.
Как же определиться со схемой армирования, чтобы она была достаточно надежной, но в то же время не излишне затратной?
Согласно правилам по проектированию и строительству (СП 52-101-2003), максимальное расстояние между продольными стержнями арматуры должно быть не более 40 см. А также арматурные стержни должны отстоять от края опалубки, верха и низа мелкозаглубленного ленточного фундамента на 5-7 см.
Исходя из этих данных, если проектом предусмотрен ленточный фундамент шириной 50 см, то лучше всего подойдет армирование в четыре стержня:
5+40+5=50 см.
При более широком фундаменте будет целесообразно использовать схему армирования 6-8 стержнями.
Расчет диаметра продольной арматуры
От диаметра арматуры зависит прочность всей конструкции: чем толще арматура, тем прочнее. При выборе ее толщины стоит ориентироваться на вес дома и тип грунта. Если грунт плотный, то под нагрузкой от дома он будет меньше деформироваться, а значит, от плиты требуется меньшая устойчивость.
Второй фактор — это вес здания. Если вы собираетесь построить легкий деревянный дом или гараж, то устойчивость такому дому может обеспечить и арматура диаметром 10 мм. Но если это капитальное строение в несколько этажей, то может потребоваться арматура 14-16 мм. Это все учитывается на этапе разработки проекта и отражается на глубине и ширине фундамента. Далее стоит полагаться на строительные нормы, которые зависят от ширины и высоты фундамента.
Согласно правилам по проектированию и строительству (СНиП 52-01-2003), минимальная площадь сечения продольной арматуры в ленточном фундаменте должна составлять 0,1% от общего поперечного сечения железобетонной ленты.
Для того, чтобы посчитать площадь поперечного сечения фундамента, нужно его ширину умножить на высоту. Допустим, высота нашего фундамента 80 см. Тогда при ширине 50 см поперечное сечение даст:
80*50=4000 см2
Тогда суммарная площадь поперечного сечения арматуры получится:
4000*0,1%=4 см2
При схеме армирования в 4 стержня и известной площади суммарного поперечного сечения арматуры в ленточном фундаменте мы можем определить диаметр продольной арматуры по таблице:
Казалось бы, при площади поперечного сечения арматуры в 4 см2 и 4 стержнях можно сделать вывод, что вам хватит и десятки. Но в таблице видно, что 4 стержня диаметром 10 мм имеют площадь поперечного сечения 3,14 см2. Не попадитесь на эту удочку и не допустите глупых математических ошибок при расчете фундамента вашего дома.
Выбрав столбец с 4 стержнями арматуры, нам нужно найти значение, наиболее приближенное к 4 см2, но не менее того. Поэтому нам подойдет значение 4,52 см2 и, соответственно, арматура 12 мм в диаметре.
Согласно таблице, при 4 стержнях площадь их поперечного сечения будет 4,52 см2 при диаметре арматуры 12 мм. Это наиболее ходовой тип арматуры, применяемый для армирования ленточных фундаментов малоэтажных строений.
Рассчитать диаметр арматуры при схеме армирования шестью или восемью стержнями можно аналогичным образом, найдя необходимой значение в соответствующей колонке.
Также правилами регламентируется минимальный диаметр арматуры в зависимости от ее длины: При длине фундамента до 3 м этот минимум составляет 10 мм, а при длине от 3 м — 12 мм.
Также отметим, что продольная арматура железобетонной ленты должна быть одинакового диаметра. Если же вы строите сарай или баню из остатков арматуры, то стержни большего диаметра должны оказаться в нижней части армокаркаса.
Расчет диаметра поперечной и вертикальной арматуры
Продольная арматура для ленточного фундамента должна быть рифленой, тогда как поперечная и вертикальная арматура может быть гладкой.
Рассчитать диаметр поперечной и вертикальной арматуры можно без сложных вычислений. Стоит ориентироваться на данные таблицы:
В нашем случае при высоте фундамента 80 см для поперечной и вертикальной арматуры можно брать гладкие стержни 6 мм в диаметре. Если же вы строите, скажем, двухэтажный коттедж, то для поперечной и вертикальной арматуры будет достаточно прутьев диаметром 8 мм.
Расчет количества продольной арматуры
Очень часто при возведении фундамента в разгар стройки становится понятно, что арматуры не хватает. Или же наоборот: после приемки работ оказывается, что несколько десятков погонных метров арматуры осталось, а ведь она не копейки стоит. А потом еще придется думать, куда ее пристроить. Поэтому так важно на этапе проектирования и планирования точно рассчитать количество необходимой арматуры для заливки фундамента.
К примеру, наш дачный дом имеет вот такую схему фундамента:
При фундаменте 6*8 нам потребуется посчитать периметр основания и добавить к нему длину несущих стен, под которыми также будет возводится фундамент. В нашем случае периметр равен:
6+8+6+8=28 м
К периметру прибавим еще длину несущей стены:
28+6=34 м
Полученную цифру нам необходимо умножить на количество стержней в схеме армирования, в нашем случае на 4:
34*4=136 м
При расчете арматуры необходимо помнить, что обычно она поставляется в стержнях длиной 3-6 метров. Далеко не каждый поставщик металлопроката имеет возможность поставлять арматуру длиной 0,5 до 11,7 метров. Чаще всего на месте арматуру приходится резать в размер и стыковать внахлест, как показано на схеме.
При стыковке арматуры нужно помнить, что соседние прутья должны соединяться не строго друг над другом. Расстояние между соседними соединениями стержней арматуры должно составлять 1,5 длины нахлеста, но не менее 61 см.
Нахлест рассчитывается исходя из диаметра арматуры, умноженного на 30. В нашем случае это:
12*30=360 мм (36 см)
Чтобы добавить припуски с учетом нахлеста, можно:
- Посчитать количество стыков;
- Прибавить 10-15% к общей сумме длины арматуры.
Мы воспользуемся вторым способом и прибавим к нашей цифре 10%:
136+136*0,1=149,6 м
Учитываем то, что в угловой части фундамента арматуру придется изгибать с загибом длиной 0,5 м. Итого на каждый угол придется 4 м таких выпусков или 20 м всего на весь фундамент. Прибавляем это количество к метражу ребристой арматуры:
149,6+20=169,6 м
Итого, для ленточного фундамента дачного дома 6*8 нам потребуется около 170 метров рифленой арматуры диаметром 12 мм.
Расчет количества вертикальной и поперечной арматуры
После того, как мы определились, сколько нам нужно купить рифленой арматуры 12 мм, нам нужно рассчитать, сколько потребуется гладкой арматуры диаметром 6 мм.
Взглянем на схему поперечного сечения фундамента:
Периметр каждого прямоугольника, который опоясывает продольную арматуру, в нашем случае составит:
40+70+40+70=220 см (2,2 метра)
Если взглянуть на припуски в местах соединения и учесть, что некоторые строители вертикальную арматуру вбивают в землю для устойчивости армокаркаса, то к этой сумме смело можно прибавлять сантиметров 20.
220+20=240 см (2,4 м)
Теперь нам нужно подсчитать, сколько таких прямоугольников разместится в нашем фундаменте. Это можно сделать двумя способами:
- Просто поделив длину нашего периметра и несущих оснований на расстояние между перемычками;
- Начертив схему фундамента и подсчитав места связок на чертеже.
Мы попробуем подсчитать количество связывающих колец на плане фундамента. Связки продольной арматуры вертикальными и поперечными прутьями необходимо производить каждые полметра (допустимо расстояние 0,3-0,8 метра). К тому же, на углах у нас разместится по две таких связки.
Сперва посчитаем, сколько таких опоясывающих прямоугольников поместится на стене 8 метров. Как видно из схемы, на восьмиметровой стене уже есть 6 угловых элементов. А если принять во внимание, что такие перемычки необходимо делать через каждые полметра, то на ней необходимо будет разместить еще 12 таких соединений. То же самое на второй восьмиметровой стене.
(6+12)*2=36 штук
Оставшиеся три стены по 5 метров предполагают еще по 9 перемычек:
9*3+36=63 перемычки
Получается, нам нужно длину гладкой арматуры, необходимой для фиксации в неподвижном состоянии продольной арматуры, умножить на количество таких соединений:
2,4*63=151,2 м
Получается, что для фундамента нашего дачного домика нам потребуется примерно 170 метров рифленой арматуры диаметром 12 мм и 150 гладкой арматуры диаметром 6 мм.
Учитывайте также, что в процессе работы часто остается много коротких стержней, непригодных для дальнейшего использования, поэтому к полученной цифре лучше прибавить еще процентов 10.
170+170*0,1=187 метров диаметром 12 мм
151,2+151,2*0,1=166,22 метров диаметром 6 мм
Зачастую поставщики считают количество арматуры не метрами погонными, а тоннами, поэтому на заключительном этапе подсчета вам может потребоваться перевести эти данные из расчета, что вес 1 мп рифленой арматуры 12 мм в диаметре равен 0,89 кг, а гладкой арматуры 6 мм в диаметре — 0,222 кг.
Итого:
187*0,89=166,43 кг
166,22*0,222=39,9 кг
Расчет количества вязальной проволоки
В места пересечения продольных, поперечных и вертикальных прутьев стыки связываются проволокой. Сварка при армировании фундамента крайне нежелательна, так как ухудшает свойства металла в местах соединения и может вызвать трещины при вибрации.
Рассчитать количество вязальной проволоки можно, зная количество стыков и длину проволоки, которая потребуется на каждый стык. Как правило, на каждый стык необходимо 15 см проволоки, сложенной вдвое, итого 30 см (0,3 м).
Ранее мы подсчитали, что в нашем фундаменте будет 63 перемычки, в каждой из которых 4 соединения для связки проволокой.
63*4=252 соединения
Далее нам необходимо количество соединений умножить на длину проволоки, необходимой для каждого соединения:
252*0,3=75,6 метров
Если вы не имеете навыков вязки арматуры, то лучше вязальной проволоки взять с запасом, так как в неумелых руках даже обожженная проволока часто ломается.
Таким образом, для ленточного фундамента 6*8 с несущей стеной нам потребуется 166,43 кг рифленой арматуры диаметром 6 мм и 40 кг гладкой арматуры, а также 75,6 метров вязальной проволоки.
Расход арматуры в сравнении с плитным и столбчатым фундаментом
А теперь попробуем подсчитать, сколько бы нам понадобилось арматуры, если бы мы выбрали плитный или столбчатый фундамент.
Примерный расчет арматуры для плитного фундамента
Плитный фундамент состоит из двух арматурных сеток, связанных между собой. Для него, как правило, используется рифленая арматура диаметром 12 мм.
Ячейка между продольными и поперечными стержнями арматуры в сетке представляет собой квадрат 20*20 см. При фундаменте 6*8 нам потребуется узнать, сколько прутьев арматуры ляжет вдоль каждой стены с шагом в 20 см.
6/0,2=30 штук по 8 метров
8/0,2=40 штук по 6 метров
Если мы суммируем полученные цифры, мы получим количество прутков на одну сетку.
30*2+40*2=140 штук
В нашем варианте идеально было бы заказать 80 прутков длиной 6 метров и 60 прутков длиной 8 метров. Но чаще всего арматура продается длиной 3-6 метров, поэтому ее придется стыковать внахлест. Допустим, если заказать всю арматуру длиной 6 метров, то к 140 нужно будет прибавить еще 30 на наращивание по длинной стороне, которые потом разрежутся на трехметровые стержни с запасом на связку внахлест.
140+30=170 штук
170*6=1020 м рифленой арматуры
После этого необходимо соединить верхнюю и нижнюю сетку вертикальными стержнями, которых будет ровно столько, сколько пересечений продольной и поперечной арматуры.
30*40=1200 соединений
Допустим, высота плитного фундамента 20 см, то, соблюдая отступ от верха и низа бетонной плиты по 5 см, мы получим расстояние между верхней и нижней сеткой арматуры в 10 см.
1200*0,1=120 метров вертикальной арматуры
Общее количество арматуры для плитного фундамента составит:
1020+120=1122 метра погонных,
что в 6 раз больше, чем для ленточного фундамента.
Вязальной проволоки также нужно в несколько раз больше, так как в каждом месте, где пересекаются два горизонтальных и один вертикальный стержень, получится по два узла проволоки. Таких пересечений у нас 1200 в верхней сетке и столько же в нижней. На каждый узел необходимо в среднем 30 см вязальной обожженной проволоки.
1200*2*0,3=720 метров вязальной проволоки,
что в 10 раз больше, чем для ленточного фундамента на тот же дачный дом.
Примерный расчет арматуры для столбчатого фундамента
В принципе, для легкого дачного дома подойдет и столбчатый фундамент.
Для армирования свай достаточно арматуры диаметром 10 мм. Для вертикальных прутков используется ребристая арматура, горизонтальные прутки применяются только для того, чтобы связать их в единый каркас. Обычно арматурный каркас для столбика состоит из 2-4 прутков, длина которых равна высоте столба. Если диаметр столба превышает 20 см, то надо использовать больше стержней, равномерно распределяя их внутри столба. Для армирования 2-метрового столба диаметром 20 см можно ограничиться четырьмя прутками из арматуры диаметра 10 мм, которые расположены на расстоянии 10 см друг от друга и перевязаны в четырех местах гладкой арматурой диаметром 6 мм.
Предположим, что сваи для фундамента нашего дачного дома будут диаметром 200 мм с интервалом в 1,5 метра.
Делим периметр основания на шаг между сваями и получаем их количество:
34/1,5=22,6
Округляем до 23 столбов.
Свая будет армироваться тремя прутами рифленой арматуры и четырьмя хомутами — из гладкой. Посчитаем, сколько нужно рифленой арматуры на один столбик высотой 1,5 метра с выпуском под ростверк 0,3 м:
(1,5+0,3)*3=5,4 м
На все сваи уйдет:
5,4*23=124,2м рифленой арматуры
Для армокаркаса будет использоваться гладкая арматура, согнутая в окружность. Длина этой окружности с запасом составит:
3,14*0,2=0,628 м
Таких хомутов на одну сваю потребуется, как минимум, 4:
0,628*4=2,512 м
На все 23 столба гладкой арматуры потребуется:
2,512*23=57,776 м ≈58 м
Для расчета вязальной проволоки нам нужно посчитать количество соединений в наших столбах. Три прутка рифленой арматуры соединяются с четырьмя опоясывающими кольцами гладкой арматуры в шести местах:
3*4*0,3=3,6 метра проволоки на каждый столб
3,6*23=82,8 метра проволоки
Итого на свайный фундамент нашего дачного домика 6*8 потребуется около 125 метров погонных рифленой арматуры и 58 м гладкой арматуры, а также 83 м вязальной проволоки, что, конечно, получится экономичнее, чем ленточный фундамент и вполне подойдет для каркасного дачного дома.
Выводы:
В общем, совсем не сложно самостоятельно рассчитать количество и диаметр арматуры, необходимой для заливки фундамента. Особенно, при наличии проектно-сметной документации. Используя данный материал, вы без проблем сможете довольно точно рассчитать количество арматуры для заказа, чтобы потом не переплачивать за повторную доставку или излишний металлопрокат, оставшийся после стройки.
Сравнение расчетов количества арматуры для разных видов фундамента показало, что для дачного дома лучше всего подходят столбчатый и ленточный фундамент. А уж какой из них выбрать, будет зависеть от материала стен, кровли, перекрытий и количества этажей дома, пучинистости грунта и личных предпочтений.
Металлобаза «Аксвил» предлагает купить рифленую арматуру А3 и гладкую арматуру А1, вязальную проволоку, по безналичному и наличному расчету, оптом и в розницу с доставкой по Беларуси.
Расчет арматуры для фундамента – рекомендации от ТК Газметаллпроект
Любой жилой дом, производственное, офисное или складское помещение монтируются на заранее подготовленный фундамент. Конструкция основания может отличаться в зависимости особенностей почвы, климатических характеристик региона, массы и размеров здания. При этом армирование фундамента является обязательным условием длительной эксплуатации объекта, без повреждений и деформаций конструкции.
Назначение арматурного каркаса в фундаменте здания
Существует несколько типов оснований, выполняемых из бетонного раствора. Наиболее востребованными считаются плитные и ленточные фундаменты, мелко- и глубокозаглубленные. Также применяются основания на сваях, глубина заложения которых зависит от параметров грунта и уровня промерзания почвы.
Для армирования фундамента применяются металлические прутья с рифленой или гладкой поверхностью, которые соединяются в жесткий и прочный каркас. Армирование выполняется в следующих целях:
- стальная основа принимает нагрузки на растяжение и изгиб, равномерно распределяет их по всей конструкции основания;
- каркас исключает деформации бетона, позволяет избежать или минимизирует образование трещин и других дефектов фундамента;
- за счет арматурного каркаса удается снизить объем используемого для заливки основания бетонного раствора, уменьшить и снизить стоимость конструкции;
- армирование делает возможным строительство дома или производственного здания на слабых грунтах, в том числе сыпучих, болотистых, в регионах с экстремально низкими зимними температурами;
- возрастает несущая способность основания, арматура делает фундамент более приспособленным к высоким нагрузкам по массе, усилиям на растяжение и деформацию.
После заливки фундамента бетонный раствор постепенно набирает прочность. При этом монолит приобретает высокую прочность к сжатию, но не отличается хорошими показателями на растяжение. Арматурный каркас позволяет поднять данные параметры на должный уровень.
Как правильно рассчитать арматуру для фундамента
Для монтажа прочного и долговечного фундаментного основания необходимо выполнить расчет арматуры и каркаса. Такой подход обеспечивает соответствие требованиям нормативных документов. Для правильного расчета необходимо учитывать следующие моменты:
- в качестве конструктивных элементов лучше всего закладывать металлические прутья с рифленой поверхностью, толщина которых начинается от 12 мм – посмотреть каталог арматуры для фундамента;
- оптимальным является использование проката марки А400, А500 и А240;
- все расчеты выполняются в соответствии с требованиями СНиП 52-01-2003 и 2.02.01-83;
- при проектировании учитываются характеристики грунта, для каменистой, болотистой, сыпучей почвы арматурный каркас будет отличаться;
- обязательно учитывается при расчетах суммарная нагрузка на конструкцию, которая складывается из собственного веса фундамента, массы стен, перекрытий, перегородок, установленного в здании оборудования и предметов повседневного использования, среднегодового количества осадков;
- обязательно учитывается запас прочности, каркас должен быть прочнее расчетных показателей на 5-10%;
- несмотря на большое количество доступных онлайн-калькуляторов, расчет арматуры с их использованием получится приблизительным, желательно воспользоваться услугами специалиста в данной отрасли.
Выполняя указанные правила расчета арматурного каркаса можно быть уверенным в прочности и долговечности бетонного основания. При движении грунта, больших климатических и механических нагрузках, фундамент не получит повреждений. Соответственно стенам здания не угрожают деформации, появление трещин и щелей.
Конструктивное исполнение каркаса
В зависимости от типа и сложности фундамента, арматурный каркас может быть выполнен несколькими способами. Соответственно расчеты также отличаются для конструкций плитного, ленточного, свайного и других типов. После выбора подходящей схемы каркаса выполняется подбор необходимых комплектующих. Рассчитывается количество и длина прутьев, объем армирующей сетки. Необходимо определиться со способом соединения стержней между собой, направленностью конструкций, сечением металла и другими характеристиками.
Стандартный каркас собирается из прутков, расположенных в продольном и поперечном направлениях. Шаг ячеи определяется нагрузкой на основание, а для соединения используется технология сварки, вязальная проволока, специальные муфты.
Для ленточных фундаментов каркас представляет собой набор продольных прутков, соединенных между собой поперечными элементами. Такие сетки располагаются в несколько рядов. Для плитной конструкции подойдет плоский каркас из арматуры. Для свайного фундамента металлические прутки монтируются вертикально.
Расчет арматуры для фундамента плитного типа
Использование фундамента плитного типа актуально при возведении жилых домов и коттеджей, в которых не планируется выделение подвального помещения. Визуально основание выполнено в форме монолитной плиты, толщина которой может превышать 0,2 метра. При этом армирующая сетка укладывается в 1, 2 или более рядов, в зависимости от массы здания и типа грунта.
При выборе арматуры в первую очередь оценивается категория грунта. Для непучинистой почвы подойдут ребристые прутки толщиной от 10 мм. Если планируется строительство на слабой почве или участке с наклоном. Минимальный диаметр стержней должен быть 14 мм и более. Связи между сетками выполняются из арматуры на 6 мм. Стандартный шаг сетки составляет 0,2 метра, но данный показатель может меняться в большую или меньшую сторону. Связки продольных и поперечных стержней выполняются проволокой или сваркой.
Технология расчета арматуры предполагает выполнение следующих этапов:
- при толщине фундамента до 0,2 метра желательно использовать 2 плоских каркаса с вертикальной связкой, если основание более габаритное, число сеток увеличивается;
- для расчета количества продольных прутьев длина большей стороны делится на шаг 0,2 метра, что позволяет получить общую длину стержней;
- аналогичным образом рассчитывается общая длина поперечных звеньев каркаса;
- так как диаметр прутка принимается одинаковым, можно быстро вычислить необходимое количество стержней и рассчитать объем приобретаемой арматуры;
- для расчета вертикальных прутков подсчитывает количество точек соединения одной и сеток, размер связей равняется высоте фундаментной подушки, далее нетрудно подсчитать общую протяженность стальных стержней;
- если фиксация прутков выполняется на вязальную проволоку, вычисляется число соединений арматуры, средний расход составляет 0,4 метра на одну точку.
После выбора конструкции фундаментного основания и необходимой толщины арматуры, рассчитать объем приобретаемой продукции можно самостоятельно. Для этого достаточно знать площадь фундамента и его высоту, количество арматурных сеток, шаг ячеи. Все расчеты можно выполнить с помощью обычного калькулятора.
Расчет арматуры для фундамента ленточного типа
Для большинства зданий и сооружений выбор ленточного фундамента является оптимальным вариантом. Такая конструкция качественно выполняет свои функции, а затраты на монтаж существенно ниже, чем расходы на заливку монолитного основания. В состав каркаса входят продольные, поперечные и вертикальные металлические стержни.
Для продольной арматуры стандартным диаметром является 12-16 мм, поперечные и вертикальные связи могут быть меньшей толщины. Шаг ячеи принимается равным 0,2 метра, но может быть изменен в зависимости от конструкции и нагрузки на основание. Технология расчета арматурного каркаса ленточного фундамента будет следующей:
- в конструкцию обязательно закладывается 2 сетки, верхняя связывает основание при просадках грунта, нижняя исключает деформации при вспучивании почвы;
- для обустройства каркаса потребуется 4 продольных прутка, протяженность каждого из которых равняется периметру ленточного фундамента;
- количество поперечных прутков рассчитывается, исходя из принятого шага ячейки, длина стержней равна толщине бетонного основания;
- вертикальная арматура рассчитывается, исходя из количества соединение продольных и поперечных стержней, высота прутков определяется аналогичными показателями фундамента;
- для соединения прутков используется вязальная проволока, длина которой определяется из расчета 0,4 метра на 1 узел.
Путем достаточно простых вычислений удается подсчитать общую длину продольных, поперечных и вертикальных стержней, а также вязальной проволоки. В зависимости от длины имеющейся в продаже арматуры вычисляется число отдельных элементов. При этом учитывается некоторый запас, наличие которого необходимо в непредвиденных случаях.
Арматурные каркасы для фундаментов другого типа рассчитываются аналогичным образом. Для этого необходимо знать размеры каждого блока, определиться с конструкцией, толщиной используемых прутков. С помощью несложных математических расчетов определяется общая длина стержней, расходы на их приобретение.
Монтаж фундамента любого типа будет некачественным, если в основу не заложить металлический каркас. Стальные прутья, сваренные или связанные между собой, защищают фундамент от деформации, выкрашивание, излома и растяжения. Количество и стоимость необходимого материала можно рассчитать самостоятельно. При отсутствии опыта желательно обратиться к профессионалам, предлагающим свои услуги в данной сфере.
Как рассчитать арматуру на монолитную плиту
Информация по назначению калькулятора.
Онлайн калькулятор монолитного плитного фундамента (плиты) предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента домов и других построек. Перед выбором типа фундамента, обязательно проконсультируйтесь со специалистами, подходит ли данных тип для ваших условий.
Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003
Плитный фундамент (ушп) – монолитное железобетонное основание, закладываемое под всю площадь постройки. Имеет самый низкий показатель давления на грунт среди других типов. В основном применяется для легких построек, так как с увеличением нагрузки существенно возрастает стоимость данного типа фундамента. При малом заглублении, на достаточно пучинистых грунтах, возможно равномерное приподнимание и опускание плиты в зависимости от времени года.
Обязательно наличие хорошей гидроизоляции со всех сторон. Утепление может быть как подфундаментное, так и располагаться в стяжке пола, и чаще всего для этих целей применяется экструдированный пенополистирол.
Главным преимуществом плитных фундаментов является относительно низкая стоимость и простота возведения, так как в отличии от ленточного фундамента нет необходимости в проведении большого количества земляных работ. Обычно достаточно выкопать котлован 30-50 см. в глубину, на дне которого размещается песчаная подушка, а так же при необходимости геотекстиль, гидроизоляция и слой утеплителя.
Обязательно необходимо выяснить какими характеристиками обладает грунт под будущим фундаментом, так это это является основным решающим фактором при выборе его типа, размера и других важных характеристик.
При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация .
Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой в правом блоке.
Общие сведения по результатам расчетов.
- Периметр плиты — Длина всех сторон фундамента
- Площадь подошвы плиты — Равняется площади необходимого утеплителя и гидроизоляции между плитой и почвой.
- Площадь боковой поверхности — Равняется площади утеплителя всех боковых сторон.
- Объем бетона — Объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом.
- Вес бетона — Указан примерный вес бетона по средней плотности.
- Нагрузка на почву от фундамента — Распределенная нагрузка на всю площадь опоры.
- Минимальный диаметр стержней арматурной сетки — Минимальный диаметр по СНиП, с учетом относительного содержания арматуры от площади сечения плиты.
- Минимальный диаметр вертикальных стержней арматуры — Минимальный диаметр вертикальных стержней арматуры по СНиП.
- Размер ячейки сетки — Средний размер ячеек сетки арматурного каркаса.
- Величина нахлеста арматуры — При креплении отрезков стержней внахлест.
- Общая длина арматуры — Длина всей арматуры для вязки каркаса с учетом нахлеста.
- Общий вес арматуры — Вес арматурного каркаса.
- Толщина доски опалубки — Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор.
- Кол-во досок для опалубки — Количество материала для опалубки заданного размера.
Для расчета УШП необходимо вычесть объем закладываемого утеплителя из объема рассчитанного бетона.
Необходимый расчёт арматуры на монолитную плиту.
Как рассчитать арматуру на монолитную плиту.
Производится расчет арматуры для фундаментной плиты в соответствии с нормативами СНиП 52-01 от 2003 года. Основными задачами при проектировании являются: выбор сечения стержней, хомутов, изготовление схемы армирования каждого пояса, определение количества в метрах, перевод в единицы веса для покупки на стройрынке.
Для чего нужен армопояс?
На фундаментную плиту действуют преимущественно растягивающие нагрузки от веса здания, мебели, жильцов, ветра, снега. Однако присутствуют и сжимающие усилия. Бетон работает исключительно на сжатие, причем подобным нагрузкам этот материал противостоять не может. Поэтому в нижней части плиты у подошвы помещают арматурную сетку, компенсирующую сжатие. В верхней части уложена вторая сетка, воспринимающая усилия растяжения.
Как рассчитать арматуру на монолитную плиту.
Порядок расчета арматуры.
Согласно нормативам СНиП, процент армирования бетона должен составлять 0,15 – 0,3% (М300 – М200, соответственно). Практика проектирования показывает, что пруток периодического сечения 12 мм обладает достаточным запасом прочности для любых малоэтажных зданий с кирпичными, бетонными стенами. Максимально возможный диаметр стержня, используемый индивидуальными застройщиками, составляет 16 мм. То есть, с увеличением сборных нагрузок необходимо увеличивать, как толщину плиты, так и диаметр арматуры.
Расчет арматуры начинается с определения толщины плиты:
- длина пролета делится на 20 – 25
- добавляется 1% погрешности
- получается высота конструкции
Как рассчитать количество арматуры для монолитной плиты.
Например, для стандартных 6 м пролетов толщина конструкции составляет 30 см. Армируют плиту исключительно горячекатаной арматурой класса А2 и выше. Хомуты, вертикальные перемычки допускается изготавливать из прутков класса А1 диаметром 6 – 8 мм.
Определение сечений.
Расчет арматуры по сечению зависит от прочности бетона (класс В10 – В25), арматуры (класс А240 – А500, В500) на сжатие. Чаще используется бетон В25, арматура А500, имеющие расчетное сопротивление 11,5 МПа, 435 МПа, соответственно. Опирание по контуру в кирпичных коттеджах (четыре несущих стены по периметру) встречается редко. Поэтому используется расчет статической конструкции со средними опорами, план нижнего уровня. Конфигурация верхнего, мансардного этажа обычно совпадает с ним.
- фундамент имеется под проемами
- нагрузки распределяются равномерно
- сопротивление грунта минимально возможное 1 кг/м2
Как рассчитать арматуру для монолитной плиты.
Последнее допущение позволяет перестраховаться при незначительном увеличении сметы строительства, не заказывать геологию, топографию, определять грунты на глаз. При сборе нагрузок достаточно производят расчет нагрузки от плиты – объемный вес ж/б (2500 кг/м 2 ) умножается на высоту плиты, коэффициент надежности (1,2). Аналогичным образом добавляются нагрузки от всех конструкций (полы, стропила, кровля, перекрытия, снеговая, ветровая).
Схема армирования.
При наличии внутренних стен нагрузки распределяются неравномерно, расчет арматуры производится по нескольким сечениям плиты. Вычисления могут производиться по нескольким методикам с примерно одинаковым результатом (новый СНиП, способ ж/б балки, по моменту сопротивления), изменится высота расположения сетки армопояса.
После чего корректируется принятая на начальном этапе толщина плиты для экономии бетона. После сверки с таблицами СНиП вычисляются необходимые площади сечения, количество прутков, диаметр арматуры. Затем этот параметр унифицируется с учетом коэффициента армирования в зонах опор. При значительных габаритах плиты реальная экономия металлопроката достигает 27% за счет отсутствия нижней сетки в ее центральной части
Расчет количества.
Арматура обычно продается весом, у каждого продавца имеется таблица перевода длины прутка в массу и наоборот. Если произвести вычисления заранее, можно проконтролировать эти цифры при покупке. Производится расчет количества арматуры по схеме:
- вычисление количества продольных стержней – из длины короткой стены необходимо отнять два защитных слоя по 2 см, разделить цифру на шаг сетки, отнять еще единицу
- подсчет количества поперечных стержней – аналогично предыдущему способу, только с размером длиной стены
Далее необходимо учесть наращивание прутков по длине:
- стандартный размер арматуры 6 м либо 12 м
- доставить на объект легче 6 м прутки
- если длина стен больше этого размера, потребуется нарастить цельный стержень обрезком
- минимальный нахлест по СНиП 60 диаметров (например, 60 см для 10 мм арматуры)
Как правильно рассчитать арматуру для монолитной плиты.
Останется сложить длину всех прутков, нахлестов, чтобы получить общий погонаж «рифленки». Для хомутов используется гладкая арматура, куски которой изгибаются в пространственные конструкции сложной формы. Подсчитать длину заготовки можно сложением всех сторон.
Для каждого стыка потребуется 30 см кусок вязальной проволоки. Их количество можно вычислить перемножением продольных прутков на поперечные. Если в проект заложена «шведская», чашеобразная плита, расход арматуры автоматически увеличится:
- в каждом ребре жесткости проходят 4 продольных прутка (возможно с нахлестом)
- они связываются квадратными хомутами через каждые 30 – 60 см
- ребра обязательны по периметру
- могут добавляться параллельно короткой стене через 3 м
На последнем этапе расчет арматуры заключается в переводе единиц измерения. Зная массу погонного метра, можно вычислить общий вес каждого сортимента металлопроката для плитного фундамента коттеджа.
Корректировка конструкции ж/б плиты.
Если заменить дорогостоящий плитный фундамент ленточным невозможно по ряду объективных причин, можно постараться снизить бюджет строительства. Например, при толщине 30 см крупногабаритные конструкции сложно залить даже при регулярном приеме смеси из миксеров. Выходом часто становится подбетонка:
- при толщине 5 – 7 см она не требует армирования
- заливается в один прием
- выравнивает основание
- защищает гидроизоляцию от порывов щебнем
- снижает толщину защитного слоя (нижнего) на 20 – 35 мм
- использует тощий бетон
Как рассчитать арматуру для монолитной плиты.
Однако в этом случае сечение стержней верхнего слоя придется пересчитать. Для несимметричных плит (внутренняя стена смещена относительно центра конструкции) производится расчет по большему значению длины пролета, как для симметричных. Запас прочности повысится при незначительном повышении сметы.
Подобным способом можно рассчитывать арматуру для плитных фундаментов любой сложности. Кроме того, существует ПО для проектировщиков, делающих это с высокой точностью.
Монолитный плитный фундамент.
Монолитная фундаментная плита представляет собой ни что иное как плиту из бетона, имеющую плоскую или же ребристую форму, содержащую внутри арматурное укрепление, которое называется армированием. Такой тип фундамента применим чаще всего на слабых размываемых грунтах под строительство не очень тяжелых строений или же при возведении тяжелых печей и каминов, а также под тяжелое стационарное оборудование.
Данный калькулятор позволяет рассчитать для монолитного сплошного фундамента:
- Объем бетона для заливки плиты.
- Необходимое количество материалов для приготовления бетона.
- Количество доски, необходимое для устройства опалубки.
- Ориентировочную стоимость всех стройматериалов.
- Армирование фундаментной плиты зависит от геологических условий и проекта.
Калькулятор материалов для монолитной фундаментной плиты
Онлайн калькулятор для расчета приблизительной стоимости и необходимого количества материалов для монолитной фундаментной плиты.
Основные достоинства монолитного плитного фундамента:
- высокая несущая способность;
- способность противостоять смещению и вспучиванию грунта;
- простота конструкции;
- хорошая способность противостоять грунтовым и талым (поверхностным) водам;
- возможность строительства цокольного этажа, защищённого от талых вод;
Основные достоинства монолитного плитного фундамента:
- высокая несущая способность;
- способность противостоять смещению и вспучиванию грунта;
- простота конструкции;
- хорошая способность противостоять грунтовым и талым (поверхностным) водам;
- возможность строительства цокольного этажа, защищённого от талых вод;
Плитный фундамент хорош в том случае, когда строительство ведется на песчаных подушках или сильно сжимаемых, пучинистых грунтах. Благодаря тому, что монолитная плита покрывает всю площадь здания, для такого фундамента не опасны смещения грунта.
Плитный фундамент — разновидность мелкозаглубленного ленточного — представляет собой либо монолитную плиту либо железобетонную решетку под всю площадь здания. Такой фундамент используется для возведения коттеджа (особенно из ячеистых бетонных блоков), На тяжелых пучинистых, насыпных и слабонесущих грунтах возможно устройство так называемых плавающих фундаментов из сплошных или решетчатых монолитных железобетонных плит.
Недостаток плитного сплошного фундамента:
- недостатков у монолитной плиты, за исключением её высокой затратности — нет.
Монолитный сплошной фундамент, особенно заглубленный может составить от 30 до 50% стоимости коробки дома. Если же плитный фундамент мелкозаглубленный, то затраты на бетон и арматуру компенсируются простотой сооружения, если-же плитный фундамент заглубленный, то помимо большой массы бетона придется завезти значительное количество песка и щебня для сооружения подушки и обратной засыпки, аренда техники для сооружения котлована и другие расходы зачастую превышают разумную пропорцию (20 % общей стоимости коробки).
Рекомендация: Это всего лишь обзорная статья о том как рассчитать арматуру для плитного фундамента. Для общего развития ее нужно прочитать. Но если вы не хотите получить массу проблем и потерять деньги, то лучше привлечь специалиста и проконтролировать его.
Калькулятор арматуры
Расчет арматуры
Калькулятор арматуры 1
Рассчитает общий вес арматуры, ее общий объем, вес одного метра и одного стержня арматуры.
По известным диаметру и длине арматуры.
Калькулятор арматуры 2
Рассчитает общую длину арматуры, ее объем и количество стержней арматуры, вес одного метра и одного стержня.
По известным диаметру и общему весу арматуры.
Расчет основан на весе одного кубического метра стали в 7850 килограмм.
Расчет арматуры для строительства дома
При строительстве дома очень важно правильно рассчитать количество арматуры для фундамента. Сделать это вам поможет наша программа. С помощью калькулятора арматуры можно, зная вес и длину одного стержня узнать общий вес необходимой вам арматуры, либо необходимое количество стержней и их общую длину. Эти данные помогут быстро и легко рассчитать объем арматуры для выполнения необходимых вам работ.Расчет арматуры для разного типа фундаментов
Для расчета арматуры нужно также знать и тип фундамента дома. Здесь существует два распространенных варианта. Это плитный и ленточный фундаменты.Арматура для плитного фундамента
Плитный фундамент применяется там, где на пучинистый грунт требуется установить тяжелый дом из бетона или кирпича с большими по массе железобетонными перекрытиями. В таком случае фундамент требует армирования. Производится оно в два пояса, каждый из которых состоит из двух слоев стержней, расположенных перпендикулярно друг к другу.Рассмотрим вариант расчета арматуры для плиты, длина стороны которой составляет 5 метров. Арматурные стержни размещаются на расстоянии порядка 20 см друг от друга. Следовательно, для одной стороны потребуется 25 стержней. На краях плиты стержни не размещаются, значит, остается 23.
Теперь, зная количество стержней, можно рассчитать их длину. Здесь следует обратить внимание, что пруты арматуры не должны доходить до края 20 см, а, значит, исходя из длины плиты, длина каждого стержня составит 460 см. Поперечный слой, при условии, что плита имеет квадратную форму, будет таким же. Также мы должны рассчитать количество арматуры, необходимое для соединения обоих поясов.
Предположим, что расстояние между поясами 23 см. В таком случае одна перемычка между ними будет иметь длину в 25 см, так как еще два сантиметра уйдут на крепление арматуры. Таких перемычек в нашем случае будет 23 в ряду, поскольку они делаются в каждой ячейке на пересечении поясов арматуры. Располагая этими данными, мы можем приступать к расчету с помощью программы.
Арматура для ленточного фундамента
Ленточный фундамент используется там, где на не слишком устойчивом грунте предполагается возводить тяжелый дом. Представляет собой такой фундамент ленту из бетона или железобетона, которая тянется по всему периметру здания и под основными несущими стенами. Армирования такого фундамента также производится в 2 пояса, но благодаря специфике ленточного фундамента арматуры на него потребляется гораздо меньше, а, значит, и стоить он будет дешевле.Правила раскладки арматуры примерно те же, что и для плиточного фундамента. Только стержни должны оканчиваться уже в 30-40 см от угла. А каждая перемычка должна на 2-4 см выступать за прут, на котором она лежит. Расчет вертикальных перемычек осуществляется по тому же принципу, что и при подсчете необходимой длины арматуры для плитного фундаменты.
Обратите внимание, что и в первом, и во втором случаях арматуру необходимо брать с запасом минимум в 2-5 процентов.
какое ее количество нужно, как вычислить параметры опалубки и сечения
Ленточный фундамент занимает основное место среди всех опорных конструкций для зданий и сооружений.
Он способен эффективно работать на самых сложных грунтах, имеет оптимальный набор эксплуатационных качеств.
Монолитные конструкции ленты не теряют своих рабочих качеств до 150 лет, что превышает срок службы стен дома.
Такие высокие возможности возникли из-за высокой жесткости и прочности ленты, которые обеспечивает совместная работа и металлической арматуры.
Каждый из них выполняет свою функцию, в сумме обеспечивая надежность и высокую несущую способность ленточного основания.
Содержание статьи
Как работает арматура в ленточном фундаменте
Арматурный каркас необходим для компенсации осевых противонаправленных (растягивающих) нагрузок, возникающих в ленте при появлении деформирующих воздействий — изгибающих или скручивающих усилий.
Особенность бетона состоит в способности принимать гигантские давления без каких-либо последствий.
При этом, он практически беззащитен перед разнонаправленными усилиями, быстро покрывается трещинами и разрушается.
Поэтому для ленты крайне опасны любые усилия, приложенные в одной точке — например, боковые или вертикальные нагрузки пучения. Арматурные стержни предназначены для приема этих усилий на себя.
Существует горизонтальная (рабочая) и вертикальная арматура. Основные нагрузки принимают горизонтальные стержни.
Они имеют больший диаметр и рифленую поверхность, обладающую хорошим сцеплением с бетоном.
Вертикальные стержни выполняют две функции:
- Фиксация рабочей арматуры в необходимом положении до момента заливки бетоном.
- Частичная компенсация скручивающих усилий.
Первая задача основная, а вторая — дополнительная, поскольку наличие таких специфических нагрузок наблюдается довольно редко.
В большинстве случаев вертикальная (гладкая) арматура служит лишь опорной конструкцией, удерживающей рабочие стержни в необходимом положении до момента заливки.
Они довольно толстые, так как — процесс с достаточно интенсивными воздействиями на каркас, сосредоточенными в одной точке (место падения тяжелого материала в опалубку), а также распределенными по всей длине (штыкование, обработка виброплитой).
Онлайн калькулятор
Как рассчитать ленточный фундамент дома? В этой вам может специально разработанный сервис — ленточного фундамента.
Инструкция по работе с калькулятором
В сети интернет имеется немало онлайн-калькуляторов, помогающих рассчитать параметры ленточных фундаментов по всем важным позициям. Расчет арматуры с их помощью занимает буквально пару минут.
Например, на сайте необходимо лишь внести собственные данные в соответствующие окошечки программы и нажать кнопку «рассчитать».
Дается схема армирования, в которой надо указать основные параметры — количество рабочих стержней в одном ряду, общее число рядов, расстояние между вертикальными прутками и т.п. В отдельном окне указывается стоимость арматуры за единицу.
В результате программа выдает количество арматуры и общую цену. Расчет производится просто и быстро, кроме арматуры ресурс выдает параметры всех элементов ленты — , количества бетона и т.д.
Недостатком данного калькулятора можно считать необходимость заранее знать схему армирования, диаметр стержней и рыночную стоимость материала.
Если требуется определить количество и сечение стержней, ресурс бесполезен. Он дает только количественную информацию, не касаясь качественных моментов, что иногда не совсем то,что нужно.
ВАЖНО!
Не все онлайн-калькуляторы работают по такому алгоритму. Имеются и другие, определяющие именно размеры и общие параметры арматурного каркаса, которые станут полезными для получения первичной информации. Стоимость материала следует узнавать непосредственно у продавцов, поскольку в этом вопросе имеется масса специфических факторов.
Порядок расчета
Рассмотрим, как рассчитать арматурный каркас ленты самостоятельно.
Прежде всего, необходимо определить количество рабочих стержней в одном ряду. Для этого понадобится использовать требование СП 52-101-2003, ограничивающее максимальное расстояние между соседними прутками в 40 см.
Учитывая, что погружения рабочей арматуры не должна превышать 2-5 см, получаем:
- Для лент толщиной менее 50 см — 2 рабочих стержня.
- Для лент шире 50 см — 3 стержня.
В случаях, когда можно использовать и 2, и 3 стержня в одном ряду, обычно стараются подстраховаться и принять большее значение, так как фундамент — ответственный и важный участок постройки.
Вторым этапом является определение диаметра рабочих стержней. Для этого понадобится рассчитать площадь сечения рабочей части ленты, умножив ширину на высоту.
Общая площадь сечения арматуры составляет 0,1% от сечения (это минимально возможное значение, его можно увеличить, но нельзя уменьшать).
Получив это значение, надо разделить его на число рабочих стержней. По таблице диаметров арматурных прутков находится наиболее удачный вариант, который и принимается в работу.
Диаметр вертикальной арматуры выбирается исходя из высоты ленты:
- При высоте до 60 см — 6 мм.
- От 60 до 80 см — 8 мм.
Диаметр поперечных стержней обычно принимается равным 6 мм.
Для подсчета количества рабочих стержней надо умножить их число в решетке на общую длину ленты, после чего полученное значение делится на длину рабочего прутка (обычно 6 м, но это значение лучше узнать у продавцов точно).
Вертикальную арматуру рассчитывают путем умножения количества хомутов на длину единицы.
Количество получают делением общей длины ленты на шаг хомутов (обычно 50-70 см).
Пример вычисления необходимых параметров
Рассмотрим расчет арматуры для ленточного фундамента на примере.
Допустим, что высота ленты составляет 100 см, а ширина — 40 см (распространенный вариант ).
Тогда площадь сечения составит:
40 • 100 = 4000 см2.
Определяем общую площадь сечения арматуры (минимальную):
4000 : 1000 = 4 см2.
Поскольку ширина ленты составляет 40 см, то в одной решетке нужно разместить 2 стержня, а общее количество составляет 4 шт.
Тогда минимальная площадь сечения одного прутка составит 1 см2. По таблицам СНиП (или из иных источников) находим наиболее близкое значение. В данном случае можно использовать арматурные стержни толщиной 12 мм.
Определяем количество продольных стержней. Допустим, общая длина ленты составляет 30 м (лента 6 : 6 м с одной перемычкой 6 м).
Тогда количество рабочих стержней при длине 6 м составит:
(30 : 6) • 4 = 20 шт.
Определяем количество вертикальных стержней. Допустим, шаг хомутов составляет 50 см.
Тогда при длине ленты 30 м понадобится:
30 : 0,5 = 60 шт.
Определяем длину одного хомута.
Для этого от ширины и высоты сечения отнимаем по 10 см и складываем результаты:
(40 — 10) + (100 — 10) = 120 см. Длина одного хомута равна 120 • 2 = 140 см = 2,4 м.
Общая длина вертикальной арматуры:
2,4 • 60 = 144 м. Количество стержней при длине 6 м составит 144 : 6 = 24 шт.
ОБРАТИТЕ ВНИМАНИЕ!
Полученные значения следует увеличивать на 10-15%, чтобы иметь запас на случай ошибок или непредвиденных расходов материала.
Виды и размеры
Существует две основные :
- Металлическая.
- Композитная.
Металлические стержни, используемые для сборки арматурного каркаса, имеют ребристую или гладкую поверхность.
Ребристые стержни идут на горизонтальную (рабочую) арматуру, так как они имеют повышенную силу сцепления с бетоном, необходимую для качественного выполнения своих функций.
Вертикальные прутки, как правило, гладкие, так как их задача сводится к поддержанию в нужном положении рабочих стержней до момента заливки. Диаметр стержней колеблется в пределах от 5,5 до 80 мм. используются рабочие стержни 10, 12 и 14 мм и гладкие 6-8 мм.
Композитная арматура состоит из разных элементов:
- Стекло.
- Углерод.
- Базальт.
- Арамид.
- Полимерные добавки.
Наиболее широко применяется стеклопластиковая арматура.
Она имеет наибольшую прочность, самая жесткая и устойчивая к растягивающим нагрузкам из всех остальных вариантов.
Как и все виды композитных стержней, стеклопластиковая арматура полностью устойчива к воздействию влаги.
Производители заявляют о неизменности эксплуатационных качеств в течение всего периода службы, но на практике справедливость такого утверждения пока не проверена. Проблема композитной арматуры в сложности технологии, из-за которой качество материала у разных производителей заметно отличается.
Кроме того, композитные стержни не способны сгибаться, что неудобно при сборке каркасов и снижает прочность угловых соединений каркаса.
ВАЖНО!
Среди строителей отношение к композитной арматуре сложное. Не отрицая положительных качеств, они не слишком доверяют малоизученным строительным материалам, не прошедшим полный цикл эксплуатации. Кроме того, металлическая арматура имеет вполне определенные технические характеристики, тогда как композитные виды обладают довольно большим разбросом свойств. Все эти факторы ограничивают применение композитных стержней.
Как сделать правильный выбор
Выбор арматурных стержней основан на расчетных данных и предпочтениях строителей.
Обычно выбирают металлические стержни, хотя и композитную арматуру с каждым годом все активнее применяют при строительстве ленточных оснований. Предпочтение металлическим пруткам отдается из-за возможности придать им необходимый изгиб, чего со стеклопластиковыми стержнями сделать невозможно.
Особенно это важно при строительстве лент с криволинейными участками или при наличии углов перелома, отличных от 90°.
Кроме того, металлическая арматура экономичнее, так как позволяет делать хомуты из одного прутка, без необходимости создавать несколько точек соединения.
Диаметры стержней давно отработаны на практике, нередко их выбирают без предварительного расчета — при около 30 см используют пруток 10 мм, для лент шириной 40 см выбирают 12-мм стержни, а при ширине более 50 см — 14 мм. Толщину вертикальной арматуры определяют по высоте ленты, до 70 см выбирают 6 мм, а при высоте свыше 70 см — 8 мм и более.
Полезное видео
В данном разделе Вы также сможете посмотреть как производится расче на примере реальной стройки:
Заключение
Грамотно выбранная схема армирования и сам материал обеспечивают прочность и устойчивость ленты к возможным нагрузкам.
Сложные и проблемные грунты, склонные к пучению или сезонным подвижкам, требуют ответственного и внимательного подхода к .
Необходимо учитывать, что все расчетные значения определяют минимальные параметры конструкции, требующие некоторого увеличения для определенного запаса прочности.
Выбирая арматуру и схему армирования, надо умножать все значения на 1,2-1,3 (коэффициент надежности), чтобы снизить риск появления непредвиденных факторов.
Вконтакте
Google+
Одноклассники
RISA | Структурный анализ и проектирование
Почему мое усиление изменилось в ACI 318-14?
Новый код ACI 318-14 был реализован в RISA-3D V14, RISAFloor V10 и RISAFoundation V8. Одним из больших изменений между ACI 318-11 и ACI 318-14 было минимальное усиление изгиба для односторонних и двусторонних плит, а также элементов фундамента.
Во многих случаях это приводит к увеличению необходимой арматуры в этих элементах.Здесь мы обсудим, почему.
ACI 318-11
В этом коде минимумы изгиба рассматриваются в разделе 10.5. В разделах 10.5.1 и 10.5.2 рассматривается расчет минимальной прочности на изгиб. Для обычных значений свойств арматуры и бетона это приведет к rho = 0,0033. В Разделе 10.5.3 есть дополнительное положение, которое позволяет игнорировать 10.5.1 и 10.5.2 при условии, что площадь поверхности стали, по крайней мере, на 1/3 больше, чем требуется по анализу.
Всегда было немного неясно, где это положение применимо. В RISA это положение распространяется на все элементы балочного и плитного типа.
ACI 318-14
Этот код переупорядочил разделы для каждого типа элемента и, таким образом, обновил / уточнил язык для каждого элемента.
Раздел 7.6.1 и 8.6.1 Минимальная арматура на изгиб в не напряженных плитах.
Для армирования 60 тыс. Фунтов на квадратный дюйм это приведет к rho = 0,0018. Однако здесь нет исключения для анализа 1/3 выше, чем. Это одинаковое положение как для односторонних, так и для двусторонних плит.
Раздел 9.6.1 Минимальная арматура при изгибе в ненагруженных балках
Для стержней балки этот язык такой же, как и в ACI 318-11, Раздел 10.5.
Разделы 13.3.2, 13.3.3 и 13.3.4 (односторонние неглубокие фундаменты, двусторонние изолированные опоры и двусторонние комбинированные опоры и основания матов)
Каждый из этих разделов дает ссылку либо на Главу 7, либо на Главу 8. По этой причине было принято, что минимальные изменения арматуры при изгибе применимы к большинству элементов фундамента.
Сводка
При использовании кода ACI 318-11 обычно минимумы армирования на изгиб не указывались из-за исключения в Разделе 10.5.3. 4/3 * Asrequired или Asmin (температура и усадка) обычно имеют значение.
Однако при использовании кода ACI 318-14 исключение не допускается, и требуется ромин = 0,0018 для любой поверхности натяжения упомянутых выше элементов.
Таким образом, для элемента как с положительным, так и с отрицательным изгибом ромин = 0,0018 должен быть соблюден на обеих сторонах элемента и, таким образом, вызывает в целом большее усиление.
Это изменение применимо к:
RISAFloor ES
РИЗА-3Д
RISAFoundation
- Планки для перекрытий
- Опоры
- Заглушки
- подпорной стены фундаментов
Теги: РИЗА-3D RISAFloor ES RISAFoundation
Бесплатный калькулятор бетонных оснований | SkyCiv
Этот калькулятор расчета бетонных оснований помогает инженерам проектировать фундаменты для опор, комбинированных опор, свай и т. Д… Программное обеспечение включает в себя расчеты опрокидывания, скольжения, коэффициентов полезности конструкции (односторонний сдвиг, двусторонний сдвиг, изгиб X и изгиб Y) и многое другое — согласно AS 3600 и ACI 318. Бесплатный инструмент также рассчитает объем бетона в вашем дизайне.
Этот онлайн-калькулятор фундаментов представляет собой упрощенную версию нашего программного обеспечения для проектирования фундаментов / опор, которое способно выдерживать большее количество нагрузок и типов фундаментов, включая комбинированные опоры и несимметричные изолированные опоры. Просто начните с выбора кода дизайна и начните с добавления или редактирования размеров вашего фундамента с помощью параметров ширины, высоты и глубины.Фигура автоматически обновится.
Этот простой в использовании инструмент поможет инженерам рассчитать ряд важных результатов для изолированных и комбинированных опор. К ним относятся опрокидывание, требования к размерам, скольжение, давление грунта, коэффициенты прочности на сдвиг и изгиб в одном и двух направлениях. Это дает инженеру хорошее представление о том, пройдет ли фундамент или нет. Калькулятор оснащен интерактивной графикой, несколькими типами нагрузки, встроенным армированием и мощным отчетом о расчетах.Некоторые из этих функций недоступны в бесплатной версии, но вы можете посетить нашу страницу Foundation Design Software для получения дополнительной информации о функциях и возможностях полных версий.
С помощью этого калькулятора фундамента общего назначения можно также рассчитать бетонные сваи и фундаменты свайных крыш. Это может быть разработано в контексте ACI 318 или AS 3600 (и AS 2159 для почвы). Это программное обеспечение для бетонных свай будет отображать результаты проверки осевого изгиба, концевого подшипника, изгиба *, бокового * и сдвига *.Примечание: любые результаты, отмеченные звездочкой (*), доступны только в платной версии.
Наряду с расчетными коэффициентами опрокидывания, скольжения и бетона калькулятор также рассчитает объем бетона в подушке. Результат вернет кубические метры бетона для метрической системы и кубические футы для британской системы единиц. Этот калькулятор оценивает количество бетона, необходимого для ваших изолированных опор, для быстрого выполнения расчетов и оценок габаритов.
Дальнейший проект фундамента можно рассчитать с помощью нашей полной версии Foundation Design Software. Это программное обеспечение позволит рассчитывать бетонные опоры ACI 318 и AS 3600 (также известные как бетонные опоры) с полной нагрузкой и результатами. Сюда входит подробный отчет о расчетах и дополнительных конструктивных особенностях. Это программное обеспечение для проектирования фундамента также можно использовать для расчета и проектирования бетонных свай в соответствии с AS 3600 (AS 2159) и ACI 318 с несколькими слоями грунта, дополнительными возможностями загрузки и без ограничений.
SkyCiv предлагает инженерам широкий спектр программного обеспечения для структурного анализа и проектирования облачных вычислений. Как постоянно развивающаяся технологическая компания, мы стремимся внедрять инновации и совершенствовать существующие рабочие процессы, чтобы сэкономить время инженеров в их рабочих процессах и проектах.
Оценка количества арматуры
Для оценки стоимости конструкции необходимо знать количество материалов, в том числе арматуры. Точное количество бетона и кирпичной кладки можно рассчитать по чертежам планировки.Если рабочие чертежи и графики для армирования недоступны, необходимо предоставить оценку предполагаемого количества. Величины обычно описываются в соответствии с требованиями Стандартного метода измерения строительных работ.В случае количества арматуры основными требованиями являются:
1. Арматура стержня должна быть описана отдельно по типу стали (например, низкоуглеродистая или высокопрочная сталь), диаметру и весу и разделена в соответствии с:
(a) Элемент строения , эл.грамм. фундаменты, плиты, стены, колонны и т. д. и
(b) стержень «форма» , например прямые, изогнутые или загнутые; изогнутый; звенья, стремена и распорки.
2. Тканевое (сетчатое) армирование следует описывать отдельно по типу стали, типу ткани и площади, разделенным в соответствии с пунктами 1 (a) и 1 (b) выше.
Существуют разные методы оценки количества арматуры; , три метода различной точности:
Метод-1 для оценки арматуры
Самый простой метод основан на типе конструкции и объеме железобетонных элементов.Типичные значения, например:
• Склады и сооружения с аналогичной нагрузкой и пропорциями: 1 тонна арматуры на 105 м3
• Офисы, магазины, гостиницы: 1 тонна на 13,5 м3
• Жилые дома, школы: 1 тонна на 15,05 м3
Однако, хотя этот метод полезен для проверки общего расчетного количества, он наименее точен и требует значительного опыта, чтобы разбить тоннаж до требований Стандартного метода измерения.
Метод 2 для оценки армирования
Другой метод заключается в использовании коэффициентов, которые преобразуют площади стали, полученные из первоначальных расчетов проекта, в веса, например.грамм. кг / м2 или кг / м в зависимости от элемента.
Если веса разделены на практические диаметры и формы стержней, этот метод дает достаточно точную оценку. Факторы, однако, предполагают определенную степень стандартизации как структурной формы, так и детализации.
Этот метод, вероятно, будет наиболее гибким и относительно точным на практике, поскольку он основан на требованиях к армированию, указанных в первоначальных расчетах проекта.
Метод-3 для оценки армирования:
Для этого метода эскизы делаются для «типичных» случаев элементов, а затем взвешиваются.
Этот метод имеет следующие преимущества:
(a) Эскизы представляют реальную структуру
(b) Эскизы включают предполагаемую форму детализации и распределения основной и вторичной арматуры
(c) Допуск на дополнительную сталь для вариаций и отверстий может быть сделан путем осмотра.
Этот метод также можно использовать для калибровки или проверки факторов, описанных в методе 2, поскольку он учитывает отдельные методы детализации.
При подготовке сметы армирования следует учитывать следующие элементы:
(a) Перехлесты и стартовые стержни
Должен быть учтен разумный допуск на нормальные нахлесты в основных и распределительных стержнях, а также на стартовые стержни. . Однако следует проверить, используются ли специальные приспособления для притирки.
(b) Архитектурные особенности
Следует изучить чертежи и сделать достаточный допуск для армирования, необходимого для таких «неструктурных» элементов.
(c) Непредвиденные обстоятельства
Следует добавить непредвиденные обстоятельства в размере от 10% до 15%, чтобы учесть некоторые изменения и возможные упущения.
Как рассчитать количество стали в опоре колонны?
Количество стали в фундаменте колонны можно легко рассчитать. Перед расчетом стали внимательно прочтите данный чертеж опоры и отметьте все такие важные моменты, как.
- Подножка. (Длина, ширина, толщина).
- Диаметр арматуры рельсы.
- Будет использоваться марка арматуры.
- Шаг арматуры (с / с).
- Длина крючка (при необходимости).
- Бетонные покрытия подошвы. (Верх и низ).
Давайте решим этот пример, чтобы лучше понять.
ПРИМЕР:
Предположим, у нас есть основание колонны длиной 2 м, шириной 2 м и толщиной 0,250 м. Длина основных стержней составляет 12 мм при 150 перекрестках / перекрестках, а также 12 мм при 150 перекрестках.Прозрачная крышка основания составляет 50 мм сверху и 75 мм снизу. Рассчитайте количество стали, которое будет использоваться в этой опоре колонны.
Данные:Длина опоры = 2 м.
Ширина опоры = 2 м.
Толщина = 0,250 м
Главный стержень = 12 мм при 150 перекрестках
Распределительный стержень = 12 мм при 150 перекрестках
Прозрачная крышка = 50 мм сверху и по бокам и 75 мм снизу.
Решение:Первый шаг — вычислить количество стержней, которые будут использоваться в основании.
На втором этапе мы вычисляем длину резки стержней и, наконец, рассчитываем вес стержней арматуры.
ПОДНОЖКИ ГЛАВНОЙ ПРУСИНЫ:Количество основных стержней = (Общее расстояние — прозрачная крышка) / c / c + 1
Количество основных стержней = (2 м — (0,05+ 0,05) / 0,15 + 1
Количество стержней основного стержня = 14 стержней
Длина резки одного основного стержня в основании:
Длина = {Общая длина — 2 (Половина диаметра стержня + прозрачная крышка) + 2 (Толщина плиты — нижняя и Сверху прозрачная крышка — Половина диаметра стержня)}.2 / 162,2 x 23,464 м.
Общий вес = 20,84 кг.
ОПОРНАЯ РАСПРЕДЕЛИТЕЛЬНАЯ ШИНА:Полоса распределения, равная (Общее расстояние — прозрачная крышка) / c / c + 1
Полоса распределения, равная (2 м — (0,05+ 0,05) / 0,15 + 1
) Количество стержней распределения = 14 стержней
Длина реза одной основной балки опоры:
Длина = {Общая длина — 2 (Половина диаметра стержня + прозрачная крышка) + 2 (Толщина плиты — нижняя и верхняя прозрачная крышка) — Диаметр стержня — Половина диаметра стержня)}.2 / 162,2 x 29,428 м.
Общий вес = 26,13 кг.
ВЫВОД:Основной стержень опоры = 12 мм при 150 с / с = 14 шт. = 20,48 кг.
Распределительный стержень опоры = 12 мм при 150 с / с = 14 узлах = 26,13 кг.
Приложение Civil Notes: —
1: Измерение количества,
2: Бетон,
3: Сталь, Примечания, доступные в этом приложении для Android.
Нажмите на картинку ниже, чтобы бесплатно загрузить ее из игрового магазина.
Гражданские примечания: — https://play.google.com/store/apps/details?id=com.engineering.civil.notes.clicks
Сколько стали требуется для изготовления 1 м3 бетона
Сколько стали требуется для 1м3 бетона , привет ребята, в этой статье мы знаем, сколько стали требуется для 1м3 бетона. Фактический расчет стали основан на проекте, но если расчет не указан, тогда расчет стали основан на практическом правиле на основе опыта.
Сколько стали требуется для 1 м3 бетонаСталь, необходимая для 1 м3 бетона Расчет основан на правилах большого пальца, это важно для любого инженера-строителя, строительного инженера или руководителя гражданского строительства.Они играют важную роль и помогают принимать быстрые решения на месте.
Thumb rules поможет вам определить приблизительное количество стали в конструкции RCC и упростить решение, используя простую математическую формулу, и принимать разумные решения, когда это необходимо.
💐 —- ПОСМОТРЕТЬ ВИДЕО — —
Но, используя эти правила большого пальца, вы должны помнить, что правило большого пальца никогда не дает точных или точных результатов, вы просто использовали их для приблизительных результатов.
Сколько стали требуется для производства 1 м3 бетона зависит не только от количества бетона, но и от других факторов, такие общие факторы обсуждаются здесь. Количество стали, необходимое для 1 м3 бетона, основано на следующих факторах: —
1) тип конструкции (несущая / каркасная)
2) Назначение конструкции (нагрузка зависит от сети)
3) Тип диам. Прутка
4) Размер высоты колонны и длины балки (по высоте, поскольку требования варьируются в зависимости от конструкции i.е. будь то горизонтальный или вертикальный. )
5) Наиболее важным является тип фундамента (зависит от грунтовых условий)
● ПРОЧИТАЙТЕ БОЛЬШЕ: ОДНОСТОРОННЯЯ ПЛИТА VS ДВУХВАРНАЯ ПЛИТА
Для жилого дома первого этажа необходимо рассчитать количество стали. Мы используем различные типы правил большого пальца для расчета стальных конструкций всех типов фундаментов, колонн, балок и плит RCC.
Сколько стали требуется на 1 м3 бетонаТеперь возьмем различные правила расчета количества стали на 1 кубический метр бетона.
● Правило для стали в кг / м3
1) эмпирическое правило для стали в железобетонной плите: 80 кг / куб.м влажного объема бетона
2) эмпирическое правило для стали в балке — 120 кг / куб.м влажного объема бетона
3) эмпирическое правило для стали в колонне — 160 кг / куб.м влажного объема бетона
4) правило большого пальца для стали в основании: 40 кг / куб.м влажного объема бетона
5) эмпирическое правило для стали в железобетонной конструкции — 100–120 кг / куб.м всего рассчитанного влажного объема бетона.
6) правило большого пальца для стали в железобетонных конструкциях: от 3,5 кг до 4 кг / кв.фут застроенной площади.
● Правило большого пальца для стали в процентах
1) эмпирическое правило для стали в целом со структурой RCC: 1% — 4% влажного объема бетона
2) Правило большого пальца для стали в колонне: 2% — 4% влажного объема бетона
3) Правило большого пальца для стали в балке: 1% — 2% влажного объема бетона
4) Правило большого пальца для стали в основании: 0,5% — 1% влажного объема бетона
5) Правило большого пальца для стали в слябах: 1% — 1.5% влажного объема бетона.
● Количество стали, необходимое для 1 м3 бетонной плиты
Правило большого пальца для стали в слябах = от 1% до 1,5%
Минимальное количество стали, необходимое для 1 м3 бетонной плиты, составляет 1%, теперь 1% от 1 м3 = 0,01 м3, и мы знаем, что вес 1 м3 стали составляет 7850 кг, поэтому вес стали 0,01 м3 = 0,01 × 7850 = 78,50 кг, так минимальное количество стали, необходимое для изготовления 1 м3 бетонной плиты, составляет 78,50 кг.
Максимальное количество стали, необходимое для изготовления 1 м3 бетонной плиты — 1 шт.5%, теперь 1,5% от 1 м3 = 0,015 м3, и мы знаем, что вес 1 м3 стали составляет 7850 кг, поэтому вес стали 0,015 м3 = 0,015 × 7850 = 118 кг, , поэтому максимальное количество стали, необходимое для 1 м3 бетонной плиты, составляет 118 Кг.
● Количество стали, необходимое для бетонной балки 1 м3
Рукоятка для стали в балке = от 1% до 2%
Минимальное количество стали, необходимое для 1 м3 бетонной балки, составляет 1%, теперь 1% от 1 м3 = 0,01 м3, и мы знаем, что вес 1 м3 стали составляет 7850 кг, поэтому вес равен 0.01 м3 стали = 0,01 × 7850 = 78,50 кг, , поэтому минимальное количество стали, необходимое для 1 м3 бетонной балки, составляет 78,50 кг.
Максимальное количество стали, необходимое для 1 м3 бетонной балки, составляет 2%, теперь 2% от 1 м3 = 0,02 м3, и мы знаем, что вес 1 м3 стали составляет 7850 кг, поэтому вес стали 0,02 м3 = 0,02 × 7850 = 157 кг, , поэтому максимальное количество стали, необходимое для бетонной балки 1 м3, составляет 157 кг.
● Количество стали, необходимое для изготовления 1 м3 бетонной колонны
Рукоятка для стали в слябах = от 2% до 4%
Минимальное количество стали, необходимое для 1 м3 бетонной колонны, составляет 2%, теперь 2% от 1 м3 = 0.02 м3, и мы знаем, что вес 1 м3 стали составляет 7850 кг, поэтому вес стали 0,02 м3 = 0,02 × 7850 = 157 кг, , поэтому минимальное количество стали, необходимое для 1 м3 бетонной колонны, составляет 157 кг.
Максимальное количество стали, необходимое для 1 м3 бетонной колонны, составляет 4%, теперь 4% от 1 м3 = 0,04 м3, и мы знаем, что вес 1 м3 стали составляет 7850 кг, поэтому вес стали 0,04 м3 = 0,04 × 7850 = 314 кг, так максимальное количество стали, необходимое для изготовления 1 м3 бетонной колонны, составляет 314 кг.
● Количество стали, необходимое для 1 м3 бетонной опоры
Правило для большого пальца для стали в основании = 0.От 5% до 1%
Минимальное количество стали, необходимое для 1 м3 бетонного фундамента, составляет 0,5%, теперь 0,5% от 1 м3 = 0,005 м3, и мы знаем, что вес 1 м3 стали составляет 7850 кг, поэтому вес стали 0,005 м3 = 0,005 × 7850 = 39,25 кг, так минимальное количество стали, необходимое для изготовления 1 м3 бетонного основания, составляет 39,25 кг.
Максимальное количество стали, необходимое для 1 м3 бетонного основания, составляет 1%, теперь 1% от 1 м3 = 0,01 м3, и мы знаем, что вес 1 м3 стали составляет 7850 кг, поэтому вес стали 0,01 м3 = 0,01 × 7850 = 78.50 кг, поэтому максимальное количество стали, необходимое для 1 м3 бетонного основания, составляет 78,50 кг.
◆ Вы можете подписаться на меня на Facebook и подписаться на наш канал Youtube
Вам также следует посетить: —
1) что такое бетон, его виды и свойства
2) Расчет количества бетона для лестницы и его формула
График изгиба стержней для опор | Оценка армирования опор
График изгиба стержней играет жизненно важную роль при строительстве высотных зданий.Очень важно изучить График изгиба стержней, чтобы узнать количество стальной арматуры, необходимое для каждого компонента здания.
Для Предположим, рассмотрим случай с высотными зданиями. Требуются тонны стали для завершения строительства 10+ этажей. Невозможно заказать всю сталь, необходимую для всей конструкции, за один раз, это создает проблемы с пространством, а также сталь подвержена коррозии при контакте с водой (дождем). Чтобы избежать этого, высотные здания заказывают арматуру (сталь) в соответствии с требованиями.Во-первых, они находят Расчет стальной арматуры в опорах (количество стали) [График изгиба стержней для опор], необходимый для строительства опор. После завершения опор переходят к следующему заказу и так далее.
Если вы не знакомы с графиком гибки стержней, обратитесь к Основы графика гибки стержней
, если вы хотите узнать различные типы опор, проверьте здесь Различные типы опор
сталь, необходимая для опор. Мы рассматриваем нижеследующий план опор.
Наблюдения из приведенного выше рис .:
- F1, F4, F7 — ровная опора (1,0 × 1,0 × 0,8)
- F2 — ступенчатая опора (0,9 × 0,9 × 1,35)
- F3, F8 — изолированная опора (0,9 × 0,9 × 0,5)
- F5 — комбинированная Изолированная опора (4,2 × 1,7 × 0,9)
- F6 — опора для обуви (0,6 × 0,6 × 0,4)
Истинные размеры и формы опор решаются и разрабатываются инженером-строителем на основе истории грунта, типа конструкции и общей ожидаемой нагрузки конструкции.Все размеры вышеперечисленных столбцов рассматриваются только в целях пояснения.
Мы используем различные типы сетки (арматуры) в фундаментах согласно проекту. Здесь вы можете сослаться на различные типы армирования, используемые в опорах.
Помните, что сталь, необходимая для строительства, заказывается в килограммах или количестве стержней. Стандартный размер каждой планки — 12м. Окончательный результат расчета BBS выражается в килограммах или количестве «12-метровых» баров.
Чтобы упростить расчет, он разделен на две части: расчет столбца X и расчет столбца Y.
Полосы X — это горизонтальные полосы в направлении X, а полосы Y — вертикальные полосы, проецируемые в направлении Y.
- Вычтите бетонное покрытие, чтобы найти размеры стержней.
- Найдите длину отдельных X-образных и Y-образных стержней
- Найдите общую длину X-стержней. & Y стержней
- Рассчитайте вес стали, необходимой на 1 м
- Рассчитайте общее количество требуемых стержней длиной 12 м
- Найдите общий вес необходимой стали.
Для расчета общего количества стали, необходимой для ровной опоры, мы принимаем эти размеры для стержней.
Принято: —
- Размеры опоры составляют 1,0 × 1,0 × 0,9 (длина × ширина × глубина)
- Обычная сетка используется для опор F1, F4, F7
- Диаметр поперечных стержней составляет 16 мм (диаметр 16 мм при 100 мм C / C)
- Диаметр Y-образных стержней составляет 12 мм (диаметр 12 мм при 100 мм C / C)
- , что означает, что расстояние между центрами X-стержней и Y-образными стержнями составляет 100 мм
Помните, что для армирования опор необходимо использовать подходящее бетонное покрытие, чтобы защитить его от коррозии.
Вычет бетонного покрытия:
Согласно условию, бетонное покрытие 0,1 м снимается со всех сторон сетки. Истинные размеры после вычета 0,8 × 0,8 (длина и ширина)
Более подробную информацию см. На изображении ниже:
Длина Каждый стержень X | = 0,8 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Длина из Каждый Y-образный стержень | = 0,8 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No.X стержней | [(Длина стержня Y) / интервал] +1 = [0,8 / 0,1] +1 = 9 стержней | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Количество стержней Y | [(Длина стержня X) / Интервал] +1 = [0,8 / 0,1] +1 = 9 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общая длина стержней X | = длина каждой стержня X × Число стержней X = 0,8 × 9 = 7,2 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общая длина Y-образных стержней | = Длина каждого Y-образного стержня × No.Y-образных стержней = 0,8 × 9 = 7,2 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общее количество «12 м» X стержней | = 7,2 / 12 = 0,6 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общее количество «12 м» Y-образные стержни | = 7,2 / 12 = 0,6 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вес стали требуется для 1 м стержня 16 мм | = D 2 /162 = 16 2 /162 = 1,58 кг / м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общий вес сталь требуется для X-образных стержней | = 1.58 × 7,2 = 11,37 кг | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вес стали , необходимый для 1 м стержня диаметром 12 мм | = D 2 /162 = 12 2 /162 / = м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общий вес из стали требуется для Y-образных стержней | = 0,88 × 7,2 = 6,33 кг |
Длина Каждый стержень X | = 0,7 + 2 × 9d d = 16 мм = 0,016 м = 0,7 + 2 × 9 × 0,016 = 0,988 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Длина Каждый стержень Y | = 0,7 + 2 × 9d d = 12 мм = 0,012 м = 0,7 + 2 × 9 × 0,012 = 0,916 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Количество стержней X | [(длина стержня Y) / интервал] +1 = [0.7 / 0,1] +1 = 8 стержней (Не учитывайте длину крюка при расчете количества стержней) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Количество стержней Y | [(Длина стержня X) / расстояние] +1 = [0,7 / 0,09] +1 = 9 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общая длина стержней X | = Длина каждого стержня X × Число стержней X = 0,988 × 8 = 7,9 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общая длина Y-образных стержней | = Длина каждого Y-образного стержня × No.Y-образных стержней = 0,916 × 9 = 8,24 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общее количество «12 м» X стержней | = 7,9 / 12 = 0,65 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общее количество «12 м» Y-образные стержни | = 8,24 / 12 = 0,68 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вес стали , необходимый для 1 м стержня 16 мм | = D 2 /162 = 16 2 /162 = 1,58 кг / м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общий вес сталь требуется для X-образных стержней | = 1.58 × 7,9 = 12,48 кг | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вес стали , необходимый для 1 м стержня диаметром 12 мм | = D 2 /162 = 12 2 /162 кг = м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общий вес из стали требуется для Y-образных стержней | = 0,88 × 8,24 = 7,25 кг |
Длина Каждый стержень X | = 0,7 + 2 × 9d d = 16 мм = 0,016 м = 0,7 + 2 × 9 × 0,016 = 0,988 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Длина Каждый стержень Y | = 0,7 + 2 × 9d d = 12 мм = 0,012 м = 0,7 + 2 × 9 × 0,020 = 1,06 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Количество стержней X | [(длина стержня Y) / шаг] +1 = [0.7 / 0,11] +1 = ~ 7 стержней (Не учитывайте длину крюка при расчете количества стержней) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Количество стержней Y | [(длина стержня X) / расстояние ] +1 = [0,7 / 0,115] +1 = ~ 6 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общая длина стержней X | = длина каждой стержня X × Число стержней X = 0,988 × 7 = 7,9 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общая длина Y-образных стержней | = Длина каждого Y-образного стержня × No.Y-образных стержней = 1,06 × 6 = 6,36 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общее количество «12 м» X стержней | = 7,9 / 12 = 0,65 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общее количество «12 м» Y-образные стержни | = 6,36 / 12 = 0,53 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вес стали , необходимый для 1 м стержня 16 мм | = D 2 /162 = 16 2 /162 = 1,58 кг / м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общий вес сталь требуется для X-образных стержней | = 1.58 × 7,9 = 12,48 кг | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вес стали , необходимый для 1 м стержня диаметром 12 мм | = D 2 /162 = 20 2 /16267 = м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общий вес стали требуется для Y-образных стержней | = 2,46 × 6,36 = 15,64 кг |
Длина Каждый стержень X | = 0,4 + 0,3 + 0,3 = 1,0 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Длина Каждый стержень Y | = 0,4 + 0,3 + 0,3 = 1,0 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Кол-во стержней X | [(Длина стержня Y) / интервал] +1 = [0,4 / 0,08] +1 = ~ 6 бар (Не включать дополнительный стержень длина в дюймах расчет количества стержней) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Кол-во стержней Y | [(длина стержня X / шаг] +1 = [0.4 / 0,08] +1 = ~ 6 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общая длина штанг X | = длина каждой штанги X × Число штанг X = 1,0 × 6 = 6 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общая длина Y-образных стержней | = Длина каждого Y-образного стержня × Количество Y-образных стержней = 1.0 × 6 = 6 м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общее количество 12-метровых стержней X-стержней | = 6/12 = 0,5 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общее количество 12 м Y-образных стержней | = 6./ 12 = 0,5 бар | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вес стали , необходимый для 1 м стержня 16 мм | = D 2 /162 = 16 2 /162 = 1,58 кг / м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общий вес стали требуется для X-образных стержней | = 1,58 × 6 = 9,48 кг | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вес 9 м для стержней требуется для стержней 6 | = D 2 /162 = 12 2 /162 = 1.58 кг / м | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Общий вес сталь требуется для Y-образных стержней | = 1,58 × 6 = 9,48 кг | 9,48 кг до глубины основания
Длина Каждый стержень X | = 4,2 + 2 × 9d d = 12 мм = 0,012 м = 4 + 2 × 9 × 0,012 = 4,41 м | |||
Длина Каждый стержень Y | = 1,7 + 2 × 9d d = 12 мм = 0.012 м = 1,7 + 2 × 9 × 0,012 = 1,91 м | |||
Количество стержней X | [(длина стержня Y / шаг] +1 = [1,7 / 0,1] +1 = 18 стержней (Не учитывайте длину крюка при расчете количества стержней) | |||
Количество стержней Y | [(Длина стержня X) / Расстояние] +1 = [ 4,2 / 0,1] +1 = 43 бара | |||
Общая длина стержней X | = длина каждого стержня X × No.из X-образных стержней = 4,41 × 18 = 79,38 м | |||
Общая длина Y-образных стержней | = Длина каждого Y-образного стержня × Количество Y-образных стержней = 1,91 × 43 = 82,13 м | |||
Общее количество 12-метровых стержней X стержней | = 79,38 / 12 = 6,6 бар | |||
Общее количество 12-метровых стержней Y | = 82,13 / 12 = 6,84 бар | |||
Вес стали требуется для 1 м стержня 16 мм | = D 2 /162 = 12 2 /162 = 0.88 кг / м | |||
Общий вес стали требуется для X-образных стержней | = 0,88 × 79,38 = 69,85 кг | Требуемый вес | для стали 1 м стержня 12 мм | = D 2 /162 = 12 2 /162 = 0,88 кг / м |
Общий вес сталь 9000 требуется для бары | = 0.88 × 82,13 = 72,27 кг |
Общий вес сетки с крючками
= Вес стали, необходимой для X-образных стержней + Вес стали, необходимого для Y-стержней
= 69,85 кг + 72,27 кг = 142,12 кг
Резюме приведенного выше расчета: —
Общий вес стали, необходимой для вышеуказанного плана
= Общий вес стали, необходимой для стержней X + Общий вес стали, необходимого для стержней Y
= 15088 кг + 130,88 кг = 281,76 кг = 0,28 тонны
НРАВИТСЯ НА FACEBOOK
Не забудьте поделиться с друзьями! Поделиться — это забота 🙂
Для мгновенных обновлений Присоединяйтесь к нашей трансляции в WhatsApp. Сохраните наш контакт в Whatsapp +9700078271 как Civilread и отправьте нам сообщение « ПРИСОЕДИНЯЙТЕСЬ»
Железобетон — прочная конструкция
Практическое правило для проектирования RC
Огнестойкость (час) | Минимальная ширина балки (мм) | Минимальная толщина перекрытий (мм) | Минимальная толщина стенки (p <0.4%) | Мин. Толщина стенки (0,4% | Мин. Толщина стенки (p> 1%) |
---|---|---|---|---|---|
0,5 | 200 | 75 | 150 | 100 | 75 |
1 | 200 | 95 | 150 | 120 | 75 |
1,5 | 200 | 110 | 175 | 140 | 100 |
2 | 200 | 125 | – | 160 | 100 |
3 | 240 | 150 | – | 200 | 150 |
4 | 280 | 170 | – | 240 | 180 |
Источник: Concrete Center
Армирование балок Минимальное расстояние между стержнями стальной арматуры составляет- Максимальный размер крупного заполнителя плюс 5 мм
2.Размер стержня (в зависимости от того, что больше) Максимальное количество стержней на слой для балок = (ширина балки — 2 x покрытие — 2 x диаметр звена) / (2 x диаметр стержня)
Ширина балки (мм) | Диаметр прутка (с учетом крышки 35 мм) | ||
---|---|---|---|
25 | 32 | 40 | |
300 | 3 | 3 | 2 |
350 | 4 | 3 | 3 |
400 | 5 | 4 | 3 |
450 | 6 | 5 | 4 |
500 | 7 | 5 | 4 |
550 | 8 | 6 | 5 |
600 | 9 | 7 | 6 |
650 | 10 | 8 | 6 |
700 | 11 | 9 | 7 |
750 | 12 | 10 | 8 |
800 | 13 | 10 | 8 |
900 | 15 | 12 | 9 |
1000 | 17 | 13 | 11 |
Источник: Concrete Center
Максимальное растяжение или сжатие арматуры составляет 6% площади поперечного сечения бетонаМинимальные проценты указаны в таблице ниже, которая является таблицей 3.25 BS 8110
Расстояние между звеньями сдвига не должно превышать 0,75d. Продольные стержни не должны располагаться на расстоянии более 150 мм или d от вертикальной стойки. Срезные звенья должны соответствовать следующим требованиям:
Диаметр прутка (мм) | 16 | 20 | 25 | 32 | 40 |
---|---|---|---|---|---|
Максимальное расстояние (мм) | 192 | 249240 | 300 | 384 | 480 |
Мин. Диаметр звена (мм) | 6 | 6 | 8 | 8 | 10 |
Источник: Concrete Center
Железобетонные конструкции
Упругая реакция возникает из-за приложенных нагрузок, но пластичность может быть как ниже, так и выше предела текучести.Скорость ползучести зависит от состава бетона и условий окружающей среды.
Подобно стальным, бетонные многоэтажные здания могут состоять либо из портальных рам, либо из опорных рам, которые зависят от распорок или диафрагм с бетонными несущими стенами для обеспечения поперечной устойчивости. Однако для многоэтажных зданий боковая устойчивость имеет несколько требований:
- Жесткие горизонтальные диафрагмы должны использоваться с основными стенами, например, при строительстве полов из железобетона.Бетонные основные стены (с минимальной толщиной 200 мм для размещения стальной арматуры и бетонирования) могут быть в виде лифтовых шахт или окружающих стен лестничных клеток.
- Связи следует использовать по всей высоте здания, если не используются передаточные конструкции.
Железобетон: конструкция колонн
Схема проектированияМы всегда будем проектировать колонны и другие элементы сжатия, в которых их вертикальные нагрузки действуют концентрично нейтральной оси элементов конструкции.В этих ситуациях эти элементы конструкции подвергаются осевой нагрузке под действием прямых сжимающих напряжений.
Бетонные колонны — это конструктивные элементы, которые повышают прочность конструкции, выдерживают и выдерживают вертикальные нагрузки. Чтобы отличить бетонные колонны от бетонных опор и стен, больший размер поперечного сечения не должен превышать его меньший размер более чем в четыре раза.
На практике вертикальные нагрузки действуют эксцентрично по отношению к нейтральной оси элемента конструкции. Следовательно, на практике при проектировании конструкции необходимо учитывать как сжимающие напряжения, действующие концентрически по отношению к нейтральной оси конструктивного элемента, так и изгибающие напряжения, вызванные сжимающими напряжениями, действующими эксцентрично по отношению к нейтральной оси конструктивного элемента. .
Мы сосредоточимся только на сжимающих напряжениях, которые действуют концентрически по отношению к нейтральной оси в расчетах схем.
Бетонные колонны считаются связанными, если вся конструкция рассчитана на сопротивление поперечным нагрузкам. Связанные колонны — это колонны в системе устойчивости со сдвигающимися или несущими стенами. Свободные колонны — это колонны в системе, в которой единственными конструктивными элементами, поддерживающими общую устойчивость конструкции, являются колонны.
Колонны считаются короткими, если гибкость меньше 15 для колонн со связями или 10 для колонн без подпорок.
- Короткие колонны — Разрушение при раздавливании вызвано прямыми напряжениями сжатия
- Тонкие колонны — Разрушение бокового продольного изгиба и раздавливания вызвано прямыми напряжениями сжатия и изгибающими напряжениями, вызванными эксцентрическими напряжениями сжатия. Количество отказов зависит от условий фиксации концов и коэффициента гибкости, который представляет собой эффективную длину, деленную на радиус вращения.
1. Определите fy и fcu
2. Определите приложенную динамическую нагрузку и постоянную нагрузку на колонну
3.Определите площадь входящей нагрузки на колонну
4. Определите количество этажей, на которых опора колонны
5. Определите общие нагрузки, действующие на колонну, используя уравнение ниже
Общая нагрузка, N = (LL + DL) x коэффициент ULS x количество этажей x площадь вторичной нагрузки x коэффициент упругого сдвига
, где LL = динамическая нагрузка
DL = статическая нагрузка
Коэффициент ULS = 1,6 (для консервативных целей)
коэффициент упругого сдвига = 1,25
6.Определите процент армирования колонны и значение X. Например, если было выбрано армирование 3%, мы использовали бы N / 21.
Площадь колонны (Ac) можно оценить по
Процент армирования для высокопрочной стали | X дюймов N / X |
---|---|
1% | 15 |
2% | 18 |
3% | 21 |
7. Определите требуемую бетонную площадь
Ac_req = N / X
, где X — значение, указанное в таблице выше.
8. Определите размеры бетонной колонны, имеющей размеры, b и h, что даст Ac_prov = bxh> Ac_req
9, Определите приложенный момент на колоннах
Для оценки приложенного момента на колоннах предлагается умножить осевую нагрузку от пола над колонной на:
- 25 — внутренняя часть колонны
- 5 — краевые колонны
- 2 — угловые колонны
Детальный проект
1.Найдите эффективную высоту le колонны
le = β x l
, где l = полная длина
β = значения из таблицы ниже
Конечное условие 1 = конец колонны полностью ограничен моментом соединения
Конечное условие 2 = колонка конец частично ограничен монолитным соединением
Конечное условие 3 = конец колонны просто поддерживается
Источник: (Пункт 3.8.1.6, BS 8110)
2. Определите, является ли столбец коротким.
Если ley / b <15 и lex / h <15, это короткий столбец.
Если оба отношения больше 15, это тонкий столбец.
, где lex = эффективная высота относительно большой оси
ley = эффективная высота относительно малой оси,
Обычно усиленные колонны должны быть короткими, а не тонкими.
3. Найдите требуемую площадь стальной арматуры, Asc_req
Достаточное содержание стальной арматуры и размещение арматуры помогают противостоять растрескиванию в бетонной колонне. Следует использовать дополнительное усиление, такое как переплеты, вертикальные звенья или стяжки.Эта дополнительная арматура сопротивляется боковому изгибу, вызванному сжимающими напряжениями основной арматуры. На каждую угловую планку нужно положить галстук. Расстояние от одной арматуры до другой должно быть не менее 150 мм.
Арматура у поверхности бетона более эффективна в сопротивлении силам изгибающего момента, чем арматура, размещенная в центре колонны.
Уравнение для короткой колонны со связями, которая поддерживает примерно симметричное расположение балок и где эти свойства и размеры балок не отличаются более чем на 15%, показано ниже.2)
Asc = площадь армирования
Примечание. Если Asc_req отрицательно, используйте уравнение ниже.
Asc_req = 0,4% x Ac_nominal
Примечание. Расчетный момент для тонких колонн включает дополнительный момент, вызванный эксцентриситетом геометрического сечения.
4. Найдите подходящее количество арматурных стержней и размер арматурных стержней, ______ T ______
5. Найдите площадь, обеспечиваемую спроектированными арматурными стержнями, As_provc
Железобетон: конструкция балки
Схема конструкцииПриложенные нагрузки включают в себя прямые сжимающие силы, а также сжимающие и растягивающие напряжения, которые вызваны провисающими изгибающими моментами балки.Индуцированные сжимающие напряжения расположены в волокнах материала выше нейтральной оси элемента, а индуцированные растягивающие напряжения расположены ниже нейтральной оси.
1. Определите fy и fcu в соответствии с требуемыми свойствами материала
2. Определите предварительные размеры балки, b и h
3. Найдите эффективную глубину, d
d = h — крышка — диаметр стержня
Бетонные крышки проектируются с учетом требований огнестойкости и долговечности.
4. Найдите отношение пролета / глубины, L / d и убедитесь, что L / d меньше 20
Необходимо проверить прогиб, используя соотношение пролета / глубины.
Трещины должны быть спроектированы для SLS и соответствовать требованиям минимального необходимого армирования и расстояния.
Детальный проект
1. Найдите w
w = 1.4DL + 1.6LL
2. Найдите расчетный момент и сдвиг, M и V
Простая опора с равномерно распределенной нагрузкой
Простая опора с сосредоточенной нагрузкой
Консольная балка с равномерно распределенной нагрузкой
Фиксированные концы с равномерно распределенной нагрузкой
Неподвижные концы с сосредоточенной нагрузкой в центре
tЭффективный пролет балок, l, следует принять как эффективный пролет стержня в его состоянии с простой опорой для консервативных целей.2 Максимальное количество арматуры в бетонных элементах (балках, колоннах или плитах) не должно превышать 4%.
5. Расчет прямоугольных балок на сдвиг
Напряжение сдвига в балках
Обычно сила сдвига и напряжение сдвига должны быть получены от поверхности опоры.
Сдвигающая арматура должна быть спроектирована для ULS и должна быть представлена в виде вертикальных звеньев или изогнутых стержней. Сдвиговые силы передаются на вертикальные звенья, которые действуют на диагональные бетонные стойки при сжатии.Следовательно, в балках связи будут действовать на растяжение, а бетон на сжатие.
Усиление сдвига требуется, чтобы противостоять следующему режиму разрушения, вызванному сдвигом:
- Наклонные растягивающие трещины на балке
- Разрушение при наклонном растягивающем напряжении, вызванное сдвигом
a. Если v <0,5vc, должно быть предоставлено минимальное количество ссылок.
г. Если 0,5vc
Напряжение сдвига в бетоне, vc
Допустимый предел = L / 250
Железобетон: конструкция перекрытия
Рассматриваемые типы подвесных плит (плиты, поддерживаемые балками, колоннами или стенами)- Полнотелые плиты
- Эти плиты изготовлены из твердого бетона с арматурой, устойчивой к растяжению.Плиты могут быть монолитными или профилированными металлическими. Верхнее армирование может быть стальной сеткой для обеспечения огнестойкости. Нижнее армирование может быть металлическим настилом для усиления натяжения.
- Ребристые плиты
- Эти плиты могут обеспечить такую же конструкционную прочность, что и сплошные плиты, при меньшем количестве бетона. Ребристые плиты могут быть серией жестких бетонных выступов, монолитно отлитых с пустотами, образованными съемными формовщиками. Ребристые плиты также могут быть пустотелыми с постоянными пустотелыми пластинами.
- Плоские плиты
- Эти плиты с плоскими перекрытиями не требуют поддержки балок. Капли часто используются для образования толстой части жесткости между колоннами и плитой.
- Вафельные плиты
- Эти плиты сплошные и плоские с пустотелыми пластинами в перекрытиях. Есть ряд бетонных балок шириной 1 м, которые могут быть сконструированы для изгиба с моментом.
Из соображений огнестойкости плиты не должны быть толщиной менее 125 мм.
Двусторонние перекрытия могут составлять 90% толщины односторонних перекрытий
1. Найдите w
w = 1.4DL + 1.6LL
2. Найдите расчетный момент и сдвиг, M и V
Найдите уравнения M и V выше (см. Расчет балки).
3. Расчет плиты на изгиб методом односторонней плиты
Найдите K и z
Найдите процент армирования в бетонной зоне (Ast / bd =%)Арматурные стержни должны быть спроектированы с учетом минимальной допустимой площади и должны быть построены в обоих направлениях в плите.Стальная арматура помогает противостоять растрескиванию и распределять сосредоточенные нагрузки по плите.
Максимальное количество арматуры в бетонных элементах (балках, колоннах или плитах) не должно превышать 4%.4. Найдите количество стержней и размер стержней, ____ T ______.
5. Найдите Аспров.
6. Расчетная плита на сдвиг.
Здесь приведены правила для каждой константы в уравнении напряжения сдвига бетона ниже.
Минимальное необходимое количество стали = 0,13%.7. Проверить сдвиг при штамповке
Силы сдвига при штамповке (усилия сдвига по периметру колонн) обычно являются критическим расчетным случаем для фундаментов из плоских плит. Эффективный сдвиг — это поперечная сила, которая принимает на себя моментные силы, возникающие между плитой и колонной, и поперечную силу по площади, поддерживаемой колонной.
- Эффективные ножницы
- Внутренние колонны -> Veff = 1,15V
- Угловые колонны -> Veff = 1.