Что такое истинная плотность строительных материалов – истинная, средняя, насыпная, относительная. Методики определения плотности. Зависимость свойств материалов от их плотности.
истинная, средняя, насыпная, относительная. Методики определения плотности. Зависимость свойств материалов от их плотности.
Физическое состояние строительных материалов достаточно полно характеризуется средней и истинной плотностью, а также пористостью.
Средняя плотность ρ0 (г/см3, кг/м3) – масса единицы объема материала в естественном состоянии.
Среднюю плотность вычисляют путем деления массы образца m, г (кг), на его геометрический объем V, см3 (м3)
ρ0=m/V
При изменении температуры и влажности среды, окружающей материал, меняется его влажность, а следовательно, и средняя плотность. Поэтому показатель средней плотности определяют после предварительной сушки материала до постоянной массы или вычисляют по формуле:
Метод определения средней плотности зависит от формы образца материала.
Насыпной плотностью называется отношение массы материала в свободном рыхло насыпанном состоянии к его объему.
Определение насыпной плотности сыпучих материалов производят засыпкой их в предварительно взвешенный мерный цилиндр с высоты 10 см через воронку или без нее. Объем материала определяют по объему цилиндра. Воронка обеспечивает равномерное заполнение мерного цилиндра материалом. Образовавшуюся (без уплотнения) над краями цилиндра горку материала срезают ножом или линейкой. После этого цилиндр с материалом взвешивают. Насыпную плотность материала рассчитывают по формуле:
где — масса пустого мерного цилиндра;- масса цилиндра, заполненного испытываемым материалом; V – объем мерного цилиндра.
Истинной плотностью ρ (г/см3, кг/м3) называют массу единицы объема материала в абсолютно плотном состоянии без учета имеющихся в нем пор.
Для определения абсолютного объема образцы измельчают в порошок до полного прохождения через сито с размером отверстий 0,2 мм. (Считается, что каждое отдельное зерно такого размера не содержит внутренних пор.)
Истинную плотность определяют в приборе Ле-Шателье – Кандло. Прибор представляет собой стеклянную колбу с узкой трубкой, имеющей шарообразное уширение в средней части. На трубке ниже уровня уширения имеется черта; верхняя часть трубки градуирована делениями и заканчивается воронкой.
Объем
трубки между нижней чертой и нижним
делением градуированной части равен
20 см3.
Прибор заполняют дистиллированной
водой до уровня нижней черты, уровень
устанавливают по нижнему мениску, затем
взвешивают сухой измельченный образец
массой m
m = m1-m2
Истинную плотность вычисляют по формуле:
Часто плотность материалов относят к плотности воды при температуре равной 4 0C, равной 1 г/см3 , и тогда определяемая плотность становится безразмерной величиной, которую называют относительной плотностью d.
Большинство строительных материалов имеет поры, поэтому истинная плотность у них всегда больше средней. Лишь у плотных материалов (сталь, стекло) истинная и средняя плотность практически равны, так как объем внутренних пор у этих материалов ничтожно мал.
studfiles.net
Истинная и средняя плотность материалов — Материалы и свойства
Автор Admin На чтение 5 мин. Просмотров 456 Опубликовано
Истинная плотность (прежнее название – удельный вес) – масса единицы объема материала в абсолютно плотном состоянии, т. е. без пор и пустот. Определяют по формуле ? = m / V, где m – масса материала, кг; V – абсолютный объем, занимаемый материалом (без пор и пустот), м3. Истинная плотность жидкостей и материалов, полученных из расплавленных масс (металла, стекла, а также гранита, мрамора и других подобных горных пород), практически соответствует их плотности в естественном состоянии, а пористых материалов – приводится к абсолютно плотному состоянию искусственным путем.
Истинная плотность – свойство, которое контролируются только при геологической разведке с подземными сетями.
Для горных пород, служащих сырьем при производстве облицовочных материалов, не имеет решающего значения при их оценке. Однако этот показатель позволяет косвенно выявить другие свойства камня, например вычислить его пористость.
Плотность различных материаловДля определения истинной плотности камня его необходимо получить в абсолютно плотном состоянии, т. е. без пор. Простейший способ заключается в измельчении камня до такой степени, пока каждая его частица не будет иметь внутри себя пор. С этой целью вначале отбирают куски горной породы общей массой не менее 1 кг, тщательно очищают их щеткой от пыли и затем измельчают до крупности менее 5 мм, после чего перемешивают и сокращают пробу примерно до 150 г. Полученную пробу вновь измельчают до крупности менее 1,25 мм, перемешивают и сокращают до 30 г. Оставшуюся пробу вновь измельчают в порошок в фарфоровой ступке, насыпают в стаканчик для взвешивания, высушивают до постоянной массы и охлаждают до комнатной температуры, после чего отвешивают две навески по 10 г каждая. Каждую навеску насыпают в пикнометр (пикнос – плотный, метрео – измеряю, дословно с греческого «измеритель плотности») и заливают дистиллированной водой, заполняя пикнометр не более чем на половину объема. Затем его ставят на песчаную ванну или в водяную баню и кипятят содержимое в течение 15—20 мин для удаления пузырьков воздуха. После этого пикнометр обтирают насухо, охлаждают до комнатной температуры, доливают до метки дистиллированной водой и взвешивают на лабораторных весах. Далее прибор освобождают от содержимого, промывают, наполняют до метки дистиллированной водой и вновь взвешивают.
Истинную плотность р, кг/м
? = m?В / (m + m1 – m2) · 1000,
где m – навеска порошка, высушенного до постоянной массы, г; m1 – масса пикнометра с дистиллированной водой, г; m2— то же, с навеской и дистиллированной водой после удаления пузырьков воздуха, г; р„ – истинная плотность воды: рв = 1 г/см3.
Средняя плотность ? (прежнее название – объемная масса) – масса единицы объема материала в естественном состоянии, т. е. вместе с порами и пустотами. Определяется по формуле ? = m / V1, где m – масса материала, кг; V1 – объем материала в естественном состоянии, м3. Средняя плотность металла и стекла практически равна их истинной плотности, у большинства строительных материалов она, как правило, меньше (из-за наличия пор).
Для каждого материала стандарты устанавливают значение влажности, при котором вычисляют среднюю плотность, необходимую для расчета пористости, теплопроводности и теплоемкости материалов, определения стоимости их перевозок и расчета прочности конструкций с учетом их собственной массы.
Истинная и средняя плотности широко используемых материалов показаны в табл. 1.
Средняя плотность – физическое свойство облицовочного камня, используемое обычно при его общей характеристике. Этим показателем пользуются при вычислении массы изделий из камня по их объему или при определении объема, когда известна масса изделий. Кроме того, используя среднюю плотность, определяют пористость камня и некоторые другие показатели. Особенно важное значение имеет это свойство для горных пород, используемых при производстве стеновых материалов, где значение этого показателя не должно превышать 2100 кг/м3.
Для определения средней плотности берут пять образцов кубической формы с размером ребра 40—50 мм или цилиндры диаметром и высотой 40—50 мм. Каждый образец очищают щеткой от рыхлых частиц и высушивают до постоянной массы, после чего взвешивают на настольных (гирных) или циферблатных весах. Затем измеряют размеры кубов или цилиндров камня и вычисляют объемы образцов.
Среднюю плотность каждого образца вычисляют по формуле, приведенной в § 2. Средняя плотность горной породы будет средним арифметическим результатом определения этой характеристики для пяти образцов. Значения средней плотности у наиболее распространенных видов облицовочного камня СНГ даны в приложении.
Среднюю плотность сыпучих (рыхлых) материалов (цемента, извести, песка, гравия, щебня) называют насыпной средней плотностью (прежнее название – насыпная объемная масса). В объем сыпучих материалов включают не только объем пор в самом материале, но и пустот между зернами или кусками материала.
Таблица 1. Плотность материалов в воздушно-сухом состоянии
Материалы | Значение плотности, кг/м3 | Материалы | Значение плотности, кг/м3 | ||
истинной | средней | истинной | средней | ||
Свинец | 11300—11400 | 11300—11400 | Известняк плотный | 2400—2600 | 2100—2400 |
Медь | 8300—8900 | 8300—8900 | Песок кварцевый | 2600—2700 | ,1400—1900 |
Сталь | 7800—7900 | 7800—7850 | Стекло строительное | 3000 | 2500—3000 |
Чугун | 7800 | Цемент | 3000—3100 | 800—1300 | |
Алюминиевые сплавы | 2800 | 2700—2800 | Бетон тяжелый | 2600—2900 | 1800—2500 |
Раствор строитель ный | 2500—2900 | 1300—2200 | |||
Базальт | 3300 | 2700—3200 | |||
Габбро | 3200 | 2800—3200 | Гравий | 2600—2800 | 1400—1600 |
Мрамор | 3000 | 2700—2800 | Кирпич глиняный | 2500—2800 | 1600—1900 |
Гранит | 2600—2900 | 2600—2700 | Минеральная вата | 2800 | 75—400 |
Туф | 2200—2800 | 1000—2200 | Сосна | 1600 | 500—600 |
Ракушечник | 2650—2750 | 1400—2200 |
Примечание. Для сыпучих (рыхлых) материалов: песка, цемента, гравия приведена насыпная средняя плотность.
arxipedia.ru
Плотность строительных материалов.
Сайт строителя
Плотность строительных материалов.
Плотность строительных материалов. Плотность может быть истинной, средней, насыпной, относительной.
- Истинная плотностью строительных материалов.
- Под истинной плотностью строительных материалов. (кг/м куб.) понимают массу единицы объема абсолютно плотного материала без трещин, пор и пустот.
Истинная плотность для основных строительных материалов следующая:
- сталь, чугун 7800…7900 кг/м3;
- портландцемент 2900…3100 кг/м3;
- гранит 2700…2800 кг/м3;
- песок кварцевый 2600…2700 кг/м3;
- кирпич керамический 2500…2800 кг/м3;
- стекло 2500…3000 кг/м3;
- известняк 2400…2600 кг/м3;
- древесина 1500…1600 кг/м3.
- Средняя плотность строительных материалов
- Это масса единицы объема материла или изделия в естественном состоянии, то есть с пустотами и порами. Средняя плотность одного и того же материала может быть разной в зависимости от пористости и пустотности. Сыпучие материалы (цемент, щебень, песок и др.) характеризуются насыпной плотностью -отношением массы зернистых и порошкообразных материалов в свободном без уплотнения насыпном состоянии ко всему занимаемому ими объему, включая пространство между частицами.
От плотности строительного материала в значительной степени зависят его прочность, теплопроводность и другие свойства. Этими данными пользуются при определении толщины ограждающих конструкций отапливаемых зданий, размера строительных конструкций, расчетах транспортных средств и др. Значения средней плотности строительных материалов находятся в широких пределах.
Средняя плотность для некоторых строительных материалов следующая:
- сталь — 7800…7850 кг/м3;
- гранит — 2600…2800 кг/м3;
- бетон тяжелый — 1800…2500 кг/м3;
- кирпич керамический — 1600…1800 кг/м3;
- песок -1450…1650 кг/м3;
- вода — 1000 кг/м3;
- бетон легкий — 500…1800 кг/м3;
- керамзит -300…900 кг/м3;
- сосна — 500…600 кг/м3;
- минеральная вата — 200…400 кг/м3;
- поропласты -20…100 кг/м3.
Плотность материала зависит от его пористости и влажности. С увеличением влажности плотность материала увеличивается.
- Относительная плотность строительных материалов
- Это степень заполнения веществом объема материала. Относительную плотность выражают отвлеченным числом или в процентах.
Пористость строительного материала характеризует объем, занимаемый в нем порами — мелкими ячейками, заполненными воздухом. Мелкие поры, заполненные воздухом, придают строительным материалам теплоизоляционные свойства. По величине пористости можно судить о примерной прочности, плотности, водопоглощении, долговечности и др. Для конструкций, от которых требуется высокая прочность или водонепроницаемость, используют плотные материалы, для стен зданий используют материалы со значительной пористостью. Такие материалы обладают хорошими теплоизоляционными и звукопоглощающими свойствами.
Для рыхлых материалов при расчетах учитывают насыпную объемную массу. Пористость и относительная плотность в значительной степени определяют эксплуатационные качества материалов (прочность, водопоглощение, морозостойкость, теплопроводность). Значение показателя пористости строительных материалов колеблется от О (стекло, сталь) до 90 % (минеральная вата).
Пустотность строительного материала представляет собой количество пустот, образующихся между зернами рыхлонасыпного материала. Выражается в процентах по отношению ко всему занимаемому объему. Этот показатель важен для керамзита, песка, щебня при изготовлении бетона. В некоторых строительных материалах (кирпич, панели) имеются полости, также образующие пустоты. Пустотность пустотелого кирпича составляет от 15 до 50 %, песка и щебня — 35…45 %.
Свойства строительных материалов.
stroyremkom.ru
Плотность строительных материалов
Эксплуатационные характеристики современных строительных материалов – прочность, долговечность, морозостойкость и пр. – определяются их физическими параметрами, к числу которых относится и плотность.
Виды плотности, и их определение
Плотность определяется массой, которой обладает единица объёма конкретного материала; единицей измерения служит обычно кг/м3, хотя встречаются также размерности т/м3 и г/см3. Понятие «Плотность строительных материалов» включает в себя:
- Насыпную плотность – показатель, применяемый к сыпучим строительным материалам: щебню, песку, гравию и пр., который учитывает степень пористости вещества. При одном и том же объёме с увеличением количества пустот масса материала снижается.
- Истинную плотность, которая устанавливается при абсолютном отсутствии пор, и является больше теоретической, чем практической характеристикой материала. Показатели истинной и насыпной плотности материалов в большинстве случаев не совпадают.
- Относительную плотность – сравнительную характеристику, которая устанавливает, насколько показатель плотности строительного материала превышает плотность воды при так называемых нормальных условиях: внешней температуре 4°С, и давлении воздуха 760 мм. рт. ст.
На практике удобно истинную/фактическую плотность строительных материалов оценивать их пористостью. С этой целью определяют предельное значение объёма насыщающего материала – газа или жидкости, которую может воспринять единица объёма исследуемого вещества. По увеличению веса материала судят о степени его пористости.
Для расчета плотности используется формула: p=m/V, где m — масса; V — объем.
Взаимосвязь плотности и качества строительных материалов
Помимо степени пористости, плотность определяет также и эксплуатационные показатели строительных материалов. Например, с увеличением плотности соответственно возрастает теплопроводность и снижается степень поглощения влаги древесиной. Поэтому часто относительно строительной древесины используют также показатель её качества, под которым понимают отношение предела прочности на сжатие к плотности материала.
Оценка плотности строительных материалов сильно зависит от условий их хранения и применения. Например, у бетона со временем плотность снижается, что объясняется постепенным вымыванием ряда составляющих из его состава. Изменения показателей плотности характерны и для строительных пластиков, которые длительное время пребывают под воздействием ультрафиолетового излучения.
Снижение плотности негативно отражается на механической прочности строительных материалов. Объясняется это более лёгкой деформацией имеющихся пустот, которые сопровождаются деформациями изгиба строительного элемента или его части. Постепенное накапливание механических напряжений в материале приводит к его разрушению (чаще внезапному, поскольку пластичность всех строительных материалов – достаточно низкая).
Значения плотности преобладающего количества строительных материалов изменяются в широких пределах. В частности, для неорганических материалов – камня, бетона – обычные показатели механической плотности могут изменяться в диапазоне значений 2200…3500 кг/м3, а для органических (пластик, битум, дерево) – 400…2500 кг/м3. Плотность структурно однородных материалов (в частности, металлов) обычно колеблется от 2700 кг/м3 в случае алюминия или его сплавов, до 7600…8000 кг/м3 — для стали и латуни.
Таблица плотности строительных материалов
В таблицах ниже будет приведена плотность основных строительных материалов.
postroy-sam.com
Строительные материалы. Основные понятия
ЧАСТЬ 1.
Физико-механические и механические свойства строительных материалов.
Механические свойства строительных материалов
В строительстве при возведении зданий и сооружений применяются различные строительные материалы и изделия из них. Основными строительными материалами в промышленном и гражданском строительстве являются цемент, бетон, кирпич, камень, дерево, известь, песок, черные металлы, стекло, кровельные материалы, пластик и другие.
В настоящее время строительная индустрия развивается в направлении создания теплосберегающих строительных материалов. Наиболее перспективными энергосберегающими материалами считаются ячеистые бетоны и бетоны на легких заполнителях.
Материалы, которые не требуют дальних перевозок, добываются или вырабатываются вблизи района строительства, называются местными строительными материалами. К таким материалам обычно относятся песок, гравий, щебень, известь и т. д.
Источником производства строительных материалов служат природные ресурсы страны, которые в качестве строительных материалов могут использоваться в природном состоянии (камень, песок, древесина) или в виде сырья, перерабатываемого на предприятиях промышленности строительных материалов (полистирол, керамзит).
При изучении строительных материалов их можно классифицировать на такие виды: природные каменные материалы, вяжущие материалы, строительные растворы, бетоны и бетонные изделия, железобетонные изделия, искусственные каменные материалы, лесные материалы, металлы, синтетические материалы и т. д.
Все строительные материалы имеют ряд общих свойств, но качественные показатели этих свойств различны.
Физико-механические и механические свойства строительных материалов
Данную группу свойств составляют, во-первых, параметры физического состояния материалов и, во-вторых, свойства, определяющие отношение материалов к различным физическим процессам. К первым относят плотность и пористость материала, степень измельчения порошков, ко вторым — гидрофизические свойства (водопоглощение, влажность, водопроницаемость, водостойкость, морозостойкость), теплофизические (теплопроводность, теплоемкость, температурное расширение) и некоторые другие. Технические требования на строительные материалы приведены в Строительных нормах и правилах (СНиП).
Истинной плотностью, puназывается масса единицы объема материала, взятого в плотном состоянии. Для определения удельного веса необходимо вес сухого материала разделить на объем, занимаемый его веществом, не считая пор. Вычисляется она по формуле:
pu=m/Va
где m — масса материала, Va — объем материала в плотном состоянии.
Истинная плотность каждого материала — постоянная физическая характеристика, которая не может быть изменена без изменения его химического состава или молекулярной структуры.
Истинная плотность гранита 2,9 г/см3, стали — 7,85 г/см3, древесины — в среднем 1,6 г/см3. Так как большинство строительных материалов являются пористыми, то истинная плотность имеет для их оценки вспомогательное значение. Чаще пользуются другой характеристикой — средней плотностью.
Средней плотностью, pc называется масса единицы объема материала в естественном состоянии, т. е. вместе с порами и содержащейся в них влагой. Средняя плотность пористого материала, как правило, меньше истинной. Отдельные материалы, такие как сталь, стекло, битум, а также жидкие, имеют практически одинаковые истинную и среднюю плотности. Среднюю плотность вычисляют по формуле:
Средняя плотность ячеистого бетона (пенобетона) находится в пределах от 300 кг/м3 до 1200 кг/м3 (ГОСТ 25485 — 89), а полистиролбетона от 150 кг/м3 до 600 кг/м3 (ГОСТ Р 51263 — 99). Изделия (блоки) из этих строительных материалов легки в обращении (штабелировании, транспортировке, кладке).
pc=m/Ve
где m — масса материала, Ve — объем материала.
Среднюю плотность сыпучих материалов — щебня, гравия, песка, цемента и др. — называют насыпной плотностью. В объем входят поры непосредственно в материале и пустоты между зернами.
Эту характеристику необходимо знать при расчетах прочности конструкций с учетом их собственного веса, а также для выбора транспортных средств при перевозках строительных материалов.
Относительная плотность, d — отношение средней плотности материала к плотности стандартного вещества. За стандартное вещество принята вода при температуре 4оС, имеющая плотность 1000 кг/м3.
Пористостью, П называется отношение объема пор к общему объему материала. Пористость вычисляется по формуле
Современные энергосберегающие строительные материалы обладают высокими показателями пористости (до 95%) и, соответственно, низкой теплопроводностью. Это связано с тем, что воздух имеет наименьшую теплопроводность.
П=(1 — pc/pu)*100
где pc, pu — средняя и истинная плотности материала.
Пористость строительных материалов колеблется в широких пределах, начиная от 0 (сталь, стекло) до 95% (пенобетон).
Для сыпучих материалов определяется пустотность (межзерновая пористость). Истинная, средняя плотности и пористость материалов — взаимосвязанные величины. От них зависят прочность, теплопроводность, морозостойкость и другие свойства материалов. Примерные значения их для наиболее распространенных материалов приведены в таблице 1.
Наименование | Плотность, кг/м3 | Пористость, % | Теплопроводность, Вт / (м * оС) | |
---|---|---|---|---|
истинная | средняя | |||
Гранит | 2700 | 2500 | 7,4 | 2,8 |
Вулканический туф | 2700 | 1400 | 52 | 0,5 |
Керамический кирпич | ||||
— обыкновенный | 2650 | 1800 | 32 | 0,8 |
— пустотелый | 2650 | 1300 | 51 | 0,55 |
Тяжелый бетон | 2600 | 2400 | 10 | 1,16 |
Пенобетон | 2600 | 700 | 85 | 0,18 |
Полистиролбетон | 2100 | 400 | 91 | 0,1 |
Сосна | 1530 | 500 | 67 | 0,17 |
Пенополистирол | 1050 | 40 | 96 | 0,03 |
Водопоглощением материала называется его способность впитывать и удерживать в своих порах воду. Оно определяется как разность весов образца материала в насыщенном водой и сухом состояниях и выражается в процентах от веса сухого материала (водопоглощение по массе) или от объема образца (водопоглащение по объему).
Водопоглощение определяют по следующим формулам:
Ячеистые бетоны (пенобетон, газобетон), как и бетоны на легких заполнителях (полистиролбетон, керамзитобетон) обладают невысокими показателями водопоглощения 6 — 8 %.
WM=(mв— mc)/mc и Wo=(mв— mc)/V
где mв — масса образца, насыщенного водой, mc — масса образца, высушенного до постоянной массы, V — объем образца.
Между водопоглощением по массе и объему существует следующая зависимость:
Wo=WM*pc
Водопоглощение всегда меньше пористости, так как поры не полностью заполняются водой.
В результате насыщения материала водой его свойства существенно изменяются: уменьшается прочность, увеличивается теплопроводность, средняя плотность и т. п.
Влажность материала W определяется содержанием воды в материале в данный момент, поэтому процент влажности ниже, чем полное водопоглощение. Она определяется отношением воды, содержащейся в материале в момент взятия пробы для испытания, к массе сухого материала. Влажность вычисляется по формуле:
W=(mвл— mc)/mc*100
где, mвл, mс— масса влажного и сухого материала.
Водопроницаемостью называется способность материала пропускать воду под давлением. Водопроницаемость материала зависит от его пористости и характера пор. С водопроницаемостью сталкиваются при возведении гидротехнических сооружений, резервуаров для воды.
Обратной характеристикой водопроницаемости является водонепроницаемость — способность материала не пропускать воду под давлением. Очень плотные материалы (сталь, битум, стекло) водонепроницаемы.
Морозостойкостью называется способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и без значительного понижения прочности.
Разрушение происходит из-за того, что объем воды при переходе в лед увеличивается на 9%. Давление льда на стенки пор вызывает растягивающие усилия в материале.
Морозостойкость материалов зависит от их плотности и степени заполнения водой.
Образцы испытываемого материала, в зависимости от назначения, должны выдержать от 15 до 50 и более циклов замораживания и оттаивания. При этом испытание считается выдержанным, если на образцах нет видимых повреждений, потеря в весе не превышает 5%, а снижение прочности не превосходит 25%.
Морозостойкость имеет большое значение для стеновых материалов, которые подвергаются попеременному воздействию положительной и отрицательной температуры, и измеряется в циклах замораживания и оттаивания.
Теплопроводностью называется способность материала проводить тепло. Теплопередача происходит в результате перепада температур между поверхностями, ограничивающими материал.
Чем больше пористость и меньше средняя плотность, тем ниже коэффициент теплопроводности. Такой материал имеет большее термическое сопротивление, что очень существенно для наружных ограждающих конструкций (стен и покрытий). Материалы с малым коэффициентом теплопроводности называются теплоизоляционными материалами (минеральная вата, полистирол, пенобетон, полистиролбетон и др.) Они применяются для утепления стен и покрытий. Наиболее теплопроводными материалами являются металлы.
Значительно возрастает теплопроводность материалов с увлажнением. Это объясняется тем, что коэффициент теплопроводности воды составляет 0,58 Вт/(м*оС), а воздуха 0,023 Вт/(м*оС), т.е. превышает его в 25 раз. Коэффициенты теплопроводности отдельных материалов приведены в таблице 1.
Огнестойкостью называется способность материалов сохранять свою прочность под действием высоких температур. Сопротивление воспламенению определяется степенью возгораемости. По степени возгораемости строительные материалы делятся на несгораемые, трудносгораемые и сгораемые.
Полистиролбетон относится к слабогорючим материалам и имеет группу горючести Г1. Ячеистые бетоны не горючие материалы.
Несгораемые материалы не воспламеняются, не тлеют и не обугливаются. К ним относятся каменные материалы (бетон, кирпич, гранит) и металлы.
Трудносгораемые воспламеняются с большим трудом, тлеют или обугливаются только при наличии источника огня, например фибролитовые плиты, гипсовые изделия с органическим заполнением в виде камыша или опилок, войлок, смоченный в глиняном растворе, и т. п. При удалении источника огня эти процессы прекращаются.
Сгораемые материалы способны воспламеняться и гореть или тлеть после удаления огня. Такие свойства имеют все незащищенные органические материалы (лесоматериалы, камыш, битумные материалы, войлок и другие).
Огнеупорностью называют свойство материала противостоять длительному воздействию высоких температур, не расплавляясь и не размягчаясь. По степени огнеупорности материалы подразделяют на следующие группы: огнеупорные, тугоплавкие и легкоплавкие. Огнеупорные выдерживают температуру 1580оС и выше, тугоплавкие — 1350 — 1580оС, легкоплавкие — менее 1350оС. Огнеупорные материалы используются при сооружении промышленных печей, для обмуровки котлов и тепловых трубопроводов (огнеупорный кирпич, жаростойкий бетон и т. п.).
Механические свойства строительных материалов
К основным механическим свойствам материалов относят прочность, упругость, пластичность, релаксацию, хрупкость, твердость, истираемость и др.
Прочностью называется свойство материала сопротивляться разрушению и деформации от внутренних напряжений под действием внешних сил или других факторов (неравномерная осадка, нагревание и т.д.). Прочность материала характеризуют пределом прочности или напряжением при разрушении образца. При сжатии это напряжение определяется делением разрушающей силы на первоначальную площадь образца.
Различают пределы прочности материалов при сжатии, растяжении, изгибе, срезе и пр. Они определяются испытанием стандартных образцов на испытательных машинах.
Современные энергосберегающие конструкционные материалы, как правило, обладают достаточной прочностью на сжатие для возведения жилых помещений. Так, например, полистиролбетон плотностью 600 кг/м3 соответствует классу прочности В2. Ячеистый бетон плотностью 700 кг/м3 соответствует классу В2,5.
Важнейшим свойством бетона является прочность. Лучше всего он сопротивляется сжатию. Поэтому конструкции проектируют таким образом, чтобы бетон воспринимал сжимающие нагрузки. И только в отдельных конструкциях учитывается прочность на растяжение или на растяжение при изгибе.
Прочность при сжатии. Прочность бетона при сжатии характеризуется классом или маркой (которые определяют чаще всего в возрасте 28 суток). В зависимости от времени нагружения конструкций прочность бетона может назначаться и в другом возрасте, например 3; 7; 60; 90; 180 суток.
В целях экономии цемента, полученные значения предела прочности не должны превышать предел прочности, соответствующей классу или марке, более чем на 15%. Класс представляет собой гарантированную прочность бетона в МПа с обеспеченностью 0,95 и имеет следующие значения: Bb1 — Bb60, с шагом значений 0,5. Маркой называется нормируемое значение средней прочности бетона в кгс/см2 (МПа*10).
При проектировании конструкции чаще всего назначают класс бетона, в отдельных случаях — марку. Соотношения классов и марок для тяжелого бетона по прочности на сжатие приведены в таблице 2.
Класс | Bb, МПа | Марка | Класс | Bb, МПа | Марка |
---|---|---|---|---|---|
Bb3,5 | 4,5 | Mb50 | Bb30 | 39,2 | Mb400 |
Bb5 | 6,5 | Mb75 | Bb35 | 45,7 | Mb450 |
Bb7,5 | 9,8 | Mb100 | Bb40 | 52,4 | Mb500 |
Bb10 | 13 | Mb150 | Bb45 | 58,9 | Mb600 |
Bb12,5 | 16,5 | Mb150 | Bb50 | 65,4 | Mb700 |
Bb15 | 19,6 | Mb200 | Bb55 | 72 | Mb700 |
Bb20 | 26,2 | Mb250 | Bb60 | 78,6 | Mb800 |
Bb25 | 32,7 | Mb300 |
На прочность бетона влияет ряд факторов: активность цемента, содержание цемента, отношение воды к цементу по массе (В/Ц), качество заполнителей, качество перемешивания и степень уплотнения, возраст и условия твердения бетона, повторное вибрирование.
Истираемость — способность материалов разрушаться под действием истирающих усилий. Эта характеристика учитывается при назначении материалов для пола, лестничных ступеней и площадок дорог.
перейти к второй части
Авторы статей «Строительная Лоция» сотрудники МП «ТЕХПРИБОР»
Векслер М.В.
Липилин А.Б.
С использованием материалов
Основы строительного дела.
Е.В. Платонов, Б.Ф. Драченко
ГОССТРОЙИЗДАТ УССР, Киев 1963.
www.tpribor.ru
Истинная плотность материала зависит от. Физические свойства строительных материалов
mbdou42.ru- Бетон
- Для стен
- Панели
- Штукатурка
- Металл
- Клея
- Кирпич
- Сухие смеси
- Утеплители
- Для плитки
- Цемент
- Кладочный
- Раствор
- Щебень
- Бетон
- Для стен
- Панели
- Штукатурка
- Металл
- Клея
- Кирпич
- Сухие смеси
- Утеплители
- Для плитки
- Цемент
- Кладочный
- Раствор
- Щебень
Истинная плотность материала зависит от. Физические свойства строительных материалов
mbdou42.ru
13. Средняя и истинная плотности материалов. Способы их определения.
Средняя плотность-масса единицы объема материала в естественном состоянии с пустотами и порами (ƿ0=).
Определение средней плотности производят по образцам правильной и неправильной геометрической формы. Образцы правильной геометрической формы после просушивания взвешивают, а их объем определяют путем замера линейных размеров образца. Образцы неправильной формы после их просушивания взвешивают, а объем определяют по объему жидкости, вытесненной образцом, или потерей в массе материала при погружении его в воду (гидростатическое взвешивание).
Истинная плотность-масса единицы объема материала в абсолютно плотном состоянии, лишенном пустот и пор (ƿи=). Для вычисления истинной плотности материал измельчают в порошок с размером зерна мельче самой тонкой поры.
Определение истинной плотности проводят с помощью стандартного объемомера или прибора Ле-Шателье (рис. 3.1)
В объемомер наливают воду до нижней риски (до расширения на колбе). Подготовленную пробу материала массой 70 г (тг) осторожно пересыпают в объемомер до тех пор, пока уровень воды не поднимется до верхней риски (после расширения на колбе).
Важно обеспечить стандартную температуру воды 20°С (равную температуре градуирования прибора) и контролировать отсутствие вовлеченного воздуха внутри колбы.
Объем засыпанного порошка равен объему расширенной части объемомера между рисками (20 см3). Масса порошка, засыпанного в объемомер (m=m1-m2), определяется после взвешивания оставшейся части порошка (m2). Масса навесок определяется с точностью до 0,1г.
Используя формулу определяют истинную плотность исследуемого порошкообразного материала.
14. Структурная пористость материалов: виды пор, способы определения, влияние на свойства материалов.
Пористость-степень заполнения материала порами. Обычно ее расчитывают из средней и истиной плотности.
Пи=(1-)·100%.
Поры бывают: замкнутые, тупиковые, открытые, каппилярные, тупиковые сложной конфигурации. Открытая пористость П0равна отношению суммарного объема всех пор, насыщающихся водой, к объему материала Vе:
П0=·;m1 и m2-масса образца в сухом и насыщенном водой состоянии.
Степень заполнения открытых пор водой зависит от условий проведения эксперимента и выражается еще двумя видами пористости – водопоглощением и водонасыщением.
Водопоглощение вычисляется по разнице масс образца в сухом состоянии и после 48 часов выдерживания в воде при атмосферном давлении. Иными словами водопоглощение – объем воды, поглощаемой материалом при нормальном давлении. При этом часть открытых тупиковых пор для воды недоступны.
(по массе)
(по объему)
Wпогл – водопоглощение %
m0 – масса сухого образца г
m1 – масса образца после 48 часов нахождения в воде, г
V – объем образца
Открытые поры могут сообщаться между собой и с окружающей средой посредством капилляров, поэтому они заполняются водой при обычных условиях насыщения, например при погружении образцов материала в ванну с водой.
Закрытая пористость равна:
П3=П-П0
От величины пористости и ее характера (размера и формы пор, равномерности распределения пор по объему материала, их структуры—сообщающиеся поры или замкнутые) зависят важнейшие свойства материала: плотность, прочность, долговечность, теплопроводность, водопоглощение, водонепроницаемость и др. Например, открытые поры увеличивают проницаемость и водопоглощение материала и ухудшают его морозостойкость. Однако в звукопоглощающих материалах открытые поры желательны, так как они поглощают звуковую энергию. Увеличение закрытой пористости за счет открытой повышает долговечность материала и уменьшает его теплопроводность. Сведения о пористости материала позволяют определять целесообразные области его применения.
Для точных измерений объема пор используют сжиженный гелий, при этом учитывают его сверхтекучесть и способность проникать в тонкие поры. Зная объем материала в естественном состоянии Vеи определив объем заключающихся в нем пор, находят объем, занимаемый веществом :Va=Ve-Vп.
Действительный объем открытых пор определяется водонасыщением при кипячении образца материала в воде или при вакуумировании в установке.
При одинаковом объеме пор наилучшими техническими свойствами обладают мелкозернистые материалы с замкнутыми равномерно распределенными порами. Материалы с открытыми порами способны заполняться водой. Капиллярно-пористая структура является причиной капиллярного подсоса и гигроскопичности, т.е. такие материалы подсасывают воду из грунта и поглощают ее из воздуха.
studfiles.net