Татрамат 3фазный монтажная схема: Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

Содержание

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя
Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:
  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах.  Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) опре

Соединение звездой и треугольником — схема и разница трехфазного соеднинения

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Реверсивная схема двигателя 380 на 220 Вольт

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрообору

Схема подключения дома к трехфазной сети

Собираем электрощит для частного дома на 380 В 15 кВт

Сборка электрощита для частного дома напряжением 380 В и мощностью до 15 кВт требует соответствующего подхода и наличия следующего инструмента:

  • плоскогубцы;
  • плоская и фигурная отвёртки;
  • обжимные клещи;
  • монтажный нож с набором сменных лезвий.

Все работы начинаются с планирования, а если хозяин дома предпочитает обратиться в электротехническую компанию, то перед началом монтажа составляется проект и предварительная схема. Также следует подготовить составляющие щита и расходные материалы (опрессовочные наконечники, термоусадку, DIN-рейку, дюбели).

Из каких элементов состоит электрический щит

Закупать составляющие электрощита необходимо сразу, чтобы впоследствии не терять время и не ездить по несколько раз за день в электротехнический магазин. Мощность щита определена, она составляет 15 кВт, это означает, что максимальная потребляемая мощность не превысит 15 кВт/ч.

Электрощит частного дома, перечень элементов:

  1. Счётчик электрической энергии. Счётчик является первым элементом, который должен быть установлен в щите. Лучшим решением станет покупка электронного устройства, рассчитанного на подключение трёх фаз. Такие измерительные приборы обладают высокой точностью и длительным сроком эксплуатации. Вся информация выводится на цифровой экран. Электронные счётчики могут быть запрограммированы на функционирование в нескольких тарифах.
  2. Электрический щит. Сейчас в магазинах имеется большое количество электрощитов самых различных размеров и рассчитанных на определённое количество элементов. Цена на изделие варьируется в зависимости от наличия DIN-рейки, встроенного замку, а также смотрового окна (специально для снятия показаний со счётчика). Следует обратить на защиту от пыли и влаги, её уровень должен составить не менее IP 54.
    Габариты — 445×400×150, и толщины стенки в 1 мм.
  3. Вводной автоматический выключатель. Следует приобретать трёхполюсный автомат, ведь заводимое напряжение в дом составит 380 В, а это означает наличие трёх фаз.
  4. Устройство защитного отключения (УЗО). Монтируется в обязательном порядке, так как является защитным элементом при появлении опасного потенциала на корпусе электроприбора.
  5. Автоматические выключатели. Подбирать ампераж следует исходя из нагрузки потребителя, о чём будет рассказано далее.
  6. Реле напряжения. Защищает бытовые электроприборы от скачков напряжения. Многие пользователи устанавливают реле, но оно не является обязательным элементом. Также сейчас получило широкое применение устройство защиты от импульсных скачков (УЗИП). Например, при ударе молнии в воздушную ЛЭП, напряжение в доме достигнет высоких пределов, что станет губительным для всей техники. УЗИП вовремя отключит сеть, но, как и реле напряжения, устанавливают его не часто.
  7. Измерительные приборы. Также являются необязательным элементом электрощита. К измерительным приборам относятся амперметры и вольтметры, часто комбинируемые в одно изделие.

Какие автоматические выключатели подобрать для электрощита

Основной вопрос, затрагивающий многих пользователей: как определиться с автоматами? Расчёт номинального тока автоматического выключателя производится исходя из такого параметра как нагрузка потребителя или его мощность.

Для примера. Номинальная мощность одновременно включённых электроприборов и осветительной сети составит 15 кВт. Существует формула: P=U×I, где P-мощность, U — напряжение, I — сила тока. Если P=15000 Вт, то сила тока составит (округлив) 68 А. Это означает, сумма номинальных значений автоматов не должна превысить 68 А. Но следует помнить, что к щиту подводят трёхфазную сеть, поэтому номинальный амперах необходимо поделить на 3, что даст приблизительно 23 А. Это означает, что входной автомат следует устанавливать в 25 А.

Для осветительных сетей использует автоматы на 6. 3 или 10 А. Это общепринятые стандарты, к которым удобно прибегать для экономии времени. Если всё же появилось свободное время, то можно рассчитать ампераж автомата на свет, используя вышеприведённую формулу, только P будет равно сумме мощностей всех ламп, используемых в отдельной или общей осветительной линии.

Ампераж автоматов для силовых цепей не должен быть менее 16 А. Именно такое номинальное значение позволит на протяжении длительного времени пользоваться электрическими приборами бесперебойно. Если установить автоматический выключатель с меньшим номинальным порогом, то включение бытового прибора будет восприниматься устройством как короткое замыкание на линии и автомат отключит напряжение.

Также в доме могут присутствовать и более мощные электроприборы: варочные поверхности, духовые шкафы, холодильные камеры. И если несколько розеток можно объединить в одну группу, то для таких приборов потребуется установка отдельного автомата со значением не менее 25 А. Мощность современной электрической панели может достигать 7 кВт и выше.

Последовательность правильного монтажа электрического щита

Для того, чтобы электрощит в доме был смонтирован правильно, следует использовать только качественные электротехнические изделия, а также расходные материалы. Только после окончания монтажа, в щиток подводят рабочее напряжение.

Правильная сборка трёхфазного электрощита имеет следующую последовательность:

  1. Установка вводного автомата. Номинал устройства должен охватывать максимально потребляемую мощность. Так как в дом будут заведены 3 фазы, напряжение между которыми составит 380 В, то необходимо устанавливать трёхполюсный автоматический выключатель. Не рекомендуется для экономии средств монтировать 3 однополюсных автомата и соединять их специальной планкой. Вводной автомат устанавливается в левом верхнем углу щита и соответственно маркируется.
  2. После вводного автомата необходимо установить УЗО. Номинал устройства должен соответствовать номиналу вводного выключателя. Также следует обратить внимание на ток отсечки — чем меньше этот показатель, тем быстрее УЗО отключит сеть. Существуют дифференциальные автоматы, включающие в себя защитные функции от короткого замыкания и отключение сети при возникновении тока утечки (УЗО и стандартный выключатель). Использовать такое изделие проще, но его стоимость достаточно высока.
  3. Правее УЗО, на небольшом расстоянии, монтируют нулевую шину. Современные шины предусматривают между медной планкой и корпусом щита пластиковый диэлектрик. Выполняется это для того, чтобы в случае отгорания нуля и попадания на него фазы, электрический щиток не оказался под опасным для жизни напряжением.
  4. На планке с вводным автоматом, УЗО и нулевой шиной также могут быть размещены измерительные приборы и реле напряжения. Если монтировать вольтметр и амперметр в трёхфазную сеть, то необходимо выбирать изделия, отображающие как линейную, так и фазную нагрузку. А также способные показывать данные на каждой фазе отдельно.
  5. На нижней DIN-рейке расположены автоматические выключатели силовых и осветительных линий. Чтобы не запутаться и постоянно не смотреть на номинал автоматов, изделия осветительной линии следует расположить на небольшом расстоянии от силовых выключателей.

После сборки щита его можно монтировать к стене и подключать провода от потребителей к автоматам. Пример схемы электрощита, количество автоматов может меняться в зависимости от желания хозяина.

Если щит учёта электроэнергии напряжением в 380 В расположен не на улице, то перед вводным автоматом монтируют сначала его. Но установка прибора контроля за расходом электроэнергии в доме неудобно, так проверяющие лица (для экономии времени и отсутствии хозяев) должны снимать показания на улице.

Несколько полезных советов по сборке щита

При сборке электрического щита необходимо использовать только качественную и надёжную электротехническую продукцию. Не стоит обращать внимание на более дешёвые китайские аналоги, личная безопасность гораздо важнее.

Для подключения проводов к автоматам лучше всего применять специальные наконечники для опрессовки. Конечно тогда придётся приобрести и клещи, с помощью которых выполняется обжим, но их стоимость не слишком высокая.

Использование изолирующей ленты уже не актуально, многие электрики используют исключительно термоусадочные трубки. Такой расходный материал удобен и надёжен и не обязательно приобретать строительный фен, можно воспользоваться обыкновенной зажигалкой.

Для удобства эксплуатации все элементы электрического шкафа должны быть промаркированы. Только тогда можно будет быстро и легко отключить напряжение в определённой комнате. Можно делать пометки на корпусе устройства или сделать небольшие таблички и закрепить их на изделии с помощью скотча.

Видео по теме

Cхема щита учета электроэнергии 380в для частного дома 15 квт

При подключении частного дома к электросети, вам обязательно потребуется получить у электросбытовой компании (Мосэнерго, Ленэнерго, Свердловэнерго и др., в зависимости региона) ТУ – Технические условия на подключение. Именно этот документ содержит основные характеристики электросети доступные вам, в том числе и требования к щиту учета электроэнергии.

В этой статье

мы подробно осмотрим схему типового щита учета, а также его модификаций, которые предписывают собирать требования ТУ.

Cтандартные в таких случаях параметры сети для подключения частного дома это:

3 фазы

Напряжение: 380В

Выделенная мощность: 15 кВт

Вводной кабель: СИП 4х жильный (3 фазных проводника и PEN)

Отмечу, что одна из основных задач ТУ, не только обеспечить безопасность электроустановки, но и предотвратить возможность хищения электричества потребителями.

Именно поэтому, все устройства защиты или коммутации в электрощите, расположенные до электрического счетчика, должны быть защищены от возможности нелегального подключения. Обычно они скрыты в отдельных боксах, которые при подключении пломбируют.

Кроме того, технические условия предписывают размещать щит учета в доступном для проверки месте

– на границе участка, на опоре освещения или заборе.

Чаще всего такие внещние щиты используются исключительно для учета, без дополнительных возможностей, несет лишь базовые функции. Основной распределительный щит (РЩ), при этом, ставится внутри в дома, где все потребители разделяются на группы, распределяется нагрузка, устанавливается соответствующая защитная автоматика и т.д.

Все представленные ниже схемы будут рассчитаны под две самые популярные в частных домах системы заземления TT и TN-C-S. Под каждым вариантом подключения – будут ссылки на пошаговую инструкцию по сборке, с подробными комментариями.

Если же вы не определились, какую из систем заземления выбрать – вам поможет следующая информация:

TN-C-S – рекомендуемая правилами система заземления. Имеет ряд недостатков, применять её стоит если вы уверены в состоянии подходящих к дому электросетей, если они достаточно новые и регулярно обслуживаются.

TT – относительно более безопасная система. К главным недостаткам можно отнести лишь большие затраты как на монтаж защитного оборудования и устройство контура заземления, так и на регулярное обслуживание. Которые, для безопасной работы, должны всегда поддерживаться вами в работоспособном состоянии.

Подробнее о разнице в устройстве систем заземления вы узнаете в одной из следующих статей. Подписывайтесь на нашу группу Вконтакте, следите за выходом новых материалов.

Простая схема подключения электрощита частного дома 15 кВт

Самый простой-бюджетный вариант сборки щита учета представлен ниже. Здесь используется лишь самые необходимые элементы:

2. Бокс пластиковый 3 модуля, с проушинами для пломбы

3. Трехполюсный Защитный автоматический выключатель, характеристика С25 (для выделенной мощности в 15кВт нужен именно этот номинал)

4. Прибор учета электрической энергии (счетчик) 3-фазный 380В

5. Блок распределительный коммутационный, возможностью подключения проводов сечением до 16мм.кв.

Схема простого электрощита учета для частного дома 15кВт, Система заземления TN-C-S:

Простой щит учета, система заземления TT

Этот вариант чаще используется как временный, например, для подключения бытовки на время строительства, так как имеет мало средств защиты.

Для своего дома, в котором вы планируете постоянно жить, даже для дачного, я советую применять следующую сборку:

Оптимальная схема щита учета электроэнергии 380В частного дома 15 кВт

От предыдущей, она отличается наличием селективного Устройства Защитного Отключения (номер 6), оно работает сразу на все потребители дома, еще его называют противопожарное. Установка УЗО на вводе в дом рекомендуется Правилами Устройства Электроустановок – ПУЭ.

Рекомендованнная схема щита учета для частного дома 380В с использованием селективного УЗО, заземление TN-C-S

Схема щита учета для частного дома с селективным УЗО, Для системы заземления TT

Это наиболее сбалансированная схема, которую можно реализовать для выносного электрического щита учета дома, простая и надежная. Она подходит для всех, именно её я и рекомендую собирать.

Усовершенствовать же её, в целях усиления защиты электросети и электроприборов дома, можно добавив устройство защиты от импульсных перенапряжений(УЗИП).

Вариант электрического щита частного дома с УЗИП

Установка УЗИП именно в электрощите учёта, правильное решение, особенно с точки зрения безопасности.

Подключаются устройства защиты от импульсных перенапряжений параллельно электрической цепи (номер 7), следующим образом:

Схема щита учета с УЗИП, система заземление TN-C-S

Пошаговая инструкция по расключению доступна по ССЫЛКЕ

Щит учета электрической энергии с УЗИП, заземление ТТ

Монтировать УЗИП или нет, решать вам. Зависит это от многих факторов, которые необходимо учитывать. Если же решитесь, эти схемы вам помогут.

Нередко, в накладном уличном электрощите, кроме указанного выше оборудования, требуется установить еще какие-то модульные устройства, например, коммутационные. В частности, очень полезен бывает, особенно на этапе строительства, обычный механизм розетки.

К нему можно подключить электроинструмент, прожектор или любой другой электроприбор, которым нужно воспользоваться на улице. Других способов подключиться к электросети зачастую нет.

Электрический щит учета электроэнергии 380В частного дома с розеткой 220В

В данном схеме электрического щитка дополнительно стоит модульная розетка 220В (номер 7) с индивидуальным устройством защиты – дифавтоматом (номер 8), совмещающим в себе Автоматический выключатель и Устройство защитного отключения. Номинал УЗО должен быть выше, чем у защитного автомата, например 40А, ток утечки 100 или 300 мА.

Электрический щит учета 380В, с модульной розеткой, заземление TN-C-S

Электрический щит учета 380В, с модульной розеткой и дифавтоматом, заземление TТ

Следуя этому примеру, где розетка защищена автоматическим выключателем дифференциального тока, вы сможете установить любое другое модульное оборудование, контакторы, трансформаторы и т.д. в щит учета электроэнергии, если будет такая необходимость.

Еще раз отмечу, что под каждой схемой есть ссылки, перейдя по которым вы сможете прочитать подробности, узнать использованное оборудование, задать вопросы.

Если вы знаете еще какие-то полезные варианты сборки щита учета частного дома 380В, пишите в комментариях, это может быть интересно и полезно многим.

В остальном же, здесь представлены основные варианты, которые применяются при подключении к электросети частных домов и садовых домиков. А самое главное, такие электрощиты успешно принимаются контролирующими органами и вводятся в эксплуатацию.

Схема электроснабжения частного дома 380В 15 кВт

Одним из важнейших этапов строительства или ремонта загородного дома является его электрификация. В современном жилье устанавливается большое количество бытовых приборов и всевозможного оборудования и все эти устройства потребляют электроэнергию. Поэтому приходится решать такой важный вопрос, как подключение объекта к электросети. Для этого в первую очередь понадобится схема электроснабжения частного дома 380В, 15 кВт, которая может быть двух типов – однофазная и трехфазная. Спросом пользуются оба варианта, однако в последнее время предпочтение отдается трехфазной схеме, которая существенно снижает нагрузку на сеть за счет ее равномерного распределения в виде трех параллельных линий.

Однофазное и трехфазное подключение

Между одно- и трехфазным подключением существует много различий технического плана. Так, например, подключение по трехфазной схеме осуществляется с использованием четырех или пяти проводов. Из них три являются фазными, по которым подается ток, а остальные два – это нулевой провод и заземление. В некоторых случаях для нуля и заземления используется один общий провод.

При подключении по однофазной схеме применяется два или три провода. Это соответствует фазе нулю и заземлению. Использование двух проводов означает, что ноль и заземление находятся на едином проводнике. Заранее зная количество фаз, можно сделать расчеты допустимой мощности и определить количество электрооборудования, которое может быть одновременно включено в сеть на каждой линии.

В случае однофазного подключения все подаваемое напряжение сосредотачивается на одной линии, что нередко приводит к перегрузкам. Толщина проводов на внутренних линиях домашней сети значительно выше тех, которые используются в трехфазной схеме. Это связано с более высокой нагрузкой, которая приходится только на одну линию. С учетом всех перечисленных факторов, при устройстве электроснабжения частного дома, предпочтение чаще всего отдается трем фазам.

Подключение по трехфазной схеме

В первую очередь требуется подготовить всю необходимую документацию. Она включает в себя технические условия эксплуатации, которые выдаются организацией – поставщиком электроэнергии. На основании технических условий осуществляется составление проектной документации на электроснабжение объекта.

Вам понадобятся следующие документы:

  • Договор с энергоснабжающей организацией.
  • Акт осмотра имеющегося электрооборудования.
  • Заключение лабораторного исследования схемы, предназначенной для конкретного объекта.
  • Акт разграничения электрических сетей по балансовой принадлежности.

В составляемом проекте учитываются особенности дальнейшего потребления электроэнергии. Все потребители разделяются на группы, которые включают в себя розетки и систему освещения. Каждая группа может быть отдельно выключена, если требуется провести ремонтные работы. В это время другая группа продолжает использоваться, не доставляя хозяевам излишних неудобств.

Для всех групп выполняются расчеты максимальной мощности потребления электроэнергии. В соответствии с этим выбирается и наиболее оптимальное сечение проводников. Как правило, линии освещения прокладываются кабелем, сечение которого составляет 1,5 мм2, а для розеток необходимо уже не менее 2,5 мм2. Каждая группа подключается к автоматическим защитным устройствам, исключающим возгорание проводки в случае короткого замыкания.

Таким образом, при наличии проекта подключения можно выполнить расчеты потребности в материалах, приборах и оборудовании, а также заранее определить размеры электрощита. На прилагаемых схемах отмечаются все места, где располагаются выключатели, розетки, стабилизирующие устройства и другое стационарное оборудование.

Непосредственное подключение может выполняться подземным или воздушным способом. Как правило, в частных домах используется второй вариант, имеющий ряд существенных преимуществ. В этом случае можно воспользоваться любыми схемами подключения, при минимальных затратах времени на выполнение работ. В процессе дальнейшей эксплуатации воздушные линии значительно легче ремонтировать. Большое значение имеет стоимость подключения, которая гораздо ниже, чем при использовании подземной прокладки кабельной линии.

При выполнении воздушного подключения следует учитывать расстояние от дома до столба, которое не должно превышать 15 м. В том случае, когда расстояние больше указанного, требуется установка дополнительного столба. За счет этого исключается сильное провисание или обрыв провода при негативном воздействии внешних факторов. Также следует обратить внимание на то, чтобы провода не создавали помехи пешеходам и транспортным средствам. Высота крепления трехфазной линии составляет не менее 2,7 м и более. Сами провода устанавливаются на специальных изоляторах, а уже потом они от столба подводятся к силовому щиту.

Силовой щит рекомендуется устанавливать на фасад здания, далее провода идут уже от него по всем помещениям. При наличии электрифицированных пристроек, питающая линия подводится к ним также от щитка. Для подключения и учета потребленной электроэнергии необходим трехфазный счетчик. В основном используются устройства прямого включения, принцип работы которых напоминает однофазный счетчик. В этом случае требуется всего лишь правильно соблюдать схему подключения устройства, размещенную на его задней крышке или в техническом паспорте.

В некоторых случаях в частном доме может использоваться схема полукосвенного включения трехфазного счетчика. Схема подключения дополняется трансформатором напряжения. Для оплаты потребленной электроэнергии показания прибора нужно умножить на коэффициент трансформации, указанный на трансформаторе.

Однолинейная схема электроснабжения частного дома

При разработке электроснабжения частных домов чаще всего применяется однолинейная схема, как наиболее оптимальный вариант. Она дает возможность для простого проектирования и монтажа, даже собственными силами. Однолинейная схема зарекомендовала себя, как эффективная и удобная в эксплуатации. По своей сути она является сильно упрощенной принципиальной схемой, где все виды подключений и прокладка сетей выполнены одной линией одинаковой толщины. Отсюда и появилось название однолинейной схемы.

Существует два варианта однолинейных схем – расчетная и исполнительная. Первый вариант используется в процессе строительства дома. Данная схема определяет порядок монтажа кабельных линий на конкретном объекте и выбор защитной аппаратуры. Предварительно выполняются расчеты всех силовых нагрузок на данную сеть. На расчетной однолинейной схеме указываются все имеющиеся мощности и их величины. В обязательном порядке отмечается расположение ВРУ, маркируются электрические щиты.

Исполнительная схема выполняется для действующих электроустановок, когда дом уже построен. К этому времени от проектной организации уже получены результаты обследования здания для подготовки наиболее подходящего расположения всех элементов и устройств электроснабжения.

{SOURCE}

Схема Подключения Трехфазного Двигателя — tokzamer.ru

Последний подключается параллельно первому.


Причем большее напряжение для схемы подключения звездой, а меньшее — для треугольника.

Ограничивайте доступ посторонних к монтажу до его завершения. Она является самой простой и безотказной.
Как подключить трехфазный двигатель через магнитный пускатель.

Пишите комментарии, буду рад прислушаться к вашему мнению.

К одной врезают в разрыв конденсаторы: рабочие и пусковые. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Номинальная мощность указывается на металлической табличке на корпусе мотора. Приблизительно можно сказать, что двигатель, рассчитанный на трехфазное питание, при включении в однофазную сеть потеряет от 30 до 50 процентов мощности.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера.

Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.

Подключение электродвигателя на 220В треугольником и звездой Демонстрация работы Какой вид лучше

Варианты подключения 3-х фазного двигателя к электросети

Ввиду того, что конструкция движка в таком варианте усложняется, чаще применяется электродвигатель, подключение которого обеспечивается переключением между этими схемами. Двигатель с магнитным пускателем Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. На третью обмотку включают напряжение.

Включение такого двигателя в сеть v приводит к снижению его номинальной мощности в з раза. Это можно легко заметить, проанализировав его конструкцию.

Первая задача решается «прозваниванием» всех проводов тестером замером сопротивления. Если электрические и механические режимы соответствуют конструктивно заложенным нормам, асинхронный движок — это самый долгоживущий из всех электромоторов.

Если концы одной обмотки найдены — лампа загорается.

При размыкании контакта стрелка пойдет к минусу. Но будет значительное падение мощности и эффективности его работы.

Кстати на советских пускателях и контакторах были совмещенные блок-контакты, то есть один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть пары дополнительных контактов как раз для этих целей. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Но таких накопителей не найти в магазинах. При запуске мощного асинхронного двигателя от Вт или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к В через рабочий и пусковой конденсаторы.
Как подключить кнопку пуска трехфазного двигателя

Читайте дополнительно: Оформление энергетического паспорта

Выбор схемы включения электродвигателя

Другие подключения электродвигателя Схем несколько: Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Тогда запуск будет следующим: Питание подается через тумблер или специальную кнопку; Нажимается кнопка пускового конденсатора; Она удерживается до тех пор, пока электродвигатель не разгонится; Кнопка пуска отпускается, отчего ее пружины размыкают цепочку конденсатора.

Это приведет к короткому замыканию между фазами, подключенными к ним. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. Во время отпускания кнопки цепь разрывается.

Схема звезды Этот тип схемы подключения двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы. Это нужно, чтобы не допустить короткого замыкания в силовой цепи. В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток.

Обратите внимание на левую часть схемы, отличия подключения силовых контактов КМ-1 и КМ-2 состоят в порядке подключения фаз. Номинальное напряжение 3хВ — вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть В, но стоит попробовать, возможно работать будет! В статоре асинхронного двигателя на В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Для 3-проводного варианта в клеммнике будет 3 шпильки, а для 6-проводного — 6 шпилек. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации. Остальные три вывода подать на фазное питание напряжением вольт.

Подключение трёхфазного электродвигателя


При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой». Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. В случае с однофазными моторами это невозможно: они работают только при питании от В. Подбор конденсаторов Емкость конденсаторов для подключения к В необходимо подбирать.

В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. Фазное питание подсоединяется к точкам узлов концов обмоток.

Изоляция может быть пробита, а двигатель полностью выходит из строя. Подключение к однофазной сети Для подключения трёхфазного электродвигателя В к однофазной сети В чаще всего используется схема с фазосдвигающими конденсаторами пусковыми и рабочими. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. В этом случае вы не только получите полную мощность двигателя, но и сможете полноценно регулировать его обороты и реверсировать его. Можно подбирать конденсаторы, включив сначала небольшую ёмкость и увеличивая их ёмкость, пока ваш электродвигатель не начнёт развивать требуемую мощность.
Нереверсивная схема магнитного пускателя

Подключение к трёхфазной сети

Принцип работы схемы: Когда автоматический выключатель QF-1 переводят во включенное состояние на силовых контактах контактора и цепи управления появляется напряжение. Российские моторы на три фазы подключаются по звезде.

В коллекторных движках аналогичные задачи решаются намного проще.

Его ёмкость должна быть в 2,5 — 3 раза больше ёмкости рабочего.

Пишите в комментариях! Чаще всего для сдвига фаз используют именно конденсаторы, а не дроссели.

Читайте также: Устройство песчаной подушки под кабель

Концы обжать клеммным наконечником, если они есть, подключить в разрыв конденсатор. Для работы схемы необходимы 3 пускателя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.

Обычно его емкость Сп больше в раза по сравнению с Ср. Проверка переменным током Две любые обмотки включают параллельно концами к мультиметру. Работа по выводу недостающих концов требует определенного навыка.

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

На практике это условие практически невыполнимо, поэтому при пуске двигателя подключают два конденсатора Ср — рабочий конденсатор; Сп — пусковой конденсатор. В двигателе есть проводник с желто-зеленой изоляцией.

Но у простого автоматического выключателя нет возможности настроить ток. Схема звезды Этот тип схемы подключения двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы. Когда включается один МП, у другого происходит размыкание контактов. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети самодельщики применяют: фазосдвигающий конденсатор; тринисторные фазосдвигающие устройства; другие емкостные и индукционно-емкостные фазосдвигающие схемы. Но это уже совсем другая история… Похожие статьи:.
Как подключить магнитный пускатель. Схема подключения.

Схема Электрическая Принципиальная Трехфазная — tokzamer.ru

Точка, в которой концы фаз соединяются в общий узел, называется нейтральной на рис.


Помимо отображения отдельных проводов, также важно изобразить на чертеже дополнительные детали электрической схемы.

Если созданием сети В будет заниматься человек, который разбирается в электрике и знает, как правильно подключить ввод, вы сможете остаться со светом даже в случае локальных аварий на подстанции.
Как читать Элекрические схемы

Нагрузка, как и фазы генератора, может быть соединена в звезду.

Для получения соотношений между ними следует единообразно выбрать их направления: а для линейных токов — от генератра к нагрузке; б для фазовых — по часовой стрелке. Напряжение между одной отдельной фазой и нулевым проводом — вольт.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь. Важно знать, что при двухфазном энергоснабжении на В, главный потребитель т.

Реверсивная схема подключения электродвигателя Как изменить направление вращения электродвигателя?

Схема АВР на двух контакторах и с реле контроля фаз

3. 3.1 Соединение по схеме звезда

Инструкция Перед началом работы необходимо обесточить электрощитовую, в которой будут проводиться работы. Рисунок 3. Это фазное напряжение. Важно знать, что при двухфазном энергоснабжении на В, главный потребитель т.

Идущая от электрощита проводка прокладывается по жилищу в соответствии с проектом. Работы на линии», при необходимости наконечники для обделки многожильных проводов.

Трансформаторная подстанция Трансформаторная подстанция предназначена для получения электроэнергии, поступающей с линий электропередач, ее преобразования и распределения. При таком соединении симметричного генератора с отключенной нагрузкой внутри него никаких токов нет, так как Рисунок 3.

Также для не очень интенсивных выделений доступны варианты без крылышек, хотя, по общему мнению, все-таки прокладки с крылышками удобнее в использовании, так как не позволяют прокладке сминаться и прочнее закрепляют ее на нижнем белье.

При изменении величины или характера фазных сопротивлений напряжение смещений нейтрали UnN может изменяться в широких пределах. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, то есть фаза — это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

Один провод — нулевой. Кроме улицы, погружного насоса характеристика С групповых АВ скорей всего не нужна.

Трехфазные системы в настоящее время получили наибольшее распространение.
Нереверсивная схема магнитного пускателя

Содержание

Но при таком подходе понадобилось бы шесть проводов для соединения.

Это фазное напряжение. Согласно нормам, у Вас должно получится изображение 3 фаз, питающих сеть конкретного помещения и линии групповых сетей, которые отходят от питающих.

Несвязанные трехфазные цепи не нашли применения из-за их неэкономичности большое число проводов.

Различают исполнительную и расчетную однолинейную схему. При выполнении расчетов не следует ориентироваться на закон Ома — в таких случаях необходимо использовать коэффициент мощности обозначается cosф и спроса — Кспроса.

Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели. Три провода — отдельные фазы. Феррарис и Н. При наличии нейтрального провода ток в нейтральном проводе.

Однофазная и трехфазная электрическая сеть


В трехпроводных сетях помимо стандартных проводов фазного и нулевого еще имеется защитный, выполняющий функцию заземления. Сегодня поговорим о том, как ее подключить и разберем советы специалистов, зачем нужно это делать. За городом наибольшее распространение получили столбовые и мачтовые подстанции.

Для находящихся в эксплуатации электроустановок используется исполнительная схема. Трехфазное электропитание Трехфазное питание предполагает ввод в здание трех питающих фаз, обозначаемых L1, L2, L3, и нулевого проводника N. Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, то есть до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии. Провод, соединяющий нулевые точки нагрузки и генератора, называется в таких цепях нулевым проводом. На чертеже выше Вы можете обратить внимание, что возле перечеркнутых линий косыми штрихами нет цифр.

PE — это заземление. Инструкция Перед началом работы необходимо обесточить электрощитовую, в которой будут проводиться работы. Супервпитывающие прокладки четыре-пять звездочек требуются для тех дней, когда выделения наиболее интенсивны, а также для ночного использования. В отличие от соединения звездой при соединении треугольником фазные токи не равны линейным.
Однолинейная схема электроснабжения дома.

9 комментариев

Но при наличии мощных потребителей подстанция справляется далеко не всегда, из-за чего в вашем доме может мигать свет. Система ЭДС напряжений, токов и т.

Векторная диаграмма при несимметричной нагрузке приведена на рис. В самом крайнем случае, как исключение, заземлять после счетчика можно, но только если нейтральный полюс счетчика глухо закорочен и не с таким сечением как на фото и только для ЩУ на столбе, трубостойке. При необходимости наличия большего количества блок-контактов например при сборке реверсивной схемы пуска электродвигателя , на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами блок контактов которая, как правило, имеет четыре дополнительных блок-контакта к примеру два нармально-замкнутых и два нормально-разомкнутых.

Заземляющий провод PE подсоединяется к корпусам бытовой техники, как только происходит замыкание фазы на корпус, оборудование отключается.

В особенности она необходима для подключения к локальной сети дома с АВР: Фото — дом с АВР Чтобы бесплатно разработать однолинейную схему электроснабжения детского учреждения , частных построек гаражей, домов, квартир, киосков , многоэтажного жилого здания, завода СНТ , вахтовых вагонов, Вам понадобится ЕСКД. Если на трансформаторе произошла какая-либо поломка, вы рискуете остаться с энергоснабжением в В при одной фазе.

В особенности она необходима для подключения к локальной сети дома с АВР: Фото — дом с АВР Чтобы бесплатно разработать однолинейную схему электроснабжения детского учреждения , частных построек гаражей, домов, квартир, киосков , многоэтажного жилого здания, завода СНТ , вахтовых вагонов, Вам понадобится ЕСКД. У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления. Условные обозначения на схемах Магнитный пускатель далее — пускатель — коммутационный аппарат предназначенный для пуска и остановки двигателя.

В особенности она необходима для подключения к локальной сети дома с АВР: Фото — дом с АВР Чтобы бесплатно разработать однолинейную схему электроснабжения детского учреждения , частных построек гаражей, домов, квартир, киосков , многоэтажного жилого здания, завода СНТ , вахтовых вагонов, Вам понадобится ЕСКД. Реверсивная схема подключения электродвигателя Как изменить направление вращения электродвигателя? Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы.

Навигация по записям

Дело в том, что в малых населенных пунктах используются маломощные подстанции, а значит, и перекосы здесь могут случаться чаще. Требования стандарта IEC накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт.

На помощь им были изобретены прокладки, прошедшие долгий путь реноваций, чтобы в наши дни стать женской палочкой-выручалочкой. Принципиальная электрическая схема. В г. Это аварийный режим для источников питания, и поэтому недопустим.
Принцип работы генератора переменного тока

Магнитный Пускатель 380в Схема Подключения

Основа пускателя — магнитопровод и катушка индуктивности.


Для этого понадобится трёхжильный кабель и несколько контактов.

Для подачи питания используется второй тип, он и есть наиболее распространенным.
Пускатели магнитные КМЭ в корпусе IP65 9-95A. Схема подключения пускателя 380 и 220В (400 и 230).

На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные. Исходя из этого, кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов — нормально открытые разомкнутые, замыкающие, НО, NO и нормально закрытые замкнутые, размыкающие, НЗ, NC см.

Если после подачи напряжения пускатель не включился самостоятельно — уже хорошо. Для этого каждый модельный ряд изделий взаимно дополняет друг друга.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник.

У алюминиевых проводов концы зачищают надфилем, затем покрывают пастой или техническим вазелином Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо.

Наглядный пример. Следующим важным параметром будет ток сработки.

Как подключить магнитный пускатель. Схема подключения.

9 комментариев

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен. Делают это для того, чтобы, когда двигатель окажется в опасности из-за перегрева, реле смогло бы отключить пускатель. Причем она располагается вертикально на стене электрического щита.

Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке.

Пускатель должен отпасть.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. А также любым доступным способом предотвращено случайное его включение посторонними лицами.

Была ли Вам полезна данная статья?

Для сборки цепи управления нужно одну фазу прямо подключить к сердечнику, а со второй подключить с помощью провода к контакту пуска.

Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи.
Как подключить контактор или магнитный пускатель. Схема подключения

Инструкции по подсоединению

Подсоединение к 3-фазной сети Возможно подключение 3-фазного питания через катушку МП, функционирующей от В.

Если надпись гласит В АС или рядом с стоит значок переменного тока , то для работы схемы управления потребуется фаза и ноль. Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги.

Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы. Графическое изображение по управлению, которое составляют катушка, кнопки и дополнительные контакторы, которые принимают участие в работе катушки или не допускают ошибочных включений. Теперь, перепроверив правильность монтажа можно подать напряжение и проверить работоспособность схемы.

Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. Кнопки управления пускателей В общем случае потребуется две кнопки: одна для включения и одна для отключения.

Необходимость в специфическом кнопочном контакте Известно, что контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Различаются схемы подключения МП главным образом в зависимости от того, какая катушка в нем находится. Такие кнопки обычно имеют две пары групп контактов — одну нормально разомкнутую, другую замкнутую.

Поиск на сайте


Реверсивная схема подключения электродвигателя через пускатели В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Удержание контактора во включенном состоянии происходит по принципу самоподхвата — когда дополнительный вспомогательный контакт шунтирует подключается параллельно пусковую кнопку, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии. При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Катушка приведёт в действие контакты КМ1 и они замкнут цепи с обмотками двигателя. Напряжение с обозначением — значит разные фазы.

При полном опускании якоря, контакты, отбрасываемые пружиной, отключаются Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода. Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы В. Теперь если ее отпустить магнитный пускатель продолжает работать, пока не пропадет напряжение или сработает тепловое реле Р защиты двигателя. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку.

Но правильная — только одна. Это так называемый кнопочный пост. Можно также составить однолинейный графический рисунок подключения трехфазного электрического двигателя к магнитному пускателю через реле.
Магнитный пускатель. Или как подключить трех фазный двигатель

Устройство и принцип работы

Питание для двигателя или любой другой нагрузки фаза от В подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T. Ниже мы рассмотрим некоторые схемы подключения магнитного пускателя на и вольт, которые могут пригодиться в домашних условиях.

Такое подключение позволяет производить коммутацию кнопками с любого поста.

Схема подключения магнитного пускателя с самоподхватом выглядит следующим образом: Рассмотрим работу цепей включения и выключения магнитного контактора.

Немного изменена и силовая часть От к. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты.

Рекомендуем: Выключатель luxar deco как подключить

Навигация по записям

Подсоединение к 3-фазной сети Возможно подключение 3-фазного питания через катушку МП, функционирующей от В. На контакторе КМ2 происходит замена фаз L1 на L3, а L3 на L1, таким образом меняется направление вращения электродвигателя. Напряжение с обозначением — значит разные фазы. Схема подключения магнитного пускателя на В Подключение к В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки.

Вся схема будет работать от двух фаз. Реле подсоединяют к выводу с МП на электрический двигатель, электричество проходит в нем в последовательном образе сквозь нагрев реле до электромотора. Также рекомендуем прочесть другую нашу статью где мы рассказали о том как выбрать и подключить электромагнитный пускатель на В. Подключение магнитного пускателя с тепловым реле Магнитный пускатель это, по сути, мощное реле специального назначения. Для подачи питания используется второй тип, он и есть наиболее распространенным.

В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится. В прорези нижней части магнитопровода устанавливается катушка. Как выглядит монтажная практическая схема подключения магнитного пускателя?

Далее нужно установить перемычку в кнопочном посте. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты. Вся схема в целом претерпевает незначительные изменения. При особых требованиях безопасности повышенная влажность в помещении возможно использования пускателя с катушкой на 24 12 вольт.
Реверсивные магнитные пускатели в однофазной сети. Реверсивная схема подключения электродвигателя.

Схема трехфазного инвертора

Все мы знаем об инверторе — это устройство, которое преобразует постоянный ток в переменный. Ранее мы узнали о различных типах инверторов и построили однофазный инвертор с напряжением 12–220 В. Трехфазный инвертор преобразует постоянное напряжение в трехфазное питание переменного тока. Здесь, в этом руководстве, мы узнаем о трехфазном инверторе и его рабочем , но прежде чем идти дальше, давайте посмотрим на формы сигналов напряжения трехфазной линии. В приведенной выше схеме трехфазная линия подключена к резистивной нагрузке, и нагрузка потребляет мощность от линии.Если мы нарисуем формы волны напряжения для каждой фазы, то у нас будет график, как показано на рисунке. На графике мы видим три формы волны напряжения, сдвинутые по фазе на на 120º .

В этой статье мы обсудим схему 3-фазного инвертора , которая используется как преобразователь постоянного тока в 3-фазный переменный ток . Помните, что даже в наши дни получение полностью синусоидальной формы волны для различных нагрузок чрезвычайно сложно и непрактично.Итак, здесь мы обсудим работу схемы идеального трехфазного преобразователя , игнорируя все вопросы, связанные с практическим трехфазным инвертором.

3-фазный инвертор работает

Теперь давайте рассмотрим схему 3-фазного инвертора и ее идеальную упрощенную форму.

Ниже представлена ​​принципиальная схема трехфазного инвертора , разработанная с использованием тиристоров и диода (для защиты от скачков напряжения)

А ниже представлена ​​принципиальная схема трехфазного инвертора , разработанная с использованием только переключателей.Как видите, эта установка с шестью механическими переключателями более полезна для понимания работы трехфазного инвертора , чем громоздкая тиристорная схема.

Здесь мы будем размыкать и симметрично замыкать эти шесть переключателей, чтобы получить трехфазное выходное напряжение для резистивной нагрузки. Есть два возможных способа срабатывания переключателей для достижения желаемого результата: один, при котором переключатели проводят на 180 °, и другой, при котором переключатели проводят только на 120 °.Давайте обсудим каждый шаблон ниже:

A) Трехфазный инвертор — режим проводимости 180 градусов

Идеальная схема нарисована до того, как ее можно будет разделить на три сегмента, а именно: сегмент один, сегмент два и сегмент три, и мы будем использовать эти обозначения в следующем разделе статьи. Первый сегмент состоит из пары переключателей S1 и S2, сегмент два состоит из пары переключения S3 и S4, а сегмент три состоит из пары переключателей S5 и S6.В любой момент времени оба переключателя в одном и том же сегменте никогда не должны быть замкнуты, так как это приводит к короткому замыканию батареи, нарушающему всю настройку, поэтому этого сценария следует избегать всегда.

Теперь давайте начнем последовательность переключения с замыкания переключателя S1 в первом сегменте идеальной схемы и назовем начало 0º. Поскольку выбранное время проведения составляет 180 °, переключатель S1 будет замкнут от 0 ° до 180 °.

Но после 120º первой фазы вторая фаза также будет иметь положительный цикл, как видно на графике трехфазного напряжения, поэтому переключатель S3 будет замкнут после S1.Эта S3 также будет закрыта еще на 180 градусов. Таким образом, S3 будет закрыт с 120º до 300º и будет открыт только после 300º.

Аналогично, третья фаза также имеет положительный цикл после 120º положительного цикла второй фазы, как показано на графике в начале статьи. Таким образом, переключатель S5 будет закрыт после закрытия 120º S3, то есть 240º. После того, как переключатель замкнут, он будет оставаться в замкнутом состоянии на 180 °, прежде чем открыться, при этом S5 будет закрыт от 240 ° до 60 ° (второй цикл).

До сих пор все, что мы делали, это предполагало, что проводимость осуществляется после того, как переключатели верхнего уровня замкнуты, но для протекания тока из цепи необходимо завершить. Кроме того, помните, что оба переключателя в одном сегменте никогда не должны быть в замкнутом состоянии одновременно, поэтому, если один переключатель замкнут, другой должен быть разомкнут.

Для выполнения обоих вышеуказанных условий мы закроем S2, S4 и S6 в заранее определенном порядке. Итак, только после открытия S1 нам нужно будет закрыть S2.Точно так же S4 закроется после того, как S3 откроется на 300º, и точно так же S6 закроется после того, как S5 завершит цикл проводимости. Этот цикл переключения между переключателями одного и того же сегмента можно увидеть на рисунке ниже. Здесь S2 следует за S1, S4 следует за S3, а S6 следует за S5.

Следуя этому симметричному переключению, мы можем достичь желаемого трехфазного напряжения, представленного на графике. Если мы заполним начальную последовательность переключения в приведенной выше таблице, мы получим полную схему переключения для режима проводимости 180º, как показано ниже.

Из приведенной выше таблицы мы можем понять, что:

От 0 до 60: S1, S4 и S5 замкнуты, а остальные три переключателя разомкнуты.

От 60 до 120: S1, S4 и S6 замкнуты, а остальные три переключателя разомкнуты.

От 120 до 180: S1, S3 и S6 замкнуты, а остальные три переключателя разомкнуты.

И последовательность переключений такова. Теперь давайте нарисуем упрощенную схему для каждого шага, чтобы лучше понять параметры тока и напряжения.

Шаг 1: (для 0-60) S1, S4 и S5 замкнуты, а остальные три переключателя разомкнуты. В таком случае упрощенная схема может быть такой, как показано ниже.

Итак, от 0 до 60: Vao = Vco = Vs / 3; Vbo = -2Vs / 3

Используя их, мы можем получить линейные напряжения как:

Vab = Vao - V bo = Vs
Vbc = Vbo - Vco = -Vs
Vca = Vco - Vao = 0 

Шаг 2: (от 60 до 120) S1, S4 и S6 замкнуты, а остальные три переключателя разомкнуты.В таком случае упрощенная схема может быть такой, как показано ниже.

Итак, от 60 до 120: Vbo = Vco = -Vs / 3; Vao = 2Vs / 3

Используя их, мы можем получить линейные напряжения как:

Vab = Vao - Vbo = Vs
Vbc = Vbo - Vco = 0
Vca = Vco - Vao = -Vs 

Шаг 3: (от 120 до 180) S1, S3 и S6 замкнуты, а остальные три переключателя разомкнуты. В таком случае упрощенную схему можно нарисовать, как показано ниже.

Итак, от 120 до 180: Vao = Vbo = Vs / 3; Vco = -2Vs / 3

Используя их, мы можем получить линейные напряжения как:

Vab = Vao - V bo = 0
Vbc = Vbo - Vco = Vs
Vca = Vco - Vao = -Vs 

Точно так же мы можем получить фазные напряжения и линейные напряжения для следующих шагов в последовательности.И это может быть показано на рисунке ниже:

A) Трехфазный инвертор — режим проводимости 120 градусов

Режим 120 ° аналогичен режиму 180 ° во всех аспектах, за исключением того, что время закрытия каждого переключателя уменьшено до 120, которые были 180 ° ранее.

Как обычно, давайте начнем последовательность переключения, замкнув переключатель S1 в первом сегменте и установив начальный номер на 0º. Поскольку выбранное время проводимости составляет 120º, переключатель S1 откроется через 120º, поэтому S1 был замкнут от 0º до 120º.

Поскольку полупериод синусоидального сигнала изменяется от 0 до 180º, в течение оставшегося времени S1 будет открыт и представлен серой областью выше.

Теперь, после 120º первой фазы, вторая фаза также будет иметь положительный цикл, как упоминалось ранее, поэтому переключатель S3 будет замкнут после S1. Эта S3 также будет закрыта еще на 120 °. Таким образом, S3 будет закрыт с 120º до 240º.

Аналогично, третья фаза также имеет положительный цикл после 120º положительного цикла второй фазы, поэтому переключатель S5 будет замкнут после 120º замыкания S3.После того, как переключатель замкнут, он будет оставаться в замкнутом состоянии на 120º, прежде чем открыться, и при этом переключатель S5 будет замкнут от 240º до 360º

Этот цикл симметричного переключения будет продолжен для достижения желаемого трехфазного напряжения. Если мы заполним начальную и конечную последовательность переключения в приведенной выше таблице, мы получим полную схему переключения для режима проводимости 120º, как показано ниже.

Из приведенной выше таблицы мы можем понять, что:

С 0-60: S1 и S4 замкнуты, а остальные переключатели разомкнуты.

С 60-120: S1 и S6 замкнуты, а остальные переключатели разомкнуты.

От 120 до 180: S3 и S6 замкнуты, а остальные переключатели разомкнуты.

С 180 по 240: S2 и S3 замкнуты, остальные переключатели разомкнуты

С 240-300: S2 и S5 замкнуты, остальные переключатели разомкнуты

От 300 до 360: S4 и S5 замкнуты, остальные переключатели разомкнуты

И эта последовательность шагов продолжается вот так.Теперь давайте нарисуем упрощенную схему для каждого шага, чтобы лучше понять параметры тока и напряжения в схеме трехфазного инвертора.

Шаг 1: (для 0-60) S1, S4 замкнуты, а остальные четыре переключателя разомкнуты. В таком случае упрощенная схема может быть показана ниже.

Итак, от 0 до 60: Vao = Vs / 2, Vco = 0; Vbo = -Vs / 2

Используя их, мы можем получить линейные напряжения как:

Vab = Vao - V bo = Vs
Vbc = Vbo - Vco = -Vs / 2
Vca = Vco - Vao = -Vs / 2 

Шаг 2: (от 60 до 120) S1 и S6 замкнуты, а остальные переключатели разомкнуты.В таком случае упрощенная схема может быть показана ниже.

Итак, от 60 до 120: Vbo = 0, Vco = -Vs / 2 и Vao = Vs / 2

Используя их, мы можем получить линейные напряжения как:

Vab = Vao - Vbo = Vs / 2
Vbc = Vbo - Vco = Vs / 2
Vca = Vco - Vao = -Vs 

Шаг 3: (от 120 до 180) S3 и S6 замкнуты, а остальные переключатели разомкнуты. В таком случае упрощенная схема может быть показана ниже.

Итак, от 120 до 180: Vao = 0, Vbo = Vs / 2 и Vco = -Vs / 2

Используя их, мы можем получить линейные напряжения как:

Vab = Vao - V bo = -Vs / 2
Vbc = Vbo - Vco = Vs
Vca = Vco - Vao = -Vs / 2 

Аналогичным образом мы можем вычислить фазные напряжения и линейные напряжения для следующих следующих шагов.А если нарисовать график для всех шагов, то получится что-то вроде того, что показано ниже.

На графиках выходных сигналов для случаев переключения 180º и 120º можно увидеть, что мы достигли переменного трехфазного напряжения на трех выходных клеммах. Хотя форма выходного сигнала не является чистой синусоидой, она действительно напоминала форму волны трехфазного напряжения. Это простая идеальная схема и приблизительная форма волны для понимания работы трехфазного инвертора. На основе этой теории можно разработать рабочую модель, используя тиристоры, схемы переключения, управления и защиты.

Простая схема трехфазного инвертора

В статье обсуждается, как сделать схему трехфазного инвертора, которую можно использовать в сочетании с любой обычной однофазной схемой инвертора прямоугольной формы. Схема была запрошена одним из заинтересованных читателей этого блога.


ОБНОВЛЕНИЕ : Ищете дизайн на базе Arduino? Вы можете найти это полезным:

3-фазный инвертор Arduino


Принцип работы схемы

Трехфазная нагрузка может работать от однофазного инвертора, используя следующие поясненные этапы схемы.

В основном задействованные каскады можно разделить на три группы:

На первой диаграмме ниже показан каскад генератора ШИМ, его можно понять по следующим пунктам:

Осциллятор и каскад ШИМ

Схема IC 4047 стандартный триггерный выходной генератор со скоростью желаемой частоты сети, установленной VR1 и C1.

Двухтактный ШИМ с заданными размерами теперь доступен на переходе E / C двух транзисторов BC547.
Эта ШИМ применяется ко входу трехфазного генератора, описанного в следующем разделе.

Следующая схема показывает простую схему трехфазного генератора, которая преобразует указанный выше входной двухтактный сигнал в 3 дискретных выхода, сдвинутых по фазе на 120 градусов.

Эти выходы дополнительно разделяются на отдельные двухтактные каскады, сделанные из каскадов НЕ вентилей. Эти 3 дискретных, сдвинутых по фазе на 120 градусов, двухтактных ШИМ теперь становятся питающими входными сигналами (HIN, LIN) для заключительного 3-фазного каскада драйвера, описанного ниже.

В этом генераторе сигналов используется один источник питания 12 В, а не двойной.

Полное объяснение можно найти в этой статье о генераторе трехфазных сигналов.

На схеме ниже показан каскад схемы с трехфазным инвертором, использующий конфигурацию H-мостовых МОП, которая принимает фазосдвинутые ШИМ из вышеприведенного этапа и преобразует их в соответствующее высокое напряжение Выходы переменного тока для работы с подключенной трехфазной нагрузкой, обычно это трехфазный двигатель.

Высокое напряжение 330 на отдельных секциях драйверов МОП-транзисторов получается от любого стандартного однофазного инвертора, встроенного в показанные стоки МОП-транзисторов для питания желаемой трехфазной нагрузки.

Трехфазный мостовой каскад драйвера

В приведенной выше схеме трехфазного генератора (вторая последняя диаграмма) использование синусоидальной волны не имеет смысла, потому что 4049 в конечном итоге преобразует ее в прямоугольные волны и, более того, в микросхемы драйвера в последней конструкции используются цифровые ИС, которые не реагируют на синусоидальные волны.

Таким образом, лучше использовать трехфазный генератор прямоугольных сигналов для питания последнего каскада драйвера.

Вы можете обратиться к статье, в которой объясняется, как сделать схему 3-фазного солнечного инвертора, чтобы понять работу ступени генератора 3-фазных сигналов и детали реализации.

Использование IC IR2103

Относительно более простая версия вышеупомянутой схемы трехфазного инвертора может быть изучена ниже с использованием ICS полумостового драйвера IC IR2103. В этой версии отсутствует функция выключения, поэтому, если вы не хотите включать функцию выключения, вы можете попробовать следующий более простой дизайн.

Упрощение вышеуказанных схем

В описанной выше схеме трехфазного инвертора каскад трехфазного генератора выглядит излишне сложным, и поэтому я решил поискать альтернативный более простой вариант для замены этой конкретной секции.

После некоторых поисков я нашел следующую интересную схему 3-фазного генератора, которая выглядит довольно простой и понятной с ее настройками.

Поэтому теперь вы можете просто полностью заменить описанную ранее микросхему IC 4047 и секцию операционного усилителя и интегрировать эту конструкцию с входами HIN, LIN в схему 3-фазного драйвера.

Но помните, что вам все равно придется использовать вентили N1 —- N6 между этой новой схемой и полной мостовой схемой драйвера.

Создание схемы солнечного трехфазного инвертора

До сих пор мы узнали, как сделать базовую схему трехфазного инвертора, теперь мы увидим, как солнечный инвертор с трехфазным выходом может быть построен с использованием очень обычных ИС и пассивных компонентов. .

Концепция в основном та же, я только что изменил каскад трехфазного генератора для этого приложения.

Основное требование к инвертору

Для получения трехфазного выхода переменного тока от любой однофазной или постоянного тока нам потребуются три основных каскада схемы:

  1. Трехфазная схема генератора или процессора
  2. Трехфазная схема силового каскада драйвера.
  3. Схема повышающего преобразователя
  4. Панель солнечных батарей (с соответствующим номиналом)

Чтобы узнать, как совместить солнечную панель с батареей и инвертором, вы можете прочитать следующее руководство:

Расчет солнечных панелей для инверторов


В этой статье можно изучить один хороший пример, который объясняет простую схему трехфазного инвертора

В настоящий проект мы также включаем эти три основных этапа, давайте сначала узнаем о схеме процессора трехфазного генератора из следующего обсуждения:

Как это Работает

На схеме выше показана базовая схема процессора, которая выглядит сложной, но на самом деле это не так.Схема состоит из трех частей: IC 555, который определяет 3-фазную частоту (50 Гц или 60 Гц), IC 4035, который разделяет частоту на необходимые 3 фазы, разделенные фазовым углом 120 градусов.

R1, R2 и C должны быть надлежащим образом выбраны для получения частоты 50 Гц или 60 Гц при рабочем цикле 50%.

8 номеров НЕ вентилей от N3 до N8 можно увидеть включенными просто для разделения сгенерированных трех фаз на пары высоких и низких логических выходов.

Эти шлюзы НЕ могут быть получены от двух ИС 4049.

Эти пары высоких и низких выходов на показанных вентилях НЕ становятся важными для питания нашего следующего трехфазного силового каскада драйвера.

В следующем объяснении подробно описывается схема драйвера трехфазного МОП-транзистора от солнечной батареи.

Примечание. Вывод выключения должен быть подключен к линии заземления, если не используется, иначе схема не будет работать.

Как видно из приведенного выше На рисунке, эта секция построена на трех отдельных микросхемах драйверов полумоста, использующих IRS2608, которые предназначены для управления парами МОП-транзисторов с высокой и низкой стороны.

Конфигурация выглядит довольно простой, благодаря этой сложной микросхеме драйвера от International Rectifier.

Каждый каскад ИС имеет свои собственные входные контакты HIN (высокий вход) и LIN (низкий вход), а также их соответствующие контакты питания Vcc / заземления.

Все Vcc должны быть соединены вместе и подключены к линии питания 12 В первой цепи (контакты 4/8 IC555), чтобы все каскады схемы стали доступны для источника питания 12 В от солнечной панели.

Точно так же все контакты и провода заземления должны быть объединены в общую шину.

HIN и LIN должны быть соединены с выходами, сгенерированными из вентилей NOT, как указано на второй диаграмме.

Вышеупомянутая схема обеспечивает трехфазную обработку и усиление, однако, поскольку трехфазный выход должен быть на уровне сети, а солнечная панель может быть рассчитана максимум на 60 В, мы должны иметь схему, которая позволила бы повысить это низкая солнечная панель 60 вольт до необходимого уровня 220 или 120 вольт.

Использование понижающего / повышающего преобразователя на базе микросхемы IC 555

Это можно легко реализовать с помощью простой схемы повышающего преобразователя на базе микросхемы 555, которая может быть изучена ниже:

Опять же, показанная конфигурация повышающего преобразователя с 60 В на 220 В выглядит не так сложный и может быть построен с использованием самых обычных компонентов.

IC 555 сконфигурирован как нестабильный с частотой приблизительно от 20 до 50 кГц. Эта частота подается на затвор переключающего МОП-транзистора через двухтактный биполярный транзистор.

Сердце схемы повышения формируется с помощью компактного трансформатора с ферритовым сердечником, который принимает частоту возбуждения от МОП-транзистора и преобразует входное напряжение 60 В в требуемый выход 220 В.

Этот 220 В постоянного тока, наконец, подключается к ранее объясненному каскаду драйвера МОП-транзистора через стоки трехфазных МОП-транзисторов для достижения трехфазного выходного сигнала 220 В.

Трансформатор повышающего преобразователя может быть построен на любом подходящем узле EE сердечник / катушка с использованием первичной обмотки 1 мм 50 витков (два 0.5-миллиметровый бифилярный магнитный провод параллельно) и вторичный с использованием магнитного провода диаметром 0,5 мм с 200 витками

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

% PDF-1.4 % 19103 0 объект > endobj xref 19103 378 0000000016 00000 н. 0000027016 00000 п. 0000027277 00000 н. 0000027524 00000 п. 0000027575 00000 п. 0000027672 00000 н. 0000027717 00000 п. 0000027777 00000 п. 0000027865 00000 н. 0000028066 00000 п. 0000028483 00000 п. 0000028826 00000 п. 0000029024 00000 н. 0000029218 00000 п. 0000029375 00000 п. 0000029541 00000 п. 0000029738 00000 п. 0000030168 00000 п. 0000030820 00000 п. 0000030996 00000 п. 0000031335 00000 п. 0000031508 00000 п. 0000031712 00000 п. 0000031898 00000 п. 0000031986 00000 п. 0000032423 00000 п. 0000032612 00000 п. 0000033012 00000 п. 0000033224 00000 п. 0000033724 00000 п. 0000034099 00000 п. 0000034255 00000 п. 0000034463 00000 п. 0000034849 00000 п. 0000035170 00000 п. 0000035335 00000 п. 0000035715 00000 п. 0000036009 00000 п. 0000036524 00000 п. 0000036712 00000 п. 0000037147 00000 п. 0000037828 00000 п. 0000037990 00000 п. 0000038257 00000 п. 0000038489 00000 п. 0000038735 00000 п. 0000038887 00000 п. 0000039026 00000 н. 0000039182 00000 п. 0000039341 00000 п. 0000039658 00000 п. 0000039767 00000 п. 0000039915 00000 н. 0000040001 00000 п. 0000040266 00000 п. 0000040426 00000 п. 0000040689 00000 п. 0000040848 00000 п. 0000040937 00000 п. 0000041153 00000 п. 0000041360 00000 п. 0000041707 00000 п. 0000041942 00000 п. 0000042170 00000 п. 0000042358 00000 п. 0000042553 00000 п. 0000042741 00000 п. 0000042903 00000 п. 0000042994 00000 п. 0000043125 00000 п. 0000043329 00000 п. 0000043494 00000 п. 0000043751 00000 п. 0000043912 00000 п. 0000044128 00000 п. 0000044354 00000 п. 0000044554 00000 п. 0000044696 00000 п. 0000044979 00000 п. 0000045306 00000 п. 0000045500 00000 п. 0000045611 00000 п. 0000045798 00000 п. 0000045983 00000 п. 0000046124 00000 п. 0000046241 00000 п. 0000046522 00000 п. 0000046809 00000 п. 0000046969 00000 п. 0000047251 00000 п. 0000047422 00000 п. 0000047593 00000 п. 0000047703 00000 п. 0000047862 00000 п. 0000048087 00000 п. 0000048316 00000 п. 0000048475 00000 п. 0000048615 00000 н. 0000049082 00000 п. 0000049458 00000 п. 0000050071 00000 п. 0000050216 00000 п. 0000050488 00000 п. 0000050759 00000 п. 0000051026 00000 п. 0000051172 00000 п. 0000051296 00000 п. 0000051875 00000 п. 0000052008 00000 п. 0000052386 00000 п. 0000052559 00000 п. 0000052641 00000 п. 0000052762 00000 н. 0000052938 00000 п. 0000053097 00000 п. 0000053655 00000 п. 0000053812 00000 п. 0000054353 00000 п. 0000054535 00000 п. 0000055105 00000 п. 0000055238 00000 п. 0000055670 00000 п. 0000055815 00000 п. 0000056327 00000 п. 0000056495 00000 п. 0000057037 00000 п. 0000057182 00000 п. 0000057689 00000 п. 0000057833 00000 п. 0000058324 00000 п. 0000058479 00000 п. 0000058768 00000 п. 0000059332 00000 п. 0000059482 00000 п. 0000059981 00000 п. 0000060132 00000 п. 0000060635 00000 п. 0000060807 00000 п. 0000061107 00000 п. 0000061702 00000 п. 0000061850 00000 п. 0000062350 00000 п. 0000062508 00000 п. 0000063034 00000 п. 0000063197 00000 п. 0000063755 00000 п. 0000063920 00000 п. 0000064462 00000 п. 0000064616 00000 п. 0000065185 00000 п. 0000065351 00000 п. 0000065650 00000 п. 0000066240 00000 п. 0000066409 00000 п. 0000066711 00000 п. 0000067345 00000 п. 0000067505 00000 п. 0000067791 00000 п. 0000068386 00000 п. 0000068560 00000 п. 0000069119 00000 п. 0000069267 00000 п. 0000069794 00000 п. 0000069954 00000 н. 0000070249 00000 п. 0000070814 00000 п. 0000070976 00000 п. 0000071549 00000 п. 0000071712 00000 п. 0000072301 00000 п. 0000072463 00000 п. 0000073028 00000 п. 0000073201 00000 п. 0000073801 00000 п. 0000073922 00000 п. 0000074311 00000 п. 0000074455 00000 п. 0000074929 00000 п. 0000075081 00000 п. 0000075587 00000 п. 0000075732 00000 п. 0000076286 00000 п. 0000076428 00000 п. 0000076891 00000 п. 0000077063 00000 п. 0000077656 00000 п. 0000077821 00000 п. 0000078363 00000 п. 0000078529 00000 п. 0000079087 00000 п. 0000079242 00000 п. 0000079541 00000 п. 0000080051 00000 п. 0000080228 00000 п. 0000080803 00000 п. 0000080974 00000 п. 0000081534 00000 п. 0000081686 00000 п. 0000082183 00000 п. 0000082336 00000 п. 0000082627 00000 н. 0000083158 00000 п. 0000083317 00000 п. 0000083898 00000 п. 0000084052 00000 п. 0000084575 00000 п. 0000084730 00000 п. 0000085254 00000 п. 0000085411 00000 п. 0000085703 00000 п. 0000086262 00000 п. 0000086406 00000 п. 0000086691 00000 п. 0000087170 00000 п. 0000087361 00000 п. 0000087767 00000 п. 0000088079 00000 п. 0000088272 00000 п. 0000088673 00000 п. 0000088828 00000 п. 0000089034 00000 п. 0000089221 00000 п. 0000089617 00000 п. 0000089983 00000 н. 00000

00000 п. 0000090938 00000 п. 0000091114 00000 п. 0000091598 00000 п. 0000091757 00000 п. 0000092260 00000 п. 0000092421 00000 п. 0000092941 00000 п. 0000093093 00000 п. 0000093597 00000 п. 0000093740 00000 п. 0000094241 00000 п. 0000094381 00000 п. 0000094842 00000 п. 0000094989 00000 п. 0000095466 00000 п. 0000095697 00000 п. 0000096024 00000 п. 0000096769 00000 п. 0000096963 00000 п. 0000097270 00000 п. 0000097938 00000 п. 0000098099 00000 п. 0000098392 00000 п. 0000098951 00000 п. 0000099103 00000 п. 0000099594 00000 п. 0000099725 00000 н. 0000100234 00000 н. 0000100376 00000 н. 0000100839 00000 н. 0000100992 00000 н. 0000101502 00000 н. 0000101656 00000 н. 0000102173 00000 п. 0000102313 00000 н. 0000102801 00000 п. 0000102956 00000 н. 0000103244 00000 н. 0000103812 00000 н. 0000103973 00000 п. 0000104533 00000 н. 0000104682 00000 п. 0000105167 00000 п. 0000105313 00000 н. 0000105840 00000 н. 0000105985 00000 п. 0000106258 00000 н. 0000106812 00000 н. 0000106957 00000 п. 0000107447 00000 н. 0000107595 00000 п. 0000108091 00000 н. 0000108253 00000 н. 0000108810 00000 н. 0000108959 00000 п. 0000109492 00000 н. 0000109641 00000 п. 0000110161 00000 п. 0000110331 00000 п. 0000110910 00000 н. 0000111072 00000 н. 0000111632 00000 н. 0000111800 00000 н. 0000112367 00000 н. 0000112524 00000 н. 0000113023 00000 н. 0000113186 00000 н. 0000113766 00000 н. 0000113915 00000 н. 0000114397 00000 н. 0000114525 00000 н. 0000115020 00000 н. 0000115192 00000 н. 0000115794 00000 н. 0000115963 00000 н. 0000116562 00000 н. 0000116710 00000 н. 0000117223 00000 н. 0000117392 00000 н. 0000117693 00000 н. 0000118315 00000 н. 0000118467 00000 н. 0000118991 00000 н. 0000119162 00000 н. 0000119742 00000 н. 0000119880 00000 н. 0000120359 00000 н. 0000120538 00000 н. 0000121147 00000 н. 0000121311 00000 н. 0000121868 00000 н. 0000122045 00000 н. 0000122655 00000 н. 0000122827 00000 н. 0000123435 00000 н. 0000123611 00000 н. 0000124176 00000 н. 0000124347 00000 н. 0000124925 00000 н. 0000125095 00000 н. 0000125642 00000 н. 0000125822 00000 н. 0000126430 00000 н. 0000126545 00000 н. 0000126904 00000 н. 0000127047 00000 н. 0000127212 00000 н. 0000127849 00000 н. 0000127988 00000 н. 0000128539 00000 н. 0000128651 00000 н. 0000129058 00000 н. 0000129160 00000 н. 0000129493 00000 н. 0000129632 00000 н. 0000130155 00000 н. 0000130282 00000 п. 0000130550 00000 н. 0000130912 00000 н. 0000131043 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован.