Рассчитать метраж трубы на теплый пол: как рассчитать расход на на м2, калькулятор

Содержание

Расчет трубы для теплого пола

Вы наверняка задумывались о создании комфортной температуры воздуха в помещении, а так же и о том, как сделать пол теплым, чтобы ходить по нему босиком. Вы только представьте, что Ваш ребенок будет ходить по холодному полу, этого нельзя допускать, обязательно делайте теплый пол, тем более если на пол уложена кафельная плитка.


Что вы узнаете

Водяной теплый уложенный

Задача оказывается не простая, но решаемая. Вам придется выбрать между электрическим и водяным теплым полом. В первом случае вы будете платить за киловатты, а в случае с водяным теплым полом, при условии что у вас частный дом и отапливается он мощным котлом — вы сможете легко подключить к этому котлу систему теплого пола. Как смонтировать теплый пол вы можете узнать в статье — Монтаж водяного теплого пола. Задавайте вопросы в комментариях к статье.

Для монтажа теплого пола вам понадобится труба. Чаще всего используют металлопластиковую трубу 16 диаметра. С помощью калькулятора вы сможете быстро подсчитать сколько погонных метров трубы вам понадобится под теплый пол любого помещения.Для расчетов вам понадобятся такие данные как площадь дома или помещения, а так же на какой шаг вы собираетесь прокладывать трубу.

Шаг трубы теплого пола

Шаг трубы — это расстояние между трубами.

Шаг трубы зависит от того, как утеплен пол, и какие цели вы преследуете монтируя теплый пол. Чем меньше шаг тем теплее будет пол. И если задуматься, то чем чаще шаг трубы, тем эффективнее теплый пол.

Водяной теплый пол слои

Площадь теплого пол

Площадь теплого пола — здесь необходимо посчитать полезную площадь помещения, непосредственно те участки, по которым вы ходите и хотите чтобы там было тепло. К примеру, нам не нужен теплый пол под шкафом, который мы никогда не будем двигать, а значит вычитаем площадь под шкафом.

Калькулятор расчета трубы теплого пола

Здесь вы сможете рассчитать расход трубы теплого пола, чтобы купить именно столько трубы сколько нужно.

[wpcc id=»43″]

Расход трубы теплого пола в зависимости от площади помещения*

*Подводящие трубопроводы не учитываются.

 

Мало рассчитать длину трубы, при монтаже теплого пола важно учитывать необходимость регулировать нагрев. Как вы знаете, при превышении температуры выше 28 градусов, такие покрытия как паркетная доска и ламинат начинают коробиться. Поэтому, установите регулятор температуры подачи воды в теплый пол.

Схемы монтажа теплого пола

Схемы монтажа теплого пола

Если вы рассчитываете расход трубы на теплый пол по другому, поделитесь с нами в комментариях, мы обязательно обсудим ваш вариант.

Автор статьи:

Задавайте вопросы в комментариях, делитесь своим опытом, так же принимается любая конструктивная критика, готов обсуждать. Не забывайте делиться полученной информацией с друзьями.

Расчет водяного теплого пола: примеры самостоятельного расчета

Расчет водяного теплого пола предполагает вычисление мощности отопительного контура, достаточной для нивелирования тепловых потерь жилища. Попутно в процессе расчетов определяются и геометрические параметры контура – длина и диаметр труб, а равно и скорость циркуляции теплоносителя в системе.

Итогом расчетов будет формирование схемы укладки контура на полу отапливаемого помещения и составление сметы процесса обустройства «теплого» пола. Проще говоря: рассчитав пол, мы вычислим схему укладки и метраж труб нагревательного контура, попутно определив еще и  объемы бетонной стяжки, погонаж демпферной прокладки и прочие параметры.

Водяной теплый пол

Словом, без точного расчета строительство такой отопительной системы попросту невозможно. Поэтому  в данной статье мы познакомим вас с процессом расчета мощности, гидравлики и геометрии теплого пола.

Вводные данные

Любой расчет начинается с определения типа будущей системы отопления. Ведь теплый пол может работать и в формате основного отопления, и в роли контура комбинированной системы, где помимо него есть еще и традиционная разводка с радиаторами. Разумеется, оба случая требуют совершенно разного подхода к процессу проектирования.

В первом случае нужно рассчитать полноценную систему отопления, способную компенсировать все тепловые потери жилища. А во втором – рассчитать контур, нагревающий пол в «зоне комфорта» до температуры 35-37 градусов Цельсия. То есть мощность систем будет абсолютно разной.

Кроме того в расчетах придется учесть следующие нюансы:

Преимущества водяного теплого пола
  • Климатические данные – эта информация пригодится для определения среднегодовой и пиковой температуры.
  • Планы строения – они пригодятся для определения площади и объема отапливаемых помещений.
  • Сведения о теплостойкости строительных материалов – они пригодятся в процессе определения тепловых потерь жилища.

Помимо этого нужно обратить внимание на расположение и габариты окон, схему расстановки предметов меблировки и напольного текстиля (ковров, паласов и прочего).

В итоге, перед началом расчетов необходимо подготовить план отапливаемого помещения и собрать климатические данные и оценить степень утепления жилища.

Расчет мощности теплого пола

Суть расчета мощности сводится к сопоставлению тепловых потерь дома, расположенного в определенной климатической зоне с энергией, вырабатываемой отопительным контуром. Причем энергия и потери связаны следующей формулой:

Мп=1,2Q

Где Мп – это искомая тепловая мощность пола, Q – это тепловые потери, а 1,2 – это максимальное значение коэффициента запаса, которое изменяется в пределах от 1 до 1,2.

Таким образом, для определения мощности пола нам нужно всего лишь вычислить тепловые потери, определяемые по следующей формуле:

Q=(V*Pt*k)/860

Где V – это объем отапливаемого помещения (площадь, умноженная на высоту потолков), Pt

– это разница температур в доме и за его стенами (вычисляется исходя из комфортных 20 градусов Цельсия и температуре самого сильного заморозка), а k – это коэффициент «теплостойкости» жилища (обычно он равен 1,5-2).

Схема укладки слоев теплого пола

Впрочем, если такой пример расчета теплого пола по мощность с помощью формул покажется сложным, то вместо вычислений можно просто воспользоваться специальной программой ( ПО Valtec или его аналоги). Для вычисления мощности в данном случае придется указать температуру самого жестокого заморозка, длину и ширину отапливаемой зоны, месторасположение дома (по области и городу), высоту потолков и тип основного строительного материала жилища (древесина, кирпич и так далее) с толщиной стен.

Итоги работы программы не будут отличаться от «формульных» вычислений.

Расчёт трубы для тёплого пола

Трубы для пола можно рассчитать исходя из ожидаемой мощности системы отопления, сопоставив площадь «развертки» нагревательного элемента (трубы) с температурой теплоносителя.

Однако эта схема сулит долгие вычисления, в которых используются табличные коэффициенты и переменные. Поэтому в большинстве случаев расчет труб проводится «графически».

То есть, на миллиметровой бумаге, поверх эскиза жилища, или прямо на полу отапливаемой зоны вычерчивается контур будущего «нагревательного элемента» (трубы), выстраиваемый по следующим правилам:

Трубы для пола
  • Максимальная длинна трубы в нагревательном контуре – 100-120 метров. Причем труба должна выйти из напорного коллектора и войти в обратку без стыков и разрывов в теле арматуры (цельным мерным отрезком).
  • Шаг размещения труб в спирали контура – 10-15 сантиметров.
  • Диаметр трубы – 16 миллиметров. По этому параметру определяется и толщина стяжки – 6 сантиметров.

Температуру теплоносителя в системе и его скорость определяют по усредненным величинам:

  • 40-55 градусам Цельсия — этого достаточно для прогрева зоны отопления до 25-37 °С.
  • 13-15 кПа — такая потеря давления в контуре обеспечит снижение температуры теплоносителя на выходе из контура на 5-15 °С.
  • 27-30 литрам в час —  это оптимальный расход теплоносителя в контуре с пропускным диаметром 16 миллиметров.

В финале «графического» расчета отопительного контура нужно определить месторасположение выхода из коллектора системы отопления и входа в обратку.

Ну а смета системы отопления «теплый пол» считается исходя из погонажа труб и объема бетонной стяжки.

Кроме того ее дополняют и расходы на термоизоляционную подложку и облицовочную отделку стяжки, рассчитываемые по общей площади теплого пола.

Расстояние между трубами теплого пола — правила расчета

Системы для нагрева половых покрытий устанавливаются в коттеджах, частных домах. Они пришли на смену громоздким радиаторам. Чтобы отопление работало эффективно, нужно учитывать ряд особенностей монтажа, правильно рассчитывать расстояние между трубами теплого пола. Если проект разработан неправильно, тепло будет неравномерно распространяться по помещениям, отопление будет работать в холостом режиме.

Расстояние между трубами теплого пола

Что такое теплый пол?

Водяной теплый пол — замкнутая конструкция, которая подключается к центральной системе отопления или нагревательному котлу. Горячая вода циркулирует по трубкам благодаря работе насоса. Выделяющегося тепла достаточно для прогревания комнат. Можно отказаться от установки громоздких радиаторов, дополнительных отопительных приборов.

Если укладка труб теплого пола выполнена правильно, прогрев будет равномерным. Если работы проведены неверно, в комнатах будут зоны перегрева полового покрытия, холодные точки. Укладку труб теплого пола, работающего от воды, можно выполнить самостоятельно. Для этого нужно научиться рассчитывать шаг между отдельными элементами, выбрать схему монтажа.

Особенности системы

Прежде чем обучаться укладке труб теплого водяного пола нужно уделить внимание особенностям системы:

  1. Помещения с системами подпольного отопления прогреваются равномерно. Этого нельзя сказать про комнаты с радиаторами.
  2. Система подпольного отопления не подходит для помещений с низкими потолками.

Срок службы обогревающей конструкции зависит от того, из каких элементов она изготовлена. Если для этого используются металлополимерные, полимерные составляющие, он может достигать 50 лет. Электрические нагревательные элементы прослужат 20 лет, а металлические радиаторы рекомендуется менять раз за 25 лет.

Как определить площадь комнаты?

Прежде чем заниматься установкой отопительной конструкции нужно рассчитать ее мощность зависимо от площади помещения, чтобы конструкция могла прогревать комнаты равномерно. Чтобы трубопровод функционировал в оптимальном режиме, нужно установить циркуляционный насос. При выборе мощности нужно обращать внимание на некоторые факторы:

  • диаметр трубок;
  • количество дополнительных ответвлений, соединительных фитингов, метраж трубопровода;
  • требуемое давление;
  • количество теплоносителя.

Правила расчета и варианты укладки

Прежде чем изучать, как уложить трубы для теплого пола, соединять отдельные элементы трубопровода, нужно научиться рассчитывать метраж трубок. Для этого необходимо учитывать некоторые правила:

  1. Для расчета количества отдельных элементов конструкции нужно учитывать шаг между спиралями. Если между отдельными витками 10 см, для выполнения монтажа понадобится около 10 метров трубок. Если расстояние 30 см — необходимо подготовить 3,4 метра. При этом расход не изменяется зависимо от выбранного способа укладки конструкции.
  2. Максимальное количество метров расходного материала на один водяной контур отопления не должно превышать 70. Для обогрева больших помещений нужно монтировать несколько отопительных контуров.
  3. Важно учитывать расположение мебели. Если она будет длительное время стоят на одном месте без перемещения, систему под ней можно не монтировать.
  4. Минимальное расстояние от крайних элементов трубопровода до стен, межкомнатных перегородок — 20 см.

Для равномерного прогрева помещения площадью 20 м2 понадобится около 55 м трубок. После расчета нужно выбрать способ укладки конструкции.

Змейка

Особенности монтажа труб по схеме змейка:

  1. Для эффективного отопления, достижения равномерного прогрева без холодных зон лучше сделать два отопительных контура.
  2. Облегчить монтаж помогут специальные маты с выемками под трубки.
  3. Нужно использовать специальные крепежные элементы, которые не зажимают отдельные элементы трубопровода. При нагревании стенки деталей изменяются в размерах.

Актуально применять способ укладки нагревающегося основания змейкой в тех местах, где невозможно применить технологию улитки.

Улитка

Укладка труб теплого пола улиткой считается более эффективной для прогрева больших помещений. Главное рассчитать шаг между отдельными витками конструкции, чтобы не появлялось холодных зон. Укладка труб теплого пола происходит по закручивающейся спирали. При этом между витками горячей воды должны быть расположены контуры обратки. Благодаря такой конструкции, поверхности основания не перегреваются. Оптимальное расстояние между витками — 10 см.

Комбинированный способ

Если помещение большое раскладку труб водяного теплого пола можно комбинировать. Для этого выполняется два витка улитки, 3–4 ряда змейки. Эффективнее всего расположить полосы змейки по краям комнаты, в центральную часть выложить в форме улитки.

Выбор шага

Шаг укладки труб водяного теплого пола зависит от диаметра составных элементов. Например, малое расстояние недопустимо для трубок большого диаметра. Большой промежуток между деталями малого сечения приведет к появлению холодных зон.

Для обогрева комнат в частном доме часто внутрь напольной стяжки или под декоративное покрытие основания устанавливаются нагревательные трубопроводы. Такие системы избавят хозяина дома от установки громоздких радиаторов, будут равномерно прогревать комнаты, обеспечивая высокий уровень комфорта.

Теплый пол — это ступенька трубы. Как рассчитать шаг или расстояние между трубами теплого водяного пола

Укладка труб для теплого водяного пола своими руками становится все более популярной. Такая система отопления может быть как дополнительной, так и основной. Чтобы провести правильный монтаж системы отопления, нужно знать о ее особенностях.

Для устройства водяных полов можно использовать изделия из следующих материалов:

  • медь;
  • сшитый или линейный полиэтилен;
  • комбинаций алюминия и полиэтилена или полипропилена;
  • композит полиэтилена и поливинилэтилена (стекловолокно).

Медный трубопровод имеет лучшие характеристики. Обладает высочайшей теплоотдачей, очень прочен, не подвержен коррозии. Однако изделия из меди стоят дорого, для их монтажа требуется дополнительное оборудование. Кроме того, такую ​​систему необходимо защищать от щелочи.

Оптимальный вариант — выбрать изделия из полиэтилена для устройства теплых полов. Он может быть сшитым (PE-X) или линейным (PE-RT).

Достоинства продукции:

  1. Высокий уровень теплопроводности.
  2. Долговечная износостойкость.
  3. Повышенная гибкость.
  4. Внутренние стенки гладкие, за счет чего очень медленно забиваются отложениями.
  5. Материал не подвержен коррозии.
  6. Выдерживает многократное замерзание теплоносителя.
  7. Самостоятельная сборка таких сетевых элементов проста, так как для их правильной установки не требуются специальные инструменты и инструменты.

Самый надежный PE-X-A. Этот материал имеет самую высокую плотность сшивки (85%).Благодаря этому у него есть ярко выраженный эффект «памяти». Другими словами — . Это дает возможность использовать осевой вид фурнитуры со скользящими кольцами, их легко заделать в стяжку без проблем.

Аналоги PE-RT не обладают феноменом «памяти». Из-за этого с ними используется только фурнитура цангового типа. Их запрещено блокировать. Однако, когда контуры системы проложены цельными сечениями, то все интерфейсы будут только на коллекторе. В этом случае использование ПЭ-РТ оправдано.


Производители также производят трубы для водяного пола из композита. В этом случае верхний и нижний слой изготавливаются из полиэтилена, между ними наклеивается алюминиевая фольга (PE-X-Al-PE-X или PE-RT-Al-PE-RT). Металл усиливает элементы теплого водяного пола и служит барьером для кислорода.

Недостатком алюмопластов является их неоднородность. Различная степень теплового расширения металла и полимера может привести к расслоению материала.

Исходя из этого, лучше всего подойдут изделия из полиэтилена, армированного поливинилэтиленом (EVOH). Это значительно снижает проникновение кислорода в охлаждающую воду через стенки трубы. Это усиление может быть верхним слоем или размещаться между слоями полиэтилена. Второй вариант предпочтительнее.

Водяные теплые полы можно укладывать из труб таких размеров:

  • 16 × 2;
  • 17 × 2;
  • 20 × 2 мм.

Как рассчитать расстояние между элементами для сборки системы?

Перед их установкой необходимо произвести расчет водяных полов.Для этого составляется схема системы с водяными контурами. Что учитывать при расчете:

  1. Везде, где будет установлена ​​мебель, напольное оборудование, трубопроводная техника, в этом нет необходимости.

Длина контуров сечением 16 мм не должна быть более 100 м. Длина труб 20 мм для устройства теплого пола не должна превышать 120 м. В противном случае давление в тепловой сети будет слабым. Поэтому каждый контур должен располагаться на площади не более 15 м².

  1. Разница между их длиной не должна быть более 15 м. Другими словами — делать их нужно примерно одинаковой длины. Объемное помещение следует разделить на несколько отопительных ветвей.
  2. Оптимальный шаг прокладки труб водяного теплого пола — 15 см, если использовать эффективную теплоизоляцию. При суровом климате и частых морозах от -20º и ниже зазор между витками у наружных стен уменьшается до 10см.
  3. При промежутке между трубами 15 см их стоимость около 6.7 м на 1 м² жилой площади. При установке с шагом 10 см — 10 м.

Схемы устройства водяного теплого пола

Схема укладки трубы теплого пола может быть выполнена «змейкой», «улиткой» или комбинированной.

Прокладывать водяной контур змейкой проще всего. Выполняется петлями. Такая схема установки оптимальна в помещении, разделенном на функциональные зоны, в которых планируется применять различные температурные режимы.

Когда первая петля устанавливается по периметру комнаты и внутри нее запускается одиночная змейка, половина площади будет достаточно нагрета горячей водой. В другой части помещения будет циркулировать остывший теплоноситель. Поэтому в нем будет круто.

Применяется и другой вариант этой схемы — двойная змейка. При нем по всему помещению бок о бок проходят подающая и обратная водяные ветви.

Третий вариант такой схемы — разводка поворотов угловой змейкой.Применяется в угловых помещениях, когда две стены внешние.

Намотки змейки можно отрегулировать равномерно. Однако изгибы водяных контуров в этом случае будут сильно изогнутыми.

Достоинством схемы является простая разводка трубы теплого пола змейкой. Легко спланировать и смонтировать.

  • перепад температур в одной комнате;
  • изгибы трубопровода слишком крутые, что при небольшом шаге укладки может привести к перегибам.

Устройство водяного пола улиткой еще называют «ракушкой» или «спиралью».При такой схеме подающие ветви и спинки монтируются по всей площади помещения и проходят по спирали параллельно друг другу. Монтаж ведется от периметра стен до середины комнаты.

Ветка для кормления в центре комнаты заканчивается петлей. От него параллельно своими руками монтируется обратка и проходит от середины комнаты по ее периметру дальше к коллектору. Когда в комнате холодная наружная стена, по ней можно уложить двойную улитку.

Укладка трубы теплого пола с улиткой имеет следующие преимущества:

  1. Помещение прогревается равномерно.
  2. Гидравлическое сопротивление в системе небольшое.
  3. Установка панциря требует меньших материальных затрат, чем змейки.
  4. Изгибы витков получаются плавными, благодаря этому шаг между витками можно сделать меньше.

Минус улитки — сложная планировка и трудоемкий монтаж.

Не все помещения имеют прямоугольную конфигурацию, в помещении также могут быть две внешние холодные стены.Чтобы было тепло, можно использовать комбинированную укладку контуров своими руками.

Для обогрева помещения по наружным стенам туда помещают петли подводящих труб. Устанавливать их лучше всего под углом 90 ° друг к другу.

Способы устройства теплого водяного пола

Способы укладки труб теплого водяного пола делятся на бетонные и укладочные.

Этот метод требует много труда и времени. Время высыхания зависит от толщины бетонного покрытия.Только после того, как бетон наберет полную прочность (около 28 дней), его можно укладывать на напольное покрытие.

При настилочном методе используются готовые материалы. Из-за отсутствия мокрой работы такая укладка теплого пола своими руками происходит быстро. Однако стоимость оснащения системы возрастает, так как необходимые материалы дороги. При использовании метода настила в качестве основы:

    Утеплитель полистирольный
  • ;
  • деревянных модульных или стоечных панелей.

Устройство контуров на профильные теплоизоляционные маты

Аналогичный вариант для теплого пола самый простой. В качестве основы для водяного пола используются изоляционные плиты из пенополистирола. Эти коврики для установки имеют размеры 30 × 100 × 3 см. Они оснащены пазами и невысокими стойками. В эти крепления защелкивается труба теплых полов. На них осуществляется укладка финишного покрытия.

Этот способ не требует обязательного использования бетонной стяжки.Если в качестве финишного покрытия используется напольная плитка или линолеум, сначала на основание кладут плиты ГВЛВ. Толщина листов должна быть не менее 2 см.

Модульные и стоечные типы теплых водяных полов

Такие системы чаще всего используются в деревянных домах. Укладка труб выполняется по черновому основанию пола или по лагам.

В модульной системе используются готовые панели ДСП для укладки труб. Их толщина 2,2 см. В модулях есть каналы для крепления алюминиевых пластин и труб.Утеплитель при таком способе монтажа устанавливается в деревянный пол.

Полосы монтируются с интервалом 2 см. Исходя из шага между трубами используются полосы длиной 15-30 см и шириной:

Чтобы не терять тепло, плиты снабжены защелками для труб. Если отделка полов — линолеум, на трубы следует укладывать один слой плит ГВЛВ. Когда финишная вагонка — ламинат, паркет, то без нее можно обойтись.

Ракетный вариант напольных покрытий практически идентичен модульному.Отличие в том, что вместо панелей в нем используются бруски шириной 2,8 см.

Зазор между планками в модулях должен быть не менее 2 см. Стеллажная система укладывается только на бревна. Шаг между ними должен быть 40-60 см. В качестве теплоизоляционного материала в этом случае используется пенополистирол или минеральная вата.

Последовательность укладки труб в бетонную стяжку

При всей своей сложности устройство тепловой сети в бетонную стяжку сейчас является самым распространенным.Технология выглядит так:

  1. Сначала готовится база. Черновой пол очищают от мусора, если на нем есть трещины, насыпи, их удаляют перфоратором.
  2. Затем на полы помещения укладывается гидроизоляция.
  3. После этого поверх него устанавливается теплоизоляция.
  4. Далее правила кладки требуют между заранее рассчитанными участками и по периметру стен помещения монтировать компенсационную (демпфирующую) ленту.
  5. Навесная арматурная сетка.
  6. Согласно выбранной схеме происходит укладка труб теплого пола. К арматуре они прикрепляются своими руками с помощью гарпунов.
  7. Для проверки системы она заполнена водой и находится под давлением.
  8. Затем устанавливаются направляющие маяки.
  9. В последнюю очередь заливается цементно-песчаная стяжка.

Укладка теплого водяного пола на армирующую сетку и без нее

Возможны два варианта заливки теплых полов с бетонной стяжкой — с использованием арматурно-крепежной сетки и без нее.

  1. Если в качестве утеплителя используются маты из пенополистирола с пазами для контуров, то сетку использовать нельзя. Бетон можно заливать сразу после укладки теплого пола.
  2. При использовании обычного утеплителя нужно использовать тонкую металлическую или полимерную сетку для усиления и закрепления контуров. Он должен быть немного приподнят над теплоизоляционным материалом.

Выбор оптимального шага

Расстояние между трубами при прокладке зависит от типа помещения, тепловых потерь от него и расчетной тепловой нагрузки.Обычно шаг составляет от 10 до 30 см. Может быть переменным или постоянным:

  1. При тепловой нагрузке менее 50 Вт на квадратный метр оконтуривание выполняется вручную с постоянным шагом 20-30 см.
  2. При большой тепловой нагрузке (от 80 Вт на квадратный метр и более) рекомендуемое расстояние между витками — 15 см.
  3. В остальных случаях используется переменный шаг. Например, по наружным стенам, через которые происходит наибольшая потеря тепла, расстояние между петлями сети становится наименьшим (10 см).На внутренних участках комнаты зазоры между витками сети увеличиваются (до 20 см).

Количество витков с наименьшим шагом рассчитывается при расчете обогрева. Расстояние 25-30 мм чаще всего используется в очень больших помещениях. Для подачи теплоносителя в них используются контуры сечением 20 мм.

Важные нюансы обустройства системы отопления в бетоне

Водяная отопительная сеть в бетоне должна быть правильно замурована.Поэтому необходимо учитывать некоторые тонкости.


Полы перед установкой системы на первом, цокольном этажах необходимо гидроизолировать. Так помещение будет защищено от капиллярного отсоса влаги из земли. На следующих этажах гидроизоляция будет страховкой на случай аварии.

В качестве гидроизоляции в большинстве случаев используются специальные полиэтиленовые пленки толщиной 150-200 мкм. Обязательное правило: их полотнища на полу должны накладываться друг на друга на 10 см.Стыки следует заклеить специальной лентой. На стены полотно также высаживают внахлест не менее 10 см.

Для теплоизоляции бетонных полов лучше всего подходит экструдированный пенополистирол. Обладает необходимой прочностью и жесткостью. К тому же он влагостойкий, поэтому его не нужно защищать пароизоляцией.

Для использования внутри помещений достаточно плит из пенополистирола толщиной 5 см. Только в регионах с очень суровым климатом слой теплоизоляции доводят до толщины 10 см.Теплоизоляционный материал необходимо уложить друг к другу, а стыки между ними продуть монтажной пеной.

Перед заливкой стяжки стены помещения по периметру, а также все препятствия (например, колонны, выступы) и границы контуров необходимо оклеить демпферной лентой. Подавляет растрескивание раствора при его высыхании, усадке и расширении. Это связано с тем, что материал образует компенсационные зоны. Демпферная лента изготовлена ​​из пенополиэтилена, имеет толщину 0.5-1 см, ширина 10 см, в рулоне от 15 до 50 м.

Способы закрепления контуров


Системы водяного отопления можно монтировать несколькими способами:

  1. Зажимы полиамидные. Их используют для закрепления контуров к армирующей сетке. Затраты на крепление две штуки на 1 погонный метр.
  2. Проволока стальная. Его сетевые элементы крепятся к сетке, расход такой же.
  3. Строительный степлер и скобы. Этот метод подходит для быстрого крепления контуров к утеплителю.
  4. Крепежная тележка. В этом П-образном устройстве из поливинилхлорида компоненты системы защелкиваются при установке.

Монтажные маячки


Для упрощения работ применяется приспособление для укладки стяжки, как маячки. Они представляют собой планки, установленные на одной строго горизонтальной плоскости и с одинаковым шагом друг от друга. Маяки представляют собой ровный металлический профиль, поверх которого будет заливаться стяжка. Планки определяют его будущий уровень.

Для определения уровня 0 используется лазерный или водяной уровень.С их помощью по периметру комнаты, на стенах на высоте 30 см рисуются контрольные точки. Их по два в каждом углу и по 3-4 на стенах. Бирки соединяются между собой перфорацией, образуя линию точного горизонтального уровня.

Затем в углах измеряется высота от пола до оси уровня. Его минимальное значение закладывается от линии уровня и отмечается по периметру помещения. Затем метки соединяются перфорацией. Самая высокая точка называется нулевой точкой.С него начинают устанавливать маяки. Делается это при помощи саморезов или раствора.

Раствор для стяжки пола

Раствор для стяжки изготавливается из портландцемента марки М-400 и кварцевого крупнозернистого песка (0,8 мм) в соотношении 1: 3. В сухую смесь добавляют воду до консистенции, удобной для легкого разравнивания. микстура. Для повышения пластичности в раствор можно добавить жидкое мыло.

Замешивание компонентов стяжки для водяного теплого пола лучше производить не своими руками, а в бетономешалке.Для увеличения прочности покрытия в жидкий раствор можно добавить полимерное волокно.

Опрессовка

Наддув осуществляется после того, как был проведен монтаж контуров, и они были подключены к коллектору. Прикус до конца этой процедуры заполнить нельзя.

Испытание под давлением позволяет убедиться, что вся система работает должным образом, ее интерфейсы герметичны, а контуры не имеют дефектов. Если при осмотре обнаруживаются неисправности, их оперативно устраняют перед заливкой стяжки.

Система заполнена хладагентом, к нему приложено максимальное давление. Во время теста сеть расширяется до рабочего размера. Это позволяет во время эксплуатации избежать сильного давления на стяжку.

Присоединение контуров к коллекторам

Коллекторы помещаются в специальный шкаф:

  • ширина и высота ящика могут составлять 0,5 × 0,5 или 0,4 × 0,6 м;
  • мощность — 0,12-0,15 м.


При установке шкафа в него должны быть выведены питатель (с нагретой водой) и обратный (с охлажденным теплоносителем) патрубок:

  1. К подающему патрубку с помощью штуцера или переходника (с разным сечением элементов) подключается коллектор, подающий горячий теплоноситель.
  2. Коллектор прикручивается к обратке за ответвление с охлажденной водой.

Между трубопроводом и коллекторами следует ставить запорную арматуру на случай аварии и ремонта. С противоположной части гребешка необходимо подключить сливной кран. Чтобы точно контролировать температуру пола на коллекторах, необходимо смонтировать регулирующий клапан и смесительное устройство.

Где я могу установить

При установке системы теплого пола не допускайте типичных ошибок.

Теплый пол в большинстве случаев устраивают в собственных домах. Тепловые сети многоквартирных советских времен не рассчитаны на такой способ отопления. Техническая возможность его реализации есть, но велик риск, что вам или вашим соседям станет холодно.

Нередко весь стояк остается холодным, т.к. Гидравлическое сопротивление напольной сети намного выше, чем у батарейного отопления. Он останавливает поток охлаждающей жидкости.

Поэтому управляющие компании не дают разрешения на установку труб теплого пола в старых домах.Если вы сделаете это без сверки, вам придется заплатить штраф и демонтировать систему.

Тем не менее, в новостройках можно сделать водяное отопление полов, и разрешение на его использование не требуется. Их тепловые сети изначально рассчитаны на повышенное гидравлическое сопротивление.

Регулировка температуры охлаждающей жидкости

Для удобства ног температура воды не должна быть выше + 45º. В этом случае напольное покрытие прогреется до +28 градусов. Практически вся отопительная техника не может дать таких температур (минимум + 60º).Исключение составляют конденсационные котлы на газе.

При использовании любого другого оборудования необходимо установить тестомес. В нем к нагретому теплоносителю от котла добавляется холодная вода из обратки.

Принцип работы устройства:

  1. Нагретая вода из котла поступает на термоклапан. Если заданная температура превышена, он открывается для смешивания охлаждающей жидкости с обратным потоком.
  2. Перед циркуляционным насосом стоит перемычка с двухходовым клапаном.
  3. Когда он открыт, вода добавляется из обратной магистрали.
  4. Смешанный теплоноситель течет через насос к термостату. Он регулирует работу термоклапана. При достижении определенной температуры обратный поток перекрывается.

Распределение по контурам

Из узла смешения вода поступает в распределитель или коллектор. Одно дело, когда теплый пол делают в маленькой комнате (например, в ванной). В нем можно проложить только один виток сети.Тогда инструкция не рекомендует этот узел.

Когда поворотов несколько, надо как-то перераспределять воду между ними. Затем соберите его и отправьте обратно. Эти функции возложены на коллектор. Представляет собой пару патрубков на подающем и обратном патрубках. Они подключаются к выходам / входам цепей.

Когда теплый пол в нескольких комнатах, лучше всего поставить гребенку с регулировкой нагрева теплоносителя. Часто в разных помещениях вам не нужна одинаковая температура.

Заключение

Установка сети теплого пола повысит комфорт проживания в доме зимой. Есть разные способы прокладки такого отопления. Выбирать их нужно, исходя из термических нагрузок, климата вашего региона, финансовых возможностей.

Теплый водяной пол — это отличное решение для его установки в кухонной зоне, ведь его технологическая система выбрана таким образом, чтобы создать максимально комфортную для человека температуру.

Шаг 1. Преимущества

Наличие

Установить такой вариант пола можно на базе любого радиаторного отопления. Цена также доступна для любого уровня дохода.

Комфорт

Теплый пол, как водяной, так и инфракрасный, позволяет создать наиболее правильное распределение тепла по помещению. Нагретый воздух поднимается сверху вниз, чтобы ноги не чувствовали себя постоянно дискомфортно. По такому полу ходить приятно и абсолютно безопасно.

Гигиена

Если рассмотреть процесс передачи тепла в пространстве от источников тепла, таких как радиаторы или конвекторы, можно увидеть, что вместе с воздухом осевшая на поверхности пыль поднимается вверх. В случае с теплым полом этот процесс исключен. Это очень удобно, особенно если в семье есть дети или люди, страдающие астмой.

Экономичный

Минимальная температура образуется только под потолком. Но зачем человеку это пространство? Таким образом, вся территория помещения, в котором принято располагаться, отапливается равномерно, это создает эффект значительной экономии энергии.

Прочность

Конечно, срок службы во многом будет зависеть от материалов и режима работы. Но для систем водоснабжения он все равно намного выше электрического пола.

Саморегулирование

Одной из важных характеристик теплого пола является то, что он поддерживает заданный режим без постороннего вмешательства. Это связано с внутренними процессами, когда пол нагревает воздух до совпадения температур.

Простота

Пол с водяным подогревом, как и пленочный, монтировать очень просто, и это можно сделать, не приобретая специальных навыков.Наверное, самый сложный этап — проектирование. Схематическая планировка и продумывание оптимальной расстановки требует внимательного подхода. А вот установка труб, их подключение — это не сложно.

Шаг 2. Ограничения

Теплый водяной пол возможен для установки в изначально продуманных для этого помещениях. То есть, если в коттедже проектом предусмотрена возможность проведения труб через пол, то сделать это можно в любой момент.В квартирах многоэтажных домов это, к сожалению, невозможно. Объясняется это тем, что в радиаторы подается вода под определенным давлением, которое рассчитано на все квартиры, и если создать расхождение, оно изменится, и пострадают соседи.

Если принято решение об установке водяного пола, то сразу нужно рассматривать вариант полов. Для него лучше всего подойдет кафель или ламинат. Линолеум не очень рекомендуется специалистами, потому что не весь он сделан из качественных материалов.Некоторые компоненты при нагревании могут выделять ужасный запах или вредные ядовитые вещества.

Паркет или ковролин также не подходят из-за их большого тепловыделения. То есть они не будут проводить тепло наружу, а будут отдавать внутрь, что, конечно, нежелательно.

Шаг 3. Выбор компонентов

Распределительный узел. Он состоит из трех частей: коллекторной группы, насоса и смесителя. Насос отвечает за циркуляцию воды, а смеситель обеспечивает необходимую температуру.Если пол устанавливается на небольшой площади, то можно регулировать его вручную, а если кухня очень большая, то для этого есть специально приспособленные помпово-смесительные устройства.

Контур теплого пола. На самом деле это система лежащих труб. Оптимальный вариант использования — материал на основе PEX или PERT-стойкий. Это сырье легкое, прочное и гибкое. В нем сочетаются такие качества, как невысокая цена, хорошие технические характеристики и долгий срок службы. Температура воды равномерно распределяется по всей поверхности.Если произошла ошибка и вы неправильно соединили стыки, в отличие от металлопластика или металла, трубы не потеряют своих свойств, и вы легко сможете исправить ошибку.

Шаг 4. Проектирование

На этом этапе следует определить, будет ли система теплого пола единственным способом обогрева или просто дополнением к основному. В первом случае распределенная по всей поверхности температура будет намного ниже, чем в радиаторах.Это примерно 30-40 ° С, а во втором случае 60-90 ° С. Соответственно, нужно учитывать это при настройке котла отопления.

Для расчета количества труб принята формула, когда на 1 кв. Квадратный метр берется 5 метров трубы. То есть на кухне площадью 6 кв. м., нужно 30 метров труб. Самая благоприятная температура для восприятия — 24-26 ° C, а значит, на входе она должна быть на 2-3 градуса выше.

Все вышеперечисленное относится к системе отопления только в напольном покрытии.Если конструкция будет размещена в дополнение к имеющемуся радиатору, необходимо создать блок смещения, который будет переключать с высоких температур в радиаторах на нижний, который подводится к полу. Принцип работы аналогичен обычному смесителю на смеситель, им можно управлять как вручную, так и автоматически.

Для этого нужно выбрать ступеньку с учетом таких моментов:

  1. Определите области активных тепловых потерь.Они расположены возле окон, дверей, балкона. Здесь шаг должен быть 10-15 см.
  2. Труба контура должна касаться этих зон или проходить прямо под ними.
  3. Для центральной зоны кухни желательно использовать шаг 20-30 см.
  4. Трубу можно укладывать двумя способами: змейкой или спиралью. Для маленькой кухни лучше всего выбрать второй вариант. Места изгиба будет меньше, а значит, меньше вероятность деформации трубы.
  5. Расстояние от стены до контура должно быть не менее 15 см.

Шаг 5. Установка

Первый шаг — подготовка поверхности. Для монтажа труб необходимо исключить падение даже незначительной высоты, а для этого необходимо провести стяжку по всей поверхности.

  1. Слой для предотвращения попадания влаги. В комплекте мастика и обычная пленка.
  2. Слой для устранения потерь тепла с использованием материала, включающего вспененный полиэтилен и пенополистирол.

После того, как слои уложены, необходимо сделать разметку на полу в соответствии с нанесенным расположением труб. Это можно сделать обычным маркером. Крепление труб к поверхности может осуществляться несколькими способами. Первый — это использование арматуры, к которой прикручиваются хомуты или обычные провода. И второй — плиты из пенополистирола. Это специальная маркировка для прокладки труб. У нее маленькие горбочки, расположенные в определенном порядке. Между ними установлена ​​труба.

После того, как все детали разложены, подключены и подключены к распределительным узлам, необходимо протестировать систему. Это делается для того, чтобы стыки были хорошо загерметизированы, ничего никуда не текло, а трубы выдерживали давление.

Если все прошло удачно, делается бетонная стяжка, на которую впоследствии будет укладываться напольное покрытие.

Нюансы формирования стяжки водяного теплого пола

Есть определенные особенности в формировании стяжки для водяного теплого пола.Это связано с принципом распределения тепла по его толщине и используемым напольным покрытием.

1. При укладке теплого водяного пола под плитку необходимо сделать стяжку толщиной от 3 до 5 см или рассчитать трубы так, чтобы зазор составлял 10-15 см. В противном случае тепло от труб не согреет пространство между ними.

2. При укладке на ламинат, линолеум и т. Д. Стяжка становится тоньше. В этом случае для прочности можно поверх теплого пола использовать еще одну армирующую сетку.Это уменьшит путь тепла от труб к поверхности напольного покрытия. Под ламинат слой утеплителя не укладывается, потому что он только ухудшает эффективность теплого пола.

Советы мастера

Назад Вперед

Чтобы масляная краска при хранении не высыхала и на ней не образовывалась пленка, положите на поверхность краски кружок плотной бумаги и «залейте его тонким слоем олифы».

«Полиэтиленовая пленка, покрывающая балкон или теплицу, предохраняющая от разрыва ветром, натянутая с двух сторон с промежутками примерно 10-15 см.«

«С бетонной смесью легче работать, обычно в нее добавляют глина, но глина снижает прочность смеси». Добавьте в него ложку моющего средства из расчета на ведро воды. «

«Чтобы винт, головка которого скрыта за препятствием, не вращался вместе с затянутой гайкой, необходимо набросить на него несколько витков резьбы или тонкой проволоки и слегка затянуть концы». «Благодаря трению винт хорошо удерживается на месте». Концы нити можно обрезать после затяжки.«

«Вырезать скворечник можно без коловера. Достаточно разделить лицевую сторону доски по центру и вырезать стамеской или топором с полуоткрытием нужного размера, после чего соединить половинки заново. »

Деревянные шурупы для шурупов рассыпаются и выпадают из стекла. Не спешите разрезать новую пробку. Плотно заделайте дырку в стене нейлоном из старого чулка. Нагрейте покрасневший ноготь подходящего диаметра, проделайте отверстие под саморез. Ра плавленый капрон превратится в прочную пробку.

«Столярный уровень можно легко превратить в теодолит, снабдив его прицельным приспособлением из прорези и мушкой».

«Чтобы две линии линолеума стояли встык, удобно использовать самоклеящуюся декоративную пленку, кладя ее под основу ли нолеума».

«Чтобы гвоздь ходил в нужном направлении и не гнулся при ударе в глубокую ямку или бороздку, его следует поместить внутрь тубуса, зафиксировать мятой бумагой или пластилином.«

Перед тем, как проделать отверстие в бетонной стене, прикрепите лист бумаги прямо под ним. Пыль и осколки бетона не разлетятся по комнате.

«Чтобы отрезать трубу точно под прямым углом, советуем прикрепить ее следующим образом: возьмите ровную полоску бумаги и проденьте ее на трубу по линии пропила». Плоскость, проходящая через край бумаги, будет строго перпендикулярна оси трубы. «

«Переворачивать бревна или деревянную балку поможет несложный метод — отрезок мотоциклетной или велосипедной цепи, заправленный с одной стороны крюком и прикрепленный к лому с другой стороны.«

«Для того, чтобы работать двуручной пилой, мы рекомендуем простой метод: переместить ручку пилы из верхнего положения в нижнее».

Отрезать кусок шифера необходимого размера можно распилить, но лучше и проще пробить линию предполагаемого пропила гвоздем с частотой 2-3 см, после чего сломать шифер на опоре.

«Лучший способ приклеить плитку к стене — взять битум, растопить и капнуть всего четыре капли на углы плитки.«

Фигурные отверстия при производстве гнутых оконных рам удобнее всего вырезать ножовкой с токарным полотном.

«Изготовление витражей — дело долгое и сложное, вы можете быстро имитировать витраж, взяв тонкие стойки или веточки лозы, приклеив их к листу стекла, а затем покрасив стекло и нанеся покрытие. с лаком «.

«Если под рукой нет дюбеля, то его можно сделать из куска пластиковой трубки, а также можно приподнять шариковую ручку.Отрезав кусок нужной длины, сделайте продольный надрез, примерно наполовину, и дюбель готов ».

«Известно, как сложно повесить дверь, работающую в одиночку, но достаточно укоротить нижний штифт на 2–3 мм, и работать станет намного легче».

«Очень прочная, безусадочная и достаточно водостойкая замазка получается из бустилата, смешанного с любым порошком — мелом, гипсом, цементом !, опилками и т. Д.»

«Если нужно вкрутить шуруп в торец ДСП, просверлите отверстие чуть меньше диаметра шурупа, залейте отверстие клеем« Момент »(только не эпоксидкой!), Вкрутите шуруп. день за днем, но груз не сваривается.день. «

«Крепить портреты, фотографии, картины в деревянных рамах со стеклом удобнее не гвоздиками, а согнутыми под прямым углом канцелярскими ручками». Кнопки аккуратно нажимаем отверткой. «По сравнению с гвоздями опасность поломки тонких рамок сведена к минимуму».

«Не так-то просто вкрутить шуруп в твердую древесину». Если винтом вкрутить отверстие для шурупа, а сам шуруп сильно натереть мылом, то после такой операции работа пойдет как по маслу.«

В целях экономии времени край обоев можно обрезать острым ножом, не разворачивая рулон. Для этого необходимо сначала выровнять конец рулона и простым карандашом обвести край кромки с внешней стороны. При работе ножом валок нужно постепенно поворачивать в направлении прокатки.

Для переноски больших листов фанеры, стекла или тонкого железа в домашних условиях удобно использовать проволочный держатель с тремя крючками внизу и ручкой вверху.

ЕСЛИ нужно разрезать вдаль круглую палку, эту работу удобнее всего проделать с помощью шаблона. Он представляет собой металлическую трубку с проточкой посередине. Диаметр подбирается таким образом, чтобы узор свободно скользил по палочке.

Для работы ножовкой мне будет легче, если в средней части у меня будет высота 1/3 зубца.

15 февраля 2013 г., 22:45

Запад уже давно перешел на такую ​​систему отопления.Практически с начала 80-х от 30 до 50% построенных домов было оборудовано таким теплым полом. Но почему тогда у нас не было такой системы? И сейчас не многие решаются сделать такое отопление в своем доме. Но я серьезно рассматриваю этот вариант, пока только читаю информацию, и честно говоря о технологии укладки написано мало, например, до сих пор не могу найти, какого размера должна быть ступенька при укладке воды- пол с подогревом?

19 февраля 2013 г., 12:32

Думаю, вы вполне справитесь с этой задачей.Только сначала нарисуйте схему раскладки и все просчитайте. При укладке труб водяного теплого пола следует помнить, что идеальный шаг укладки должен быть от 10 до 35 сантиметров. Расстояние от трубы до ближайшей стены должно быть не менее 7 см. И помните, что длина одной цепи должна быть 50-60м.

Что делать для прокладки труб водяного теплого пола?

20 февраля 2013 г., 13:03

Выбор шага кладки определяется в зависимости от типа помещения и от того, какова величина его расчетной тепловой нагрузки.Есть два типа укладки: с постоянным и переменным шагом. Водяной пол с постоянным шагом укладывается при тепловой нагрузке менее 50 Вт / м2, при этом шаг укладки должен составлять 30 см. А при высоких тепловых нагрузках (более 80 Вт / м2) рекомендуется шаг укладки 15 см. В других, промежуточных случаях обычно берется переменный шаг укладки — по наружным стенам, где имеют место наибольшие теплопотери, используется более частый шаг укладки, а во внутренних зонах помещений — реже.

Что делать для прокладки труб водяного теплого пола?

21 февраля 2013 г., 8:30

Мне лично такой вариант не нравится. Это хоть и не дорого, но поначалу в такой системе под всем полом течет «тухлая» вода, говорят о том, что это негативно влияет на здоровье. Во-вторых, трубы могут протекать, арматура не прикручена или забракованная задвижка зацеплена, это чревато затоплением соседей и полной разборкой пола с применением перфоратора и отбойного молотка.Мароксов не будет! гораздо проще смонтировать электрический теплый пол.

Что делать для прокладки труб водяного теплого пола?

22 февраля 2013 г., 20:19

Да, это, конечно, вполне логично, но по предварительным подсчетам оказывается, что водяной пол на площади 50 квадратных метров намного экономичнее электрического. возможно, мои расчеты и не соответствуют действительности, о чем я писал выше — пока я только что вник в эти вопросы.

Что делать для прокладки труб водяного теплого пола?

14 марта 2013 г., 6:50

Sergey N писал (а): Мне лично этот вариант не нравится. Это хоть и не дорого, но поначалу в такой системе под всем полом течет «тухлая» вода, говорят о том, что это негативно влияет на здоровье. Во-вторых, трубы могут протекать, арматура не прикручена или забракованная задвижка зацеплена, это чревато затоплением соседей и полной разборкой пола с применением перфоратора и отбойного молотка.Мароксов не будет! гораздо проще смонтировать электрический теплый пол.


Вариант экономичный и полностью надежный.
Вода «гнилая» из области эзотерики, а не инженерии.
Трубы нормальных производителей не протекают, если не превышают допустимое давление — вопрос нормальных проектировщиков. Но стыков в стяжке нет, что за разбор пола перфоратором? Фитинги и краны могут течь по водопроводу, что теперь из плюсов циализации отказываться и унитаз на улице устраивать?
Если это так, то электрический теплый пол тоже может «замкнуться», значит — загореться! Еще предстоит увидеть, что страшнее — пожар, сначала все загорится, потом приедут пожарные и все затопит! или банальный неплотный кран.

Что делать для прокладки труб водяного теплого пола?

18 марта 2013 г., 10:18

Я уважаю электриков больше, чем воду. Конечно, у воды есть неоспоримые преимущества, например, температурная стабильность, но кровотечение при ней тоже немалое. Сложная система раздачи, сложность регулирования температуры, огромное количество различных подключений.

Электрическое поле простое, регулируется простым простым датчиком.
Если по теме вопроса — шаг кладки зависит от температуры.расчет. Увеличивать шаг ниже номинала уменьшать нельзя — можно.

Одним из ключевых компонентов теплого водяного пола являются трубы, от правильного выбора и правильной компоновки во многом зависит эффективность и практичность встроенного отопления.

Как выбрать трубы для водяного теплого пола? Как рассчитать метраж трубы? Об этом мы поговорим в статье.

Загорая с идеей основного или дополнительного обогрева комнаты или жилища в целом, необходимо выбрать самые ответственные трубы под.Мысль о том, что из остатков и обрезков можно обойтись более дешевым материалом, следует немедленно отбросить.

От качества, параметров и точного расчета комплектующих в конечном итоге зависит уровень комфорта в доме, экономичность системы, ее долговечность и надежность.

Не каждый вариант может удовлетворить ряд требований, в силу специфики, а также работы выбранной системы отопления:


Долговечность системы теплого пола, уложенной, как правило, под стяжку, должна быть соизмеримой со сроком эксплуатации самого здания, по крайней мере, до его капитального ремонта.Несмотря на то, что сегодня существуют способы установки контуров без, муфта предпочтительнее, так как обеспечивает более надежную защиту от повреждений труб, а также более мягкий, равномерный нагрев, распределение и теплоотдачу.

В целях снижения гидравлического сопротивления системы, повышения эффективности ее работы специалисты рекомендуют выдерживать соотношение диаметра трубы для теплого водяного пола и длины контура:

  • 16 мм — максимальная длина трубы для теплого водяного пола (на 1 контур) в пределах 60-70 м;
  • 20 мм — до 80-90 м;
  • 25 мм — до 100-120 м.

Чем больше расстояние между трубами водяного теплого пола или шаг в каждом контуре, тем выбирается диаметр труб больше.

При расчете, сколько труб потребуется для теплого водяного пола, нужно определить количество контуров. Существует правило, согласно которому площадь, отапливаемая контуром, не должна превышать 20 квадратных метров. Если площадь комнаты больше, следует организовать несколько контуров.

Какие трубы использовать для теплого водяного пола?

На строительном рынке потребителю доступны следующие виды труб для теплого водяного пола, отличающиеся своими достоинствами и недостатками:


Расчет перед укладкой

Надо определиться с.Есть 2 основных варианта — змейка и улитка (спираль). Далее на миллиметровой бумаге с учетом габаритов комнаты в масштабе составляется контурная схема расположения. Расчеты, скорее всего, придется делать несколько раз. Так что при расчете труб теплого пола неоценимым подспорьем может оказаться счетчик воды онлайн.


Планировка должна включать в себя расположение мебели. Под тяжелой тяжелой мебелью установка встроенного отопления нецелесообразна.

Расстояние от стены до первой нитки от 20 см и более. Определить, какое расстояние между трубами водяного теплого пола (ступеньки) можно исходя из размера диаметра, а также необходимой теплоотдачи с учетом общих теплопотерь помещения и назначения системы (дополнительно , базовый).

Во избежание неравномерного нагрева и холодных зон шаг трубы для теплого водяного пола не должен превышать 35 см. Диаметр 16 мм достаточен для нормального нагрева до 15 см поверхности в обоих направлениях.

Заключение

Определить, какие трубы нужны для теплого водяного пола, вы можете сами. Однако правильный расчет метража, а также выбор оптимальной схемы и шага труб водяного теплого пола поможет опыт специалиста.

Есть много видов отопления жилья. Эта вода, пар, , который может работать с разными нагревателями. Сегодня мы поговорим о трубах для теплого пола — что лучше, как выбрать диаметр и рассчитать длину конуры, учтем правила укладки.Низкотемпературный контур, по сравнению с традиционными системами отопления с батареями, более равномерно обогревает помещение. В таком доме приятно ходить босиком, это удобно, если в доме есть маленькие дети. К тому же здесь нет массивных радиаторов и ничего не портит эстетичный вид.

Из какого материала выбрать трубы для теплого пола

Труба металлопластиковая.

Если вы предпочитаете нагрев плова традиционной системе отопления, первое, что вам нужно сделать, это выбрать трубы для теплого пола.Какие из них лучше? Вариантов в принципе не так много, всего три:

  • металлопластик;
  • Полиэтилен
  • ;
  • медь.

В этом случае действительно необходимо продумать, какую трубу для теплого пола выбрать среди первых двух вариантов. Трубы из цветных металлов не только используются для низкотемпературных систем отопления, но и для традиционных уже не используются. Это связано с тем, что полимеры по всем параметрам лучше:

  • не ржавеют — несмотря на то, что медь является цветным металлом, она подвержена химической коррозии от контакта с алюминием и при воздействии на него вихревых токов;
  • простая установка;
  • низкая стоимость;
  • устойчивость к механическим воздействиям.

Мы можем выбрать, какие трубы для теплого водяного пола лучше всего подходят из полимерных изделий, за счет того, что теплоноситель не нагревается более 55 градусов в низкотемпературном контуре. В принципе, максимальная рабочая температура, которую выдерживает пластик, составляет 95 градусов. Поднять до 110 градусов можно, но ненадолго. В этом случае полимер сильно расширяется (тепловое расширение). Именно поэтому так важно, чтобы температура в теплом полу не превышала 55 градусов.В идеале стяжку следует прогреть до температуры тела. В противном случае из-за теплового расширения трубы теплого пола слой стяжки разорвется.

По надежности трубы полиэтиленовые лучше металлопластиковых. Они монолитные, поэтому не расслаиваются. Но у металлопластиков за счет алюминиевого армирования меньше термическое расширение и они сохраняют форму после изгиба. Несмотря на это, специалисты рекомендуют все же выбирать сшитый полиэтилен.

Расчет параметров трубы

Изделие из сшитого полиэтилена.

После того, как вы определились с материалом, нужно сделать расчет трубы для теплого пола. Он заключается в подборе диаметра и длины контура. Эти два значения тесно связаны, так как от них зависит полное гидравлическое сопротивление. Рассмотрим пример:

  • контур металлопластиковых труб наружным диаметром 16 мм может достигать не более ста метров, а труб диаметром 20 мм — ста двадцати метров;
  • контур полиэтиленовых труб с внешним диаметром 18 мм может достигать максимум 120 м.

Тогда нужно рассчитать длину трубы для теплого пола. Для расчета нам понадобится величина шага и площадь зон укладки. Конечно, важно учитывать тепловую мощность будущего отопления, но для таких расчетов существуют специальные программы с множеством вводных. Чтобы разобраться во всех тонкостях, потребуется много времени и усилий, поэтому можно положиться на основные принципы. Расстояние укладки — это расстояние между трубами теплого пола, которое варьируется от 150 до 300 мм.Чем ближе трубы друг к другу, тем теплее будет в помещении и, соответственно, материала уйдет больше.

  • отступ от стены 300 мм;
  • не кладите трубу там, где будет мебель и бытовая техника.

Имея все необходимые значения, можно приступать к расчету длины контура низкотемпературного отопления.

Длина трубы = (полезная площадь / шаг штабелирования) + 10%

Прямой монтаж труб теплого водяного пола

Две основные схемы для подключения низкотемпературного водяного контура.

Осталось понять, как уложить трубу для теплого пола. Для максимального использования тепловой энергии от низкотемпературной системы отопления необходимо провести . Для этого подойдет любой плотный утеплитель (пенопласт, EPP, минват, керамзит), но в приоритете, конечно же, .

Совершенно бессмысленно использовать световозвращающую изоляцию. Во-первых, исправно работает только при наличии буферной зоны воздуха. Во-вторых, раствор разъедает алюминиевую фольгу, и через пару лет от отражающей поверхности уже ничего не останется.При укладке труб для теплого водяного пола желательно сделать гидроизоляцию, чтобы соседи не затопили в случае протечки.

Существует четыре способа укладки труб теплого пола:

  • змея;
  • двойная змейка;
  • змейка угловатая;
  • улитка.

Рассмотрим алгоритм редактирования. Для начала выравнивается рабочая поверхность и укладывается утеплитель. Затем положите гидроизоляцию и приклейте демпферную ленту по периметру комнаты.После гидроизоляции на будущую стяжку укладывается армирующая сетка — лучше брать лист, а не рулонами. К арматурной сетке крепится труба по выбранной схеме. Важно хорошо закрепить контур, чтобы он не двигался во время заливки стяжки. Поверх труб заливается бетон. Толщина слоя должна быть не менее 3 см, в идеале 5-7 см. В противном случае пол треснет.

Будьте предельно осторожны, чтобы не повредить трубы.Определить место протечки в теплом полу сложно. Явных признаков аварии: . Определить точное местоположение можно только тепловизором.

Результаты

Для теплого пола используйте трубы металлопластиковые с внешним диаметром 16 и 20 мм, а также трубы ПЭН с внешним диаметром 18 мм. Чтобы рассчитать длину контура, нужно знать полезную площадь укладки и расстояние между трубами (от 15 до 30 см). Монтаж сопровождается утеплением пола и устройством гидроизоляции.Прокладывать трубы там, где будет мебель и бытовая техника, не нужно.

Facebook

Твиттер

В контакте с

Одноклассники

Google+

Калькулятор

квадратных метров — Дюймовый калькулятор

Найдите квадратные метры площади, выбрав форму и введя размеры. Включите цену за квадратный фут, чтобы оценить общую стоимость.

Выберите форму:

Параллелограмм в квадратных футах

Правильный многоугольник Квадратные метры



Вы хотите конвертировать из квадратных футов?

Квадратные метры — это просто площадь, измеряемая в футах, и часто сокращенно ее называют квадратными футами или 2 . Его часто используют при строительстве, ремонте и ремонте домов, таких как ковровое покрытие, паркетные полы, плитка, гипсокартон, окраска и оценка материалов для садоводства.

Вам может быть интересно, как рассчитать квадратные метры. Вы можете найти квадратные футы пространства точно так же, как если бы вы нашли площадь фигуры; умножив длину на ширину.

Прежде чем умножать длину и ширину, преобразуйте все измерения в футы.

Чтобы рассчитать площадь в квадратных футах, когда измерения даны в дюймах или других единицах измерения, сначала преобразуйте измерения длины и ширины в футы, а затем умножьте их.

Шаги для расчета квадратных футов

Определите площадь комнаты или пространства в квадратных футах, выполнив следующие простые шаги:

  • Измерьте длину и ширину области.
  • Преобразуйте эти измерения в футы, если они еще не были. При необходимости конвертируйте дюймы, ярды или метры в футы с помощью конвертера.
  • Умножьте длину в футах на ширину в футах. Используйте одну из формул ниже, чтобы рассчитать площадь в квадратных футах для различных форм.
  • Чтобы оценить стоимость материалов, умножьте общую площадь в квадратных футах на цену квадратного метра.
  • Если область не является простой формой, разбейте ее на управляемые части и вычислите площадь каждой части отдельно, а затем сложите их вместе.Например, чтобы измерить пол в вашем доме, вычислите квадратные футы каждой комнаты, затем сложите все измерения площади вместе, чтобы получить общую площадь в квадратных футах.

Например, давайте найдем квадратные футы комнаты, ширина которой 12 футов, длина 16 футов.

площадь = 12 ′ × 16 ′
площадь = 192 кв. фута

Как найти квадратные метры для различных форм

Используйте приведенные ниже формулы, чтобы найти квадратные метры для различных форм. Перед использованием формул преобразуйте все измерения в футы.



Прямоугольная рамка

кв фут = (l — (2 × b)) × (w — (2 × b))

l = внешняя длина
w = внешняя ширина
b = ширина границы


Круг

кв.фут = πr 2

r = радиус
π = 3,14159265359

Если вы знаете диаметр круга, вы можете найти радиус, разделив диаметр пополам.


Треугольник

s = 1 / 2 (a + b + c)
кв.футов = s (s — a) (s — b) (s — c)

a = кромка a
b = кромка b
c = кромка c


В нашем калькуляторе площади есть еще больше формул.

Как рассчитать квадратный метр дома или жилого помещения

При измерении площади дома или жилого помещения следует учитывать некоторые особенности определения жилой площади в квадратных футах. Пригодный для жилья размер дома помогает определить рыночную стоимость и цену, а также помогает покупателям понять общий размер.

Только жилые комнаты с законченными стенами, полом и потолком засчитываются в законченную площадь дома. Чтобы комната считалась пригодной для проживания, она должна быть закончена и иметь отопление или кондиционер, в зависимости от обстоятельств.

Внутренние помещения учитываются в квадратных футах дома, а открытые — нет.

Чтобы рассчитать общую площадь, измерьте каждую комнату в футах с помощью рулетки. Затем умножьте длину и ширину каждой комнаты, чтобы получить квадратные метры, затем сложите их все вместе.

Приведенный выше калькулятор может помочь определить квадратные футы каждой комнаты, а затем просто сложить все площади комнаты. У нас также есть отличные ресурсы по измерению помещений и сложных пространств.

Как рассчитать цену за кв. Ft

Чтобы рассчитать цену квадратного фута вашего дома, разделите общую цену на количество квадратных футов.

цена за фут 2 = общая цена ÷ всего фут 2

Например, , чтобы найти цену за фут 2 дома, который стоит 200 000 долларов и составляет 2 000 футов 2 используйте эту формулу.

цена за фут 2 = 200000 долларов США ÷ 2000 футов 2
цена за фут 2 = 100 долларов США

Как рассчитать измерения BTU системы водоснабжения

В этом столбце объект измерения BTU системы HVAC часто упоминается как основной расчет эффективности системы.Хотя некоторых из вас может удивить « напора воздуха», в стране есть регионы, где дома и здания отапливаются водой. Давайте посмотрим, как « мокрых напора» рассчитывают БТЕ системы водоснабжения.

Стоимость отопительной воды

Первая метель в году пришла в Огайо рано. В тот день, когда я только встал с постели до 5 утра, меня встретил теплый кафельный пол в нашей главной ванной комнате. Мой душ с сильным напором воды согрел меня еще больше. В нашей ванной комнате первостепенное значение имеет не эффективность, а комфорт!

Прислонившись к душевой стене, я начал вычислять другие области эффективности в нашем доме, которые компенсируют комфортную роскошь теплых полов и насадки для душа.Я начал рассчитывать скорость потока и разницу температур, и, прежде чем мыть волосы, я быстро подсчитал низкую эффективность своего утреннего комфорта менее чем за доллар. Я был в порядке с этим.

Это будет краткое введение в измерение БТЕ в системе водоснабжения. Если вам нужна дополнительная информация, я могу послать вам более подробную процедуру, просто напишите мне по адресу, указанному в конце статьи.

Формула

Математика — ключ к пониманию того, как БТЕ перемещаются в системе.Простая формула для воды:

Доставлено системой БТЕ = 500 x галлонов в минуту x изменение температуры воды в системе

Давайте взглянем на формулу, чтобы увидеть, что означает каждая ее часть, чтобы помочь вам лучше понять ее.

  • Множитель БТЕ в формуле равен 500. Поскольку БТЕ измеряются в час, 500 получается из одного галлона воды весом 8,33 фунта, умноженного на 60 минут за один час. (8,33 фунта X 60 минут = 500)
  • Вторая часть формулы, которую иногда труднее всего определить, — это расход в галлонах в минуту или галлонов системы в минуту. Мы поговорим об этом чуть позже.
  • Наконец, вам понадобится изменение температуры системы . Обратите внимание, что мы говорим об изменении температуры системы, а не об изменении температуры оборудования. Изменение температуры — это эффект передачи БТЕ из системы в кондиционируемое пространство. Поэтому, если вы измеряете температуру воды, выходящей из теплообменника, и вычитаете температуру воды, возвращающейся из системы, вы обнаружите изменение температуры системы.

Расчет давления насоса и нанесение графика галлонов в минуту

Для целей этой статьи и поскольку мы будем рассматривать только основы, давайте взглянем на расчет давления насоса и построение графика в галлонах в минуту в системе жидкостного отопления. Мы могли бы обсудить гораздо более точные методы, но это отправная точка; назовите это начальным тестом производительности для начинающих.

Большинство характеристик насосов легко найти в Интернете. Просто найдите слова «характеристика насоса» с номером модели и названием производителя.

Так как вам не нужно заниматься проблемами утечки в воздуховоде, вы можете предположить, что насос GPM является системным GPM. Для оценки GPM насоса необходимы два бита информации. Первый элемент — это характеристика насоса. Когда насос построен, каждый производитель публикует кривую производительности насоса. У вас должна быть точная кривая производителя, соответствующая установленному насосу, с правильным размером рабочего колеса, числом оборотов в минуту и ​​точным номером модели, иначе ваш тест BTU может отличаться более чем на 50%.

Большинство характеристик насосов легко найти в Интернете.Просто найдите слова «характеристика насоса» с номером модели и названием производителя.

Подобно кривой вентилятора, эта таблица графически представляет производительность насоса в определенных полевых условиях. Вы можете использовать полевые данные для построения графика насоса в галлонах в минуту.

В идеале давление насоса измеряется с помощью манометров или устройства для настройки контура. Для ознакомления мы рассчитаем давление насоса, используя проверенный временем и приблизительный метод для жилых помещений.

При выполнении теста убедитесь, что все клапаны зон открыты и требуют нагрева.Тест производительности системы будет неточным, если одна или несколько зон будут закрыты.

Чтобы рассчитать давление насоса в простой жилой системе , используйте следующую формулу: Давление насоса в футах от напора = футы в трубе x 1,5 x 0,04 .

1. Во-первых, чтобы найти футы трубы , измерьте общие погонные футы подающей и обратной трубы до и от самого дальнего отопительного прибора в доме. 1,5 в формуле — это коэффициент, включающий сопротивление трубы потоку (давлению) и падение давления в компонентах системы (змеевиках, плинтусах, радиаторах и избыточной арматуре).0,04 представляет собой типичный коэффициент трения трубы на 100 футов трубы.

  • Пример: Допустим, в доме есть 90 футов трубы в системе водяного отопления. Формула: 90 футов x 1,5 x 0,04 = 5,4 фута головы.

2. После того, как вы рассчитали давление насоса , вы можете использовать кривую насоса для построения графика насоса в галлонах в минуту.

  • Сначала отметьте расчетное давление насоса на левой стороне кривой насоса, где находятся ноги напора.
  • Во-вторых, постройте прямую линию по горизонтали вправо, пока она не пересечет закругленную линию кривой насоса.
  • В-третьих, нанесите график прямо в нижнюю часть таблицы, чтобы определить количество галлонов в минуту, в котором перемещается насос. В этом случае, используя одну из наиболее распространенных кривых для бытовых насосов, Taco 007, вы идентифицируете насос в галлонах в минуту как 14,5.

Теперь вы нашли насос GPM, вы на один шаг ближе к поиску BTU, доставляемого системой.

Измерение температуры системы

Для обеспечения полной точности погружной термометр следует опускать в воду.Однако в большинстве жилых систем, вероятно, нет заглушек для измерения давления / температуры, чтобы получить доступ к температуре воды, поэтому вы можете измерить температуру на поверхности трубы , обернутой изоляцией, или с помощью специально изготовленного зажимного термометра. для измерения температуры трубы.

Поскольку вы проверяете производительность системы, а не оборудования, измерьте температуру воды не менее чем на 10 диаметрах трубы ниже по потоку от насоса или теплообменника, где вода выходит из оборудования.Считайте и запишите температуру с точностью до 1/10 градуса.

Измерьте температуру возвратной воды, измерив температуру трубы на расстоянии не менее 10 диаметров трубы до того, как труба вернется в оборудование. Следите за тем, чтобы измерения не производились непосредственно над оборудованием или слишком близко к дымоходу, чтобы не улавливать дополнительное тепло при измерении температуры воды.

Вычтите температуру подаваемой воды из температуры обратной воды, чтобы найти изменение температуры системы.

Расчетная система доставлена ​​БТЕ

Чтобы найти БТЕ, доставленное системой, умножьте множитель БТЕ на 500 x расчетный галлон в минуту насоса x изменение температуры системы.

Пример: Допустим, вы рассчитываете давление насоса на 5,4 футах напора. Используя кривую насоса, вы строите график и обнаруживаете, что насос Taco 007 движется на 5,4 галлона в минуту. Затем вы измеряете температуру системы и обнаруживаете, что температура нагнетания составляет 168,2F, а температура возврата — 152,4F.Вы вычитаете, чтобы найти изменение температуры системы на 15.8F. Теперь, когда у вас есть все факты, примените формулу гидронной БТЕ: 500 х 5,4 галлона X 15,8 ° = 42 660 БТЕ.

Реальный вопрос: близка ли доставка БТЕ системы к техническим характеристикам оборудования? Или это новый котел мощностью 80 000 БТЕ, взломанный в неисправной системе трубопроводов 40-летней давности? Возможно, ваш клиент хотел бы, чтобы вы прописали некоторые дополнительные улучшения системы.

Это все, что вам нужно сделать, чтобы завершить начальный расчет БТЕ для жидкостной системы.Помните, это всего лишь начальный тест. Существуют гораздо более точные процедуры тестирования, необходимые для повышения точности расчета системы, доставленной в БТЕ; но это отличное начало.

К сожалению, нередки случаи, когда производительность гидравлической системы значительно ниже 60% от номинальной мощности оборудования. Вероятно, не стоит обещать клиентам, что их система водяного отопления идеальна, пока вы не измеряете ее производительность. Предполагать, что система работает с заявленной номинальной мощностью оборудования, вероятно, не лучшая идея.

Итак, насколько хорошо работала последняя система водоснабжения, над которой вы работали? Или насколько плохо это было? Если вы не можете честно ответить на этот вопрос, возможно, вы захотите измерить в следующий раз.

Роб «Док» Фалке — президент National Comfort Institute, обучающей компании, специализирующейся на измерении, оценке, улучшении и проверке характеристик систем HVAC. Если вы подрядчик или технический специалист по ОВКВ, заинтересованный в процедуре измерения производительности системы водяного отопления, свяжитесь с Доком по телефону robf @ ncihvac.com или позвоните ему по телефону 800-633-7058. Посетите веб-сайт NCI по адресу nationalcomfortinstitute.com для получения бесплатной информации, технических статей и загрузок.

Как рассчитать лучистое тепло? — MVOrganizing

Как рассчитать лучистое тепло?

Лучистая тепловая нагрузка

  1. Вычислите отапливаемую площадь в квадратных метрах. Площадь (м2) = Длина (м) x Ширина (м)
  2. В приведенной выше таблице выберите коэффициент, который наиболее точно соответствует типу здания.Тепловая нагрузка (кВт) = Площадь (м2) x коэффициент.
  3. Выберите инфракрасные лучистые обогреватели Activair, которые соответствуют или немного превышают требуемую тепловую нагрузку.

Каковы размеры лучистого теплого пола?

Чтобы определить размер источника тепла, просто умножьте тепловые потери на квадратный фут на площадь (в квадратных футах). Вам понадобится нагреватель или бойлер с такой номинальной мощностью. Ваш подрядчик должен подтвердить этот расчет.

Какова оптимальная настройка температуры для теплого пола?

около 75 F

Сколько BTU мне нужно для водяного отопления пола?

Типичная мощность системы жидкостного водного лучистого отопления находится в пределах 25-35 БТЕ на квадратный фут, при этом 40 БТЕ — это редкий случай для старых домов и зданий с плохой изоляцией.2. 12 Вт на квадратный фут составляет примерно 41 БТЕ на квадратный фут (оптимальная тепловая мощность при достаточной резервной мощности).

Как рассчитать БТЕ для теплого пола?

Вычтите температуру подаваемой воды из температуры обратной воды, чтобы найти изменение температуры системы. Чтобы найти систему, поставляемую в британских тепловых единицах, умножьте постоянную британских тепловых единиц на 500 х расчетное значение насоса в галлонах в минуту на изменение температуры системы. Щелкните, чтобы увидеть полный ответ.

Сколько БТЕ котла Мне нужен калькулятор?

Простое практическое правило для требований BTU — это подсчитать, что вам нужно около 50 BTU на квадратный фут внутреннего пространства в холодном климате; 35 БТЕ на квадратный фут в умеренном климате; и 20 БТЕ на квадратный фут в жарком климате.

Какой большой водонагреватель мне нужен для лучистого тепла?

Какой размер водонагревателя вам нужен для лучистого тепла? К сожалению, существует множество факторов, влияющих на размер водонагревателя, используемого для обогрева полов. Средняя необходимая мощность составляет 25 БТЕ на квадратный фут, но она может быть больше или меньше в зависимости от ваших обстоятельств.

PEX какого размера мне следует использовать для лучистого тепла?

Наиболее распространенные размеры трубы PEX для систем лучистого отопления — 3/8 дюйма, 1/2 дюйма, 5/8 дюйма и 3/4 дюйма.Как правило, для жилых систем излучающего тепла мы рекомендуем трубки из полиэтиленгликоля (PEX) диаметром 1/2 дюйма. Размер трубки PEX определяет достижимую скорость потока и, следовательно, максимальную длину петли трубки Pex.

Почему PEX запрещен в Калифорнии?

PEX был запрещен в Калифорнии из-за некоторых опасений по поводу утечки токсичных материалов через трубу в воду. С помощью различных национальных лабораторных испытаний PEX доказал свою полную безопасность и долговечность.

Могу ли я использовать обычный полиэтиленгликоль для лучистого тепла?

Могу ли я использовать трубы PEX для систем лучистого или водяного тепла? Да, трубы PEX одобрены для использования в системах лучистого или водяного отопления.Поскольку в системе могут присутствовать компоненты из черных металлов, важно использовать трубу PEX с кислородным барьером, чтобы предотвратить ржавление компонентов из железа.

Какие недостатки у PEX?

Недостатки сантехники PEX

  • PEX может выщелачивать BPA и другие токсичные химические вещества.
  • PEX чрезвычайно чувствителен к УФ-излучению.
  • PEX может быть поврежден химическими веществами и вредителями.
  • PEX нельзя устанавливать в зонах с высокой температурой.
  • PEX является полупроницаемым, что означает, что жидкость может попасть в трубу.

Подходит ли синий PEX для горячей воды?

Синяя труба PEX предназначена для подачи холодной воды. Белая труба PEX может использоваться как для горячей, так и для холодной воды. Например, не возникнет проблем с использованием синего полиэтилена PEX для линий горячей воды или красного PEX для линий холодной воды. Другие типы PEX включают PEX-Aluminium-PEX, который часто имеет оранжевый цвет, и PEX для регенерированной воды, который обычно имеет фиолетовый цвет.

Как долго прослужит PEX?

100 лет

Должен ли я использовать PEX-A или PEX B?

PEX-A является наиболее гибким из всех типов трубок PEX, имеет небольшую память катушки или не имеет ее вообще и дает установщику возможность устранять перегибы с помощью теплового пистолета.PEX-B — явный победитель по цене по сравнению с обоими другими типами.

Могу ли я закопать трубу PEX?

Трубка

PEX одобрена для непосредственного захоронения на открытом воздухе, что чаще всего необходимо при прокладке водопровода в дом. PEX, поскольку он может расширяться, противостоит замерзанию более эффективно, чем жесткая труба, но PEX все равно может лопнуть, если вода замерзнет в трубопроводе. Засыпка PEX в песок защищает его от камней в почве.

Какой тип PEX лучше всего подходит для подземных работ?

Полиэтилен высокой плотности

Где нельзя использовать PEX?

Pex не допускается в коммерческих или промышленных зданиях и, следовательно, в жилых зданиях, считающихся «коммерчески-промышленными».

Следует ли изолировать трубы PEX?

Нужна ли изоляция трубы PEX? Да, хотя трубы PEX могут выдерживать отрицательные температуры лучше, чем трубы из других материалов, но они не являются морозостойкими! Если температура упадет ниже 20 градусов по Фаренгейту, ваши трубы могут замерзнуть.

Плохо ли распыляемая пена для труб из полиэтилена PEX?

Стабильность трубы PEX не должна подвергаться опасности, если герметики GREAT STUFF ™ и GREAT STUFF PRO ™ нанесены в соответствии с инструкциями производителя вокруг трубы.Однако адгезия между любой полиуретановой пеной для распыления и поверхностями PEX сомнительна.

Можно ли запускать горячий и холодный PEX одновременно?

Линии горячей и холодной воды PEX проходят через одно и то же отверстие в каркасной стене. Это нетипичная установка; обе трубы должны иметь собственные отверстия для прохождения через каркас.

Как подготовить PEX к зиме?

Способы предотвращения замерзания труб из PEX

  1. Поддерживайте температуру в помещении выше 55 F.
  2. Добавьте изоляцию в особо холодные места, такие как чердаки, гаражи и подвалы.
  3. Смесители для удержания воды в трубах.
  4. Перекройте подачу воды к внешним насадкам шланга (патрубкам) ​​и слейте воду из труб.
  5. Установить незамерзающие пороги.

При какой температуре замерзают трубы PEX?

20 градусов по Фаренгейту

Трескается ли труба PEX при замерзании?

Q: Разорвется ли труба PEX, если она замерзнет? О: Нет, труба PEX устойчива к замораживанию, это означает, что труба будет расширяться при замораживании и сжиматься до своей первоначальной формы при оттаивании.Однако труба PEX не является морозостойкой, а это означает, что вода в трубе может замерзнуть и заблокировать поток.

Каков срок службы фитингов SharkBite?

25 лет

Укусы акул когда-нибудь терпят неудачу?

Предрасположены ли фитинги Sharkbite к выходу из строя? да. Но вся фурнитура при неправильной установке.

Укус акулы так же хорош, как припой?

Пока что они кажутся такими же надежными, хотя, учитывая, что они присутствуют на рынке всего несколько лет, у них нет такой же истории, как паяные соединения.Наконец, вы действительно не хотите использовать их для открытых труб, паяные соединения намного аккуратнее.

Можно ли использовать SharkBite в горячей воде?

Фитинги

SharkBite могут использоваться как на линиях горячего, так и на холодном водоснабжении. Фитинги достаточно прочные, чтобы их можно было установить на водопровод внутри стен, и служат столько же, сколько и медные фитинги. SharkBite может использоваться на трубах из меди, ХПВХ и PEX, что делает его одним из самых универсальных доступных типов фитингов.

Понимание динамики конструкции ступеней в небоскребах — Metraflex

Как сила тяжести, объем и термодинамика играют роль в умном проектировании стояка.

Марти Рогин, ЧП; Технический менеджер, Metraflex

Загрузить PDF

Современный небоскреб существует уже более века. Как и другие элементы нашей застроенной среды, небоскреб может существовать только благодаря другим инновациям в строительных технологиях, а именно конструкции из стального каркаса и безопасным лифтам. Несмотря на то, что мы выяснили, как возводить прочные высокие конструкции и безопасно перемещать людей внутри, все еще существуют проблемы, связанные с обогревом и охлаждением здания, подачей пресной и грязной воды, обеспечением противопожарной защиты и электричеством.Преодоление силы тяжести добавляет еще один поворот к проблемам предоставления услуг в высотных зданиях. В этой статье будут представлены некоторые основы конструкции и характеристик стояка, объяснены некоторые соображения по использованию различных компенсаторов в стояках, а также кратко описаны некоторые нормы и стандарты, касающиеся направляющих и поддерживающих стояков.

Основы теплового расширения

В трубке нет ничего особенного, но сила тяжести сделает все намного интереснее.Рассмотрим стояк (рисунок 1) . Труба проходит на всю высоту здания, 50 этажей. Если высота от плиты к плите составляет 10 футов, наша труба имеет высоту 500 футов. Типичной опорой для этой трубы может быть хомут стояка, может быть, на любом другом этаже. Без изменения температуры вес стояка равномерно распределяется между всеми зажимами стояка.

Нагреем воду в трубе (рисунок 2) . Теперь труба расширится до опорных зажимов стояка. Но зажимы стояка могут двигаться только в одном направлении — вниз.Ограничений на движение вверх нет. Зажимы будут двигаться вверх вместе с трубой. Любой зажим над нижним полом теперь будет парить над плитой. Весь вес трубы, изоляции и среды лежит на нижнем зажиме. Большинство трубных хомутов не рассчитаны на то, чтобы выдерживать полный вес высокого стояка.

Есть решения. Анкер для труб в нижней части стояка, рассчитанный на поддержку полного веса стояка, решит эту проблему. Но давайте посмотрим, сколько движется труба.Допустим, наша труба сделана из стали, а жидкой средой является горячая вода при температуре 180 ° F. Как и сила тяжести, термическое расширение (термическая деформация) стали в стояке не исчезнет. Если предположить, что температура окружающей среды составляет 50 ° F, труба будет расширяться в соответствии с уравнением:

Δ L = ∝ L o Δ T
Δ L = изменение длины (дюймы)
∝ = коэффициент теплового расширения (для стали, 6,33 × 10 -6 дюймов / дюйм / ° F)
L o = Начальная длина (6000 дюймов)
Δ T = Изменение температуры (180 ° -50 ° = 130 ° F)

Δ L = 4.9 дюймов

Самая верхняя часть подступенка поднимется на 4,9 дюйма. Это проблема? Возможно. Могут ли взлеты на верхних уровнях перемещаться примерно на 5 дюймов, не прерываясь? Возможно, если будет достаточное биение соединений оборудования. Позволят ли полевые условия трубе так сильно сдвинуться до столкновения с конструкцией или оборудованием? Может быть, но тогда кто ответит на эти вопросы до начала строительства? Обычно на них невозможно ответить, пока не будет возведена конструкция и монтажники не установят трубы под потолком со всеми незапланированными изгибами и измененной длиной биения.

Одним из решений может быть перемещение анкера в центр стояка (Рисунок 3) . Анкер — это жесткое соединение трубы с конструкцией и точка нулевого движения. Подъемник теперь разделен на две секции по 250 футов каждая. Теперь максимальное перемещение трубы будет составлять половину всего стояка, или 2,45 дюйма. Предыдущие вопросы могут быть заданы относительно движения на 2,45 дюйма. Если на них можно ответить на этапе разработки проекта — отлично! К следующему проекту!

Но подождите.А что насчет зажимов для стояков? Выше якоря они будут кататься по трубе, возвышающейся над этажами. Но ниже анкера хомуты стояка будут пытаться удерживать трубу от движения вниз. Вероятный результат будет заключаться в том, что зажимы будут скользить по трубе при ее движении. Если к трубе приварить хомуты стояка, что-нибудь сломается — либо хомут, либо труба. Будем надеяться, что зажим, но тогда анкер будет нести нагрузку всего стояка.

Опоры пружины подъемника

А пружинные опоры? Это специально разработанные системы анкеров, направляющих и опор для стояков, которые могут перемещаться вместе с трубой.Пружинные опоры остаются в контакте с плитой перекрытия при движении трубы. По мере движения трубы пружины растягиваются или сжимаются, оказывая большее усилие на плиту перекрытия, что снимает нагрузку с основного анкера в центре стояка. Эти системы эффективны для снятия нагрузки с основного якоря; однако у этого типа системы есть ограничения. Это:

  • Труба все еще движется! Ничто не помешает этому. Если мы возьмем в качестве примера наш подъемник длиной 500 футов, то якорь будет в центре, а концы будут перемещаться на 2.45 дюймов.
  • В каждом стояке разрешается использовать только один анкер. Второй анкер ограничит движение трубы, что приведет к возникновению огромных сил в анкерах и плитах перекрытия, одновременно добавляя потенциально огромные напряжения в трубе.
  • Неясно, можно ли приспособить этот тип системы к медным стоякам. В доступной литературе производителей медь конкретно не упоминается как приемлемый материал для труб для этих опорных систем.

Система стояка, использующая зажимы стояка или пружинные опоры, будет иметь ограниченный контроль над перемещением трубы.Деформационные швы позволяют лучше контролировать движение трубы. Прежде чем рассматривать компенсаторы, давайте посмотрим, что происходит с внутренним давлением стояка.

Давление и высота водяного столба

Внутреннее давление вдоль горизонтальной оси трубы обычно незначительно меняется. Как только эта труба поднимается до вертикального положения, стояк, заполненный жидкостью, создает давление по мере того, как труба становится выше. Давление внизу может быть значительно выше, чем вверху.Это связано с весом воды.

Рассмотрим резервуар с 1 футом воды (Рисунок 4) . Независимо от того, насколько наполнен резервуар, его стенки будут испытывать большее усилие по направлению к дну. Наибольшая сила будет на дне резервуара. Каждый добавленный дюйм воды в резервуаре увеличивает вес, который должно выдерживать дно резервуара. Когда высота воды достигает 27,7 дюймов, на каждый квадратный дюйм дна резервуара (Рис. 5) приходится 1 фунт.

Теперь давайте изменим форму резервуара на более узкую (Рисунок 6) .По мере того, как мы приближаем стенки резервуара, нам нужно меньше воды для заполнения резервуара до 27,7 дюйма, но дно резервуара имеет меньшую площадь. Сила на каждый квадратный дюйм по-прежнему составляет 1 фунт.

Неважно, какой формы мы сделаем резервуар или даже если это труба; если высота водяного столба составляет 27,7 дюйма, давление внизу составляет 1 фунт / кв. дюйм.

Если мы сложим эти 27,7-дюймовые водяные столбы, давление внизу вырастет с шагом в 1 фунт / кв. Дюйм (Рисунок 7) .

Давление в нижней части стопки увеличивается на 1 фунт / кв.дюйм на каждые 27.7-дюймовая секция. И наоборот, давление увеличивается на 0,43 фунта на квадратный дюйм на каждые 12 дюймов воды. Используя эту логику, давление внизу нашего 500-футового стояка, обусловленное только высотой водяного столба, будет:

Это называется гидростатическим давлением, поэтому гидравлическое оборудование редко располагается в подвале высокого здания. По этой же причине в очень высоких зданиях есть стояки, которые разделены между промежуточными помещениями с механическим оборудованием. Для пара, газа и воздуха высота столба не является проблемой из-за гораздо более низкой плотности этих веществ.

Соображения по устойчивости конструкции стояка

Потеря устойчивости колонны — это привычный вид отказа. Если длинный тонкий стержень подвергается действию осевых сил на каждом конце, он выгнется (Рисунок 8) . Это функция прочности материала, размеров поперечного сечения и длины стержня. Трубка тоже ведет себя так же. Осевые силы, приложенные к концам трубы, также заставят ее выгнуться. Особенно это заметно на медных трубах малого диаметра.

Хотя большая часть этого прогиба является упругой, то есть труба возвращается к своей исходной форме после снятия нагрузок, это может быть проблемой, если труба изгибается за пределы предела упругости материала. Изгиб колонны также может быть проблемой из-за компенсаторов сильфона. Если два конца сильфона выходят за пределы смещения смещения, компенсатор будет безвозвратно поврежден.

Рис. 8: Изгиб колонны стержня с двумя штифтами (или трубы)

Труба должна оставаться выровненной при движении через здание.Это предназначение направляющих для труб, которые ограничивают движение трубы только в осевом направлении и по существу делают трубу более жесткой. Направляющие делят трубу на более короткие и жесткие участки.

Расстояние между направляющими трубопровода определяется классическими уравнениями потери устойчивости колонны, называемыми уравнениями потери устойчивости Эйлера. Если предположить, что труба закреплена на обоих концах, уравнение будет выглядеть так:

Это теоретический предел нагрузки для колонны с свободно вращающимися концами и нагрузками, приложенными вдоль оси колонны.Обратите внимание, что вес трубы и воды здесь не учитывается. При выборе компенсаторов сильфона для трубопроводной системы, особенно стояков, важно учитывать изгиб Эйлера, поскольку силы теперь действуют вдоль продольной оси трубы.

Если труба закреплена на одном конце (Рисунок 9) критическая нагрузка составляет:

Рисунок 9: Изгиб колонны стержня с фиксированными штифтами (или трубы)

Что происходит, если трубку перевернуть на конце? Сила тяжести.Теперь при расчетах учитывается вес трубы и среды внутри трубы. Теоретически вертикальная труба может разрушиться под собственным весом (Рисунок 10). Критическая нагрузка на вертикальную трубу с закрепленным концом составляет:

Рис. 10: Изгиб вертикальной неподвижной опорной колонны (или трубы) под ее весом

На примере 4-дюймовой трубы и вычислении длины (ql) cr , равной 1,34 фунта / дюйм, максимальная длина по вертикали 4 ”сч.40 может быть примерно на 90 футов, прежде чем станет нестабильным. Для сравнения, медный стояк 4 ”типа K станет нестабильным на высоте около 64 футов. Это также уравнение, которое определяет максимальную высоту дерева (без учета ветвей и в предположении призматического ствола).

Затем рассмотрим стояк, имеющий внешнюю силу, такую ​​как давление сильфона и сила пружины. Подъемная труба под внешней нагрузкой, зависящей от веса стенки трубы и среды внутри, будет иметь критическую нагрузку:

Это уравнение предполагает, что конец трубы закреплен и не может вращаться, труба имеет постоянное поперечное сечение (одинаковый размер на всем протяжении) и что вес распределен равномерно.Критическая нагрузка снижена на 30% от веса колонны. Обратите внимание, что критическая нагрузка может быть отрицательной, что означает, что опора верхнего конца должна находиться в напряжении, чтобы предотвратить коробление.

Предыдущие примеры вместе с объяснением гидростатического давления важны для определения расстояния между направляющими в стояках с различными типами компенсаторов. Давайте сначала рассмотрим компенсатор сильфона в высоком стояке. Как бы мы могли определить расстояние между направляющими трубопровода для такого типа установки?

Что такое направляющие для труб?

Направляющие для труб — это устройства, которые позволяют трубе перемещаться в осевом направлении, ограничивая движение трубы перпендикулярно оси трубы.Ограничивая трубу только осевым движением, труба становится более жесткой и не прогибается или не сжимается. По мере того как направляющие располагаются ближе к трубе, величина осевой нагрузки может увеличиваться до того, как труба станет нестабильной.

Обычные направляющие, используемые для систем отопления, вентиляции и кондиционирования воздуха и водопровода, бывают ребристыми или скользящими. Ребристые направляющие, или направляющие «паук», имеют ребра, прикрепленные к трубе, и проходят через кольцо, прикрепленное к конструкции здания. Эти направляющие обычно используются на трубах малого диаметра и используются в областях, где ожидается, что боковые нагрузки будут относительно небольшими по сравнению с нагрузками на анкеры трубы.В горизонтальных приложениях эти направляющие не предназначены для использования вместо подвесов, поэтому для удержания веса трубы рядом с направляющей потребуется скоба или роликовая опора.

Более прочная направляющая, которая также может служить опорой, — это скользящая направляющая. Это устройство имеет скользящую планку, приваренную к трубе, с основанием, прикрепленным к конструкции. Основание имеет тефлон, графит или эластомер для уменьшения трения. Направляющие этого типа могут выдерживать большие поперечные нагрузки и обычно используются на трубопроводах ОВКВ большего диаметра или технологических трубопроводах.Версия направляющей скольжения, адаптированная к стоякам, включает эластомерную подушку между направляющей и основанием для гашения шума и вибрации трубы, скользящей против проникновения в плиту.

Самая компактная конфигурация направляющих состоит из эластомерного уплотнения в проходе плиты для направления трубы. Они не занимают места на полу и позволяют наиболее эффективно использовать пространство.

Рисунок 11: Направляющие, обычно используемые в стояках

Стандарты для размещения направляющих с сильфонными компенсаторами

В соответствии со стандартами Ассоциации производителей компенсаторов (EJMA) направляющие требуются с сильфонными компенсаторами на максимальном расстоянии четырех диаметров трубы от стыка, а затем на максимальном расстоянии 14 диаметров трубы от первой направляющей до следующего места.Последующие направляющие располагаются с интервалами, определяемыми уравнением потери устойчивости Эйлера для полукрепленной колонны. Когда направляющие размещаются в соответствии с рекомендациями EJMA, труба подразделяется на жесткие секции, которые не должны (теоретически) изгибаться при известной торцевой нагрузке.

Направляющие с сильфонными компенсаторами служат двум целям; для предотвращения коробления труб и предотвращения изгиба сильфона (Рисунок 12). Стандарты EJMA предполагают использование горизонтальной трубы, а используемая формула потери устойчивости делит расчетную длину пополам.Для сравнения, стальная труба 4 дюйма с компенсатором сильфона под давлением 158 фунтов на квадратный дюйм требует промежуточного расстояния между направляющими в 30 футов. Предполагается, что труба расположена горизонтально, поэтому вес трубы и среды не учитывается в расчетах EJMA.

Типовые коды моделей требуют, чтобы стояки поддерживались примерно на каждом этаже. Обычно это достигается с помощью зажимов для стояков. Как описано ранее, зажимы стояка могут двигаться вверх и терять контакт с плитой перекрытия, в зависимости от расположения анкеров.Теперь опора не выполняет свою работу, и всю нагрузку несет якорь. В этом случае были соблюдены нормы, но анкеры могут не рассчитывать на весь вес трубы, изоляции и ее содержимого, плюс любые силы, создаваемые компенсаторами.

Рисунок 12: Изгиб сильфона из-за смещения трубы

Сильфонные компенсаторы в стояке

Сильфонные компенсаторы в стояках очень распространены, в основном из-за их компактной формы (Рисунки 13 и 14).Они занимают очень мало места перпендикулярно оси трубы, поэтому хорошо вписываются в переполненные канавки для труб; однако им нужно руководствоваться. Сильфон создает большие якорные нагрузки. Это может быть необходимым компромиссом, так как место в лотках для труб может иметь большое значение.

Рисунки 13 и 14

Вертикальные трубы теперь подвержены колебаниям гидростатического давления. Эти отклонения легко вычислить, и они будут варьироваться от рабочего давления системы в верхней части стояка до высоты, деленной на 2.31 добавлено к системе давления внизу стояка. Используя в качестве примера стояк 500 ‘с давлением в системе 50 фунтов на квадратный дюйм, верхняя часть стояка будет иметь давление 50 фунтов на квадратный дюйм, а нижняя часть — 267 фунтов на квадратный дюйм. Эта разница в давлении имеет решающее значение при расчете анкерных нагрузок для сильфонного компенсатора.

Сильфонный компенсатор, установленный около дна высокого стояка, должен быть рассчитан на давление в этом месте. В предыдущем примере компенсатор на 150 фунтов на квадратный дюйм подойдет для верхней части стояка, но для стыка около нижней части потребуется более высокое номинальное давление.

А как насчет анкерных нагрузок? Компенсаторы сильфона создают силы реакции, основанные на двух характеристиках сильфона; жесткость пружины и эффективная площадь. Жесткость пружины — это просто сила, необходимая для сжатия или удлинения сильфона на один дюйм. Если сильфон имеет жесткость пружины 500 фунтов / дюйм, он будет воздействовать на каждый якорь по 500 фунтов на каждый дюйм движения. Если сильфон сжат на 1,5 дюйма, усилие пружины будет 750 фунтов на каждый анкер.

Тяга под давлением может быть не такой простой задачей.Деформационный шов — самая гибкая часть трубопроводной системы. Так должно быть. Сильфон под давлением хочет растянуться до своей первоначальной формы, которая представляет собой трубу. Если его не удерживать, сильфон под давлением выйдет за пределы своего номинального хода. Вот почему для сильфонного компенсатора обычно требуются регулирующие стержни и анкеры. Также просто вычислить величину силы, прилагаемой сильфоном к анкерам или регулирующим стержням. Это давление, умноженное на полезную площадь сильфона.

А что такое эффективная площадь сильфона? Это внутренняя площадь сильфона, рассчитанная как среднее значение наибольшего и наименьшего диаметров свертки. Это также называется средним диаметром. Все производители сильфонов предоставляют эффективные площади, поэтому разработчику нет необходимости рассчитывать их.

Если мы используем наш стояк 500 футов в качестве примера, сильфонный компенсатор в самой верхней части стояка с рабочим давлением системы 50 фунтов на квадратный дюйм и 4-дюймовая труба (с 4-дюймовым компенсатором) будет иметь давление на каждый якорь:

Если мы решим разделить стояк и расположить компенсатор в средней точке, давление, используемое для расчета осевой силы, будет добавлено на 50 фунтов на квадратный дюйм к высоте водяного столба над компенсатором (около 250 футов):

Теперь добавим силу пружины.Подступенка переместится на 2,45 дюйма между каждым набором анкеров. Если жесткость пружины сильфона составляет 200 фунтов / дюйм:

Можно предположить, что трение от опор трубопровода для стояка очень мало, и оно не будет учитываться в этих расчетах. Суммарное усилие сильфона на якоря составит:

А вес трубы, воды и изоляции? Это необходимо добавить к нагрузкам на анкеры сильфона, чтобы получить полную картину. И силы нижнего сильфона действуют вверх на якорь среднего стояка, в то время как силы верхнего сильфона действуют на якорь вниз.Важно не только отслеживать величину, но и направление сил, действующих на якорь. Кроме того, якорь несет вес трубы и воды сверху. Промежуточная нагрузка на анкер усложняется, если компенсатор расположен по центру между анкерами.

Теперь мы имеем ситуацию, аналогичную критической нагрузке для стояка под собственным весом с внешней силой. Если мы посмотрим на наше уравнение критической нагрузки (4) с весом трубы,

и определите длину, используя P cr = 6178 фунтов, направляющие потребуют интервалов с интервалом в 23 фута или, возможно, через любой другой этаж.

Если установлен медный стояк, потребуется больше направляющих. Силы сильфонов будут примерно одинаковыми, как и гидростатические давления. Если еще раз рассмотреть нижнюю половину стояка, единственная разница будет заключаться в материале и характеристиках поперечного сечения медной трубы. Для нашего 4-дюймового стояка характеристики материала и сечения меди:

Теперь необходимое расстояние между направляющими составляет 12,5 футов, а может быть, на каждом этаже.

Гибкие шланги и расширительные муфты с оплеткой в ​​стояках

Единственный способ действительно ограничить количество перемещений в стояке — это компенсатор.Перемещение можно ограничить до любой приемлемой величины, закрепив стояк на различных уровнях и установив компенсатор между каждой парой анкеров.

Шланги и компенсаторы с оплеткой — еще один вариант для стояков, который имеет много преимуществ по сравнению с сильфонными компенсаторами или системами пружинной опоры. Шланги и компенсаторы с оплеткой обычно состоят из двух кусков гофрированного металлического шланга, обернутого металлической оплеткой. Соединение может быть выполнено в форме «U» или «V», что обеспечивает движение во всех направлениях.Как и другие системы компенсаторов, компенсаторы из шлангов и оплетки являются изделиями для долгого срока службы. После установки они не требуют обслуживания или осмотра.

Шланги и компенсаторы с оплеткой имеют ряд преимуществ по сравнению с сильфонами или пружинными опорами:

  • Без компонента давления и тяги. Это происходит из-за конфигурации шланга и оплетки, а также за счет того, что оплетка не позволяет шлангу расширяться.
  • Шланги и компенсаторы с оплеткой могут быть рассчитаны на рабочее давление, обычно встречающееся в размерах труб систем отопления, вентиляции и кондиционирования и водопровода.
  • Секции шлангов и оплетки очень гибкие. Единственные анкерные силы, создаваемые этими компенсаторами, связаны с усилиями пружины шланга и оплетки, которые обычно составляют менее 100 фунтов для труб многих размеров. Единственной другой нагрузкой на анкер будет вес полного стояка.
  • Шланги и компенсаторы с оплеткой намного лучше справляются со смещениями в стояке, чем сильфонные компенсаторы.

На рисунках 15 и 16 показаны примеры компенсаторов шлангов и оплетки, обычно используемых в стояках.

Рисунки 15 и 16.

Единственный потенциальный недостаток шланга и оплетки — это нехватка места. Компенсаторы сильфона прекрасно подходят для тесноты трубных желобов, шланг и оплетка торчат наружу. Даже в этой ситуации можно приспособиться, установив петли горизонтально в пазу потолка.

Шланги и компенсаторы с оплеткой подвергают стояки небольшим реактивным силам, поэтому нижнюю половину стояка между анкерами можно рассматривать как отдельно стоящую часть трубы, как показано на Рисунке 10.Эта конфигурация будет соответствовать вариации уравнения (3) для части стояка ниже компенсатора:

Член ( q ) известен, поэтому длину для устойчивости колонны (и расстояние между направляющими) можно определить, решив для длины l . Возвращаясь к первоначальному примеру счёта 500 футов и 4 дюйма. 40 с соединителем для шланга и оплеткой в ​​центре, нижняя половина будет находиться в тех же условиях, что и стояк высотой 250 футов с фиксированным дном.Требуемое расстояние между направляющими составит 10,6 футов. Для меди типа K необходимое расстояние между направляющими составляет всего 4,1 фута.

Для участка трубы над петлей будет достаточно одной направляющей на компенсаторе. В этом случае гравитация работает в благоприятном направлении.

Практические рекомендации

Как часто гиды помещают каждую вторую историю, не говоря уже о каждой отдельной истории в высотном здании? Больше никогда. Так почему же у нас не обрушиваются стояки на каждом проекте? Ответ может быть простым; На каждом этаже уже есть направляющие в виде проходов в круглые плиты.Они допускают осевое перемещение и ограничивают боковое перемещение. Размещение направляющих будет иметь решающее значение в открытом проходе, когда трубы прокладываются через один большой проход в полу на каждом уровне.

Кроме того, у большинства подступенков на каждом этаже есть отводы или отводы. Если они жестко подсоединены к оборудованию вблизи стояка, такое расположение может обеспечить дополнительную боковую поддержку стояку.

Возвращаясь к нашему первоначальному примеру стальной трубы 4 дюйма, рекомендации EJMA не охватывают случай вертикальной трубы с нулевой нагрузкой (например, шланг и оплетка), а для нагрузки сильфона в этом примере рекомендуется расстояние 31 фут ( или примерно каждые три этажа).Этот автор наблюдал за установками с нулевым стояком, которые соответствуют директивам EJMA по расстоянию между направляющими, и еще не видел обрушившегося стояка.

«Вне поля зрения, вне поля зрения» также может быть частью проблемы. Возможно, трубы упруго изгибаются, но этого никто не видит. В конце концов, сколько архитекторов будут проектировать окна на стенах из трубопровода? В этом отношении, сколько арендаторов действительно хотят наблюдать за своими стояками?

Заключение

Хотя стандарты и нормы касаются стояков и расстояний между направляющими в трубах с сильфонными соединениями, важно знать ограничения оборудования и допущения, используемые для достижения рекомендуемых стандартов.Возможно, было бы целесообразно более внимательно изучить эти стандарты и адаптировать их для людей с высокими стояками.

Строительные коммуникации должны быть распределены по всем уровням, иначе небоскреб не будет иметь смысла. Конечно, когда длинные вертикальные трубы размещаются внутри высоких зданий, сила тяжести всегда будет снижаться, и проектировщики строительных систем должны знать силы, действующие на эти элементы. Нефтяная промышленность хорошо осведомлена о конструктивных особенностях высоких гибких райзеров благодаря опыту работы с морскими буровыми установками.По мере того, как мы строим более высокие конструкции, сообщество A / E / C также должно осознавать аналогичные, но не идентичные проблемы для условий над поверхностью.

Ссылки
Спаркс, C.P., Основы механики морского подъемника, PennWell Corp., 2007
Тимошенко С. и Гир Дж. Теория упругой устойчивости, МакГроу-Хилл, 1961

КАК РАССЧИТАТЬ ОБЪЕМ ВОДЫ В PEX ТРУБЕ И МЕДНОЙ ТРУБЕ

Сообщение от блогер 14.06.2016 2 Комментарий (-и)

Для того, чтобы получить правильно работающую систему любого типа, необходимо выполнить определенные расчеты, чтобы поддерживать объем воды внутри системы.При установке внутренней водопроводной системы, системы водяного отопления, системы лучистого отопления или даже более простых установок, таких как посудомоечные машины, объем воды необходимо регулировать. На приведенной выше табличке показан объем воды в трубах из полиэтиленгликоля и медных труб разных размеров и типов. Компания Canarsee даже учла объем воды внутри труб PEX-Al-PEX. Часть таблетки «PEX Pipe» используется как для трубок из PEX с кислородным барьером, так и для трубок из PEX без барьеров.

9144

00 3 0 9142 930

9142 930

9142 9142 930

Диаметр трубы Размер

дюймов

Труба PEX

Труба PEX-Al-PEX

14 Медная труба

14 L Медная труба

962 900
Объем в галлонах на фут

3/8 дюйма

0.00529

0,00489

0,007

0,00827

1/2 «

0,00961 43

00 0,029

0,00961 43

00 00 00 00 00

5/ 8 дюймов

0,01393

0,01658

00 9142 9142 9142 00 00 0001894

0,02654

0,025

0,0269

1 «

0,03128

00 0,03 9142

0,03128

00 0,03 9143 00 0,03 9143 00 0,03 9143 00 0,03

1-1 / 4 «

0,04668

0,065

0,068

42 2
42 238 106516

0,092

0,095

2 «

0,1116

29
00 0,1116

29

Эта информация используется, чтобы гарантировать, что система, для которой применяется трубопровод, может работать с оптимальной скоростью.Недостаток объема внутри трубопровода системы может привести к недостаточному давлению, что приведет к неправильному функционированию.Поэтому установщик всегда должен знать объем воды, необходимый для надлежащего заполнения системы. Также существует формула для определения объема воды для трубы любого размера. Поскольку труба имеет все те же размеры, что и удлиненный цилиндр, можно использовать простую геометрическую формулу, чтобы вычислить ее объем. Формула для определения объема медной трубы = Pi (3,14) x радиус * в квадрате x высота * Радиус эквивалентен половине диаметра. *

Проектирование и расчеты системы стояка | NFPA

Системы стояков состоят из трубопроводов и шланговых соединений, установленных по всему зданию, чтобы обеспечить надежную подачу воды для ручного тушения пожара либо пожарной службой, либо обученным персоналом.NFPA 14, Стандарт по установке напорных и шланговых систем , глава 6, описывает требования к конструкции и установке для напорных и шланговых систем. Системы стояков могут быть разбиты на различные типы систем, чтобы определить, заполнен ли трубопровод водой (влажный) или нет (сухой), и будет ли вода, подаваемая для тушения пожара, автоматически поступать из водопровода, такого как городская магистраль или водопровод. резервуар и пожарный насос (автоматический или полуавтоматический), или должен быть предоставлен насосом пожарной части (ручной).При проектировании системы сначала необходимо определить размер подающей трубы, место соединения шланга, размер и давление на основе классификации стояка. Существует три класса водозаборных систем: класс I, класс II и класс II.

Класс I

Системы

класса I устанавливаются для использования пожарной службой и обычно требуются в зданиях, которые имеют более трех этажей выше или ниже уровня земли из-за времени и трудностей, связанных с прокладкой шланга от пожарного устройства непосредственно к удаленным этажам.Системы класса I также иногда требуются в торговых центрах, потому что в этих помещениях есть зоны, к которым трудно получить доступ напрямую с помощью шланга от пожарных устройств. Места для шланговых соединений в системах класса I включают:

  • На каждую площадку основного этажа или промежуточную площадку требуется лестница.
  • На крыше, если подъезд не имеет выхода на крышу.
  • Каждая сторона выходных отверстий в горизонтальных выходах.
  • Выходные переходы.
  • Дополнительные шланговые соединения должны быть доступны в зданиях без дождевания, где расстояние от шлангового соединения до наиболее удаленной части пола превышает пределы, указанные в NFPA 14, в зависимости от типа спринклерной системы и типа здания.

Минимальное остаточное давление, необходимое для системы класса I, составляет 100 фунтов на кв. Дюйм (6,9 бар) от наиболее удаленного с гидравлической точки зрения шлангового соединения диаметром 2 ½ дюйма (65 мм) с расходом 500 галлонов в минуту (1893 л / мин) через два самых удаленных шланговых соединения 2 ½ дюйма (65 мм). Может потребоваться использование устройства регулирования давления, чтобы ограничить давление в шланговых соединениях до менее 175 фунтов на кв. Дюйм (12,1 бар) статического (давления в не проточном состоянии).

Класс II

Class II устанавливаются для использования обученным персоналом и часто требуются в больших неорошаемых зданиях.Они также могут потребоваться для защиты особо опасных зон, таких как выставочные залы и сцены.

Раньше стояки класса II обычно устанавливались со шлангом, соплом и стойкой для шланга на каждом шланговом соединении. До выпуска 2007 года NFPA 14 системы класса II определялись как предназначенные для использования «в первую очередь жильцами здания или пожарной службой». Из-за опасений относительно способности неподготовленных пассажиров безопасно пользоваться шлангом и поощрения пассажиров к тушению пожара, а не к эвакуации, Технический комитет решил определить системы класса II как предназначенные для использования «обученным персоналом или пожарной службой».”

Системы

класса II должны иметь достаточное количество шланговых станций, чтобы все части каждого уровня этажа здания находились в пределах 130 футов (39,7 м) от шлангового соединения 1 ½ дюйма (40 мм), снабженного 1 1 ∕ 2 дюйма ( 40 мм) или в пределах 120 футов (36,6 м) от шлангового соединения, имеющего менее 1 1½ ∕ 2 дюйма (40 мм).

Минимальное остаточное давление, необходимое для системы класса II, составляет 65 фунтов на кв. Дюйм (4,5 бар) от удаленного шлангового соединения 1–1 / 2½ дюйма (40 мм) с минимальной скоростью потока 100 галлонов в минуту (379 л / мин).Возможно, потребуется использовать устройство регулирования давления, чтобы ограничить давление в этих шланговых соединениях до менее 100 фунтов на кв. Дюйм (6,9 бар) остаточного (давления при протекании) и до 175 фунтов на кв. Дюйм (12,1 бар) статического (давления в отсутствие потока).

Класс III

Системы

Класса III сочетают в себе особенности систем Класса I и Класса II. Они предусмотрены как для полномасштабного, так и для оказания первой помощи при тушении пожаров. Эти системы обычно предназначены для использования пожарными частями и пожарными командами.Из-за многократного использования системы Класса III снабжены шланговыми соединениями как Класса I, так и Класса II и должны соответствовать требованиям по размещению, давлению и расходу для систем как Класса I, так и Класса II.

Размер трубы

Минимальный размер трубы для стояков классов I и III составляет 4 дюйма (100 мм). Если стояк является частью комбинированной спринклерной системы в частично обрызгиваемом здании, он увеличивается до 6 дюймов (150 мм). Если здание защищено автоматической спринклерной системой, то минимальный комбинированный размер стояка может составлять 4 дюйма.(100 мм) при гидравлическом расчете. Отводные линии системы стояка должны иметь гидравлический размер, но не могут быть меньше 2 -1 / 2½ дюйма (65 мм).

Расчет

Гидравлический расчет системы стояка очень похож на расчет спринклерной системы, потому что мы рассчитываем потерю давления в системе, чтобы получить требуемый поток к наиболее удаленному шланговому соединению. В дополнение к требуемому расходу от наиболее удаленных шланговых соединений, исходя из классификации, мы должны также рассчитать расход от соединений на каждой напорной трубе.Например, при расчете системы стояка класса 1 в здании, которое составляет менее 80000 футов 2 (7432 м 2 ), нам необходимо рассчитать расход 500 галлонов в минуту (1893 л / мин) через два наиболее удаленных 2 ½ дюйма (65 мм) шланговые соединения при 100 фунтах на квадратный дюйм (6,9 бар), а также рассчитайте дополнительный расход 250 галлонов в минуту (946 л / мин) из каждой напорной трубы в здании до максимального общего расхода 1000 галлонов в минуту (3785 л / мин). ) для зданий, которые орошаются повсюду, и 1250 галлонов в минуту (4731 л / мин) для зданий, которые не орошаются повсюду.

Взгляните на это видео, взятое из нашего учебного курса для профессионалов по сертифицированным водным системам, который скоро будет выпущен.

Хотите узнать больше?

Следите за нашей программой профессионального обучения по сертифицированным водным системам. Кроме того, если вы нашли эту статью полезной, подпишитесь на информационный бюллетень NFPA Network, чтобы получать ежемесячный персонализированный контент, связанный с миром пожара, электричества, безопасности строительства и жизни.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *