Цвет пропитки для дерева: 90 фото правильного выбора для разных сортов древесины

Содержание

90 фото правильного выбора для разных сортов древесины

Древесина, наряду с глиной и камнем, является древнейшим строительным материалом. Однако, несмотря на все ее уникальные механические и физические свойства, она очень чувствительна к влиянию внешней среды. Атмосферные осадки, биологические вредители, огонь – лишь малая часть внешних факторов, которые способны медленно, а иногда весьма стремительно, разрушать деревянные конструкции.

Единственный способ хотя – бы частично защитить дерево – обработать специальным соответствующим веществом, которое повысит сопротивляемость материала к негативным обстоятельствам.

Какой смысл защищать дерево

Несмотря на механические свойства древесины, под влиянием внешних факторов она теряет свои свойства, разрушается. Наиболее этому подвержены детали внешней части дома, поэтому обработка таких частей крайне необходима, иначе дерево очень быстро потеряет не только привлекательный внешний вид, но и функциональность.

Что касается предохранения от огня, то научно доказано, что обработанные элементы горят намного тяжелее, а если очаг возгорания не большой, то и вообще будут только тлеть.


Классификация защитных средств

Средства (пропитки) для защиты древесины делят для несколько групп. В зависимости от предназначения:

Противопожарные или антипирены. Главная задача средства – создать пленку, препятствующую попаданию кислорода, предотвращая, таким образом, дальнейшее горение материала. Обратите внимание, что срок действия антипиренов не превышает пятилетку, не забывайте своевременно повторно обрабатывать древесину.

 

Антисептики. Выполняют функцию предохранения от биологических (личинки жуков) и бактериологических (споры грибков, плесень) вредителей. Обратите внимание, что современная пропитка для дерева от гниения не токсична для людей, при этом не дает размножаться внутри конструкций микроорганизмам, насекомым.

Антиатмосферные. Основная их задача – защищать деревянную конструкцию от влияния внешней среды (солнечных лучей, осадков), предупреждая появление трещин, всевозможных деформаций.

Негативной стороной такой обработки является непрезентабельный вид материала, а также потеря ряда физических характеристик.

Влагоотталкивающие. Пропитка для дерева от влаги позволяет увеличить длительность эксплуатации древесины, поскольку она является гигроскопическим веществом и при даже качественной сушке может впитывать в себя влагу.

В связи с тем, что в состав таких растворов зачастую входят оксиды металлов, они влияют и на финишный оттенок материала после обработки. Цвет пропитки для дерева варьируется от бледно – желтого до фиолетовых, бардовых, синих оттенков.


Комбинированные. Данные средства сочетают в себе несколько видов защиты, что весьма актуально в сложных климатических условиях.

Виды основы защитных средств

В зависимости от основы средства разделяют на:

Водные. Главным преимуществом таких веществ является их легкая проницаемость в верхние слои дерева, минимальный период высыхания (до 3-х часов), отсутствие специфического химического запаха, возможность применять и для внутренней обработки строения, их относят к экологически чистым.

Растворы на водной основе делят солевые и без них. Основным компонентом солевых водных растворов является угольная, борная, фосфорная соли. К негативной стороне солевых вариантов относят не длительный срок защиты (до 5 лет), специфические способы нанесения, конструкции не подлежат дальнейшей отделке.

 

Масляные или же органические. Функциональная задача масла для пропитки древесины – оградить стройматериал от конденсата, создавая при этом красивый глянцевый блеск. Зачастую для этих целей применяется льняная пропитка для дерева, в виду того, что она самая экологически чистая.

Однако следует учитывать, что после нанесения защитного средства, иная облицовка (покраска, лакирование) становится невозможной, так что целесообразнее использовать ее для внешних работ.

Основные требования

При выборе пропитки, кроме рассмотрения фото пропитки, обращайте внимание на такие показатели средства:

  • не забивает поры дерева, давая ему нормально «дышать»;
  • не теряет своих свойств даже при высоком проценте влажности;
  • глубокая адгезия (проникновение) в древесину;
  • степень вымывания водой низкий;
  • не влияют на структуру дерева.

 

Обработка деревянных элементов от всевозможных вредителей и внешних факторов – важная часть возведения дома (беседки, бани).

Как видите, на вопрос, какая пропитка для дерева лучше, нельзя дать однозначный ответ, ведь каждая из них имеет свои свойства и случаи применения. Просто подберите нужный вариант, и тогда вашему дому будут не страшны любые вредители.

Фото пропитки


Также рекомендуем посетить:

Post Views: Статистика просмотров 663

Цветовая гамма, цвета пропитки для дерева Pinotex Ultra с номерами цветов

Просим обязательно учесть Вас, что экран монитора компьютера дает искажение, также конечный результат получения каждого конкретного цвета зависит от породы дерева (на которое наносится краска), его сорта, метода нанесения краски, и инструментов, используемых при нанесении. Поэтому окончательный выбор цвета лучше производить в магазине, «вживую» выбирая цвет в каталоге производителя.


 

Если вас интересуют цвета других антисептиков бренда Пинотекс с номерами цветов, но вы попали на эту страницу, не спешите уходить с сайта. У нас есть все варианты цветовой гаммы пропиток Pinotex, посмотреть их вы сможете, перейдя по следующим ссылкам:

 

 

 

 

 

 

Краска-антисептик Пинотекс Ультра предназначена для декоративной и защитной отделки древесины. Цветовая гамма Pinotex Ultra — палитра разнообразных оттенков.

Краска-антисептик Пинотекс Ультра содержит 10 готовых цветов: 301 Бесцветный, 302 Белый, 358 Калужница, 375 Орегон, 376 Тиковое дерево, 377 Ореховое дерево, 378 Красное дерево, 379 Палисандр, 398 Рябина, Сосна.

 

Базовые цвета антисептика Pinotex Ultra

 

 

Краска-антисептик Пинотекс Ультра содержит 37 дополнительно колеруемых цветов: 300 Эбеновое дерево, 305 Светлый дуб, 306 Пшеничные колосья, 307 Тополь, 308 Морская галька, 309 Осеннее небо, 310 Вереск, 311 Осина, 312 Черный тюльпан, 316 Кедровый орех, 318 Винтажная медь, 321 Незабудка, 323 Лагуна, 325 Василек, 326 Морская волна, 327 Океан, 329 Летнее небо, 335 Фисташковый, 336 Кардамон, 337 Олива, 338 Ольховая кора, 339 Еловая хвоя, 340 Листья бамбука, 341 Альпийский луг, 343 Кипарис, 344 Авокадо, 355 Золотой песок, 356 Сибирская сосна, 357 Горчица, 359 Шафран, 365 Осенний клён, 366 Миндаль, 380 Красный каштан, 392 Роза, 395 Красный коралл, 396 Пассифлора, 397 Вишня в шоколаде.

 

 

белая, беленый дуб, видео-инструкция по выбору своими руками, какая есть цветовая гамма, фото и цена

Все фото из статьи

Любое дерево нуждается в защите, причем не только от климатических факторов, но и от насекомых. Использование специальных пропиток позволяет значительно повысить срок службы древесины, а за счет проявления текстуры дерева выглядеть оно будет просто великолепно.

Результат обработки цветной пропиткой

Назначение и виды пропиток

Основное назначение любого антисептика для дерева заключается в защите древесины от гниения под воздействием влаги, также после обработки оно становится абсолютно непривлекательным для насекомых.

В результате срок службы повышается в разы по сравнению с необработанной древесиной, а добавление колера в жидкость позволяет еще и придать древесине нужный оттенок, цветовая гамма пропитки для дерева включает самые разные оттенки, так что проблем с выбором не будет.

Что касается классификации, то можно выделить такие типы составов как:

  • составы, защищающие дерево от влаги и насекомых, вода после обработки не впитывается, а просто скатывается по поверхности. Такие жидкости называют антисептиками;
  • для защиты от возгорания используют антипиретики;

Антипиретики замедляют возгорание

Обратите внимание! Нужно понимать, что антипиретики не гарантируют 100%-ной защиты от огня. Они не дадут дереву воспламенится при воздействии высокой температуры, замедлив тем самым распространение огня. Но со временем древесина все равно загорится.

  • особняком стоят цветные составы. Основное отличие от обычных заключается в том, что производитель уже добавил краситель в оптимальной пропорции, цена таких составов может быть чуть выше, чем обычных;

Довольно популярная цветная пропитка

  • встречаются и комбинированные составы, они сочетают в себе свойства антисептика и антипиретика одновременно.

Также классификацию можно привести на основе используемого растворителя, выделить можно такие типы составов как:

  • на основе масла – древесина приобретает гидрофобные свойства. Но такие составы недолговечны и их нужно довольно часто обновлять. Зато после обработки древесина выглядит свежей, проявляется ее текстура;
  • на основе различных химических растворителей (уайт-спирит и т. д.), могут быть как бесцветными, так и цветными, причем цвета пропитки для дерева варьируются в широком диапазоне. Такие составы используются для нанесения на сухую древесину и гарантируют быстрое и глубокое проникновение в древесину. Недостатком можно считать разве что сильный неприятный запах и токсичность состава;

Обратите внимание! Помимо зашиты от влаги, УФ излучения и прочих неблагоприятных факторов они могут использоваться и для борьбы с локальными проявлениями плесени либо грибка.

  • на водной основе. Такие жидкости идеальны для обработки недосушенной древесины, средства на основе химических растворителей просто не проникнут внутрь из-за наличия в древесине влаги. А вот при обильном нанесении на сухую древесину есть риск того, что изделие немного поведет.

Состав на водной основе

Особенности цветных пропиток

Нужно понимать, что использование цветных растворов не равно окрашиванию дерева, то есть текстура будет видна, на поверхности древесины не образуется пленка. Поэтому часто цвета пропиток для дерева подбираются так, чтобы они усиливали цвет древесины, хотя можно и поэкспериментировать.

Белая пропитка

Белый цвет отлично смотрится почти в любом интерьере, причем белым может быть не только пол, стены, но и мебель, и прочие предметы интерьера. Особенно популярен беленый дуб – пропитка для дерева позволит добиться интересного эффекта. Но использование морилки белого цвета далеко не единственный способ добиться желаемого эффекта.

На фото – белая морилка

Обратите внимание! Простая покраска в белый цвет и тонирование с помощью специального состава – принципиально разные вещи. Краска в дерево не впитывается, просто образует на его поверхности тонкий слой, а вот пропитка проникает в древесину, и текстура остается заметной.

Можно привести несколько способов получения беленого дерева:

  • самый простой путь – просто использовать белую морилку, например, на основе жидкого воска. Достаточно хорошо себя зарекомендовали составы VerfijnSteigerhout, они не «забивают текстуру дерева», но защиту от насекомых, гниения и посинения древесины гарантируют практически 100%-ную;

Результат нанесения белой пропитки

  • пропитка для дерева белого цвета может быть и на основе скипидара, это не принципиально. Как пример можно привести воск белого цвета, который при нанесении дает эффект тонкого беления;
  • как вариант можно рассмотреть нанесение твердого масла с воском уже поверх обычной морилки, это позволит дать белый оттенок не всей плоскости доски, а только лишь глубоким порам. Прочая часть сохранит цвет, который получился при первоначальной пропитке;

Справа масло с воском нанесено поверх обычной пропитки

Обратите внимание! Такой подход сработает только в том случае, когда поверхность древесины не идеально ровная, а имеет глубокие поры.

  • если планируется дальнейшая окраска либо нанесение лака, то внимание можно обратить на специальные грунтовки, которые одновременное выполняют роль и тонирующего состава. Например, СигмалайфVS-Xпозволит придать дереву белый оттенок, эта белая пропитка для дерева помимо защиты дерева от гниения еще и устойчива к воздействию УФ излучения.

Результат нанесения на гладкую поверхность

Особенности применения цветных пропиток

Применение цветных пропиток ничем не отличается от бесцветных, добавляется только пункт подбора подходящего цвета. Например, выбеленное дерево хорошо получается в том случае, если древесина довольно пористая, а вот на гладкой поверхности эффект будет совершенно другим.

Заниматься колеровкой пропитки своими руками нет особого смысла, в магазине по карте цветов подобрать можно практически любой оттенок. К тому же стоимость сильно не увеличивается, так что игра не стоит свеч

Карта цветов тонированной пропитки

При обработке большое внимание уделяется подготовительному этапу. В обязательном порядке необходимо отшлифовать поверхность дерева, трещинки зашпаклевать, выпадающие сучки подклеить на место. Дерево перед пропиткой должно быть высушено, в противном случае раствор может просто не проникнуть вглубь на должную глубину (как в случае составов на основе химрастворителей).

Обратите внимание! Антипиретики чаще всего выпускаются бесцветными либо розоватого оттенка. Эстетические соображения здесь ни при чем, а сделано это для того, чтобы визуально можно было отличить обработанный участок от необработанного.

После обработки антипиретиками пиломатериалы могут окраситься в такой цвет

При обработке наружных элементов есть смысл использовать пропитки, которые снижают вероятность растрескивания доски со временем. Они просто уменьшают скорость испарения влаги из доски, то есть «консервируют» ее.

Что же касается самого нанесения раствора, то допускается использовать как кисть, валик, так и воспользоваться пульверизатором. Инструкция требует особое внимание уделять торцам досок, дело в том, что именно с этой стороны насекомым легче всего проникнуть вглубь и начать поедать доску.Состав наносится в несколько слоев, между ними обязательно выдерживается пауза, необходимая для полного высыхания предыдущего слоя.

Пропитка может наноситься и так

Выводы

Использование цветных пропиток позволяет одним выстрелом убить сразу двух зайцев. Помимо надежной защиты дерева от влаги, насекомых и УФ лучей можно сразу придать древесине нужный оттенок. После этого можно покрыть поверхность бесцветным лаком и отличный внешний вид гарантирован. Важно и то, что сам процесс обработки не усложняется по сравнению с использованием бесцветных составов.

На видео в этой статье показан процесс нанесения пропитки на деревянный пол веранды.

Краски и пропитки для дерева — Краски Sherwin-Williams Воронеж

Wood Classics Interior Oil Stain — пропитка-морилка по дереву для интерьерных — внутренних работ на масляной — алкидной основе. Превосходно подходит для покраски деревянных полов, стен, потолков, самых разнообразных деревянных архитектурных элементов: двери, перила, балясины, мебель, плинтуса, ступени, изделия ручной работы.

Пропитка — морилка Wood Classics Interior Oil Stain разработана для использования на деревянных поверхностях внутри всех видов помещений при строительстве жилых и торговых сооружений, а также для повторной отделки. В качестве связующего — основы используется соевый алкидный полимер и соевое масло. Пропитка — морилка имеет высокую пропитывающую способность, сохраняет и подчеркивает рисунок дерева. Wood Classics Interior Oil Stain уплотняет и пропитывает древесину, а также обладает устойчивостью к появлению неисчезающих следов от кисти. Благодаря уникальной формуле пропитка при нанесении вызывает минимальный подъем волокон дерева, что значительно увеличивает производительность проводимых работ.

Рекомендуется для всех видов древесины. Легко и эффективно пропитывает и окрашивает как мягкие, так и твердые сорта дерева, благодаря этому успешно применяется для окраски паркета и половой доски. Как правило, мягкие породы дерева, такие как сосна, ель, тополь, имеют трудности при их обработке из-за неравномерного впитывания поверхности. Именно по этой причине поверхность после нанесения материала может пятнить. В этом случае можно применить прозрачную пропитку — морилку Wood Classics Interior Oil Stain Natural как грунтовку, которая обладает способностью выравнивать впитываемость поверхности. Такой способ обработки мягких пород древесины описан в технологической спецификации.

Система Wood Classics для обработки деревянных полов, мебели, элементов, подвергающихся сильному износу, состоит из одного слоя пропитки — морилки Wood Classics Interior Oil Stain и двух слоев лака. Главное преимущество системы Wood Classics по сравнению с конкурентными продуктами состоит в том, что весь технологический процесс окраски: нанесение морилки и двух отделочных покрытий занимает 8 часов. Большинство прозрачных алкидных покрытий с содержанием растворителя, полиуретановых и лаковых отделочных покрытий можно наносить на морилку через 2 часа, а водорастворимые материалы — через 6 часов.

При обработке стен и потолков достаточно одного — двух слоев пропитки — морилки Wood Classics Interior Oil Stain, применение лака, воска или других защитных покрытий не обязательно. Один слой пропитки — морилки образует матовую поверхность, два слоя создают покрытие с небольшим сатиновым глянцем.

Уникальный состав пропитки — морилки Wood Classics Interior Oil Stain позволяет покрытию расширяться и сжиматься вместе с древесиной под воздействием температуры и влажности. В отличие от конкурентных морилок Wood Classics обладает более густой консистенцией, благодаря чему наносится с меньшим количеством брызг и проливов. Это делает процесс нанесения более аккуратным и быстрым, позволяет экономить время на каждой операции. Может быть использована в качестве декоративного материала для имитации рисунка дерева на иных — не деревянных поверхностях, например: металл, штукатурка, пластик и другие…

Рекомендуется наносить на деревянные поверхности с содержанием влажности не более 18%. Пропитка — морилка Wood Classics Interior Oil Stain имеет стандартную цветовую палитру — 40 цветов, может быть заколерована в другие цвета конкурентных палитр.

Наружные пропитки для дерева: характеристики и особенности использования

Так как дерево является живым организмом, то для сохранения его целостности и с целью защиты от внешних воздействий, рекомендуется произвести обработку любого рода деревянных изделий. Современный рынок строительных материалов, предлагает огромное количество пропиток, антисептиков и других средств для обработки дерева. О том, чем обработать и как сделать пропитку для дерева рассмотрим далее.

Оглавление:

  1. Пропитка для дерева — особенности и использование
  2. Основные виды пропиток для дерева
  3. Пропитки для дерева наружные: составы обеспечивающие защиту от потемнения
  4. Пропитка для дерева от гниения: особенности использования
  5. Пропитка для дерева для наружных работ: защита ответственных элементов
  6. Противопожарная пропитка для дерева — нанесение и свойства
  7. Декоративная пропитка для дерева: наружные работы
  8. Изготовление наружной пропитки для дерева своими руками

Пропитка для дерева — особенности и использование

В процессе строительства деревянного дома или других элементов из дерева, находящихся на улице, возникает вопрос о выборе средства, которое поможет сохранить свойства дерева на протяжении длительного периода времени. Именно для этой цели предназначены наружные пропитки, защищающие материал от воздействия солнца, влаги, ветра и других внешних раздражителей.

Так как дерево является живым материалом, оно обладает рядом преимуществ, среди которых главным выступает его экологичность и безопасность использования. Однако, дерево имеет высокие влагопоглащающие свойства, поэтому требует определенной защиты перед воздействием обильной влаги.

Именно, в следствие перепадов влажности данного материала происходит его деформация, проявляющаяся набуханием и рассыханием дерева. Кроме того, скопление излишней влаги приводит к образованию грибка и плесени, постепенно разрушающих структуру деревянной поверхности.

Среди еще одних врагов дерева выделяют насекомых в виде плесневых, дереворазрушающих грибов или даже водорослей. При наличии грибковых спор в воздухе они мгновенно поселяются на деревянной поверхности и начинают обильно там размножаться. Для их прорастания в дерево достаточно подождать около 300 минут. Среди первых признаков дерева, пораженного грибами выделяют наличие темных пятен на его поверхности, неоднородность текстуры, присутствие синевы или налета.

Самым жестоким врагом дерева выступает микроорганизм в виде белого домового гриба. Его разрушительная сила слишком велика: достаточно одного месяца для разрушения одной половой доски, толщина которой составляет 40 мм.

Кроме этих факторов на дерево влияет огонь, для предотвращения которого также используются специальные препараты.

В процессе строительства объектов, изготовленных из дерева, используются различные методы, которые способствуют противодействию всем вышеперечисленным типам разрушителей. Их применяют на различных этапах работы с деревянными материалами: при заготовке дерева, после его сруба, в процессе хранения и сушки древесины и непосредственно перед проведением монтажных работ.

Обработка дерева должна быть комплексной, для предотвращения повышения уровня влажности материала, так как именно этот фактор является самым главным разрушителем дерева.

С целью защиты дерева от биологического воздействия происходит его изоляция по отношению к прикасанию с почвой, для этого обустраивают каменный или кирпичный цоколь. Кроме этого, производится сооружение специальных вентиляционных каналов, главной целью которых является проветривание дерева и его избавление от излишков влаги.

С конструкционным способом защиты дерева сочетается его обработка с помощью наружных пропиток. Главной целью данных средств выступает защита дерева от влаги, огня и биологического воздействия. В роли пропиток выступают антисептики — обеспечивающие защиту от плесени и грибка, антипирены — обеспечивают защиту от возгорания. Если защитные средства применены в правильной последовательность и при соблюдении предписанных технологий, то срок службы дерева увеличивается в несколько раз.

Водорастворимые защитные вещества, масляные пасты, смеси и составы с летучими органическими соединениями способны обеспечить качественную защиту дерева от воздействия влаги. Самыми популярными среди потребителей являются растворы на водной основе, так как они более безопасны и удобны в нанесении.

Основные виды пропиток для дерева

1. Пропитки имеющие водную основу отличаются такими преимуществами:

  • отсутствием запаха;
  • быстрым высыханием;
  • безвредностью;
  • отсутствием необходимости в высыхании поверхности перед нанесением состава.

Среди недостатков такого рода пропиток выделяют:

  • проникновение только на небольшую толщину;
  • для дерево, постоянно контактирующего с влагой не применяются;
  • обеспечивают лишь поверхностную защиту.

Используют в процессе обработки зданий жилого назначения, хозяйственных построек, отдельных деревянных элементов.

2. Пропитки для дерева от влаги органического происхождения глубоко проникают в текстуру дерева, тем самым обеспечивая его надежную защиту. Обладают резким запахом, необходимостью подготовки поверхности перед их нанесением. Используются в местах постоянного контакта с водной средой, таких как подвалы, погреба.

Пропитки для дерева наружные: составы обеспечивающие защиту от потемнения

Использование данных пропиток актуально в период подготовки материала, а именно его сруб, транспортировку к объекту и его дальнейшее хранение. Чаще всего дерево хранят на открытом воздухе, поэтому если не провести обработку, перед строительством дерево потемнеет, из-за заражения определенного типа грибками.

Появление данной проблемы является актуальным в том случае, если при его использовании требуется сохранить естественную текстуру рисунка, например, в процессе строительства деревянной бани, которая в дальнейшем будет покрыта прозрачным лаком.

Нанесение такого рода пропиток должно защитить дерево на довольно продолжительное время, которое включает момент его сруба до установки на поверхность.

Большинство современных пропиток обеспечивает короткую защиту дерева, в течении 3-6 месяцев. Хотя существуют более дорогостоящие средства, сбалансированная рецептура которых, позволяет обеспечить более длительную защиту дерева.

Среди такого рода препаратов антисептик трудновымываемого характера “Сенеж Евро-транс”. Он способен защитить дерево в течение восьми месяцев. Но, учтите, что даже после обработки дерева, требуется строго соблюдать правила его хранения. Не допускайте контакта материала с почвой, укладывайте доски или брусья друг на друга штабелями.

При поражении дерева микроорганизмами в виде деревоокрашивающих грибов, следует произвести ее отбеливание, для предотвращения порчи материала.

Существует большое разнообразие составов, которые помогут отбелить древесину. Определенные из них направлены на удаление поражения, а другие — на их маскировку. Отбеливатели на основе хлора, способны выжечь дерево, но при этом происходит разрушение его структуры с одновременным удалением из него смолистых и дубильных веществ. Такие средства являются самыми популярными среди потребителей.

Пропитки щадящего типа представляют собой другую группу отбеливателей. В их основе лежит использование активного кислорода. Данные средства не способны разрушить текстуру дерева, поэтому не влияют на ее характеристики. Обработанная щадящими средствами древесина становится светлой, и в процессе работы не происходит выделение ядовитых веществ, в отличии от первого варианта. Хотя процедура проведения отбеливания в таком случае, усложняется.

Пропитка для дерева от гниения: особенности использования

Еще одним важным материалом, обеспечивающим защиту дерева является использования пропиток, предотвращающих гниение и усушечное растрескивание. Большинство необработанных деревянных зданий, характеризуется наличием растресканных торцевых участков. Данная процедура является следствием неравномерности в испарении влаги с торцов и основной части бревен.

Чтобы предотвратить растрескивание дерева, нужно позаботиться о его обработке с использованием специального рода составов. С их помощью снижается влагоиспарение и предотвращается загнивание и растрескивание торцевых участков.

Препараты, предназначенные для этих целей основываются на уменьшении количества трещин на поверхности дерева и нормализации воздухообмена. Кроме этого, происходит снижение линейных деформаций дерева в процессе его сушки, а торцы защищаются от воздействия влаги.

Пропитка для дерева для наружных работ: защита ответственных элементов

Начальный этап строительства предполагает установку нижних венцовых конструкций, а также лаг, используемых при обустройстве чернового пола, деталей, которые являются частью подвала и т.п.

Данные элементы подвергаются более высокому эксплуатационному износу, нежели стандартные детали. На них влияет атмосферная и почвенная влажность, биологическое разрушение и повышенное активное увлажнение.

Именно на данные элементы возлагаются основные несущие функции, поэтому для их обработки используются более функциональные пропитки, которая сохранит их на более продолжительное время.

Пропитки такого типа являются водорастворимыми и невымываемыми. Они способны фиксироваться в дереве и становятся ее частью. Кроме этого, данные соединения имеют антисептические характеристики, с помощью пропиток изменяется цвет дерева, а оно становится немного зеленоватым, но зато также обеспечивается эффективная защита от домового белого гриба.

А вот, чтобы защитить стены и перегородки рекомендуется использовать пропитки, которые не изменяют цвета дерева. Они менее мощные, но зато сохраняют привлекательность внешнего вида деревянной текстуры.

Антисептики бесцветного происхождения являются вымываемыми и производят глубокое антисептирование материала. Они подходят для обработки материала, находящегося под прямым и продолжительным влиянием влажности, а потому подходят именно для наружных работ. В данном случае, они выполняют функцию биозащитного грунта, перед покраской с помощью лака.

Противопожарная пропитка для дерева — нанесение и свойства

Кровельная система и межэтажное перекрытие выступает в качестве сложного конструктивного решения, требующего обработки с помощью специальных средств. Так как именно здесь, опасность воспламенения самая высокая, то для них требуется нанесение огнезащитного состава.

Предпочтительно выбирать пропитки, сочетающие в себе как огнезащитную так и биозащитную функциональные особенности.

Огнезащитные средства разделяют на два вида:

  • покрывчастого типа;
  • составы.

Первый вариант подразумевает применение лаков, красок, паст и обмазок, а второй — непосредственно пропитки.

Данные типы покрытия способны изменить цвет дерева, поэтому применяются лишь на участках неосматриваемого характера. Более популярными являются пропитки, так как они способны сохранить текстуру дерева, несмотря на изменение его цвета, хотя при дальнейшем окрашивании материала с помощью краски, возможен вариант использования покрывных средств.

В роли огнезащитных пропиток выступают препараты, относящиеся к первой и второй группам пожарной безопасности. Чтобы защитить поверхности, наиболее подвержены риску возгорания, применяются препараты первой группы, именно с их помощью происходит тонирование дерева в продольном направлении. Древесина при этом приобретает розоватый цвет, по которому и определяется качество выполненной работы.

Более распространенными являются огнезащитные средства второй группы. Чтобы защитить внутреннюю часть помещения применяют средства более щадящего типа. Они не влияют на внешний вид дерева.

Учтите, при выборе огназащитной пропитки, следите за наличием сертификатов качества, документов, подтверждающих пожарную безопасность и санитарно-эпидемиологических заключений.

Декоративная пропитка для дерева: наружные работы

После строительства и обработки деревянного дома с помощью вышеперечисленных средств, следует процедура нанесения декоративных пропиток. Данные препараты характеризуются экологической безопасностью. Кроме того, они выполняют функции антисептика и имеют, в большинстве случаев, водную основу.

Если сравнивать такие пропитки с органическими средствами, то неприятный запах у первого варианта, отсутствует. Декоративная пропитка для дерева состав — акрилаты, благодаря которым достигается высокая эластичность покрытия, отличная устойчивость перед влагой, но в то же время и паропроницаемость. Благодаря этому, покрытие держится на деревянной поверхности в течение длительного периода времени.

Разнообразные производители предлагают широкий ассортимент декоративных покрытий, имеющий большую цветовую гамму. Выбор данного материала предполагает наличие в пропитке лессирующего декоративного покрытия с ультрафиолетовым фильтром. Они не способствуют потемнению дерева, из-за того, что поглощают ультрафиолет. Кроме этого, текстура дерева остается неизменной.

Если декоративная пропитка не обладает свойствами антисептического характера, то предварительно необходимо обработать дерево антисептиком.

Изготовление наружной пропитки для дерева своими руками

Для обработки стропильной системы используются растворы разогретого битума. Чтобы произвести обработку ответственных участков, лучше всего подойдет отработанное машинное масло, которое можно приобрести или попросить на станциях техобслуживания.

Данный вариант пропитки изготовленной своими руками не используется на поверхностях предназначенных под декоративное покрытие, в любых других случаях, он является отличным антисептиком.

Для изготовления антисептической пропитки своими руками потребуется наличие:

  • пластиковой канистры, объемом 25 л;
  • ста грамм железного купороса;
  • десять грамм марганцовки;
  • двадцати литров воды.

Все ингредиенты следует развести в канистре и нанести на поверхность с помощью кисти или валика. Стоимость данного антисептика в десятки раз ниже, чем покупного, а эффективность практически одинакова.

цвет древесины после обработки Пирилакс, Красула и Масловоск


Примеры ОБРАБОТКИ и ЦВЕТ дерева после нанесения пропиток


и составов АНТЕКС, МАСЛОВОСК и ПИРИЛАКС

 Для защиты поверхности древесины дома, сруба или бруса можно использовать антисептики серии МАСЛОВОСК, АНТЕКС, ЭЛКОН.

ВИДЕО  выбора пропиток по практике их применения на РЕАЛЬНЫХ объектах

Оценить качество огнезащитных пропиток на обработанных поверхностях на древесине срубов домов и отдельных деревянных образцах выкрасок можно по фото, предоставленных нашими партнерами.

для увеличения фото в полноэкранный режим кликните курсором мышки по выбранной вами фотографии.  
Бревенчатый дом, обработан КОМПЛЕСНЫМ покрытием. Использованы пропитки Пирилакс, ЭЛКОН и т.п.

примечание:     максимальная эффективность защиты и долговечность поверхности гарантируется
заводами-производителями при работе с линейкой составов от одного производителя.


Комплексный эффект огнебиозащиты сруба дома по мнению наших партнеров


 — совместная последовательная обработка дома антисептиком АНТЕКС и МАСЛОВОСК Анта VoskOil

  При нанесении антисептика АНТЕКС ПРЕМИУМ или АНТЕКС ЭКСТРА на сруб дома или бани, первым слоем вы придаете древесине сруба эффективные огнебиозащитные свойства — древесина практически не горит, поверхность ее уплотняется, не поражается короедом и плесенью, споры грибков, личинки короеда погибают. Древесина приобретает приятный оттенок желтовато янтарного цвета от чуть заметного до насыщенного, в выделением структуры древесины (в зависимости активности УФ- и от плотности древесины и количества пропитки АНТЕКС на м2 поверхности).
  Если Вы хотите сохранить цвет древесины естественным (без окрашивания его в желтовато янтарный оттенок, но огнебиозащитные свойства вам необходимы такие же, какие обеспечивают и окрашивающие пропитки), то вместо Антекс ПРЕМИУМ или Антекс ЭКСТРА используйте Антекс ТИТАН или Антекс ЛАЙТ.
 После нанесения дополнительного (второго) слоя активного биологически защитного состава МАСЛОВОСК Анта БИО на покрытую Антекс поверхность, вы получате СОВЕРШЕННО полную и ЭКОЛОГИЧЕСКИ БЕЗОПАСНУЮ поверхность с дополнительной защитой древесины дома от УФ-, влаго и водозащиту в эффектом дышащей поверхности (древесина сруба остается паропроницаемой), мощный антисептический эффект с проникновением защитных компонентов до 2-х мм в древесину дома. Обработанная поверхность становиться АНТИСТАТИЧЕСКОЙ, не электролизуется (как при покрытии лаками), бархатной на ощуп и совершенно НЕ АЛЕРГЕННОЙ. 
  После обработки сруба дома комплексно составами АНТЕКС и Масловоск древесина практически не подвержена горению, при этом остается ЖИВОЙ, не утрачивает ЕСТЕСТВЕННОГО ЗАПАХА хвои (может присутствовать легкой медово-хвойный аромат) и полностью защищенной от вредных биологических факторов окружающей среды.

Дом обработан антисептиком МАСЛОВОСК Стандарт с пигментом КОНЬЯК на огнезащитый состав

Цвета покраски и методы защиты древесины от сырости и влаги

Забота об облике двора – будь то загородный участок дачи или двор детского садика, важнейший момент, влияющий на настроение всех посетителей обустроенной территории.

Как же можно украсить и разнообразить ландшафт любимого двора? Как вариант, можно обустроить двор изделиями из натурального дерева, сделанными руками мастера по специальному заказу. В данном направлении трудятся специалисты нашей компании.

Изделия из дерева должны быть не только практичными, но и привлекательными внешне, долговечными и прочными,
а этому способствуют пропитка и покраска всех деревянных изделий.

Цветовая палитра при покраске дерева текстуролом

Цвет покраски изделий из дерева можно выбрать любой из цветовой гаммы текстурола — специальной краски-пропитки для дерева, сохраняющей, в отличие от обычной краски, узор и текстуру древесины. Наиболее популярные цвета – тик, палисандр, сосна, дуб, махагон и орех.

После покраски, когда доски хорошенько пропитаются и текстурол высохнет, сверху дополнительно можно наносить бесцветный лак, в один или два слоя. Таким образом, достигается более надежная защита дерева любой породы от внешнего воздействия от дождливой сырой погоды и влажности.

Цветовая палитра при покраске дерева акватексом

Текстурный состав марки «Акватекс» также служит для защиты дерева от воздействия влажности и дополнительно защищает от гнили, плесени и выгорания. При обработке поверхности древесных материалов текстура волокон дерева остается видна.

Дополнительные цвета покраски и пропитки на примере наших выполненных работ

Цвет покраски изделия — ВЕНГЕ

Пример покраски будки для собаки в цвет ВЕНГЕ. Визуально выглядит как среднее между черным и темно-коричневым.

Цвет покраски изделия — СЕРЫЙ ЯСЕНЬ

Решетки шпалеры покрашены в цвет СЕРЫЙ ЯСЕНЬ. Материал — сосна.

БЕСЦВЕТНАЯ ПРОПИТКА глубокого проникновения (грунтовка)

Крыльцо из лиственницы обработано бесцветной пропиткой (грунтовкой).

Подбор цвета покраски изделия с колеровкой по системе RAL

Цвет покраски изделий из дерева по требованию можно подобрать из таблицы цветов RAL.
Пример подбора цвета краски представлен на вышеприведенной фотографии.
Сначала был получен образец от нашего заказчика (уже покрашенная доска),
затем мы подобрали соответствующий номер колеровки по шкале RAL.

Подбор цвета покраски по таблице палитры RAL оплачивается дополнительно
с учётом марки выбранной вами краски и колеровки, а также количества слоёв прокраски изделий.

Таблица палитры основных цветов покраски изделий из дерева по стандарту RAL

  • RAL 1000

    Grünbeige
    Green beige
    Beige vert
    Beige verdoso
    Beige verdastro
    Groenbeige
    Зелено-бежевый
  • RAL 1001

    Beige
    Бежевый
  • RAL 1002

    Sandgelb
    Sand yellow
    Jaune sable
    Amarillo arena
    Giallo sabbia
    Zandgeel
    Песочно-желтый
  • RAL 1003

    Signalgelb
    Signal yellow
    Jaune de sécurité
    Amarillo señales
    Giallo segnale
    Signaalgeel
    Сигнальный желтый
  • RAL 1004

    Goldgelb
    Golden yellow
    Jaune or
    Amarillo oro
    Giallo oro
    Goudgeel
    Золотисто-желтый
  • RAL 1005

    Honiggelb
    Honey yellow
    Jaune miel
    Amarillo miel
    Giallo miele
    Honinggeel
    Медово-желтый
  • RAL 1006

    Maisgelb
    Maize yellow
    Jaune maïs
    Amarillo maiz
    Giallo polenta
    Maisgeel
    Кукурузно-желтый
  • RAL 1007

    Narzissengelb
    Daffodil yellow
    Jaune narcisse
    Amarillo narciso
    Giallo narciso
    Narcissengeel
    Желтый нарцисс
  • RAL 1011

    Braunbeige
    Brown beige
    Beige brun
    Beige pardo
    Beige marrone
    Bruinbeige
    Коричнево-бежевый
  • RAL 1012

    Zitronengelb
    Lemon yellow
    Jaune citron
    Amarillo limón
    Giallo limone
    Citroengeel
    Лимонно-желтый
  • RAL 1013

    Perlweiß
    Oyster white
    Blanc perlé
    Blanco perla
    Bianco perla
    Parelwit
    Жемчужно-бежевый
  • RAL 1014

    Elfenbein
    Ivory
    Ivoire
    Marfil
    Avorio
    Ivoorkleurig
    Слоновая кость
  • RAL 1015

    Hellelfenbein
    Light ivory
    Ivoire clair
    Marfil claro
    Avorio chiaro
    Licht ivoorkleurig
    Светлая слоновая кость
  • RAL 1016

    Schwefelgelb
    Sulfur yellow
    Jaune soufre
    Amarillo azufre
    Giallo zolfo
    Zwavelgeel
    Желтая сера
  • RAL 1017

    Safrangelb
    Saffron yellow
    Jaune safran
    Amarillo azafrán
    Giallo zafferano
    Saffraangeel
    Шафраново-желтый
  • RAL 1018

    Zinkgelb
    Zinc yellow
    Jaune zinc
    Amarillo de zinc
    Giallo zinco
    Zinkgeel
    Цинково-желтый
  • RAL 1019

    Graubeige
    Grey beige
    Beige gris
    Beige agrisado
    Beige grigiastro
    Grijsbeige
    Серо-бежевый
  • RAL 1020

    Olivgelb
    Olive yellow
    Jaune olive
    Amarillo oliva
    Giallo olivastro
    Olijfgeel
    Оливково-желтый
  • RAL 1021

    Rapsgelb
    Colza yellow
    Jaune colza
    Amarillo colza
    Giallo navone
    Koolzaadgeel
    Рапсово-желтый
  • RAL 1023

    Verkehrsgelb
    Traffic yellow
    Jaune signalisation
    Amarillo tráfico
    Giallo traffico
    Verkeersgeel
    Транспортно-желтый
  • RAL 1024

    Ockergelb
    Ochre yellow
    Jaune ocre
    Amarillo ocre
    Giallo ocra
    Okergeel
    Охра желтая
  • RAL 1026

    Leuchtgelb
    Luminous yellow
    Jaune brillant
    Amarillo brillante
    Giallo brillante
    Briljantgeel
    Ярко-желтый
  • RAL 1027

    Currygelb
    Curry
    Jaune curry
    Amarillo curry
    Giallo curry
    Kerriegeel
    Карри
  • RAL 1028

    Melonengelb
    Melon yellow
    Jaune melon
    Amarillo melón
    Giallo melone
    Meloengeel
    Дынно-желтый
  • RAL 1032

    Ginstergelb
    Broom yellow
    Jaune genêt
    Amarillo retama
    Giallo scopa
    Bremgeel
    Желтый ракитник
  • RAL 1033

    Dahliengelb
    Dahlia yellow
    Jaune dahlia
    Amarillo dalia
    Giallo dahlien
    Dahliageel
    Георгиново-желтый
  • RAL 1034

    Pastellgelb
    Pastel yellow
    Jaune pastel
    Amarillo pastel
    Giallo pastello
    Pastelgeel
    Пастельно-желтый
  • RAL 1035

    Perlbeige
    Pearl beige
    Beige nacré
    Beige perlado
    Beige perlato
    Parelmoer grijs
    Жемчужно-серый
  • RAL 1036

    Perlgold
    Pearl gold
    Or nacré
    Oro perlado
    Oro perlato
    Parelmoer goud
    Parelmoer goud
    Жемчужное золото
  • RAL 1037

    Sonnengelb
    Sun yellow
    Jaune soleil
    Amarillo sol
    Giallo sole
    Zonnegeel
    Солнечно-желтый
  • RAL 2000

    Gelborange
    Yellow orange
    Orangé jaune
    Amarillo naranja
    Arancio giallastro
    Geeloranje
    Желто-оранжевый
  • RAL 2001

    Rotorange
    Red orange
    Orangé rouge
    Rojo anaranjado
    Arancio rossastro
    Roodoranje
    Красно-оранжевый
  • RAL 2002

    Blutorange
    Vermilion
    Orangé sang
    Naranja sanguineo
    Arancio sanguigno
    Vermiljoen
    Сульфид ртути
  • RAL 2003

    Pastellorange
    Pastel orange
    Orangé pastel
    Naranja pálido
    Arancio pastello
    Pasteloranje
    Пастельно-оранжевый
  • RAL 2004

    Reinorange
    Pure orange
    Orangé pur
    Naranja puro
    Arancio puro
    Zuiver oranje
    Чистый оранжевый
  • RAL 2005

    Leuchtorange
    Luminous orange
    Orangé brillant
    Naranja brillante
    Arancio brillante
    Briljantoranje
    Ярко-оранжевый
  • RAL 2007

    Leuchthell orange
    Luminous bright orange
    Orangé clair brillant
    Naranja claro brillante
    Arancio chiaro brillante
    Briljant lichtoranje
    Яркий светло-оранжевый
  • RAL 2008

    Hellrotorange
    Bright red orange
    Orangé rouge clair
    Rojo claro anaranjado
    Rosso arancio chiaro
    Licht roodoranje
    Яркий красно-оранжевый
  • RAL 2009

    Verkehrsorange
    Traffic orange
    Orangé signalisation
    Naranja tráfico
    Arancio traffico
    Verkeersoranje
    Транспортно-оранжевый
  • RAL 2010

    Signalorange
    Signal orange
    Orangé de sécurité
    Naranja señales
    Arancio segnale
    Signaaloranje
    Сигнальный оранжевый
  • RAL 2011

    Tieforange
    Deep orange
    Orangé foncé
    Naranja intenso
    Arancio profondo
    Dieporanje
    Насыщенный оранжевый
  • RAL 2012

    Lachsorange
    Salmon orange
    Orangé saumon
    Naranja salmón
    Arancio salmone
    Zalmoranje
    Лососево-оранжевый
  • RAL 2013

    Perlorange
    Pearl orange
    Orangé nacré
    Naranja perlado
    Arancio perlato
    Parelmoer oranje
    Жемчужно-оранжевый
  • RAL 3000

    Feuerrot
    Flame red
    Rouge feu
    Rojo vivo
    Rosso fuoco
    Vuurrood
    Огненно-красный
  • RAL 3001

    Signalrot
    Signal red
    Rouge de sécurité
    Rojo señales
    Rosso segnale
    Signaalrood
    Сигнальный красный
  • RAL 3002

    Karminrot
    Carmine red
    Rouge carmin
    Rojo carmin
    Rosso carminio
    Karmijnrood
    Карминно-красный
  • RAL 3003

    Rubinrot
    Ruby red
    Rouge rubis
    Rojo rubí
    Rosso rubino
    Robijnrood
    Рубиново-красный
  • RAL 3004

    Purpurrot
    Purple red
    Rouge pourpre
    Rojo púrpura
    Rosso porpora
    Purperrood
    Пурпурно-красный
  • RAL 3005

    Weinrot
    Wine red
    Rouge vin
    Rojo vino
    Rosso vino
    Wijnrood
    Винно-красный
  • RAL 3007

    Schwarzrot
    Black red
    Rouge noir
    Rojo negruzco
    Rosso nerastro
    Zwartrood
    Темно-красный
  • RAL 3009

    Oxidrot
    Oxide red
    Rouge oxyde
    Rojo óxido
    Rosso ossido
    Oxyderood
    Оксидно-красный
  • RAL 3011

    Braunrot
    Brown red
    Rouge brun
    Rojo pardo
    Rosso marrone
    Bruinrood
    Коричнево-красный
  • RAL 3012

    Beigerot
    Beige red
    Rouge beige
    Rojo beige
    Rosso beige
    Beigerood
    Бежево-красный
  • RAL 3013

    Tomatenrot
    Tomato red
    Rouge tomate
    Rojo tomate
    Rosso pomodoro
    Tomaatrood
    Томатно-красный
  • RAL 3014

    Altrosa
    Antique pink
    Vieux rose
    Rojo viejo
    Rosa antico
    Oudroze
    Античный розовый
  • RAL 3015

    Hellrosa
    Light pink
    Rose clair
    Rosa claro
    Rosa chiaro
    Lichtroze
    Светло-розовый
  • RAL 3016

    Korallenrot
    Coral red
    Rouge corail
    Rojo coral
    Rosso corallo
    Koraalrood
    Коралловый
  • RAL 3017

    Rosé
    Rose
    Rosé
    Rosa
    Rosato
    Bleekrood
    Роза
  • RAL 3018

    Erdbeerrot
    Strawberry red
    Rouge fraise
    Rojo fresa
    Rosso fragola
    Aardbeirood
    Клубнично-красный
  • RAL 3020

    Verkehrsrot
    Traffic red
    Rouge signalisation
    Rojo tráfico
    Rosso traffico
    Verkeersrood
    Сигнальный красный
  • RAL 3022

    Lachsrot
    Salmon pink
    Rouge saumon
    Rojo salmón
    Rosso salmone
    Zalmrood
    Нерка
  • RAL 3024

    Leuchtrot
    Luminous red
    Rouge brillant
    Rojo brillante
    Rosso brillante
    Briljantrood
    Ярко-красный
  • RAL 3026

    Leuchthellrot
    Luminous bright red
    Rouge clair brillant
    Rojo claro brillante
    Rosso chiaro brillante
    Briljant lichtrood
    Яркий светло-красный
  • RAL 3027

    Himbeerrot
    Raspberry red
    Rouge framboise
    Rojo frambuesa
    Rosso lampone
    Framboosrood
    Малиново-красный
  • RAL 3028

    Reinrot
    Pure red
    Rouge pu
    Rojo puro
    Rosso puro
    Zuiver rood
    Чистый красный
  • RAL 3031

    Orientrot
    Orient red
    Rouge oriental
    Rojo oriente
    Rosso oriente
    Oriëntrood
    Ориент красный
    (восточный красный)
  • RAL 3032

    Perlrubinrot
    Pearl ruby red
    Rouge rubis nacré
    Rojo rubí perlado
    Rosso rubino perlato
    Parelmoer donkerrood
    Темно-рубиновый жемчуг
  • RAL 3033

    Perlrosa
    Pearl pink
    Rose nacré
    Rosa perlado
    Rosa perlato
    Parelmoer lichtrood
    Розовый жемчуг
  • RAL 4001

    Rotlila
    Red lilac
    Lilas rouge
    Rojo lila
    Lilla rossastro
    Roodlila
    Красно-сиреневый
  • RAL 4002

    Rotviolett
    Red violet
    Violet rouge
    Rojo violeta
    Viola rossastro
    Roodpaars
    Красно-фиолетовый
  • RAL 4003

    Erikaviolett
    Heather violet
    Violet bruyère
    Violeta érica
    Viola erica
    Heidepaars
    Фиолетовый вереск
  • RAL 4004

    Bordeauxviolett
    Claret violet
    Violet bordeaux
    Burdeos
    Viola bordeaux
    Bordeuaxpaars
    Бордово-фиолетовый
  • RAL 4005

    Blaulila
    Blue lilac
    Lilas bleu
    Lila azulado
    Lilla bluastro
    Blauwlila
    Сиренево-синий
  • RAL 4006

    Verkehrspurpur
    Traffic purple
    Pourpre signalisation
    Púrpurá tráfico
    Porpora traffico
    Verkeerspurper
    Транспортно-пурпурный
  • RAL 4007

    Purpurviolett
    Purple violet
    Violet pourpre
    Violeta púrpura
    Porpora violetto
    Purperviolet
    Пурпурно-фиолетовый
  • RAL 4008

    Signalviolett
    Signal violet
    Violet de sécurité
    Violeta señales
    Violetto segnale
    Signaalviolet
    Сигнальный фиолетовый
  • RAL 4009

    Pastellviolett
    Pastel violet
    Violet pastel
    Violeta pastel
    Violetto pastello
    Pastelviolet
    Пастельно-фиолетовый
  • RAL 4010

    Telemagenta
    Telemagenta
    Telemagenta
    Magenta tele
    Tele Magenta
    Telemagenta
    Телемаджента
  • RAL 4011

    Perlviolett
    Pearl violet
    Violet nacré
    Violeta perlado
    Violetto perlato
    Parelmoer donkerviolet
    Жемчужно‐фиолетовый
  • RAL 4012

    Perlbrombeer
    Pearl blackberry
    Mûre nacré
    Morado perlado
    Mora perlato
    Parelmoer lichtviolet
    Жемчужно-ежевичный
  • RAL 5000

    Violettblau
    Violet blue
    Bleu violet
    Azul violeta
    Blu violaceo
    Paarsblauw
    Фиолетово‐синий
  • RAL 5001

    Grünblau
    Green blue
    Bleu vert
    Azul verdoso
    Blu verdastro
    Groenblauw
    Зелёно‐синий
  • RAL 5002

    Ultramarinblau
    Ultramarine blue
    Bleu outremer
    Azul ultramar
    Blu oltremare
    Ultramarijn blauw
    Ультрамариново‐синий
  • RAL 5003

    Saphirblau
    Sapphire blue
    Bleu saphir
    Azul zafiro
    Blu zaffiro
    Saffierblauw
    Сапфирово‐синий
  • RAL 5004

    Schwarzblau
    Black blue
    Bleu noir
    Azul negruzco
    Blu nerastro
    Zwartblauw
    Черно‐синий
  • RAL 5005

    Signalblau
    Signal blue
    Bleu de sécurité
    Azul señales
    Blu segnale
    Signaalblauw
    Сигнальный синий
  • RAL 5007

    Brillantblau
    Brilliant blue
    Bleu brillant
    Azul brillante
    Blu brillante
    Briljantblauw
    Бриллиантово‐синий
  • RAL 5008

    Graublau
    Grey blue
    Bleu gris
    Azul grisáceo
    Blu grigiastro
    Grijsblauw
    Серо‐синий
  • RAL 5009

    Azurblau
    Azure blue
    Bleu azur
    Azul azur
    Blu azzurro
    Azuurblauw
    Лазурно‐синий
  • RAL 5010

    Enzianblau
    Gentian blue
    Bleu gentiane
    Azul genciana
    Blu genziana
    Gentiaanblauw
    Горечавково‐синий
  • RAL 5011

    Stahlblau
    Steel blue
    Bleu acier
    Azul acero
    Blu acciaio
    Staalblauw
    Стально‐синий
  • RAL 5012

    Lichtblau
    Light blue
    Bleu clair
    Azul luminoso
    Blu luce
    Lichtblauw
    Голубой
  • RAL 5013

    Kobaltblau
    Cobalt blue
    Bleu cobalt
    Azul cobalto
    Blu cobalto
    Kobaltblauw
    Кобальтово‐синий
  • RAL 5014

    Taubenblau
    Pigeon blue
    Bleu pigeon
    Azul colombino
    Blu colomba
    Duifblauw
    Голубино‐синий
  • RAL 5015

    Himmelblau
    Sky blue
    Bleu ciel
    Azul celeste
    Blu cielo
    Hemelsblauw
    Небесно‐синий
  • RAL 5017

    Verkehrsblau
    Traffic blue
    Bleu signalisation
    Azul tráfico
    Blu traffico
    Verkeersblauw
    Транспортный синий
  • RAL 5018

    Türkisblau
    Turquoise blue
    Bleu turquoise
    Azul turquesa
    Blu turchese
    Turkooisblauw
    Бирюзово‐синий
  • RAL 5019

    Capriblau
    Capri blue
    Bleu capri
    Azul capri
    Blu Capri
    Capriblauw
    Капри синий
  • RAL 5020

    Ozeanblau
    Ocean blue
    Bleu océan
    Azul oceano
    Blu oceano
    Oceaanblauw
    Океанская синь
  • RAL 5021

    Wasserblau
    Water blue
    Bleu d’eau
    Azul agua
    Blu acqua
    Waterblauw
    Водная синь
  • RAL 5022

    Nachtblau
    Night blue
    Bleu nocturne
    Azul noche
    Blu notte
    Nachtblauw
    Ночной синий
  • RAL 5023

    Fernblau
    Distant blue
    Bleu distant
    Azul lejanía
    Blu distante
    Verblauw
    Отдаленно‐синий
  • RAL 5024

    Pastellblau
    Pastel blue
    Bleu pastel
    Azul pastel
    Blu pastello
    Pastelblauw
    Пастельно‐синий
  • RAL 5025

    Perlenzian
    Pearl gentian blue
    Gentiane nacré
    Gencian perlado
    Blu genziana perlato
    Parelmoer blauw
    Перламутровый горечавково‐синий
  • RAL 5026

    Perlnachtblau
    Pearl night blue
    Bleu nuit nacré
    Azul noche perlado
    Blu notte perlato
    Parelmoer nachtblauw
    Перламутровый ночной синий
  • RAL 6000

    Patinagrün
    Patina green
    Vert patine
    Verde patina
    Verde patina
    Patinagroen
    Патиново‐зелёный
  • RAL 6001

    Smaragdgrün
    Emerald green
    Vert émeraude
    Verde esmeralda
    Verde smeraldo
    Smaragdgroen
    Изумрудно‐зелёный
  • RAL 6002

    Laubgrün
    Leaf green
    Vert feuillage
    Verde hoja
    Verde foglia
    Loofgroen
    Лиственно‐зелёный
  • RAL 6003

    Olivgrün
    Olive green
    Vert olive
    Verde oliva
    Verde oliva
    Olijfgroen
    Оливково‐зелёный
  • RAL 6004

    Blaugrün
    Blue green
    Vert bleu
    Verde azulado
    Verde bluastro
    Blauwgroen
    Сине‐зелёный
  • RAL 6005

    Moosgrün
    Moss green
    Vert mousse
    Verde musgo
    Verde muschio
    Mosgroen
    Зелёный мох
  • RAL 6006

    Grauoliv
    Grey olive
    Olive gris
    Oliva grisáceo
    Oliva grigiastro
    Grijs olijfgroen
    Серо‐оливковый
  • RAL 6007

    Flaschengrün
    Bottle green
    Vert bouteille
    Verde botella
    Verde bottiglia
    Flessengroen
    Бутылочно‐зелёный
  • RAL 6008

    Braungrün
    Brown green
    Vert brun
    Verde parduzco
    Verde brunastro
    Bruingroen
    Коричнево‐зелёный
  • RAL 6009

    Tannengrün
    Fir green
    Vert sapin
    Verde abeto
    Verde abete
    Dennengroen
    Пихтовый зелёный
  • RAL 6010

    Grasgrün
    Grass green
    Vert herbe
    Verde hierba
    Verde erba
    Grasgroen
    Травяной зелёный
  • RAL 6011

    Resedagrün
    Reseda green
    Vert réséda
    Verde reseda
    Verde reseda
    Resedagroen
    Резедово‐зелёный
  • RAL 6012

    Schwarzgrün
    Black green
    Vert noir
    Verde negruzco
    Verde nerastro
    Zwartgroen
    Черно‐зелёный
  • RAL 6013

    Schilfgrün
    Reed green
    Vert jonc
    Verde caña
    Verde canna
    Rietgroen
    Тростниково‐зелёный
  • RAL 6014

    Gelboliv
    Yellow olive
    Olive jaune
    Amarillo oliva
    Oliva giallastro
    Geel olijfgroen
    Жёлто‐оливковый
  • RAL 6015

    Schwarzoliv
    Black olive
    Olive noir
    Oliva negruzco
    Oliva nerastro
    Zwart olijfgroen
    Черно‐оливковый
  • RAL 6016

    Türkisgrün
    Turquoise green
    Vert turquoise
    Verde turquesa
    Verde turchese
    Turkooisgroen
    Бирюзово‐зелёный
  • RAL 6017

    Maigrün
    May green
    Vert mai
    Verde mayo
    Verde maggio
    Meigroen
    Майский зелёный
  • RAL 6018

    Gelbgrün
    Yellow green
    Vert jaune
    Verde amarillento
    Verde giallastro
    Geelgroen
    Жёлто‐зелёный
  • RAL 6019

    Weißgrün
    Pastel green
    Vert blanc
    Verde blanquecino
    Verde biancastro
    Witgroen
    Бело‐зелёный
  • RAL 6020

    Chromoxidgrün
    Chrome green
    Vert oxyde chromique
    Verde cromo
    Verde cromo
    Chroomoxyde groen
    Хромовый зелёный
  • RAL 6021

    Blassgrün
    Pale green
    Vert pâle
    Verde pálido
    Verde pallido
    Bleekgroen
    Бледно‐зелёный
  • RAL 6022

    Braunoliv
    Olive drab
    Olive brun
    Oliva parduzco
    Oliva brunastro
    Bruin olijfgroen
    Коричнево‐оливковый
  • RAL 6024

    Verkehrsgrün
    Traffic green
    Vert signalisation
    Verde tráfico
    Verde traffico
    Verkeersgroen
    Транспортный зелёный
  • RAL 6025

    Farngrün
    Fern green
    Vert fougère
    Verde helecho
    Verde felce
    Varengroen
    Папоротниково‐зелёный
  • RAL 6026

    Opalgrün
    Opal green
    Vert opale
    Verde opalo
    Verde opale
    Opaalgroen
    Опаловый зелёный
  • RAL 6027

    Lichtgrün
    Light green
    Vert clair
    Verde luminoso
    Verde chiaro
    Lichtgroen
    Светло‐зелёный
  • RAL 6028

    Kieferngrün
    Pine green
    Vert pin
    Verde pino
    Verde pino
    Pijnboomgroen
    Сосновый зелёный
  • RAL 6029

    Minzgrün
    Mint green
    Vert menthe
    Verde menta
    Verde menta
    Mintgroen
    Мятно‐зелёный
  • RAL 6032

    Signalgrün
    Signal green
    Vert de sécurité
    Verde señales
    Verde segnale
    Signaalgroen
    Сигнальный зелёный
  • RAL 6033

    Minttürkis
    Mint turquoise
    Turquoise menthe
    Turquesa menta
    Turchese menta
    Mintturquoise
    Мятно‐бирюзовый
  • RAL 6034

    Pastelltürkis
    Pastel turquoise
    Turquoise pastel
    Turquesa pastel
    Turchese pastello
    Pastelturquoise
    Пастельно‐бирюзовый
  • RAL 6035

    Perlgrün
    Pearl green
    Vert nacré
    Verde perlado
    Verde perlato
    Parelmoer donkergroen
    Жемчужно-зеленый
  • RAL 6036

    Perlopalgrün
    Pearl opal green
    Vert opal nacré
    Verde ópalo perlado
    Verde opalo perlato
    Parelmoer lichtgroen
    Перламутровый опаловый зелёный
  • RAL 6037

    Reingrün
    Pure green
    Vert pur
    Verde puro
    Verde puro
    Zuiver groen
    Чистый зеленый
  • RAL 6038

    Leuchtgrün
    Luminous green
    Vert brillant
    Verde brillante
    Verde brillante
    Briljantgroen
    Ярко-зеленый
  • RAL 7000

    Fehgrau
    Squirrel grey
    Gris petit-gris
    Gris ardilla
    Grigio vaio
    Pelsgrijs
    Серая белка
  • RAL 7001

    Silbergrau
    Silver grey
    Gris argent
    Gris plata
    Grigio argento
    Zilvergrijs
    Серебристо‐серый
  • RAL 7002

    Olivgrau
    Olive grey
    Gris olive
    Gris oliva
    Grigio olivastro
    Olijfgrijs
    Оливково‐серый
  • RAL 7003

    Moosgrau
    Moss grey
    Gris mousse
    Gris musgo
    Grigio muschio
    Mosgrijs
    Серый мох
  • RAL 7004

    Signalgrau
    Signal grey
    Gris de sécurité
    Gris señales
    Grigio segnale
    Signaalgrijs
    Сигнальный серый
  • RAL 7005

    Mausgrau
    Mouse grey
    Gris souris
    Gris ratón
    Grigio topo
    Muisgrijs
    Мышино‐серый
  • RAL 7006

    Beigegrau
    Beige grey
    Gris beige
    Gris beige
    Grigio beige
    Beigegrijs
    Бежево‐серый
  • RAL 7008

    Khakigrau
    Khaki grey
    Gris kaki
    Gris caqui
    Grigio kaki
    Kakigrijs
    Серое хаки
  • RAL 7009

    Grüngrau
    Green grey
    Gris vert
    Gris verdoso
    Grigio verdastro
    Groengrijs
    Зелёно‐серый
  • RAL 7010

    Zeltgrau
    Tarpaulin grey
    Gris tente
    Gris lona
    Grigio tenda
    Zeildoekgrijs
    Брезентово‐серый
  • RAL 7011

    Eisengrau
    Iron grey
    Gris fer
    Gris hierro
    Grigio ferro
    IJzergrijs
    Железно‐серый
  • RAL 7012

    Basaltgrau
    Basalt grey
    Gris basalte
    Gris basalto
    Grigio basalto
    Bazaltgrijs
    Базальтово‐серый
  • RAL 7013

    Braungrau
    Brown grey
    Gris brun
    Gris parduzco
    Grigio brunastro
    Bruingrijs
    Коричнево‐серый
  • RAL 7015

    Schiefergrau
    Slate grey
    Gris ardoise
    Gris pizarra
    Grigio ardesia
    Leigrijs
    Сланцево‐серый
  • RAL 7016

    Anthrazitgrau
    Anthracite grey
    Gris anthracite
    Gris antracita
    Grigio antracite
    Antracietgrijs
    Антрацитово‐серый
  • RAL 7021

    Schwarzgrau
    Black grey
    Gris noir
    Gris negruzco
    Grigio nerastro
    Zwartgrijs
    Черно‐серый
  • RAL 7022

    Umbragrau
    Umbra grey
    Gris terre d’ombre
    Gris sombra
    Grigio ombra
    Ombergrijs
    Серая умбра
  • RAL 7023

    Betongrau
    Concrete grey
    Gris béton
    Gris hormigón
    Grigio calcestruzzo
    Betongrijs
    Серый бетон
  • RAL 7024

    Graphitgrau
    Graphite grey
    Gris graphite
    Gris grafita
    Grigio grafite
    Grafietgrijs
    Графитовый серый
  • RAL 7026

    Granitgrau
    Granite grey
    Gris granit
    Gris granito
    Grigio granito
    Granietgrijs
    Гранитовый серый
  • RAL 7030

    Steingrau
    Stone grey
    Gris pierre
    Gris piedra
    Grigio pietra
    Steengrijs
    Каменно‐серый
  • RAL 7031

    Blaugrau
    Blue grey
    Gris bleu
    Gris azulado
    Grigio bluastro
    Blauwgrijs
    Сине‐серый
  • RAL 7032

    Kieselgrau
    Pebble grey
    Gris silex
    Gris guijarro
    Grigio ghiaia
    Kiezelgrijs
    Галечный серый
  • RAL 7033

    Zementgrau
    Cement grey
    Gris ciment
    Gris cemento
    Grigio cemento
    Cementgrijs
    Цементно‐серый
  • RAL 7034

    Gelbgrau
    Yellow grey
    Gris jaune
    Gris amarillento
    Grigio giallastro
    Geelgrijs
    Жёлто‐серый
  • RAL 7035

    Lichtgrau
    Light grey
    Gris clair
    Gris luminoso
    Grigio luce
    Lichtgrijs
    Светло‐серый
  • RAL 7036

    Platingrau
    Platinum grey
    Gris platine
    Gris platino
    Grigio platino
    Platinagrijs
    Платиново‐серый
  • RAL 7037

    Staubgrau
    Dusty grey
    Gris poussière
    Gris polvo
    Grigio polvere
    Stofgrijs
    Пыльно‐серый
  • RAL 7038

    Achatgrau
    Agate grey
    Gris agate
    Gris ágata
    Grigio agata
    Agaatgrijs
    Агатовый серый
  • RAL 7039

    Quarzgrau
    Quartz grey
    Gris quartz
    Gris cuarzo
    Grigio quarzo
    Kwartsgrijs
    Кварцевый серый
  • RAL 7040

    Fenstergrau
    Window grey
    Gris fenêtre
    Gris ventana
    Grigio finestra
    Venstergrijs
    Серое окно
  • RAL 7042

    Verkehrsgrau A
    Traffic grey A
    Gris signalisation A
    Gris tráfico A
    Grigio traffico A
    Verkeersgrijs A
    Транспортный серый A
  • RAL 7043

    Verkehrsgrau B
    Traffic grey B
    Gris signalisation B
    Gris tráfico B
    Grigio traffico B
    Verkeersgrijs B
    Транспортный серый B
  • RAL 7044

    Seidengrau
    Silk grey
    Gris soie
    Gris seda
    Grigio seta
    Zijdegrijs
    Серый шелк
  • RAL 7045

    Telegrau 1
    Telegrey 1
    Telegris 1
    Gris tele 1
    Grigio tele 1
    Telegrijs 1
    Телегрей 1
  • RAL 7046

    Telegrau 2
    Telegrey 2
    Telegris 2
    Gris tele 2
    Grigio tele 2
    Telegrijs 2
    Телегрей 2
  • RAL 7047

    Telegrau 4
    Telegrey 4
    Telegris 4
    Gris tele 4
    Grigio tele 4
    Telegrijs 4
    Телегрей 4
  • RAL 7048

    Perlmausgrau
    Pearl mouse grey
    Gris souris nacré
    Gris musgo perlado
    Grigio topo perlato
    Parelmoer muisgrijs
    Перламутровый мышино‐серый
  • RAL 8000

    Grünbraun
    Green brown
    Brun vert
    Pardo verdoso
    Marrone verdastro
    Groenbruin
    Зелёно‐коричневый
  • RAL 8001

    Ockerbraun
    Ochre brown
    Brun terre de Sienne
    Pardo ocre
    Marrone ocra
    Okerbruin
    Охра коричневая
  • RAL 8002

    Signalbraun
    Signal brown
    Brun de sécurité
    Marrón señales
    Marrone segnale
    Signaalbruin
    Сигнальный коричневый
  • RAL 8003

    Lehmbraun
    Clay brown
    Brun argile
    Pardo arcilla
    Marrone fango
    Leembruin
    Глиняный коричневый
  • RAL 8004

    Kupferbraun
    Copper brown
    Brun cuivré
    Pardo cobre
    Marrone rame
    Koperbruin
    Медно‐коричневый
  • RAL 8007

    Rehbraun
    Fawn brown
    Brun fauve
    Pardo corzo
    Marrone capriolo
    Reebruin
    Олень коричневый
  • RAL 8008

    Olivbraun
    Olive brown
    Brun olive
    Pardo oliva
    Marrone oliva
    Olijfbruin
    Оливково‐коричневый
  • RAL 8011

    Nussbraun
    Nut brown
    Brun noisette
    Pardo nuez
    Marrone noce
    Notenbruin
    Орехово‐коричневый
  • RAL 8012

    Rotbraun
    Red brown
    Brun rouge
    Pardo rojo
    Marrone rossiccio
    Roodbruin
    Красно‐коричневый
  • RAL 8014

    Sepiabraun
    Sepia brown
    Brun sépia
    Sepia
    Marrone seppia
    Sepiabruin
    Сепия коричневый
  • RAL 8015

    Kastanienbraun
    Chestnut brown
    Marron
    Castaño
    Marrone castagna
    Kastanjebruin
    Каштаново‐коричневый
  • RAL 8016

    Mahagonibraun
    Mahogany brown
    Brun acajou
    Caoba
    Marrone mogano
    Mahoniebruin
    Махагон коричневый
  • RAL 8017

    Schokoladenbraun
    Chocolate brown
    Brun chocolat
    Chocolate
    Marrone cioccolata
    Chocoladebruin
    Шоколадно‐коричневый
  • RAL 8019

    Graubraun
    Grey brown
    Brun gris
    Pardo grisáceo
    Marrone grigiastro
    Grijsbruin
    Серо‐коричневый
  • RAL 8022

    Schwarzbraun
    Black brown
    Brun noir
    Pardo negruzco
    Marrone nerastro
    Zwartbruin
    Черно‐коричневый
  • RAL 8023

    Orangebraun
    Orange brown
    Brun orangé
    Pardo anaranjado
    Marrone arancio
    Oranjebruin
    Оранжево‐коричневый
  • RAL 8024

    Beigebraun
    Beige brown
    Brun beige
    Pardo beige
    Marrone beige
    Beigebruin
    Бежево‐коричневый
  • RAL 8025

    Blassbraun
    Pale brown
    Brun pâle
    Pardo pálido
    Marrone pallido
    Bleekbruin
    Бледно‐коричневый
  • RAL 8028

    Terrabraun
    Terra brown
    Brun terre
    Marrón tierra
    Marrone terra
    Terrabruin
    Терракотовый
  • RAL 8029

    Perlkupfer
    Pearl copper
    Cuivre nacré
    Cobre perlado
    Rame perlato
    Parelmoer koper
    Перламутровый медный
  • RAL 9001

    Cremeweiß
    Cream
    Blanc crème
    Blanco crema
    Bianco crema
    Crèmewit
    Кремово‐белый
  • RAL 9002

    Grauweiß
    Grey white
    Blanc gris
    Blanco grisáceo
    Bianco grigiastro
    Grijswit
    Светло‐серый
  • RAL 9003

    Signalweiß
    Signal white
    Blanc de sécurité
    Blanco señales
    Bianco segnale
    Signaalwit
    Сигнальный белый
  • RAL 9004

    Signalschwarz
    Signal black
    Noir de sécurité
    Negro señales
    Nero segnale
    Signaalzwart
    Сигнальный черный
  • RAL 9005

    Tiefschwarz
    Jet black
    Noir foncé
    Negro intenso
    Nero intenso
    Gitzwart
    Черный янтарь
  • RAL 9006

    Weißaluminium
    White aluminium
    Aluminium blanc
    Aluminio blanco
    Alluminio brillante
    Blank aluminiumkleurig
    Бело‐алюминиевый
  • RAL 9007

    Graualuminium
    Grey aluminium
    Aluminium gris
    Aluminio gris
    Alluminio grigiastro
    Grijs aluminiumkleurig
    Темно‐алюминиевый
  • RAL 9010

    Reinweiß
    Pure white
    Blanc pur
    Blanco puro
    Bianco puro
    Zuiver wit
    Чистый белый
  • RAL 9011

    Graphitschwarz
    Graphite black
    Noir graphite
    Negro grafito
    Nero grafite
    Grafietzwart
    Графитно‐черный
  • RAL 9016

    Verkehrsweiß
    Traffic white
    Blanc signalisation
    Blanco tráfico
    Bianco traffico
    Verkeerswit
    Транспортный белый
  • RAL 9017

    Verkehrsschwarz
    Traffic black
    Noir signalisation
    Negro tráfico
    Nero traffico
    Verkeerszwart
    Транспортный черный
  • RAL 9018

    Papyrusweiß
    Papyrus white
    Blanc papyrus
    Blanco papiro
    Bianco papiro
    Papyruswit
    Папирусно‐белый
  • RAL 9022

    Perlhellgrau
    Pearl light grey
    Gris clair nacré
    Gris claro perlado
    Grigio chiaro perlato
    Parelmoer lichtgrijs
    Перламутровый светло‐серый
  • RAL 9023

    Perldunkelgrau
    Pearl dark grey
    Gris fonçé nacré
    Gris oscuro perlado
    Grigio scuro perlato
    Parelmoer donkergrijs
    Перламутровый темно‐серый

Ознакомится с полным перечнем товаров и поделок из дерева, производящихся в компании «Плетень»,
можно посмотрев фотографии деревянных изделий.

Для оформления заказа на изготовление необходимого вам изделия из дерева,
достаточно обратиться по телефону:

+7 (925) 791-40-31

+7 (495) 740-99-93

в рабочие дни недели с 9 до 18 часов.

% PDF-1.4 % 2395 0 объект > эндобдж xref 2395 94 0000000016 00000 н. 0000003685 00000 н. 0000003855 00000 н. 0000004403 00000 п. 0000004559 00000 н. 0000005289 00000 н. 0000005724 00000 н. 0000006318 00000 н. 0000006433 00000 н. 0000006546 00000 н. 0000006817 00000 н. 0000007394 00000 н. 0000007671 00000 н. 0000008287 00000 н. 0000008572 00000 н. 0000009003 00000 н. 0000009869 00000 н. 0000010582 00000 п. 0000011126 00000 п. 0000011406 00000 п. 0000012219 00000 п. 0000012364 00000 п. 0000012393 00000 п. 0000013097 00000 п. 0000014046 00000 п. 0000014871 00000 п. 0000015778 00000 п. 0000016705 00000 п. 0000016895 00000 п. 0000017183 00000 п. 0000017949 00000 п. 0000018471 00000 п. 0000019101 00000 п. 0000019746 00000 п. 0000050784 00000 п. 0000051016 00000 п. 0000051100 00000 п. 0000051157 00000 п. 0000051223 00000 п. 0000051337 00000 п. 0000079572 00000 п. 0000079823 00000 п. 0000080450 00000 п. 0000080562 00000 п. 0000080642 00000 п. 0000080718 00000 п. 0000080817 00000 п. 0000080968 00000 п. 0000120505 00000 н. 0000120576 00000 н. 0000120696 00000 н. 0000120776 00000 н. 0000120875 00000 н. 0000121024 00000 н. 0000121497 00000 н. 0000121921 00000 н. 0000122020 00000 н. 0000122169 00000 н. 0000144006 00000 н. 00001 00000 н. 00001 00000 н. 00001

00000 н. 00001

00000 н. 00001

00000 н. 00001 00000 н. 0000232942 00000 н. 0000233563 00000 н. 0000233642 00000 н. 0000233831 00000 н. 0000234475 00000 н. 0000234907 00000 н. 0000235205 00000 н. 0000235323 00000 п. 0000235380 00000 п. 0000235699 00000 н. 0000235778 00000 н. 0000235929 00000 н. 0000236094 00000 н. 0000236174 00000 н. 0000236250 00000 н. 0000236330 00000 н. 0000236409 00000 н. 0000236728 00000 н. 0000236785 00000 н. 0000236903 00000 н. 0000236974 00000 н. 0000237061 00000 п. 0000247372 00000 н. 0000247673 00000 н. 0000247867 00000 н. 0000247896 00000 н. 0000248207 00000 н. 0000003461 00000 н. 0000002223 00000 н. трейлер ] / Назад 827432 / XRefStm 3461 >> startxref 0 %% EOF 2488 0 объект > поток h ެ YPWϽe2S% YBPj: v «аh% BjYuA @ VX ڇ KgN /} 3z %% 84ЇLswϹ

Краска DesignWood пропитывается консервантами под давлением, обеспечивая цвет и защиту за один прием.

  • Всегда используйте утвержденные строительными нормами коррозионно-стойкие крепежные детали и соединители, подходящие для обработки древесины под давлением.
  • Рекомендуемые крепежные детали: используйте крепежные детали, оцинкованные горячим способом (соответствующие ASTM A 153) или нержавеющую сталь.
  • Рекомендуемые соединители: используйте горячеоцинкованные G185 для наружных работ.
  • Для постоянных деревянных фундаментов и агрессивных сред, таких как прибрежные районы с брызгами соленой воды, используйте одобренные нормативными документами крепежные детали и соединители из нержавеющей стали.
  • Древесина, обработанная консервантами DesignWood Colorant и Preserve, не подходит для прямого контакта со строительными изделиями из стали или алюминия без покрытия.
  • Свежеобработанные плиты следует укладывать плотно друг к другу, так как они будут немного сжиматься по ширине и длине по мере высыхания.
  • Доски после сушки в печи (KDAT) должны располагаться на правильном расстоянии, чтобы вода могла проходить между плитами.
  • Просверлите отверстия на концах досок, чтобы предотвратить раскалывание.
  • Используйте винты для улучшения удерживающих характеристик.
  • Установите крепеж заподлицо с деревянной поверхностью. Не переусердствуйте с крепежом.
  • Положите самую красивую сторону террасной доски лицевой стороной вверх.

Этот ресурс может быть полезен, если вы строите или реконструируете, Руководство по строительству жилых террас включает руководство, составленное Американским советом по древесине (AWC), по положениям Международного жилищного кодекса (IRC), касающимся строительства одноуровневых жилых деревянных террас.

Очистка деревянных настилов

Деревянный настил требует регулярного ухода, как и любая другая основная часть дома. Регулярная чистка и нанесение высококачественных пятен с водоотталкивающими свойствами и защитой от ультрафиолета помогут защитить вашу деку от погодных и ультрафиолетовых лучей, вызванных солнцем, и продлят срок службы деки.

  • Очистители, содержащие хлорный отбеливатель , обычно используются для очистки настилов, но НЕ рекомендуются для очистки древесины, обработанной Ecolife®.Чрезмерное использование хлорного отбеливателя, содержащего чистящие средства (гипохлорит натрия или гипохлорит кальция), может повредить обработанную древесину, придав ей неестественный побеленный вид. Хлорный отбеливатель также может приподнять древесные волокна и сделать поверхность нечеткой.
  • Очистители, содержащие щавелевую кислоту , являются лучшим выбором для древесины, обработанной Ecolife.

Базовая очистка настила

На рынке имеется ряд коммерческих продуктов, которые рекомендуются для очистки деревянных настилов, обработанных консервантом.Для достижения наилучших результатов всегда следуйте инструкциям производителя. Следующие предложения представлены в качестве дополнительных указаний.

  • Очистите палубу от всей мебели, решеток и т. Д., А прилегающую территорию от мусора и препятствий, чтобы создать безопасную рабочую зону.
  • Удалите весь мусор, застрявший между досками настила и краем птичника, подметите или продуйте настил, чтобы удалить весь мусор.
  • Подготовьте окружающую территорию и защитите кусты и растения пластиковой тряпкой.Распылите воду на окружающие растения, чтобы разбавить излишки средства для очистки палубы, попавшего на желаемые растения.
  • Для удаления слабых пятен и грязи используйте мягкое средство для мытья посуды, разведенное в ведре с водой. Протрите небольшой участок поверхности палубы с помощью Freshly, а затем с помощью щетки с жесткой щетиной очистите поверхность от грязи. Промойте раствор садовым шлангом и при необходимости повторно очистите участки.
  • Для более сильных пятен и грязи используйте очиститель для деки. Перед использованием тщательно перемешайте / размешайте продукт в соответствии с инструкциями производителя.Используйте защитные очки и резиновые перчатки в соответствии с указаниями.
  • Нанесите очиститель деки в соответствии с инструкциями производителя.
  • Если иное не указано производителем, наносите очиститель только на ту площадь поверхности деки, с которой вы можете работать за один раз. Работайте по частям и позвольте очистителю палубы делать свою работу. Многие чистящие растворы не должны высыхать на древесине, поэтому может потребоваться периодическое опрыскивание / опрыскивание.
  • Дайте очистителю постоять на досках настила на время, рекомендованное производителем.
  • После того, как очиститель проработает указанное время, воспользуйтесь щеткой с жесткой щетиной и синтетической щетиной, чтобы очистить палубу. Все время чистите поверхность параллельно древесине.
  • Хорошо промойте водой и повторите процесс на следующем участке деки.
  • После завершения очистки проверьте свою работу. Поверхность должна быть неизменно чистой, без царапин и повреждений. Повторно очистите все труднопроходимые участки, которые все еще выглядят грязными. Многие домовладельцы хотят использовать моечную машину для мытья полов, но без соответствующего ухода легко испортить поверхность палубы и нанести значительный ущерб дереву.Будьте особенно осторожны при мойке новых поверхностей палубы, которые ранее не были герметизированы или покрыты. Если вы все же решите использовать мойку высокого давления, обратите особое внимание на инструкции производителя. Кроме того, могут быть полезны эти общие рекомендации, полученные из различных интернет-источников.

Мощная мойка вашей деки

  • Используйте минимально возможное давление для эффективной очистки поверхности.
  • Используйте только веерообразный наконечник, установленный на угол раскрытия от 40 до 60 градусов.
  • Никогда не используйте узкую струю или вращающийся наконечник типа «торнадо».
  • Всегда начинайте с направления струи в сторону от людей и стеклянных окон и на расстоянии не менее 24 дюймов от деревянного настила.
  • После того, как веер правильно настроен, медленно начинайте распылять струю примерно на 18 дюймов от настила.
  • Тест распыляйте на незаметном месте, а не на основной поверхности настила
  • В общем, избегайте распыления ближе 16-20 дюймов, если только давление не очень низкое.
  • Когда вы подметаете опрыскиватель вдоль досок настила, многие люди будут иметь тенденцию поворачивать руку, и это приведет к нестабильному расстоянию между наконечником и поверхностью настила. Старайтесь сохранять постоянное расстояние от каждой доски во время уборки. Вы можете сделать это, медленно идя и удерживая опрыскиватель на ровном расстоянии и под углом.
  • Начните чистку досок настила, ближайшую к дому, и работайте от дома к дальнему краю настила.
  • Работайте с волокном, растушевывая распыление по длине с досками настила и слегка перекрывая каждую область.Задача — ровная чистка без видимых отличий на любой доске.
В Preserve ACQ используется краситель DesignWood, и на древесину, обработанную Preserve CA, распространяется пожизненная ограниченная гарантия от повреждений в результате грибкового разложения или нападения термитов при установке в соответствии с применимыми строительными нормами. Условия и положения см. В разделах «Сохранение ACQ» и «Сохранение пожизненных ограниченных гарантий CA».

Пропитанная древесина — обзор

A1: Поставка сырья

Строительные материалы на биологической основе можно производить из нескольких источников.Дерево является одним из основных материалов на биологической основе, используемых в мире, но в строительстве также используются некоторые другие биоресурсы, например, бамбук, остатки кукурузы или овечья шерсть. Мы можем разделить их на две основные категории: продукты леса и продукты сельского хозяйства / животноводства. Кроме того, добавки (в основном клеи, покрытия и консервирующие вещества) на биологической основе или из ископаемых источников могут использоваться для производства строительных материалов (например, клея для древесностружечных плит, матриц для древесно-пластиковых композитов или консервантов для пропитанной древесины).Наконец, переработанный материал на биологической основе может использоваться в качестве сырья для строительства на основе биоматериалов (например, переработанная бумага или цельная древесина).

Лесные товары. Для производства лесного сырья, такого как древесина, пробка или бамбук, в ходе лесохозяйственной деятельности выполняется ряд операций, которые вызывают воздействие на окружающую среду (van Dam and Bos, 2004; van der Lugt et al. , 2006; Dias and Arroja, 2012; González-García et al. , 2013).Сжигание ископаемого топлива при механизированных операциях (например, очистка, прореживание, обрезка или сбор урожая) приводит к выбросам в атмосферу, таких как углекислый газ (CO 2 ), диоксид серы (SO 2 ) и оксиды азота (NO x ), которые способствуют, например, изменению климата, подкислению и образованию фотохимических окислителей. Внесение удобрений может вызвать эвтрофикацию из-за выброса питательных веществ в окружающую среду и может способствовать изменению климата в результате выброса закиси азота (N 2 O) в атмосферу.Применение пестицидов может привести к воздействиям, связанным с токсичностью. Могут возникнуть и другие воздействия, связанные с землепользованием, такие как изменения в почвенном органическом углероде и плодородии, биоразнообразии, эрозии и водопользовании. С другой стороны, лесные экосистемы обладают способностью поглощать CO 2 из атмосферы и накапливать этот углерод в живой (стволовые деревья, ветви, листва и корни) и мертвой биомассе (подстилка, древесный мусор и органическое вещество почвы), что является экологическая выгода.

Сельское хозяйство и продукция животноводства: Глобальное землепользование характеризуется конкуренцией между производством продуктов питания, топлива и кормов.Существуют более высокие риски косвенного изменения землепользования ( ILUC, ) и связанных с этим воздействий на окружающую среду для сельскохозяйственного производства. Например, производство биотоплива обычно осуществляется на пахотных землях, которые ранее использовались для производства продуктов питания. Поскольку это сельскохозяйственное производство по-прежнему необходимо, оно может быть частично перемещено на ранее не возделываемые земли, такие как луга и леса. Этот процесс известен как косвенное изменение землепользования (ILUC). ILUC рискует свести на нет экономию парниковых газов в результате увеличения производства биотоплива, поскольку луга и леса обычно поглощают высокие уровни CO 2 (European Commission, 2012).

Многие продукты сельского хозяйства и животноводства могут использоваться в качестве сырья в зданиях. Среди них солома, лен, жмых сахарного тростника, кукуруза, конопля, рисовая шелуха, скорлупа арахиса, кенаф, тростник, овечья шерсть, казеин и полимолочная кислота ( PLA ​​) (Schmidt et al. , 2004; Ardente et al. al., 2008; Murphy and Norton, 2008; Menet and Gruescu, 2012; Silva et al., , 2014; Chaussinand et al., , 2015; Palumbo, 2015). Обычные сельскохозяйственные процессы требуют топлива, удобрений и пестицидов, как и процессы в лесном хозяйстве.Кроме того, землепользование и подготовка почвы могут быть интенсивными и могут привести к деградации почвы, что приведет к потере природных ресурсов. Сельскохозяйственные процессы несут ответственность за выбросы и воздействие на окружающую среду так же, как и лесные продукты. Но для выращивания сельскохозяйственных культур, удобрений, пестицидов, топлива и техники использование выше из-за годовых циклов выращивания. душ Сантуш и др. (2014) показал, что производство жмыха было наиболее важным потоком для эвтрофикации в ОЖЦ древесностружечных плит из-за использования удобрений.Такие же наблюдения были сделаны Ganne-Chédeville and Diederichs (2015) для производства PLA, содержащегося в сверхлегких древесностружечных плитах. Некоторым культурам для полива требуется большое количество воды. Интенсивное использование воды для выращивания сельскохозяйственных культур может привести к снижению доступности пресной воды, что считается истощением природных ресурсов. В большей степени это также может привести к экотоксикологическим эффектам из-за концентрации загрязнителей и утраты биоразнообразия. Некоторые биоресурсы могут быть получены непосредственно в природе, например, тростник, растущий в естественных условиях на заболоченных территориях, для кровли из соломы.Это позволяет избежать воздействия на окружающую среду из-за удобрений и использования пестицидов. Воздействие на окружающую среду шерсти животных, в основном овечьей шерсти, было тщательно изучено (Henry, 2012). Основное воздействие производства шерсти — выбросы метана (CH 4 ) от овцеводческих ферм, которые способствуют изменению климата и потреблению воды в процессах обработки шерсти. Другие воздействия связаны с выращиванием биомассы для кормления овец (воздействие сельскохозяйственных продуктов), а также с энергией и топливом, используемыми на фермах и для обработки шерсти (в основном CO 2 , SO 2 и NO x испускается). В системах сельского хозяйства и животноводства есть много побочных продуктов, которые составляют основу строительных материалов на биологической основе. Например, мясо и шерсть — два побочных продукта системы овцеводства. Экологическое бремя побочного продукта объясняется в основном экономическим распределением, но иногда также и массовым распределением (Biswas et al. , 2010; Jones et al. , 2014).

Присадки. В зависимости от их состава, производственного процесса и от того, производятся ли они из ископаемых или биологических источников, добавки могут оказывать существенное воздействие на окружающую среду, даже если они используются в небольших количествах.Консерванты — это добавки, которые часто используются для продления срока службы строительных материалов на биологической основе. Консерванты на масляной основе, такие как креозот, или консерванты на водной основе, такие как растворы на основе меди или бора, обычно используются для консервации древесины (Hill, 2006). В процессах дистилляции и пиролиза происходит сжигание ископаемого топлива или биомассы, что способствует изменению климата, подкислению, фотоокислению и истощению ресурсов. В случае консервантов на основе металлов (например, меди) для сбора сырья необходимы горнодобывающие работы (погрузка, транспортировка, дробление и измельчение), которые несут ответственность за истощение абиотических ресурсов, землепользование, а также загрязнение воздуха (выбросы частиц) и потенциал глобального потепления из-за использования топлива (Norgate and Haque, 2010).Производство нефтехимических продуктов, в основном синтетических связующих и пластмасс (например, мочевино-формальдегидных, полиуретановых, меламиновых, полиэтиленовых, полиэфирных или фенольных смол), является причиной истощения ископаемых ресурсов и часто требует больших затрат энергии в виде ископаемого топлива, что приводит к образованию CO 2 и сильно способствуют изменению климата (Ривела и др. , 2005; Вернер и Рихтер, 2007; Гонсалес-Гарсия и др. , 2009; Уилсон, 2009; Силва и др. , 2014; Sathre and González-García, 2014; Ganne-Chédeville and Diederichs, 2015).С другой стороны, добавки на биологической основе, например танин (Pizzi, 2008), кукурузный крахмал, каучук, PLA (Ganne-Chédeville and Diederichs, 2015), альгинат натрия (Palumbo, 2015), белки, льняное масло или другие можно использовать натуральные экстракты растений и деревьев. Даже если они основаны на возобновляемых ресурсах, их также необходимо выращивать, собирать (см. Экологическое бремя лесных и сельскохозяйственных продуктов), обрабатывать, извлекать или обрабатывать, что в основном приводит к экологическим нагрузкам, связанным с выбросами при производстве и потреблении энергии.

Вторичные продукты: Вторичные продукты представляют собой интересную альтернативу для снижения воздействия сырья на окружающую среду. Только экологическая нагрузка, связанная с производством этих продуктов, которые не включены в модуль C3 (обработка отходов / подготовка к переработке), должна учитываться в ОЖЦ продуктов (EN 15804, CEN, 2012b). Если продукт можно использовать повторно без преобразования (например, повторное использование деревянных балок), не следует относить воздействие на окружающую среду к фазе сырья.Но некоторые продукты необходимо преобразовать, чтобы их можно было использовать повторно. Например, переработка бумаги включает потребление воды и химикатов, термическую и механическую обработку (Arena et al. , 2004). Этот процесс ответственен за такие воздействия на окружающую среду, как истощение запасов пресной воды, экотоксичность воды, изменение климата, подкисление и фотоокисление.

Влияние естественного выветривания на стабильность цвета пропитанных и лакированных древесных материалов

Целью данного исследования было изучить влияние естественного выветривания на стабильность цвета сосны обыкновенной ( Pinus sylvestris L.) и бук восточный ( Fagus orientalis L.), пропитанные некоторыми химическими веществами [таналит-E (TN-E), адолит-KD5 (AD-KD5) и хромированный арсенат меди (CCA)] и затем покрытые лаком [синтетический лак ( СВ) и полиуретановый лак (ПВ)]. При нанесении лака увеличивалась легкость, пропитка уменьшала легкость образцов древесины перед естественным выветриванием. В результате естественного выветривания поверхность древесины приобрела зеленоватый, голубоватый и темный оттенки. Общее изменение цвета увеличивалось с увеличением времени выдержки при естественном выветривании.Необработанные (контрольные) образцы древесины показали более сильные изменения цвета, чем другие образцы древесины, на всех стадиях естественного выветривания. Суммарные изменения цвета необработанных образцов бука восточного были меньше, чем необработанных образцов сосны обыкновенной. Стабильность цвета пропитанных и лакированных образцов древесины дает лучшие результаты, чем необработанные и только лакированные образцы древесины после естественного выветривания. Наилучшая стабильность цвета была получена как для древесины бука восточного, так и для древесины сосны обыкновенной, пропитанной TN-E перед PV покрытием.

1. Введение

Дерево — один из важнейших природных материалов, используемых в эстетических, инженерных и конструкционных целях [1, 2]. Древесные материалы обычно подвергаются воздействию солнечной радиации, воды, ветра и пыли в течение срока службы при использовании на открытом воздухе [3]. К сожалению, древесина, как и другие биологические материалы, подвержена воздействию факторов окружающей среды [4, 5]. Множество различных факторов окружающей среды разрушают его основные химические компоненты, лигнин, целлюлозу и гемицеллюлозу [2, 6, 7].Деполимеризация лигнина и целлюлозы приводит к снижению некоторых физических, химических и биологических свойств древесины [8]. Основным фактором, вызывающим наибольшие изменения свойств поверхности древесины при нахождении на открытом воздухе, является солнечный свет [9–11]. Энергия фотонов солнечного света (ультрафиолетовый, видимый и инфракрасный свет) чрезвычайно вредна, вызывая самые разные химические изменения на деревянных поверхностях [12]. Выветривание — это общий термин, используемый для определения деградации материалов под воздействием погодных условий [13], первоначально вызывающих изменения цвета поверхности древесины [14]. Цвет является основным визуальным признаком дерева и изделий из дерева [15]. Тем не менее, древесину можно химически модифицировать, чтобы минимизировать определенные проблемы, такие как поглощение влаги, микробное воздействие, набухание и усадка, а также подверженность фотодеградации [16–18]. Среди эффективных методов снижения негативного воздействия выветривания на древесину предложены обработка поверхности древесины неорганическими химическими веществами и пропитка [12, 17, 19]. Нанесение прозрачного покрытия — самый простой и распространенный метод защиты древесины от естественного атмосферного воздействия [5, 20].Однако толщина покрытия уменьшается с увеличением времени выветривания, и во время выветривания происходит деформация ткани под поверхностью покрытия [21]. Пропитка консервантами для древесины с последующим нанесением прочных покрытий или лаков / красок делает древесину более устойчивой к фотохимической деградации, изменениям размеров и биологическим организмам, а также увеличивает срок службы обработанной древесины [12, 19, 22, 23]. Хромированный арсенат меди (CCA) обеспечивает долгосрочную защиту от атмосферных воздействий и эрозии [24, 25], но он больше не производится для использования в большинстве жилых помещений, поскольку содержит хром и мышьяк.В настоящее время в лесной промышленности вместо CCA используются несколько новых консервантов для древесины на основе меди, такие как таналит-E (TN-E) и адолит-KD5 (AD-KD5). Общеизвестно, что новые консерванты и лаки для древесины на основе меди замедляют или предотвращают фотодеградацию [23]. Влияние ускоренного выветривания на цветовые характеристики древесины сосны обыкновенной и ольхи, пропитанной соединениями алкиламмония (AACS), CCA, четвертичным аммиаком меди (ACQ 1900 и ACQ 2200), TN-E 3491 и волманитом CX-8, исследовали Temiz et al. al.[8]. Yalinkilic et al. исследовали наружные свойства древесины сосны обыкновенной и древесины каштана, обработанной хромом-медно-бором (CCB) и нанесенной полиуретановым лаком (PV) или синтетическим лаком на алкидной основе (SV). Они сообщили, что пропитка CCB значительно стабилизировала цвет поверхности и уменьшила потерю массы древесины. Также было заявлено, что консервант с последующей системой покрытия поверхности защищает древесину в долгосрочных условиях на открытом воздухе [19]. Еще одно исследование устойчивости к атмосферным воздействиям древесины очеса, красного бука, ели и пихты, обработанной CCB, было проведено Sell and Feist.Они обнаружили, что древесина с покрытием CCB обладает высокой устойчивостью и защитным действием от атмосферных воздействий [26]. Сравнение новых консервантов для древесины на основе меди с CCA и тестирование их эффективности важно для определения ожиданий потребителей от этих новых продуктов.

В этом исследовании изучается влияние естественного выветривания на стабильность цвета древесины сосны обыкновенной и бука восточного, пропитанных консервантами для древесины на основе меди, включая TN-E, AD-KD5 и CCA, и нанесенных с помощью PV или SV. Было оценено влияние 3- и 6-месячного естественного выветривания на стабильность цвета.

2. Материалы и методы
2.1. Материалы
2.1.1. Подготовка образцов для испытаний и химикатов

Образцы древесины были приготовлены из высушенной на воздухе заболони сосны обыкновенной и бука восточного для пропитки с размерами 10 (радиальный) × 100 (тангенциальный) × 150 (продольный) мм. Их сушили в печи при ° C до постоянного веса. Образцы древесины пропитывали тремя консервантами, содержащими CCA, AD-KD5 и TN-E. Водные растворы химикатов для пропитки растворяли в дистиллированной воде до концентрации 4%.Степень pH пропиточных растворов составляет 7,76 для CCA, 8,39 для AD-KD5 и 8,25 для TN-E. В данном исследовании после процесса пропитки применялись SV на основе алкидной кислоты и двухкомпонентный PV на основе растворителя.

2.2. Методы
2.2.1. Процесс пропитки

Образцы древесины пропитывали 4-процентным водным раствором CCA, AD-KD5 и TN-E в соответствии с ASTM D1413-07e1 [27]. Перед испытаниями все образцы кондиционировали при 20 ° C и относительной влажности 65% в течение двух недель.Расчет количества химикатов для пропитки консервантов, абсорбированных образцами древесины, в килограммах на кубический метр (кг / м 3 ) древесины производился по следующей формуле: где — граммы обрабатывающего раствора, абсорбированные образцами древесины (- вес образцов древесины до пропитки, и — вес образцов древесины после пропитки), представляет собой граммы консерванта в 100 г обрабатывающего раствора, а объем образца древесины в см 3 .

2.2.2. Покрытие

SV и PV было поставлено торговцами и использовалось в соответствии с инструкциями производителя. Вязкость лаков была определена в соответствии с инструкциями производителя и оказалась равной 18 с (чашка DIN 4) при ° C для обоих лаков. Соотношения отвердителя и разбавителя в смеси определялись в соответствии с рекомендациями производителя. Лак наносился на все поверхности и стороны образцов древесины с помощью краскопульта в соответствии со стандартом ASTM D3023-98 [28].Заполнитель не использовался на деревянных поверхностях, чтобы избежать потенциального нарушения поверхностных характеристик древесины. Вместо шпатлевки лак наносили дважды на ПВ и 4 раза на СВ. Первое покрытие, нанесенное на поверхность древесины, предназначалось для заполнения пустот, а второе и верхнее покрытия были нанесены для верхнего покрытия. Между последовательными нанесениями давали достаточно времени для осаждения слоя до достижения целевого удерживания 100 г / м 2 для грунтовки и 100 г / м 2 для верхнего покрытия, что контролировалось последовательным взвешиванием.После нанесения первого покрытия образцы были оставлены в условиях окружающей среды на 24 часа в соответствии с рекомендациями производителя, а затем поверхности были осторожно отшлифованы с помощью мелкозернистой наждачной бумаги (зернистость 220) для получения гладкой поверхности перед нанесением верхнего покрытия. После нанесения на поверхности верхнего покрытия лака образцы выдерживали в течение 3 недель [12].

2.2.3. Natural Weathering

Образцы древесины были подготовлены к атмосферным воздействиям в соответствии с ASTM D7787 [29]. Они подвергались атмосферным воздействиям весной и летом (с марта по август) в 2011 г.Площадка расположена в университете Мугла Ситки Кочман (37 ° 09′N и 28 ° 22′E, 670 м над уровнем моря) в Мугле, Южный Эгейский регион Турции. Погодные условия Муглы во время выветривания приведены в таблице 1 [30].

самая низкая температура (° C) мес. 2 )

месяцев мар апр май июн июл авг
Средняя температура6 11,7 16,4 22,8 27,9 27,5
Наивысшая температура (° C) 19,9 21,7 29,1 35,9 3824
35,9 3824 −4,9 1,4 6,8 13 12,1 13,5
Время принятия солнечных ванн (час) 5,4 5,5 6.8 10 11,2 10,4
Количество дождливых дней 11 17 9 6 0 0
29,8 80,4 59,4 17,4 0 0
Влажность (%) 74,6 75,2 67,8 53 3824 9024 90242

Стойка для экспонирования была расположена так, чтобы экспонированные образцы находились под углом 45 ° к югу. Образцы древесины устанавливались снаружи для выдерживания атмосферных воздействий в соответствии с ASTM G7 / G7M-13 [31]. Выдержка длилась 6 месяцев. Образцы древесины удаляли с интервалом в 3 месяца для оценки производительности. Цветовые параметры измеряли на открытых поверхностях образцов древесины.

2.2.4. Цветовой тест

Цветовая система CIE использовалась для сравнения направлений воздействия естественного атмосферного воздействия (рис. 1).Ось представляет яркость, а и — координаты цветности. Параметры + и — обозначают красный и зеленый соответственно. Параметр + представляет желтый цвет, а — синий. может варьироваться от 100 (белый) до нуля (черный) [32]. Цвета образцов измерялись колориметром (спектрофотометр серии X-Rite SP) до и после естественного выветривания. Точка измерения была отрегулирована так, чтобы она была равна или не более одной трети расстояния от центра этой области до упоров поля рецептора.Разницу в цвете () определяли для каждой древесины в соответствии с ASTM D2244-14 [33]: где, и — это изменения между начальным и конечным значениями интервала. Для каждой группы было выполнено десять повторов.


3. Результаты и обсуждение

В данном исследовании синтетический или полиуретановый лак был нанесен на образцы древесины сосны обыкновенной и бука восточного после пропитки тремя различными химическими веществами, за исключением контрольных образцов. Образцы древесины подвергались естественному выветриванию в течение двух периодов: 3 месяца и 6 месяцев.В этом разделе оценивается влияние естественного атмосферного воздействия на стабильность цвета пропитанных и лакированных древесных материалов. Удерживание различных пропиточных растворов на древесине сосны обыкновенной и бука восточного приведено в таблице 2.

рассчитано от 30,7 до 35,5 кг / м 3 для сосны обыкновенной и от 23,1 до 28,8 кг / м 3 для бука восточного. Наивысшие уровни удерживания, определенные для сосны обыкновенной и бука восточного, обработанных TN-E, составили 35.5 кг / м 3 и 28,8 кг / м 3 соответственно. Наименьшие значения удерживания, определенные для сосны обыкновенной и бука восточного, обработанных AD-KD5, составили 30,7 кг / м 3 и 23,1 кг / м 3 , соответственно.

3.1. Влияние естественного выветривания на стабильность цвета

В таблице 3 представлены, и значения для необработанных (контрольных), только лакированных, пропитанных и лакированных образцов восточного бука до естественного выветривания, а также показаны значения изменения всех трех цветовых параметров (,, и), а также общее изменение цвета () образцов древесины после 3 месяцев и 6 месяцев естественного выветривания.


Пропиточный раствор Концентрация (%) Удержание (кг / м 2) 3 3 902
Сосна обыкновенная Бук восточный

CCA 4 32.7 27,6
AD-KD5 4 30,7 23,1
TN-E 4 35,5 28,8
9024 9024 Среднее значение 902420 −14724 9024 17,4 9024 10245 9024 9024 9024 9024 TN-E +. 7319: количество измеренных образцов. Среднее (): среднее значение измерений. SD: стандартное отклонение.

n До естественного выветривания После 3-месячного естественного выветривания После 6-месячного естественного выветривания
b ΔL Δa Δb ΔE ΔE ΔL 9024 9016 9016 Среднее значение SD Среднее значение SD Среднее значение SD Среднее значение SD Среднее значение SD Среднее значение SD Среднее значение SD SD Среднее значение SD Среднее значение SD

Контроль 10 62.30 7,60 10,78 1,38 21,78 3,01 −9,84 1,40 −9,83 1,26 9,94 1,26 9,94 1,38 −12,3 1,87 −8,63 1,05 24,50 3,14
PV 10 68,07 7,35 12,60 1 27,04 4,19 8,92 1,23 −5,37 0,62 9,36 1,20 14,00 1,93 1,39 1,93 1,09 20,33 2,34
SV 10 63,54 5,46 12,74 1,48 28,11 3,71 9024,71 9024,7187 0,83 −5,65 0,66 8,45 1,23 12,86 1,49 −13,18 −1,92 −10,16 1,92 −10,16 1,92
CCA + PV 10 60,53 5,57 12,15 1,56 28,51 3,93 7,78 0,9545 8,25 1,25 11,88 1,45 −13,63 2,07 −7,85 0,96 −7,53 0,69 10 54,27 6,13 14,77 1,42 28,73 4,48 7,60 1,01 −3,39 0,53 7,204 1,47 −11,35 1,40 −9,41 1,25 −5,18 0,59 15,63 2,44 15,63 2,44
3,14 0,43 10,06 1,39 5,86 0,71 −3,97 0,55 6,95 0,77 9,92 165 −6,81 0,82 −6,95 0,63 11,36 1,57
CCA + SV 10 61,46 11249 1,124 1,124 6,92 0,78 −5,48 0,65 5,84 0,66 10,58 1,20 −13,02 1,47 −8,86 9024 0,72 18,01 2,14
AD-KD5 + SV 10 58,21 6,46 12,43 1,70 27,50 −1 27,50 −3 0,74 5,89 0,77 10,50 1,48 −10,56 1,38 −9,13 1,29 −7,81 0,87
TN-E + SV 10 35,51 4,40 2,83 0,33 8,87 1,22 6,55 0,81 −6 0,50 10,03 1,24 −6,85 0,85 −7,19 0,89 −7,24 0,90 12,29 1,45

До естественного выветривания, в то время как стоимость необработанных (контрольных) образцов древесины восточного бука составляла 62,30, значения только PV и только SV образцов древесины с покрытием составляли 68,07 и 63,54, соответственно. Нанесение лака сделало цвет древесины более светлым и увеличило желтизну цвета на деревянной поверхности. Уменьшение стоимости образцов древесины свидетельствует о потемнении образцов [12].Пропитанные и лакированные образцы древесины становятся немного темнее контрольных образцов. Однако образцы древесины, пропитанные TN-E перед нанесением лака, были более темными по сравнению с другими. Потемнение пропитанных и лакированных образцов древесины может быть связано с пропиточными материалами. В то время как значения изменились с 2,83 до 14,77, значения изменились с 8,87 до 28,96 до естественного выветривания. Образцы древесины бука восточного до естественного выветривания имели светлый, желтоватый и красноватый цвет.Бледно-желтый цвет контрольных образцов в первую очередь отражает цвет лигнинового компонента древесины [34].

После трехмесячного естественного выветривания значения составили от –3,39 до –9,83. Отрицательные значения показали, что поверхность дерева изменила цвет с красного на зеленый. значения изменились с 5,84 до 9,94. Положительные значения указывают на то, что образцы древесины сохранили желтоватый оттенок. является наиболее чувствительным параметром качества поверхности древесины [35], но после 3 месяцев естественного выветривания произошло резкое снижение значений . Таким образом, поверхность дерева стала темнее, чем было до естественного выветривания.

После 6 месяцев естественного выветривания ценность контрольных образцов древесины существенно снизилась. Деполимеризация лигнина также может вызывать потемнение поверхности древесины [8, 12, 36]. Согласно полученным значениям, цвет поверхности древесины изменился с желтого на синий после 6 месяцев естественного выветривания. Уменьшение желтизны со временем выветривания можно объяснить восстановлением парахинонов (хромофорных структур) до гидрохинонов, что приводит к фотообесцвечиванию [37].Наименьшее изменение значения было AD-KD5 с PV покрытием для образцов древесины восточного бука после 6 месяцев естественного выветривания. Пропитка TN-E перед лакировкой дала наименьшие изменения. Наибольшие изменения у образцов древесины бука восточного произошли в контрольных образцах через 6 месяцев.

Изменения цвета сосны обыкновенной до и после естественного выветривания показаны в таблице 4. Стоимость необработанных (контрольных) образцов древесины сосны обыкновенной составила 70,52. Легкость () образцов древесины, пропитанных и покрытых лаком, несколько ниже, чем у образцов древесины, покрытых только лаком до естественного выветривания.Другими словами, по мере увеличения светлоты только лакированных образцов древесины, пропитанные и лакированные образцы древесины становились темнее. Стоимость образцов древесины, пропитанных, покрытых лаком и только покрытых лаком, составила от 45,02 до 78,85. и значения были признаны положительными до естественного выветривания. Однако пропиточные материалы снижали значение красного тона в древесных материалах [38]. Сообщается, что пропитка некоторых хвойных пород некоторыми химическими веществами усилила оттенок желтого цвета [39].Baysal et al. также сообщили, что три цветовых параметра (, и) сосны обыкновенной уменьшились после процесса пропитки AD-KD5 [40]. Наши результаты согласуются с выводами этих исследователей. После 3-месячного естественного выветривания значения и оказались положительными. Другими словами, желтый и красный оттенки древесных образцов существенно не изменились. Однако значения необработанных (контрольных) образцов древесины сосны обыкновенной значительно снизились после 3-х месячного естественного выветривания. Хотя это наиболее чувствительный параметр, значения необработанных (контрольных) образцов древесины сосны обыкновенной значительно снизились после 6-месячного естественного выветривания.Значения светлоты у всех образцов снизились после естественного выветривания, но у контрольных экземпляров светлота больше, чем у остальных. В то время как оттенок образцов древесины сосны обыкновенной изменился с красного на зеленый по красно-зеленой шкале, они изменились с желтого на синий по желто-синей шкале после 6-месячного естественного выветривания. Рютер и Джелле исследовали изменение цвета деревянных досок на открытом воздухе как на испытательном стенде, так и в лаборатории. Они измерили это значение в стойке перед естественным выветриванием, и значения образцов сердцевины сосны обыкновенной составили 75.6, 10,2 и 10,2 соответственно, а после естественного выветривания три цветовых параметра (,, и) оказались равными 49,6, −2,5 и 5,3 соответственно [41]. Наименьшие изменения произошли при пропитке TN-E перед PV лакировкой, а AD-KD5 с покрытием SV привели к наибольшим изменениям для образцов древесины сосны обыкновенной после 6-месячного естественного выветривания. Образцы древесины сосны обыкновенной, пропитанной TN-E, имели минимальные изменения как для SV, так и для PV после 6 месяцев естественного выветривания. Общие изменения окраски () бука восточного после 3- и 6-месячного естественного выветривания показаны на рисунке 2.

−23,69 9024 9024 9024 9024 10245 9024 9024 9024 9024 9024 TN-E 902421: количество измеренных образцов. Среднее (): среднее значение измерений. SD: стандартные отклонения.

n До естественного выветривания После 3-х месячного естественного выветривания После 6-месячного естественного выветривания
а b ΔL Δa Δb ΔE ΔL 9024 Среднее SD Среднее SD Среднее SD Среднее SD Среднее SD Среднее SD Среднее Среднее SD Среднее SD Среднее SD Среднее SD Среднее SD

Контроль 10 70. 52 9,31 6,52 0,83 27,81 4,23 −21,49 3,27 4,25 0,54 2,22 0,27 229 −4,26 0,52 −13,2 1,69 33,15 4,91
PV 10 78,85 10,09 7,6688 32,36 4,47 −13,71 1,89 5,84 0,85 5,92 0,64 16,03 1,52 1,02 25,31 3,67
SV 10 75,44 11,01 7,41 0,86 32,56 3,78 9024.83 1,49 5,81 0,65 4,34 0,37 14,74 1,71 -21,01 2,43 -4,3 0,34 4,3 0,34
CCA + PV 10 71,2 10,82 6,25 0,80 29,50 3,60 −12,12 1,31 4,12 9024. 57 5,21 0,48 13,82 1,81 −18,49 2,26 −1,19 0,11 −3,84 0,49 10 73,94 9,09 8,35 1,30 41,24 5,48 −11,17 1,63 5,11 0,80 5,624 9,6249 0,62453 1,30 −17,46 2,32 −1,88 0,21 −5,26 0,82 18,33 2,86
4,31 0,59 12,49 1,51 −7,37 0,89 3,55 0,49 5,92 0,54 10,1041 1,4903 −6,43 0,59 −5,95 0,94 12,03 1,66
CCA + SV 10 70,98 8,02 8,02 8,02 −10,39 1,17 5,28 0,63 7,95 0,66 14,11 1,68 −17,37 1,96 −5,64 −5,64
0,74 19,29 2,30
AD-KD5 + SV 10 72,82 9,54 8,61 1,18 42,06 1,124 42,06 0,48 7,76 0,86 13,27 1,82 −15,88 2,24 −3,68 0,41 −6,34 0,8640
TN-E + SV 10 47,71 5,92 3,26 0,38 15,86 1,97 −6,24 0,79 2,98 −6,24 0,77 2,98 10,31 1,22 −11,34 1,41 −6,37 0,79 −5,85 0,69 14,26 1,68

В то время как значения образцов древесины бука восточного изменились с 9,92 до 17,10 после 3-месячного естественного выветривания, в конце 6 месяцев значения изменились с 11,36 до 24,50 для образцов древесины бука восточного. Наиболее высокие показатели наблюдались на необработанных (контрольных) образцах бука восточного. Необработанные образцы древесины восточного бука показали более сильные изменения цвета, чем образцы с покрытием, при естественном выветривании в течение 3 и 6 месяцев.Однако Fufa et al. сообщили, что изменение цвета покрытых лаком образцов становится наибольшим у необработанных (контрольных) образцов при длительных периодах естественного выветривания [42]. Наши результаты показывают, что тенденция изменения цвета пропитанных и лакированных образцов была ниже, чем лакированных и контрольных образцов. Полное изменение цвета () сосны обыкновенной после 3- и 6-месячного естественного выветривания показано на Рисунке 3.


Наибольшее изменение цвета наблюдалось у необработанной (контрольной) сосны обыкновенной после 3- и 6-месячного естественного выветривания.В то время как значения образцов древесины сосны обыкновенной изменились с 10.10 до 22.02 после 3-месячного естественного выветривания, значения образцов древесины сосны обыкновенной изменились с 12.03 до 33.15 после 6-месячного естественного выветривания. Fufa et al. сообщили, что необработанные образцы демонстрировали более сильные изменения цвета, чем образцы с лаком или покрытием за короткий период естественного выветривания [42]. Однако для более длительного срока службы покрытий при наружных применениях улучшение покрытий имеет решающее значение. Известно, что уход за деревянными покрытиями при наружном использовании имеет решающее значение для их характеристик и долговечности во время атмосферных воздействий [43].

В результате наилучшей стабильностью цвета оказался TN-E с PV покрытием для образцов древесины как восточного бука, так и сосны обыкновенной. Обе обработки TN-E замедляли фотодеградацию, замедляя образование карбонильных групп. Светостойкость древесины, обработанной TN-E, вероятно, является результатом хелатирования Cu (II) с функциональными группами в древесине. Эти хелаты могут фотостабилизировать древесину и замедлять образование карбонильных групп [8, 44]. В противном случае только PV-покрытие не способствовало стабилизации цвета древесины.Ультрафиолетовый свет играет решающую роль в разрушении полиуретановых покрытий под воздействием погодных условий [45]. Только PV-покрытие обычно дает немного лучшую стабильность цвета, чем только SV-покрытие после естественного атмосферного воздействия. Однако Baysal et al. обнаружили, что в образцах, у которых произошли изменения цвета пропитанной и лакированной сосны обыкновенной после ускоренного выветривания, только образцы древесины с покрытием SV имели лучшую стабильность цвета, чем PV [12]. Эту ситуацию можно объяснить тем, что образцы древесины в нашем исследовании подвергались воздействию естественных погодных условий, таких как солнечный свет и дождь.Более того, Budakçi et al. обнаружили, что стабильность цвета образцов древесины после испытаний на старение может быть упорядочена следующим образом: акриловый лак> полиуретановый лак> целлюлозный лак [46]. Древесина, пропитанная составами на основе меди перед PV покрытием, была более эффективной в стабилизации цвета древесины, чем только PV или SV покрытие [12]. Образцы древесины, пропитанные TN-E перед PV покрытием, показали лучшую стабильность цвета, чем другие в этом исследовании. Двойная обработка древесины химикатами и лаком необходима для продления срока службы древесины.Baysal и Grüll et al. рекомендуется, чтобы нанесение поддерживающего покрытия было важным [22, 43]. Изменение цвета приписывается карбонильным группам сопряженных кетонов, альдегидов и хининов, возникающих в результате модификаций лигнина и других соединений [47], и зависит от образования карбонильных групп, образующихся во время фотодеградации древесины [9]. TN-E, который включает медь, может уменьшить фотодеградацию, замедляя образование карбонильных групп и делигнификацию. Аналогичные результаты были получены и для составов на основе меди [8, 47].Медь образует определенные комплексы с компонентами древесины, такими как комплексы медь-целлюлоза, комплексы медь-лигнин, а также кристаллические или аморфные неорганические / органические соединения меди, и снижает деградацию поверхности древесины под воздействием погодных факторов [8, 47]. Комплексы ионов древесины, образующиеся на поверхности древесины, могут придавать ей сопротивление, блокируя свободные фенольные группы [47]. Подобные ионные комплексы могут быть образованы с составами на основе меди и компонентами древесины, и эти комплексы могут уменьшать радиалы, которые стабилизируют цвет древесины [48].

4. Выводы

Древесные материалы, используемые для наружных работ, подвергаются воздействию нескольких климатических факторов, включая солнечную радиацию, воду, перепады температуры, ветер и эрозию [49]. Эти факторы, в частности, влияют на стабильность цвета древесины. В этом исследовании изучалось влияние естественного выветривания на стабильность цвета пропитанной и лакированной древесины сосны обыкновенной и бука восточного. В то время как TN-E, AD-KD5 и CCA использовались в качестве химикатов для пропитки, в данном исследовании в качестве лаков использовались полиуретан и синтетические лаки.Было замечено, что удерживаемость сосны обыкновенной выше, чем удерживания бука восточного.

Первоначально контрольные образцы древесины сосны обыкновенной и бука восточного имели более светлые, естественные красноватые и желтоватые оттенки. Их лакирование увеличивало светлоту, желтизну и красноту поверхности древесины, но их пропитка уменьшала светлоту образцов древесины по сравнению с контрольными образцами. При естественном выветривании значения светлоты у всех образцов снизились. Однако необработанные (контрольные) образцы древесины показали более сильные изменения цвета, чем другие образцы на всех стадиях естественного выветривания. и уменьшалась с увеличением времени выдержки в условиях естественного выветривания как для образцов древесины сосны обыкновенной, так и для образцов древесины восточного бука.

Можно сделать вывод, что необработанные (контрольные), только лакированные, а также пропитанные и лакированные образцы древесины изменили цвет с красного на зеленый по красно-зеленой шкале и с желтого на синий по желто-синей шкале с увеличением времени выдержки в условиях естественного атмосферного воздействия. . Наибольшее общее изменение цвета наблюдалось у необработанной (контрольной) сосны обыкновенной после 3- и 6-месячного естественного выветривания.Суммарные изменения цвета необработанных образцов бука восточного были меньше, чем у необработанных образцов сосны обыкновенной. Наконец, наилучшая стабильность цвета была получена при пропитке TN-E перед PV покрытием образцов древесины как восточного бука, так и сосны обыкновенной после естественного выветривания. Древесина, пропитанная составами на основе меди до фотоэлектрического покрытия, была более эффективной в стабилизации цвета древесины. Фотостабилизацию древесины пропиткой на основе меди можно объяснить замедлением образования карбонильных групп и уменьшением делигнификации при выветривании.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

(PDF) Применение натуральных красителей для окрашивания древесины

НЕПРАВИЛЬНОЕ ДОКАЗАТЕЛЬСТВО

Kollmann, FFP and Co

€te

´, WA (1968) Принципы древесной науки и технологии, I, Solid

Wood, Springer-Verlag, Берлин.

Ku

Эршнер, К. и Мельцерова

´, A. (1965a) U

dieber die chemischen Vera

nderungen des Buchenholzes bei

thermischer Behandlung — Teil I.Chemische Vera

nderungen von Sa

gespa

nen bei 1-28 ta

giger

Erhitzung auf 80–160 ° C, Holzforschung, 19 (6), 161–171.

Ku

Эршнер, К. и Мельцерова

´, A. (1965b) U

dieber die chemischen Vera

nderungen des Buchenholzes bei

thermischer Behandlung — Teil II. Chemische Vera

nderungen von Buchenholz-Kanteln bei 1-2

ta

giger Erhitzung auf 80–130 ° C unter besonderer Beru

cksichtigung der UV-Absorptionsspektren, 1

–178.

Lang, G. и Cotteret, J. (2002) Красящая композиция, содержащая лакказу и кератиновые волокна, окрашивание

способов с использованием того же, Патент США US 6,471,730 B1.

Лангендорф, Г. и Эйхлер, Х. (1982) Holzvergu

ungtung, VEB Fachbuchverlag, Leipzig.

Loader, NJ, Робертсон, I., Баркер, AC, Switsur, VR и Waterhouse, JS (1997) Усовершенствованный метод

для периодической обработки небольших образцов цельной древесины до α-целлюлозы, Chemical Geology,

136, 313–317.

Луостаринен, К. и Луостаринен, Дж. (2001) Изменение цвета и деформации березовых паркетных досок

во время традиционной сушки, Wood Science and Technology, 35, 517–528.

Луостаринен, К., Мо

¨tto

Энен, В., Асикайнен, А. и Луостаринен, Дж. (2002) Древесина березы (Betula pendula)

Изменение цвета во время сушки. Влияние факторов окружающей среды и расположение древесины в стволе,

Holzforschung, 56, 348–354.

МакЛауд, И.Т., Скалли, А. Д., Гиггино, К. П., Ричи, П. Дж. А., Параванья, О. М. и Лири, Б.

(1995) Деградация фотографий на границе раздела дерево-лак, Wood Science and Technology, 29,

183–189.

Милитц, Х. (2002) Технологии термообработки в Европе — научные основы и технологии

современное состояние, в материалах конференции по повышению долговечности пиломатериалов и

Инженерные изделия из дерева, Киссимми, 11–13 Февраль 2002.

Мицуи, К.(2004) Изменения свойств облученной светом древесины при термообработке, Часть 2.

Влияние времени и длины волны светового облучения, Holz als Roh- und Werkstoff, 62, 23–30.

Мицуи, К., Такада, Х., Сугияма, М. и Хасегава, Р. (2001) Изменения свойств света —

облученная древесина при термообработке, Часть 1. Влияние условий обработки на изменение цвет,

Holzforschung, 55 (6), 601–605.

Mu

ller, U., Ra

¨tzsch, M., Schwanninger, M., Steiner, M. and Zo

bl, H. (2003) Пожелтение и

ИК-изменения древесины ели в результате УФ-облучения, Journal of Photochemistry and

Photobiology B: Biology, 69, 97–105.

Нгуила Инари, Г., Петриссанс, М. и Герардин, П. (2007) Химическая реакционная способность термообработанной древесины,

Наука и технология древесины, 41, 157–168.

Oliveira, R. L., Colodette, J. L., Eiras, K. M. и Ventorim, G. (2006) Влияние подачи древесины и процесса отбеливания

на стабильность белизны целлюлозы, R.A

´rvore, Vicosa-MG, 30, 439–450.

Oltean, L., Teischinger, A. и Hansmann, C. (2008) Изменение цвета поверхности древесины из-за имитации воздействия солнечного света в помещении

, Holz als Roh- und Werkstoff, 66 (1), 51–56.

Onis

´ko, W. and Matejak, M. (1971) Einfluß 25% iger Ammoniaklo

¨sung auf die Physikalischen und

Mechanischen Eigenschaften des Holzes, Holztechnologie, 12 (1), 45–54.

Онуки Т., Ногучи М. и Митамура Дж.(1999) Композиции красок для волос, Европейская заявка на патент

EP 1 142 561 A1.

Папп, Г., Преклет, Э., Косикова

´, Б., Барта, Э., Толвай, Л., Бохус, Дж., Сатмари, С. и Беркеси, О.

(2004) Эффект УФ-лазерного излучения с разными длинами волн в спектре лигнина, выделенного

из твердых древесных материалов, Журнал фотохимии и фотобиологии A: Chemistry, 163, 187–192.

Пархэм, Р. А., Дэвидсон, Р. У. и де Зеу, К. Х.(1971) Радиально-тангенциальная усадка древесины сосны лоблоловой

, обработанной аммиаком, Wood Science, 4 (3), 129–136.

Пасторе, Т.С.М., Сантос, К.О. и Рубим, Дж. С. (2004) Спектроколориметрическое исследование эффекта

ультрафиолетового облучения четырех тропических пород древесины лиственных пород, Bioresource Technology, 93, 37–42.

Po

Окль, Дж. (2007) Neu Methoden der Laubholzvergu

¨tung, докторская диссертация, Университет природных ресурсов

и прикладных наук о жизни, Вена.

Roffael, E. и Schaller, K. (1971) Einfluß thermischer Behandlung auf Cellulose, Holz als Roh- und

Werkstoff, 29 (7), 275–278.

30 января 2009 г. 14:31 Wiley / OLOR Страница 311 c17

Применение природных красителей при окраске древесины 311

01

02

03

04

05

06

07

09

10

11

12

13

14

15

16

17

18

19

20

21

000

000

000

25

26

27

28

29

30

31

32

33

34

35

36

37

38

0003

0002 39

000

42

43

44

45

46

(PDF) Изменение цвета древесины и термитицидные свойства экстракта сердцевины тикового дерева, используемого в качестве консерванта для древесины

12V.Ф. Брокко и др .: Изменение цвета древесины и защитный потенциал экстрактов тика

International, West Conshohocken, PA, 2017.

doi: 10.1520 / D3345-17.

Беррокаль-Хименес, А., Рохас-Акунья, Л.В. (2007) Устойчивость древесины тика (Tectona grandis

L.f.) от лесных плантаций к атаке

сухих древесных термитов Cryptotermes brevis (Walker). Ред. Для.

Мезоам. Куру 4: 1–15.

Bhat, K.M., Florence, E.J.M. (2003) Естественная устойчивость к гниению

молодой древесины тика

, выращенной на плантациях с высоким потреблением ресурсов.Holz-

forschung 57: 453–455.

Бхат, К.М., Туласидас, П. К., Мария Флоренс, Э.Дж., Джаяраман, К.

(2005) Долговечность древесины тика для домашнего сада против коричневой гнили

и грибов белой гнили. Деревья Struct. Функц. 19: 654–660.

Болин, С.А., Смит, С. (2011) Оценка жизненного цикла пиломатериалов

, обработанных ACQ, по сравнению с древесно-пластиковым композитным настилом. J.

Чистый. Prod. 19: 620–629.

Brocco, V.F., Paes, J.B., da Costa, L.Г., Бразолин, С., Арантес, доктор медицины

(2017) Потенциал экстрактов сердцевины тикового дерева в качестве консерванта натуральной древесины

. J. Clean. Prod. 142: 2093–2099.

Camargos, J.A.A., Gonçalez, J.C. (2001) Прикладная колориметрия как инструмент

при разработке цветовой таблицы древесины. Бюстгальтеры.

Флорест. 71: 30–41.

Международная комиссия по охране окружающей среды — CIE. Колориметрия.

Часть 4: Система CIE 1976 (L * a * b *). 2-е изд. Вена, 1986. CIE нет.

15.2.

Коста, М.А., Коста, А.Ф., Пасторе, T.C.M., Брага, Дж. В. Б., Гонсалес, Дж. К.

(2011) Определение характеристик гниения древесины гнилью с использованием цветовой метрии

и инфракрасной спектроскопии. Cienc. Флорест. 21: 567–577.

de Faria Santos, A., Fernandes Carrijo, T., Marques Cancello, E.,

Coletto Morales-Corrêa E Castro, A. (2017) Филогеография

Nasutitermes corniger (Isoptera: Termitidae) в Неотропической зоне

Регион.BMC Evol. Биол. 17: 230.

Dungani, R., Bhat, I.u.H., Khalil, H.P.S.A., Naif, A., Hermawan, D.

(2012) Оценка антитермитической активности различных экстрактов

, полученных из индонезийского тикового дерева (Tectona grandis L.f).

BioResources 7: 1452–1461.

Газал В., Байлез О., Виана-Байлез А.М., Агиар-Менезес, Э.Л., Мен-

ezes, E.B. (2014) Поведенческие реакции древесных термитов

Nasutitermes corniger (Isoptera: Termitidae) на экстракты древесины.

Wood Sci. Technol. 48: 581–590.

Gonçalves, F.G., Pinheiro, D.T.C., Paes, J.B., de Carvalho, A.G., de

Oliveira, G.L. (2013) Естественная устойчивость древесных лесных пород к

атакам сухих древесных термитов. Floresta e Ambient. 20: 110–116.

Hassan, B., Mankowski, M.E., Kirker, G., Ahmed, S. (2017) Воздействие

экстрактивных веществ сердцевины древесины на симбиотические сообщества простейших

и смертность двух видов термитов. Int. Биодетериор.Биодегра-

dation 123: 27–36.

Hassan, B., Ahmed, S., Mankowski, M., Kirker, G., Ibach, RE,

Misbah ul Haq, M. (2018) Влияние тика, Tectona grandis Linn,

экстрактивных веществ сердцевины древесины против Heterotermes indicola (Isoptera:

Rhinotermitidae). Труды Международной исследовательской группы

по защите древесины, Йоханнесбург, Южная Африка.

Документ № IRG / WP 18-10910.

Haupt, M., Leithoff, H., Meier, D., Puls, J., Richter, H.G., Faix,

O. (2003) Экстрактивные вещества сердцевины и естественная прочность тикового дерева

, выращенного на плантациях (Tectona grandis L.) — тематическое исследование.

Holz als Roh- und Werkst. 61: 473–474.

Хикита, Ю., Тойода, Т., Адзума, М. (2001) Испытания на выветривание

древесины с обесцвечиванием. В: Высокопроизводительное использование древесины

для наружного применения. Эд. Имамура, Ю. Пресс-Нет, Киото, Япония.

с. 27–32.

Hillis, W.E. (1971) Распределение, свойства и образование около

экстрактивных веществ древесины. Wood Sci.Technol. 4: 272–289.

Instituto de Pesquisas Tecnológicas — IPT / DIMAD. D-2. Ensaio acel-

erado de labratório da resistência natural ou Madeira preser-

vada ao ataque de térmitas do gênero Cryptotermes. Сан-Паулу:

IPT / DIMAD, 1980. 1 стр. (Публикация IPT 1157). На португальском.

Исмаяти, М., Накагава-Идзуми, А., Камалуддин, Н., Охи, Х. (2016)

Токсичность и сдерживающий эффект 2-метилантрахинона

из древесных экстрактивных веществ Tectona grandis на субстратной основе.

раненовых термитов Coptotermes formosanus и Reticulitermes

speratus.Насекомые 7:63.

Картал, С.Н., Терзи, Э., Йылмаз, Х., Гуделл, Б. (2015) Биоремедиация

и гниение древесины, обработанной ACQ, микронизированным ACQ, нано-

CuO и консервантами CCA. Int. Биодетериор. Биодеграда-

тион 99: 95–101.

Kelley, S.S., Jellison, J., Goodell, B. (2002) Использование NIR и пиролиза —

MBMS в сочетании с многомерным анализом для обнаружения

химических изменений, связанных с биоразложением коричневой гнили древесины ели

.FEMS Microbiol. Lett. 209: 107–111.

Киркер, Г.Т., Блоджетт, А.Б., Аранго, Р.А., Лебоу, П.К., Клаузен, К.А.

(2013) Роль экстрактивных веществ в естественно прочных древесных породах

cies. Int. Биодетериор. Биоразложение 82: 53–58.

Кокуце, А.Д., Стокс, А., Байлерес, Х., Коку, К., Баудассе, К.

(2006) Устойчивость к гниению тикового дерева (Tectona grandis L.)

сердцевина и взаимосвязь с цветом. Деревья 20: 219–223.

Konica Minolta.Точная передача цвета: управление цветом от восприятия

до приборов, Konica Minolta Sensing Inc.,

Япония, 2007.

Lin, L.-D., Chen, Y.-F., Wang, S.-Y. , Цай, М.-Дж. (2009) Выщелачиваемость, коррозия металла

и стойкость к термитам древесины, обработанной консервантом на основе меди

. Int. Биодетериор. Биоразложение

63: 533–538.

Lopes, J.O., Garcia, R.A., Latorraca, J.V.F., Nascimento, A.M. (2014a)

Изменение цвета тикового дерева при термообработке.Floresta e Ambi-

ent. 21: 521–534.

Lopes, J.O., Garcia, R.A., Nascimento, A.M., Latorraca, J.V.F. (2014b)

Унификация цвета молодой древесины тикового дерева путем термообработки.

Rev. Árvore 38: 561–568.

Лукмандару, Г., Такахаши, К. (2008) Вариация естественной устойчивости к термитам

древесины тика (Tectona grandis Linn. Fil.) В зависимости от возраста дерева

. Аня. Для. Sci. 65: 708–716.

Лукмандару, Г., Такахаши, К.(2009) Радиальное распределение qui-

нонов в плантационном тике (Tectona grandis L.f.). Аня. Для. Sci.

66: 605–605.

Mohammed, SA, Madhan, B., Demissie, BA, Velappan, B., Tamil

Selvi, A. (2016) Rumex abyssinicus (mekmeko) Эфиопское растение

Материал для сохранения козьих шкур: подход для чистки

кожевенное производство. J. Clean. Prod. 133: 1043–1052.

Motta, J.P., Oliveira, J.T.S., Paes, J.B., Alves, R.C., Dambroz, G.B.V.

(2013) Естественная устойчивость древесины Tectona grandis в лабораторных исследованиях

. Ciência Rural 43: 1393–1398.

Мойя Р., Беррокаль А. (2010) Изменение цвета древесины заболони и

сердцевины молодых деревьев Tectona grandis и ее взаимосвязь —

Корабль с характеристиками насаждения, местоположением и устойчивостью к гниению.

Ann. Для. Sci. 67: 109.

Мойя Р., Бонд Б., Кесада Х. (2014) Обзор свойств сердцевины

деревьев Tectona grandis с быстрорастущих плантаций.

Wood Sci. Technol. 48: 411–433.

Цвет Munsell. Диаграммы цветов почв по Манселлу. Kollmorgen Instruments

Corp., Балтимор, Мэриленд, 2000.

Принесено вам | Федеральный университет Эспириту-Санту UFES

Подтверждено | [email protected] авторская копия

Дата загрузки | 11.11.19 18:28

Влияние полноклеточной пропитки древесины сосны (Pinus sylvestris L.) на изменение электрического сопротивления и точность измерения влагосодержания с помощью измерителей сопротивления :: BioResources

Конопка, А., Барански, Й., Орловски, К., Шимановски, К. (2018). «Влияние полноклеточной пропитки древесины сосны ( Pinus sylvestris L.) на изменение электрического сопротивления и точность измерения влагосодержания с помощью измерителей сопротивления», BioRes. 13 (1), 1360-1371.
Abstract

Было исследовано влияние полноклеточной пропитки древесины сосны на изменение электрического сопротивления и точность измерения влажности. В этом исследовании сравнивалась устойчивость пропитанной и необработанной древесины сосны, заготовленной в северной части Польши (Поморское воеводство). Пропитка древесины проводилась вакуумно-напорным методом. Консервант (TANALITH E 3475) и краситель (TANATONE 3950) были основаны на солях меди. Результаты показали зависимость сопротивления древесины от влажности. Использовались пропитанные и необработанные образцы древесины. Этот результат отражает большую проводимость пропиточного раствора (на основе соли меди), чем у воды.Это явление стало более заметным, когда значение влажности было выше точки насыщения волокна (FSP).


Скачать PDF
Полная статья

Влияние полноклеточной пропитки сосновой древесины ( Pinus sylvestris L.) на изменения электрического сопротивления и точность измерения содержания влаги с помощью измерителей сопротивления

Александра Конопка, a, * Jacek Barański, a, * Kazimierz Orłowski, b и Кароль Шимановски c

Влияние полноклеточной пропитки сосновой древесины было исследовано в отношении изменений электрического сопротивления и точности измерения содержания влаги.В этом исследовании сравнивалась устойчивость пропитанной и необработанной древесины сосны, заготовленной в северной части Польши (Поморское воеводство). Пропитка древесины проводилась вакуумно-напорным методом. Консервант (TANALITH E 3475) и краситель (TANATONE 3950) были основаны на солях меди. Результаты показали зависимость сопротивления древесины от влажности. Использовались пропитанные и необработанные образцы древесины. Этот результат отражает большую проводимость пропиточного раствора (на основе соли меди), чем у воды.Это явление стало более заметным, когда значение влажности было выше точки насыщения волокна (FSP).

Ключевые слова: Сушка древесины, Пропитка целиком; Сосновый лес; Относительная влажность; Стойкость сосновой древесины; Влагомер сопротивления

Контактная информация: a: Гданьский технологический университет, факультет машиностроения, факультет энергетики и промышленного оборудования, Г. Нарутовича 11/12 80-233 Гданьск Польша; b: Гданьский технологический университет, факультет машиностроения, факультет машиностроения и автоматизации, Г.Нарутовича 11/12 80-233 Гданьск Польша; c: Варшавский университет естественных наук, факультет технологии древесины, кафедра механической обработки древесины, отделение деревообрабатывающих станков и деревообработки, Новурсыновска 159, 02-787 Варшава, Польша;

* Авторы, ответственные за переписку: [email protected]; [email protected]

ВВЕДЕНИЕ

Сушка — это процесс физического удаления летучих веществ (обычно влаги) для получения твердого конечного продукта (Бертольд, 1988).Влага содержится в рыхлом химическом сочетании (Klement and Huráková, 2016). Он присутствует в твердом веществе в виде жидкого раствора и даже заключен в микроструктуре твердого вещества. Следовательно, можно создать давление пара ниже, чем у чистой воды (так называемая связанная влага) (Klement and Huráková 2015). Оставшаяся в древесине влага представляет собой несвязанную влагу, которая превышает количество связанной влаги.

Основные воздействия насыщения древесины зависят от породы древесины, доли заболони и сердцевины, а также от анатомического направления (Krzysik 1978).Заболонь находится рядом с корой и представляет собой активно проводящую часть стебля. Ядро, которое находится внутри бревен достаточного возраста в окружении заболони, может рассматриваться как заболонь, выведенная из эксплуатации (Rowell 2013). В случае насыщения сосновой древесины разница в поглощении насыщающего вещества заболонью и сердцевиной может варьироваться до 110 раз (Krajewski and Witomski 2005). В трахеидах многих видов древесины хвойных пород ямки расположены на радиальных стенках просветов, что обеспечивает тангенциальный поток, в то же время позволяя потоку проходить в просветах вдоль перекрывающихся волокон.Поток по сосудам лиственных пород может быть в несколько раз выше, чем в тангенциальном направлении.

Растущее использование древесины в строительстве как возобновляемой и малоэффективной альтернативы железобетону и стали энергии будет играть важную роль в сокращении выбросов и твердых отходов мировой строительной индустрии (Ramage et al. 2017) . Древесина в ее естественной форме является широко используемым строительным материалом, но в определенных средах и областях применения необходимо решать вопросы, связанные с долговечностью, огнестойкостью и стабильностью размеров (Rowell 2007).В общем, обработка древесины с помощью химических или термических модификаций, покрытий или пропитки предлагает эффективные пути решения некоторых из этих проблем (Hill 2006). В частности, «контролируемая» импрегнация определенных мономеров в полость клетки (просвет), но также, возможно, в клеточную стенку (Militz 1993; Schneider 1995; Keplinger et al. 2015) с последующей полимеризацией может улучшить характеристики древесина в строительстве за счет улучшения ее механических свойств (Rowell and Konkol 1987), большей прочности (Militz 1993; Lande et al. 2004) и огнестойкость (Marney and Russell 2008).

Для обработок древесины, воздействующих на твердую массу древесины (, т.е. . На стенки ячеек), таких как химическая модификация или пропитка стенок ячеек, полученная степень пропитки может быть непосредственно оценена по приросту веса в процентах. Однако, когда пропитка происходит только в просветной полости ячейки, а стенка ячейки номинально остается неизменной, «максимальный потенциал» пропитки лучше определяется количественно относительно общей доли пустот, и полученная степень пропитки напрямую связана с коэффициент заполнения пор ( i.е. отношение заполненной просветной полости к общему объему полости).

Применение химикатов можно реализовать разными способами. В зависимости от подверженности древесины разрушающим агентам, грибкам или насекомым требуется разная эффективность пропитки (Вилковски и Чундерлик, 2017). Эффективность обработки зависит от типа и количества используемой пропитки, а также от количества излишков древесины. Однако способ пропитки определяется количеством пропитки и глубиной пропитки.

Для определения глубины пропитки существует два метода: поверхностный и глубокий. Пропитка поверхности включает все методы, пропитывающие внешний слой древесины (белизну) (до 5 мм глубины пропитки). К глубокой пропитке относятся методы, позволяющие пропитать древесину на глубину более 5 мм.

Пропитка просвета

, в отличие от большинства других методов модификации древесины, обычно оценивается по коэффициенту заполнения пор (, то есть — доля заполненной пористости просвета), а не по увеличению веса в процентах.Во время пропитки просвета пропитки действуют на пустоты в древесине, а не на твердую массу (, т.е. . Клеточные стенки) (Wu et al. 2017). Полная пропитка ячеек подразумевает, что древесина обрабатывается консервантами под давлением, чтобы пропитать всю деревянную ячейку (клеточную стенку, а также просвет или внутреннюю часть) веществами, которые придают устойчивость к гниению, огню, насекомым и морским животным, сверляющим древесину. .

Пропитка под вакуумом — наиболее эффективный способ защиты древесины.Насыщение осуществляется в цилиндрических емкостях для пропитки под давлением или вакуумом. Эти методы позволяют полностью пропитать заболонь и сердцевину древесины лиственных пород всего за несколько часов. С помощью методов давления вакуума, древесина многих видов, в том числе сосны и дуба, хорошо насыщена. Однако древесина ели и пихты неравномерно насыщена. Несвязанная вода, заполняющая просветы, препятствует легкому проникновению воды в древесину. В зависимости от используемого метода древесина может быть полностью насыщена клетками или «экономична» (пропитана клетками).Полноклеточная пропитка заключается в заполнении пропиточной жидкостью всего свободного пространства в древесине. Пропитка заполняет пустую внутреннюю часть ячеек и проникает через стенки ячеек. Пропитка древесины «на полное» может быть основано на использовании метода вакуумного давления. Расход пропиточной жидкости при пропитке древесины сосны может достигать 400 л / м 3 . Для этой пропитки вакуум не может превышать -0,8 бар, а давление жидкости в резервуаре должно составлять примерно 8 бар.

Целью данной работы было исследование электрического сопротивления в пропитанной древесине сосны. Применяемая водорастворимая пропитка представляет собой водный солевой раствор, проникающий на капиллярной и диффузионной основе, поэтому влажность пропитанной древесины существенно не влияет на ее проникновение в материал. Интенсивность диффузии прямо пропорциональна концентрации водного раствора пропиточной соли и зависит от продолжительности этого явления.Процесс диффузии продолжается после удаления древесины из пропиточного солевого раствора до тех пор, пока древесина не высохнет (когда ее влажность опустится ниже FSP).

Аналогичное исследование было выполнено Brischke and Lampen (2014). Однако результаты, представленные в этой статье, отличаются тем, что они могут быть связаны с типом используемой пропитки и ее концентрацией, а также методом пропитки. Форсен и Тарвайнен (2000) получили характеристики сопротивления в зависимости от содержания влаги (MC) в древесине сосны.Они аппроксимировали эти характеристики экспоненциальной функцией. Некоторые результаты, касающиеся влияния солей металлов на электропроводность древесины, появляются в литературе (Flotaker, Tronstad, 2000; Brischke, Lampen, 2014, Simpson, 1994). Однако эти данные являются общими, описывающими явления. Они не предоставляют данных, которые могли бы быть полезны в производственной практике. Эта рукопись предоставляет как научную, так и утилитарную информацию, благодаря ссылке на точное количественное определение пропиточной соли, инструментальную оценку MC, и т. Д. .Мотивацией для авторов этой статьи было исследование влияния пропитки на измерение электрического сопротивления.

ЭКСПЕРИМЕНТАЛЬНАЯ ИНФОРМАЦИЯ

Материалом для экспериментов служила древесина сосны ( Pinus sylvestris L.). Древесину, которая будет использоваться в экспериментах по пропитке (три плиты), сначала сушили в промышленных условиях до тех пор, пока относительное содержание влаги не приблизилось к FSP. Далее они прошли полномасштабную пропитку в автоклаве (рис.1). Процесс пропитки длился 120 мин, а уровень удерживания составил 1,0 дм 3 / ( м 3 мин).

Метод пропитки основан на методике, подробно описанной Бабински (1992), называемой полноклеточной пропиткой. Платы помещали в раствор для пропитки при атмосферном давлении.

Первая фаза пропитки длилась 25 минут в вакууме -0,8 бар. После этого в
поддерживали давление 10 бар в течение 55 минут. После второй фазы пропитки, когда давление снижали до атмосферного, из автоклава удаляли излишки пропиточного раствора.Заключительный этап пропитки, во время которого пропиточный раствор отсасывается из просветов, проводился в вакууме -0,8 бар и длился 40 мин. Весь процесс пропитки представлен на рис. 1. Использовали консервант (TANALITH E3475, Arch Timber Protection, Castleford, UK) и краситель (TANATONE 3950, Arch Timber Protection, Castleford, UK) на основе соли меди. Концентрация импрегната составила 3,8%. Еще три доски, которые не были пропитаны, были свежесрезаны.

Можно сказать, что существуют также другие консерванты, включая каменноугольные вещества, такие как креозот, химические вещества на масляной основе, такие как пентахлорфенол (PCP), и водные растворы таких соединений, как хромированный арсенат меди (CCA), аммиачный арсенат меди и цинка (ACZA ) и азол меди (CA-B). Примером консерванта CA-B является TANALITH E3475. Креозот, PCP и CCA используются на тяжелых конструкционных элементах, таких как железнодорожные шпалы, опоры, морские балки и мостовые балки, в то время как ACZA и CA-B используются для обычных строительных деревянных конструкций. Нанесенный пропиточный раствор содержит, среди прочего, соли, такие как карбонат меди (III) и гидроксид меди. Кроме того, он содержит спирт 2-аминоэтанол (NH 3 CH 2 CH 2 OH) и органические кислоты. Чем длиннее цепь органической кислоты, тем она слабее как кислота и тем медленнее диссоциирует. В результате реакции 2-аминоэтанола с органическими кислотами образуются соли. В зависимости от их ионизации изменяется проводимость пропитанного солевым раствором раствора, что может быть предметом дальнейших исследований.

Вода, входящая в состав пропиточного раствора, представляет собой полярную жидкость и вызывает набухание клеточной стенки. Набухание клеточной стенки из-за использования водорастворимых агентов, таким образом, обеспечивает насыщение, что важно для грибов, развивающихся внутри клеточной стенки, в слое S2, таких как серый гриб.

Важной проблемой, которая может возникнуть во время насыщения, является фрагментация многокомпонентных консервантов для древесины в результате фиксации отдельных соединений. Это, в свою очередь, приводит к неравномерному распределению компонентов химического соединения в древесине.

Рис. 1. Последовательные фазы процесса пропитки в автоклаве

Перед экспериментами древесина поставлялась в виде досок длиной 500 мм (рис. 2). Годичные кольца этой древесины были тангенциальными (рис. 3). Древесина, предназначенная для пропитки, была разрезана на куски (далее называемые образцами) размером 120 мм × 900 · 10 · 105 мм × 40 мм (рис. 4а). Пиломатериалы (не пропитанные перед опытами) также разрезались на куски, но размерами 60 мм × 105 мм × 50 мм (рис.4б).

Рис. 2. Размеры образцов, подготовленных для эксперимента: а) пиломатериалы необработанные, б) пропитанные. Образцы, отобранные для определения начальной относительной влажности древесины (гравиметрическим методом), отмечены серым цветом.

Было взято

проб без сердцевины. В основном продольные потоки имеют место в заболони хвойных пород древесины. Древесина была получена на лесопилке Sylva Ltd. Co. в Веле, Польша. Значения начальной и конечной влажности и плотности пропитанной и необработанной древесины сосны представлены в таблице 1.Эти свойства и концентрация соли в древесине очень важны для измерения электрического сопротивления.

Таблица 1. Значения начальной и конечной влажности и плотности пропитанной и необработанной сосновой древесины

Каждый образец древесины сосны сушили на открытом воздухе. Измерения проводились с интервалом в 24 часа в лабораторном помещении при температуре 25 ° C и относительной влажности воздуха ϕ 29,5%. Для этих параметров равновесная влажность составила W r = 6%.Время сушки составляло около 30 дней для пропитанной древесины и около 45 дней для необработанной древесины.

Для определения относительной влажности древесины использовался гравиметрический метод. Образцы были взяты из середины плит толщиной 500 мм (рис. 2). Этот метод более точен, чем обычно используемые методы с датчиками влажности, основанными на сопротивлении. Экспериментальная установка содержала весы для измерения веса образцов. Измерения гирь производились с точностью до 0.001 г. Сушку образцов до абсолютно сухого состояния проводили в лабораторной печи при температуре 900 10 103 ± 2 ° С. Относительное содержание влаги рассчитывали по формуле. 1,

, где m w — это вес образца влажности (выраженный в граммах), а m o — вес абсолютно сухого образца (выраженный в граммах).

Рис. 3. Типы ориентации годичных колец в полученных платах

а)

б)

Фиг.4. Вид образцов, подготовленных для эксперимента: а) пиломатериалы необработанные, б) пропитанные

Затем относительное содержание влаги в древесине было измерено с помощью измерителя влажности с электрическим сопротивлением Hydromette типа TRU 600 (Gann Messu. Regeltechnik GmbH, Герлинген, Германия). Влагомер был откалиброван для комнатной температуры 25 ° C и для указанной породы дерева , то есть белой сосны.

Измерительная система, показанная на рис. 5, использовалась для определения сопротивления пропитанной древесины сосны и необработанных пиломатериалов.Измерительная система состояла из мультиметра типа MUC 2000 (Шланди, Михаловице, Польша; рис. 6) с внутренним сопротивлением 10 МОм, источника питания, который генерировал постоянное напряжение 9,45 В, и измерительных зондов внутри Hydromette RTU 600 влажности. метр (рис.6). Измерительные зонды были размещены в тех же точках измерения в зоне заболони.

Рис. 5. Принципиальная схема системы измерения сопротивления древесины

Фиг.6. Фото средств измерений: а) мультиметр MUC 2000, б) влагомер сопротивления (гигрометр) Hydromette RTU 600

Сопротивление испытуемых образцов определяли по следующим формулам:

(2)

, где U s — постоянное напряжение, генерируемое источником питания (9,45 В), R м — внутреннее сопротивление мультиметра (10 МОм), U м — указанное напряжение По мультиметру U w — напряжение образцов древесины, а R w — сопротивление древесины сосны.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В эксперименте изучали устойчивость сосны в зависимости от содержания в ней влаги; Были испытаны 24 образца необработанных пиломатериалов и 24 образца пропитанной древесины. Кривые сопротивления различались для пропитанной и необработанной древесины. Из-за разной прочности анализируемой древесины прибор показывал разные показания. Характеристики исследуемой древесины были аппроксимированы экспоненциальной функцией (рис. 7). Результаты показывают, что электрическое сопротивление сначала падает быстрее, а затем все более и более постепенно с увеличением MC. На этих регрессионных кривых коэффициент детерминации R 2 очень высок и равен 0,8338 для пропитанной древесины и 0,9282 для необработанной древесины. Отклонения измеренных значений сопротивления вблизи кривых регрессии значительны из-за большого разброса электрических свойств древесины. При более высокой влажности древесины отклонение уменьшается.

Рис. 7. Характеристики сопротивления пропитанной и необработанной древесины сосны

Затем с помощью резистивного влагомера было определено влияние пропитки древесины на погрешность измерения ее относительной влажности.Реальные значения относительной влажности получены гравиметрическим методом. Результаты показаны на рис. 8. Содержание влаги в необработанной древесине, измеренное с помощью измерителя сопротивления, хорошо согласуется с данными гравиметрического метода. Это потому, что не было никаких химических добавок, которые могли бы изменить сопротивление высушенного материала. Однако содержание влаги в пропитанной древесине с помощью измерителя сопротивления хорошо согласуется с данными гравиметрического метода только тогда, когда оно составляет менее 20%. В таких образцах в материале было лишь небольшое количество воды, поэтому химические добавки не влияли на общую стойкость древесины.При содержании влаги выше 20% наблюдалась очень большая разница между измерениями измерителем сопротивления и измерениями гравиметрическим методом. Это связано с тем, что древесина содержит смесь воды с химическими добавками, и эта смесь влияет на электрическое сопротивление древесины.

Результаты измерения влажности необработанной древесины измерителем сопротивления характеризуются незначительным отклонением от истинных значений, измеренных гравиметрическим методом, до FSP. По мере увеличения MC выше FSP погрешность измерения увеличивается, что согласуется с информацией в руководстве производителя измерителя сопротивления.В случае этого измерения для пропитанной древесины отклонение экспоненциально увеличивалось выше значений MC, равных 15% (измеренных гравиметрическим методом). Выше этого значения необходимо использовать соответствующую формулу коррекции.

Рис. 8. Погрешность измерения относительной MC древесины сосны в результате изменения сопротивления пропитанной древесины.

ВЫВОДЫ

  1. Метод измерения сопротивления влажности не подходит для измерения MC пропитанной древесины сосны.Применение этого метода требует корректирующих формул, которые необходимо оценивать эмпирически в зависимости от типа и количества пропитки в древесине.
  2. Полноячеистая пропитка древесины сосны ( Pinus sylvestris L.) повлияла на значения сопротивления и точность измерения содержания влаги. Пропитка древесины консервантами и красителями (которыми были TANALITH E3475 и TANATONE 3950 соответственно) снизила электрическое сопротивление сопротивления и, как следствие, увеличила кажущееся измеренное содержание влаги, которое можно было бы определить с помощью влагомера (Hydromette RTU 600). с настройками калибровки по умолчанию.
  3. Измерения влажности пропитанной древесины сосны с помощью измерителя сопротивления значительно отличались от относительной влажности, измеренной гравиметрическим методом. Такое явление было особенно заметно выше FSP.
  4. Коэффициент детерминации R 2 для необработанной древесины был выше, чем для пропитанной древесины, на основании отдельных уравнений, используемых для подбора данных. Результаты, соответствующие пропитанной древесине, лучше соответствовали экспоненциальной, а не линейной функции.

БЛАГОДАРНОСТЬ

Авторы выражают благодарность компании Sylva Ltd. Co. в Веле, Польша, за предоставленные материалы для этой работы. Мы глубоко признательны за финансовую поддержку компании Sylva Ltd. Co., г-ну Петру Таубе.

ССЫЛКИ

Бабинский, Л. К. (1992). «Impregnacja drewna metodą próżniową», Ochrona Zabytków 45/4 (179), str. 360-368. (на польском языке)

Berthold, K. u. а. (1988). «Lexikon der Holztechnik» (Словарь технологий обработки древесины), Fachbuchverlag, Leipzig, Deutschland p.928 (на немецком языке). ISBN 3343002771

Бришке К. и Лэмпен С. С. (2014). «Измерения содержания влаги на основе сопротивления в натуральной, модифицированной и обработанной консервантами древесине», European Journal Wood and Wood Products 72 (2), 289-292. DOI: 10.1007 / s00107-013-0775-3

Флотакер С., Тронстад С. (2000). «Описание и начальное испытание 8 принципов измерения в печи и конечного контроля влажности древесины», http://www.treteknisk.no/resources/filer/publikasjoner/rapporter/Rapport-47.pdf (дата обращения: 6 октября 2017 г.)

Форсен Х. и Тарвайнен В. (2000). Точность и функциональность портативных измерителей влажности древесины (пересмотренное издание), VTT Publications, VTT Technical Research Center of Finland, Espoo, Finland.

Gann Mess- u. Regeltechnik GmbH, Герлинген, Германия, RTU 600 и данные электронного влагомера древесины (http://www.gann.de/Produkte/ElektronischeFeuchtigkeitsmessgeräte/ClassicSerie/HydrometteRTU600/tabid/104/lang), (дата обращения 27 июня 2017 г.)

Хилл, С.А. (2006). Модификация древесины: химические, термические и другие процессы , Wiley, Chichester.

Кеплингер, Т., Кабане, Э., Чанана, М., Хасс, П., Мерк, В., Гирлингер, Н., и Бургерт, И. (2015). «Универсальная стратегия прививки полимеров к клеточным стенкам древесины», Acta Biomaterialia 11, 256-263

Клемент И., Хуракова Т. (2015). «Вплыв сушения на власть и оценку смрекового резива с обсахом реактивного дерева», Acta Facultatis Xylologiae Zvolen. Vedecký Časopis Drevárskej Fakulty, Technická univerzita vo Zvolene, Zvolen, Slovak Republic 57 (1), pp. 75-82. (на словацком языке)

Клемент И., Хуракова Т. (2016). «Определение влияния толщины образца на высокотемпературную сушку древесины бука ( Fagus sylvatica L. )», BioResources
11 (2), 5424-5434. DOI: 10.15376 / biores.11.2.5424-5434

Krajewski, A., and Witomski, P. (2005). Ochrona Drewna Surowca i Materiału , Wyd.SGGW, Варшава, Польша. (на польском языке)

Кшисик Ф. (1978). Nauka o Drewnie (Наука о дереве), PWN Warszawa, Polska, other wydanie (второе издание) с. 653 (на польском языке). ISBN 2909/72/0001

Ланде, С., Вестин, М., и Шнайдер, М. (2004). «Свойства фурфурилированной древесины», Scandinavian Journal of Forest Research 19, 22-30.

Марни Д. и Рассел Л. (2008). «Комбинированные антипирены и консерванты для древесины для наружных работ — обзор литературы», Fire Technology 44, 1-14.

Милиц, Х. (1993). «Обработка древесины водорастворимыми диметилоловыми смолами для улучшения их размерной стабильности и долговечности», Wood Science and Technology 27, 347-355.

Рэймидж, М.Х., Берридж, Х., Бусс-Вичер, М., Фередей, Г., Рейнольдс, Т., Шах, Д.У., Ву, Г., Ю, Л., Флеминг, П., Денсли-Тингли, Д., Олвуд, Дж., Дюпри, П., Линден, П. Ф., и Шерман, О. (2017). Древесина из деревьев: использование древесины в строительстве », Обзоры возобновляемых и устойчивых источников энергии, 68, 333-359.

Роуэлл Р. М. (2013). «Структура и функции древесины», в: Справочник по химии древесины и древесным композитам, . 2-е издание CRC Press Taylor & Francis Group.

Роуэлл Р. М. (2007). «Химическая модификация древесины», в: Справочник по разработке биополимеров — гомополимеры, смеси и композиты , С. Факиров и Д. Бхаттачарья (ред.), Карл Хансер Верлаг, Мюнхен, стр. 673-691.

Роуэлл, Р. М., и Конкол, П. (1987). Обработка, улучшающая физические свойства древесины , Gen.Технический отчет FPL-GTR-55. Министерство сельского хозяйства США, Лесная служба, Лаборатория лесных продуктов, Мэдисон, Висконсин

Шнайдер М., Х. (1995). «Новые древесно-полимерные композиты для стенок клеток и просветов клеток», Wood Science and Technology 29, 121-127.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *